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ABSTRACT

Computing with high-dimensional (HD) vectors, also referred to
as hypervectors, is a brain-inspired alternative to computing with
scalars. Key properties of HD computing include a well-defined
set of arithmetic operations on hypervectors, generality, scalability,
robustness, fast learning, and ubiquitous parallel operations. HD
computing is about manipulating and comparing large patterns—
binary hypervectors with 10,000 dimensions—making its efficient
realization on minimalistic ultra-low-power platforms challenging.
This paper describes HD computing’s acceleration and its optimiza-
tion of memory accesses and operations on a silicon prototype of
the PULPv3 4-core platform (1.5 mm?, 2 mW), surpassing the state-
of-the-art classification accuracy (on average 92.4%) with simulta-
neous 3.7X end-to-end speed-up and 2X energy saving compared to
its single-core execution. We further explore the scalability of our
accelerator by increasing the number of inputs and classification
window on a new generation of the PULP architecture featuring bit-
manipulation instruction extensions and larger number of 8 cores.
These together enable a near ideal speed-up of 18.4X compared to
the single-core PULPv3.

1 INTRODUCTION

The brain’s circuits are massive in terms of numbers of neurons
and synapses, suggesting that large circuits are fundamental to the
brain’s computing [7, 9, 16]. High-dimensional (HD) computing, aka
hyperdimensional computing [9], is based on the understanding that
brains compute with patterns of neural activity that are not readily
associated with numbers. In fact, the brain’s ability to calculate with
numbers is feeble. However, by virtue of the large size of brain’s
circuits, we can model neural activity patterns in points of a high-
dimensional space, that is, with hypervectors. When dimensionality
is in the thousands (e.g., 10,000-D), the term “hyperdimensional” is
used [9]. Hypervectors are also holographic and (pseudo)random
with independent and identically distributed (i.i.d.) components.
Such hypervectors can be mathematically manipulated to not only
classify but also to make associations, form hierarchies, and per-
form other types of cognitive computations [9]. Key properties of
HD computing include generality, scalability, a well-defined set of
arithmetic operations on hypervectors, ubiquitous parallel opera-
tions, robustness, and graceful degradation making it possible to
develop efficient nanoscalable learning machines [20].
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HD computing is a complete computational paradigm that is
easily applied to various learning problems, e.g., analogical process-
ing [16], language recognitions [11, 12], and speech recognition [22].
HD computing has also been used for multimodal data fusion and
prediction, including categorization of body physical activities from
several heterogeneous sensors [23], predicting behavior of mobile-
device users (e.g., media player prediction) [24], and reactive robot
learning [14]. More recently, HD computing has shown promise
in biosignal processing and classification of raw electromyogra-
phy (EMG) [19] as well as electroencephalography (EEG) [21] data
with minimal information: e.g., in the absence of domain expert
knowledge and using smaller training datasets, without affecting
the robustness of classification.

At its very core, HD computing is about manipulating and com-
paring large patterns stored in memory. Its mathematical opera-
tions allow a high degree of parallelism by needing to communicate
with only a local component or its immediate neighbors. Other
operations such as distance computation can be performed in a
distributed fashion. However, there has been no silicon proof yet
to assess the advantages of HD computing for a large extensive
application. Hence, we target accelerating HD computing on a
parallel ultra-low power (PULP) platform [17] which exploits near-
threshold operation coupled with parallel execution over multiple
cores. The architecture is described in detail in [25]. This paper
makes the following contributions:

e We present an accelerator for all operations of HD computing
and optimize their memory accesses on a PULP platform. We target
a silicon prototype of the PULP platform featuring 4 cores operating
at 0.5V, fabricated in 28 nm FD-SOI technology aka PULPv3 [26].
To the best of our knowledge, this is the first realization of an
accelerated HD computing on an embedded platform with tight
resources (1.5 mm?, 2 mW) fabricated in the standard silicon-based
technology. We efficiently represent the components of binary hy-
pervectors to unsigned integer arrays and carefully optimize their
layout in L1/L2 memory; this enables double buffering for efficient
data transfer and naturally exploits data level parallelism with bit-
wise and distributed operations. These optimizations construct a
universal accelerator for all applications of HD computing that
are described using the open multiprocessing (OpenMP) directives.
This paper shows an example of using this accelerator in the EMG-
based hand gesture recognition for a highly energy-efficient and
wearable form-factor system.

e Our accelerator preserves the semantic of HD computing by
avoiding any lossy optimization on binary hypervectors, and its clas-
sification accuracy (on average 92.4%) matches the golden MATLAB
model®. This classification accuracy already surpasses the state-of-
the-art support vector machines (SVMs) [3]. We demonstrate that
HD computing is computationally affordable on a mW platform,
and highly amenable for perfect parallel execution: PULPv3 with

IMATLAB code, C code for ARM Cortex M4 and our accelerator are open access at
https://github.com/fabio-montagna/PULP-HD
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4 cores achieves 3.7x end-to-end speed-up and 2X energy saving
compared to its single core execution.

e We further investigate how acceleration of HD computing can
benefit on a new generation of the PULP featuring RISC-V based
processors (called Wolf) extended for energy-efficient digital signal
processing [6] such as bit-manipulation instructions. This instruc-
tion extension together with a larger number of 8 cores achieves
18.4% speed-up compared to the single-core PULPv3. We also eval-
uate the scalability of our accelerator by increasing the number
of input channels and larger temporal windows of classification.
We observe that HD computing scales very well, and the savings
linearly benefit from a large number of cores paving the way for
the development of future HD-centric accelerators.

2 BACKGROUND

In this section, we first provide background in HD computing, and
describe the main modules of an HD computing-based classifier.
Then, we describe in details the PULP platform that is used for
acceleration of the HD classifier.

2.1 High-dimensional (HD) Computing
Computing with 10,000-bit words takes us into the realm of very
high-dimensional spaces and vectors. There exist a huge number of
different, nearly orthogonal hypervectors with the dimensionality
in the thousands [7, 9]. This lets us combine two such hypervectors
into a new hypervector using well-defined vector space operations,
while keeping the information of the two with high probability. The
binary hypervectors are initially taken from a 10,000-D space and
have an equal number of randomly placed 1s and 0s, i.e., {0, 1}P [8].
The number of places at which two binary hypervectors differ is
called the Hamming distance and it provides a measure of similarity
between hypervectors.

HD computing uses three operations: multiplication, addition,
and permutation (MAP). The addition of binary hypervectors [A +
B+ ...] is defined as the componentwise majority with ties broken
at random. The multiplication is defined as the componentwise
XOR (@), and permutation (p) shuffles the components, e.g., 1-bit
rotation. All these MAP operations produce a D-bit hypervector.
The usefulness of HD computing comes from the nature of the
operations. Specifically, the addition produces a hypervector that is
similar to the input hypervectors, whereas multiplication produces
a dissimilar hypervector. Hence, the addition is well suited for
representing sets, and the multiplication is useful for binding two
hypervectors. The permutation also generates a dissimilar pseudo-
orthogonal hypervector that is good for storing a sequence. The
multiplication and permutation are invertible.

2.1.1  Modules of HD Classifier. In the following, we describe
three main modules for classification using HD computing. First, an
item memory (IM) maps all symbols in the system to the HD space.
In a typical biosignal processing system, the names of channels (or
electrodes) are the basic symbols for mapping. The IM assigns a
random hypervectors (with i.i.d. components) to every channel’s
name,ie., E; L Ep... L E;. Besides the discrete symbols, the system
has analog values (e.g., the signal levels of channels) for mapping.
To map these analog values, the notion of IM is further extended
to a continuous item memory (CIM) [19]. In the continuous vec-
tor space of CIM, orthogonal endpoint hypervectors are generated
for the minimum and maximum signal levels. For instance, when
the channel i produces a maximum signal level at time t and the
minimum signal level at ¢ + k, the corresponding generated hyper-
vectors by CIM are orthogonal, i.e., Vl.t 1 Vin. The hypervectors
for intermediate levels are then generated by linear interpolation

between these endpoints and are prestored in the CIM [19, 21]. The
IM and CIM stay fixed throughout the computation, and they serve
as seeds from which further representations are made.

Second, the seed hypervectors are encoded by the MAP oper-
ations to represent the event of interest for classification. For in-
stance, a spatial encoder can represent a set of all channel-value
pairs at timestamp ¢ into a binary hypervector (S). To this end,
the multiplication is used to bind each channel to its signal level,
and to form the set all these bound hypervectors are bundled by
the addition, i.e., S* = [(E; ® Vlt) +...+(E;® Vit)]. The generated
binary hypervector (%) only captures the spatial information for
a given time-aligned samples of channels. However, in many ap-
plications temporal information is of concern as well. A temporal
encoder can capture the relevant temporal information by using the
permutation and multiplication that together form an N-gram hy-
pervector from a sequence of N hypervectors . Hence, a sequence of
N spatial hypervectors at consecutive timestamps are encoded into
an N-gram hypervector: S* @ p!Sttl @ p25t+2 g . @ pnlsitn-1
where pK is a rotation over k positions of the hypervector. Some
biosignal processing applications such as EEG-based brain-machine
interfaces may require a large temporal window as large as N-gram
of 29 [21].

Finally, for a given class, across all its trials, the corresponding
N-gram hypervectors are added to produce a binary prototype hy-
pervector. During training, the prototype hypervectors are stored
in an associative memory (AM) as the learned patterns. During
classification, in an identical way to prototypes, a query hypervec-
tor is generated from unseen inputs. The AM compares the query
hypervectors to all learned prototype hypervectors, and returns the
label of the one that has the minimum Hamming distance. Since
these three modules are commonly used across various applications
of HD computing [19-21], we target their accelerations to achieve
end-to-end benefits in learning and classification tasks.

2.2 Parallel Ultra-Low Power (PULP) Platform

The PULPv3 SoC used is in work exploits a software programmable,
4 processors cluster architecture operating in near-threshold (0.7 V-
0.5V), fabricated in 28 nm FD-SOI technology [26]. The processors
used in the cluster are based on an optimized implementation of
the open-source OpenRISC instruction set architecture (ISA) which
share 48 kB of multi-banked tightly coupled data memory (TCDM)
acting as software-managed L1 scratchpad memory. The 64 kB off-
cluster L2 memory can be accessed by a tightly coupled direct
memory access (DMA) optimized for low power through the 64-bit
AXI4 interconnect, which guarantees high L1 to L2 communication
bandwidth (i.e., up to 32 Gbit/s at 500 MHz).

The cluster and the rest of the SoC (which includes L2 mem-
ory and peripherals) reside in two clock and power domains con-
trolled by frequency-locked loops (FLLs), and external voltage regu-
lators [18]. Hence, voltage and frequency can be scaled according to
the performance requirements of the applications. The SoC features
a standard peripheral set which includes SPI, QSPI, UART, I2C, 12S
to connect to external commercial devices such as analog to digital
converters (ADC). PULPv3 relies on OpenMP v3.0, as the de facto
standard parallel programming model, that operates on top of GCC
4.9 toolchain. The OpenMP implementation is based on a highly
optimized bare-metal library to exclude an operating system that
would otherwise introduce huge software overheads not suitable
for ultra-low-power parallel accelerators.
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Figure 1: Parallel processing chain of HD computing. The
number of cores n varies from 1 to 8 depending on the target
architecture. Empty boxes indicate no memory usage.

3 ACCELERATING HD COMPUTING ON
PULP

This section describes the acceleration of the HD Computing on
the PULP platform. To reduce the computational requirements,
we first pack a binary hypervector in an array of conventional
data type. We directly map 32 consecutive binary components of
a hypervector to an unsigned integer variable with 32 bits. In this
way, a binary hypervectors, with 10,000 randomly placed 1s and
0s, can be losslessly represented with 313 unsigned integers. This
leads to a significant reduction of the memory accesses. Moreover,
having hypervectors united in 32 bits unsigned integers paves the
way to aggressive code optimizations for the MAP operations, using
simple componentwise majority, XOR, and shift operations.

Fig. 1 illustrates the processing chain of HD computing that is
composed by three main kernels: mapping to the HD space and
spatial encoder, temporal encoder, and AM for classification. Each
kernel of the processing chain is parallelized separately using an
optimized version of the OpenMP directives to efficiently distribute
the workload over multiple cores.

The input EMG signals are acquired through a 16-bits ADC [2]
and casted to the 32-bit floating-point representation. The prepro-
cessing block includes power line interference removal and enve-
lope extraction. This preprocessing block is not executed on the
PULP platform, hence we exclude it from our parallel processing
chain. The first kernel of our processing chain maps the EMG sam-
ples to the HD space, and performs spatial encoding among the
channels. To map the four samples (see Fig. 1) to the internal HD
representation, we use the CIM with a fixed number of levels, e.g.,
22 linear levels are suitable for the EMG task where the amplitude
of signal typically ranges from 0 to 21 mV. A set of 22 hypervec-
tors corresponding to each of these levels are generated offline
and prestored in the CIM. The CIM utilizes a simple quantization
step in which every sample is rounded to the closest integer level.
Besides, the 4 EMG channels are also mapped to corresponding
hypervectors on the IM with 4 orthogonal hypervectors. In this
kernel, parallelization is performed at data level.

After mapping to the HD space, the workload is equally dis-
tributed among the cores, giving to each core a portion of the
hypervectors on which the required encoding operations are per-
formed. In this way, the cores execute first the componentwise XOR
operation from the outputs of CIM and IM, and then the componen-
twise majority to create the spatial hypervector in parallel. In Fig. 2
(right), a code snippet of the spatial encoder kernel is presented to
show how OpenMP directives are used for the parallelization of
the entire processing chain. In Section 5, we demonstrate that this
kernel shows an high level of scalability on large number of cores,
achieving a nearly ideal speed-up.

The spatial hypervector (1x313), which goes as input in the
temporal encoder, is stored directly in the L1 memory to avoid
useless accesses to the high latency memory (L2) and requires

#pragma omp parallel num_threads(CORE)
T {
£ @ Vi #pragma omp master
QUANTIZATION
}
#pragma omp barrier
#pragma omp for
for(i = 0; i < 313; i++){
for(j = 0: j < 5: j++)i
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Figure 2: Illustration of how built-ins (p.extractu, p.insert,
p-cnt) are used in the spatial encoder (left). A code snippet
to show how parallelism is achieved through OpenMP direc-
tives in the entire processing chain (right).

2kB of memory. Instead, the CIM (22x313 matrix, 27 kB) and IM
(4x313 matrix, 5 kB) are stored in the L2 memory. By applying a
double buffering policy via DMA, data are moved from high latency
memory (L2) to L1 memory while the cores are processing the data
already available in L1. In this way, data transfers and processing
phases can be superimposed improving the performance and the
energy efficiency of the system.

As mentioned in the Section 2.1.1, in the case of N-grams greater
than one, after the spatial encoder, the temporal encoder is executed.
In this kernel, a sequence of N spatial hypervectors are encoded and
combined through a componentwise XOR operation after shifting
them by one position as permutation. The output of this kernel is the
N-gram hypervector that requires 2 kB (stored the in L1 memory)
and serves as the input of the AM kernel.

The last part of the processing chain is the AM kernel. The AM
matrix is composed by the prototype hypervectors associated to
each classes, derived from the learning session performed off-line.
Nevertheless, the AM matrix can be continuously updated for on-
line learning. The Hamming distances are calculated between the
query hypervector and all of hypervectors contained in the AM ma-
trix. This kernel is parallelized at data level as well: the hypervectors
are equally distributed among the cores to perform componentwise
XOR between the components of the query and the components
of the AM, and count the number of mismatches as distances. The
AM (5x313) matrix requires 7 kB and is allocated in the L2 memory.
Here as well, the data are efficiently transferred from the L2 to
L1 memory through the double buffering via the DMA. The total
memory requirements for the EMG application, considering 10,000-
D hypervectors is around 50 kB, perfectly matching the storage
capabilities of the PULPv3 SoC.

4 EXPERIMENTAL SETUP AND RESULTS

We evaluate our accelerator on an EMG dataset acquired from
five subjects [19]. The EMG signals are sampled at 500 Hz from
four channels placed on the forearm of the subjects. The dataset
includes four common hand gestures: closed hand, open hand, 2-
finger pinch, and point index. It also includes the rest position
between subsequent gestures. The gesture are three second long
and each one is repeated 10 times.

4.1 Comparison with SVM on ARM Cortex M4

In literature, the most used algorithms for EMG gesture recognition
are support vector machine (SVMs), linear discriminant analysis
(LDA) and k-nearest neighbor (KNN). As shown in [15], through
these techniques, SVM yields the highest accuracy. Hence, we first
show a comparison between classification accuracy of HD com-
puting and the state-of-the-art SVM [3]. Then, we measure per-
formance and power consumption of specialized serial versions of



Table 1: Comparison of HD computing (200-D) versus SVM
at iso-accuracy on ARM Cortex M4. The results refer to a
10 ms detection latency.

ARM Cortex M4

Kernel Cycles(k) Accuracy(%)
HD COMPUTING 12.35 90.70
SVM 25.10 89.60

these two algorithms on a commercial embedded ARM Cortex M4,
featuring the most commonly used ISA in the low-power embedded
domain.

As the first step, we implement and validate these two algorithms
on MATLAB to establish a golden model to follow. We use an iden-
tical setup for both algorithms as presented in [19]; the model
training is done per subject and off-line using 25% of the dataset,
while the entire dataset is used for testing. The mean classification
accuracy of gestures among five subjects is 89.6% with SVM, and
92.4% with the HD classifier. More importantly, the HD classifier
exhibits a graceful degradation with lower dimensionality, or faulty
components, allowing a trade-off between the application’s accu-
racy and the available hardware resources in a platform [19, 20].
We can exploit this graceful degradation capability by reducing
the dimensionality of hypervectors that eases the execution on the
commercial ARM Cortex M4. To do so, we perform simulations by
reducing the dimensionality from 10,000 to 100. The HD classifier
closely maintains its accuracy when its dimensionality is reduced
from 10,000 to 200, but beyond this point the accuracy is dropped
significantly. Therefore, for this experiment, we fix its dimension
to 200-D showing a mean accuracy of 90.7%, slightly higher than
the SVM. This tuning allows compacting a hypervector to seven
unsigned integers, and linearly reduces the number of operations
of the HD classifier with no significant impact on its accuracy (i.e.,
iso-accuracy with SVM).

On the other hand, the SVM does not support such a flexibility. A
trained model of SVM is composed by a number of support vectors
(SVs). This parameter is not determined a priori, and can vary due to
several factors such as the scaling of the data, the kernel function,
and the level of tolerable miss-classification. Obviously, all this
variability requires time to find the best configuration that leads
to the smallest number of SVs maintaining the highest accuracy.
Hence, a different number of SVs and the dimension of input feature
vectors (i.e., the number of channels) induce substantial differences
in performance. For this exploration, the dimension of the SVs is
fixed to four as the number of input channels, while the number
of SVs varies significantly across the model of five subjects, and
finally is chosen to be 55 as the smallest among the subjects. This is
in sharp contrast to the HD classifier since there is no variability in
its model size after choosing its parameters: the dimension of the
hypervectors, the N-gram size, and the number of input channels.
Table 1 summarizes the performance and accuracy results derived
from the serial execution of the two algorithms on the ARM Cortex
M4. The CIM, IM, and AM matrices of the HD classifier, and the
SVs and coefficients matrices of the SVM, as the trained models,
are loaded into the ARM Cortex M4 for testing. For SVM, a fixed-
point approach is used to avoid all the computation needed to be
executed in the floating-point. It is already demonstrated [13] that
this approach leads to best performance preserving the accuracy. As
shown, the HD classifier achieves ~2X faster execution and lower
power at iso-accuracy compared to the SVM on the ARM Cortex
M4. This is due to the fact that HD classifier mostly uses basic
componentwise operations on the hypervectors. In the following,
we show how HD classifier can further benefit from our accelerator.

Table 2: Detailed power (P) comparison of HD algorithm on
the ARM Cortex M4 and PULPv3 based on number of cycles
(CYC) and frequency (FREQ). The results refer to a 10 ms de-
tection latency.

CYC | FREQ | FLLP | SOCP | CLUSTERP | TOT.P | P BOOST
| [k] | [MHz] | [mW] | [mW] [mW] | [mW] [x]
HD COMPUTING
ARM CORTEX M4@1.85V | 439 | 43.90 - 20.83 N.A. 20.83 -
PULPv3 1 CORE@D.7V | 533 | 5330 | 145 | 0.87 1.90 122 19
PULPV3 4 CORES@0.7V | 143 | 1430 | 145 | 023 0.88 2.56 8.1
PULPV3 4 CORES@Q.5V | 143 | 1430 | 145 | 023 0.42 2.10 9.9

4.2 HD computing on PULPv3 versus ARM
Cortex M4

Table 2 shows the performance and power measurements of the HD
computing on the PULPv3 prototype [26] in different operating con-
ditions, and compares it with the ARM Cortex M4, benchmarked on
an STM32F4-DISCOVERY board. In this experiment we use 10,000-
D to retain to the best accuracy of 92.4%, and accordingly configure
the clock frequency of the processors to achieve a detection latency
of 10 ms [3, 4, 10].

The second column of Table 2 shows that with respect to the
single-core PULPv3, the ARM Cortex M4 can operate at a lower
frequency for the target detection latency, exploiting some opti-
mized instructions that speed up the execution, namely load and
shift and load 32-bit immediate. The key features of the PULPv3
SoC exploited in this work are performance-tunable near-threshold
computing and parallelism. The 4.9X power gap between the ARM
Cortex M4 and the single-core PULPv3 power at 0.7 V is partially
given by the technology gap (i.e., 90 nm vs. 28 nm), but also by
the cluster architecture and its implementation strategy optimized
for energy-efficient operation [26]. Significant energy boost can
be achieved through parallel computing over the 4 cores of the
cluster. This allows to fully exploit the parallel compute power of
the cluster and to reduce the operating frequency of the system by
3.72% (almost ideal speed-up over 4 cores), which saves significant
power, leading to 8.1X power reduction with respect to the ARM
Cortex M4, at the operating voltage of 0.7V. Finally we exploit the
process and temperature compensation capabilities of the SoC to
enable aggressive voltage scaling, still reaching the target operating
frequency of 14.3 MHz [26]. This key feature of the PULPv3 SoC
allows to scale the voltage of the cluster down to 0.5V, improving
energy efficiency and leading to a power reduction of about one
order of magnitude (9.9x) with respect to the ARM Cortex M4.

It should be noted that the clock generation subsystem of PULPv3,
composed of 2 frequency locked loops (FLL), is not optimized for
low-power operation, featuring a reference frequency of 40 MHz
and a power consumption of 1,45 mW. This block forms a bottle-
neck for energy efficiency at low voltage, dominating the overall
power of the system. Replacing this block with a new generation
FLL optimized for low-power [1] would reduce the clock generation
power by 4x leading to a further 2X reduction of system power,
and boosting energy efficiency by ~20x with respect to the ARM
Cortex M4. This result motivates us to assess the accelerator with
larger workloads, and devise further architectural optimizations.

5 IMPROVED ACCELERATOR AND
SCALABILITY

This section describes how the performance of HD computing can
be optimized on a new generation PULP platform (Wolf) featur-
ing an optimized cluster architecture [5] and RISC-V processors
enhanced with ISA extensions targeting energy efficient digital
signal processing [6]. We also show how our accelerator allows to



Table 3: Performance of accelerated HD computing on
PULPv3 versus Wolf. Results refer to the execution with
built-in, 10,000-D, N=1; Cyc, 1d, sp stand for cycles, load, and
speed-up (sp wrt PULPv3 1 core).

PULPv3 PULPv3 Wolf Wolf Wolf
1 core 4 cores 1 core 1 core built-in 8 cores built-in
Kernel cyc(k) 1d(%) cyc(k) sp(x) cyck) sp(x) cye(k) sp(x) cye(k) 1d(%) sp(x)
MAP+ENCODERS 492 92.30 129 3.81 401 1.23 176  2.80 25  86.21 19.68
AM 41 7.70 14 293 33 124 12 3.42 4 13.79 10.25
TOTAL 533 100.00 143 3.73 434 123 188 2.84 29 100.00 18.38

increase the workload of the processing chain without exceeding a
10 ms detection latency, which is an order of magnitude lower than
state-of-the-art systems [3, 4, 10].

5.1 HD Computing on Wolf

With respect to the PULPv3 architecture, the main architectural
improvement of the Wolf cluster include a better scalability (up
to 8 processors), an hardware synchronization mechanism which
allows to significantly reduce the programming overheads of the
OpenMP runtime, fully exploiting the intrinsic parallelism of appli-
cations, and an enhanced processor extending the RISC-V ISA with
advanced arithmetic operations, that can be inserted in optimized
C code adopting built-in functions [6]. The flavor of the dedicated
instructions that can be exploited in HD computing mainly include
those accelerating for loops and bit manipulation instructions. In-
deed, in the processing chain of HD, there are several operations
where single bits need to be read/inserted from/into 32-bit words,
and where the number of 1’s in a 32-bit word needs to be counted.

The bit manipulation instructions used to optimize the perfor-
mance of the application are p.extractu, p.insert and p.cnt. The first
and the second built-ins, p.extractu and p.insert, are used respec-
tively to read and set the value assumed by a given bit in an unsigned
32-bit integer variable in a register. The last one, p.cnt, is so-called
popcount and gives the number of bits set to 1 in a word. The built-
ins p.extractu and p.insert are used to further optimize the spacial
encoder kernel. In this part of the processing chain after binding
each channel to its signal level in the HD space, a componentwise
majority is needed to be applied on these bound hypervectors to
produce the spatial hypervector, i.e., S* = [(E1 ® Vlt) +...+(E;® Vlt)]
As shown in Fig. 2 (left), the componentwise majority operation
needs to extract i components of these hypervectors (i.e., bit-by-bit)
and to count the number of bits that are set to 1 for the major-
ity voting. If the number of channels (i) is even, one random but
reproducible hypervector is generated, by componentwise XOR be-
tween two bound hypervectors, for the majority to break the ties
at random. For instance, with four channels, we use five bound
hypervectors for the majority, and extract and insert five bits (one
bit from every hypervector) in an unsigned integer. Then, we use
the popcount (p.cnt) to decide whether the number of bits that are
set to 1 is higher than the number of bits that are set to 0. If it holds,
we set the related bit (i.e., the same component) to 1 in the spatial
hypervector.

The popcount is used in the AM kernel as well. Here, the Ham-
ming distances between the query hypervector and the prototype
hypervectors stored in the AM matrix are computed. To do that, the
popcount is applied to all variables that compose the hypervectors
after the componentwise XOR operation between the query and
the prototype hypervectors. Table 3 shows that 1.23x speed-up is
achieved by migrating from the single-core PULPv3 to the single-
core Wolf architecture with a general-purpose ANSI-C code, thanks
to the optimized RISC-V ISA and compiler. Further 2.3x speedup
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Figure 3: Exploring the dimension of the hypervectors with
different large N-grams on Wolf 8 cores with built-in.

can be achieved on the Wolf SoC thanks to the support of the spe-
cialized instruction extensions that are included in the C code as
built-ins (2.8X wrt single-core PULPv3).

Moreover, our accelerator linearly benefits from larger number
of cores that are available in Wolf. Table 3 also summarizes the
execution time in clock cycles of the HD Computing using vari-
ous number of cores in PULPv3 and Wolf. When a larger number
of cores is used, a conspicuous reduction in the execution time is
achieved. These results show that the accelerator can scale perfectly
among multiple cores (up to 8 cores). In fact, a speed-up of 3.7x
is obtained by moving execution from single-core to 4 cores on
PULPv3, while the implementation on the Wolf cluster gains 6.5X
speedup, scaling from single-core to 8 cores. The map and encoding
kernels present nearly ideal speed-ups, while the AM kernel tends
to saturate the improvement. The main reason is that the computa-
tional load is small and the OpenMP runtime overhead increasingly
degrades the parallel performance. Despite this, the impact on the
total gain is negligible.

As shown in Table 3, the single-core and 8-core Wolf are around
2.8x and 18.4x% faster compared to the single-core PULPv3. These ex-
cellent improvements in our accelerator is achieved as a cumulative
results of the better ISA, compiler, as well as the built-in extensions
on the 8-core Wolf cluster. In the single-core PULPv3, the map and
encoding kernels require 92.30% of the overall execution, while the
AM kernel takes the remaining computational load (7.70%). In the
8-core Wolf execution with built-in this gap decreases as a result of
the saturation in speed-up due to the OpenMP runtime overhead.
Hereafter, the exploration and scalability analysis are done on the
Wolf.

5.2 Accelerator Scalability

The earlier results presented in Section 4 focused on the EMG task
with a small number of four channels and an N-gram size of one.
However, as we mentioned, for more complex tasks such as EEG
classification, a larger number of channels and wider temporal
window (i.e., larger N-gram size) are required [21]. Therefore, we
assess the scalability of our accelerator by extensively increasing
the number of channels up to 256, the N-gram size up to 10 and the
dimension of hypervectors up to 10000, showing that the accelerator
can be tailored for other type of applications. The dimensionality is
related to capacity of hypervectors. Increasing the dimensionality of
the hypervectors creates higher capacity for handling more complex
tasks, and leads to an overall increase in the number of operations
in the processing chain. Fig. 3 demonstrates that increasing the
dimension of the hypervectors, for every N-gram size, corresponds
to a linear growth of the execution time in terms of number of
clock cycles. Hereinafter, the dimension of the hypervectors are
fixed to 10,000-D to explore the capability of the accelerator with
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Figure 4: Performance of accelerated HD computing with
large N-grams when executing on multiple cores on Wolf
with built-in and 10,000-D.
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Figure 5: Performance and memory footprint of accelerated
HD computing with increased number of channels on 8
cores Wolf with built-in and 10,000-D .

higher computational requirements for complex tasks. We also
evaluate how increasing the size of N-gram from 1 to 10 affects
the performance of our accelerator, and how this workload scales
among different cores. Fig. 4 demonstrates that the accelerator is
able to scale such excessive workload perfectly among the cores.

As shown in Fig. 5, ranging the number of channels from 4 to 256,
the clock cycles increases linearly with the number of channels, and
our accelerator meets the latency constraint. We should note that
the commercial ARM Cortex M4 could not handle such a workload
for HD computing: it cannot meet the 10 ms latency constraint
when the number of channels is larger than 16. Moreover, a linear
increase in the number of channels induces only a linear growth of
the the memory footprint (Fig. 5, red line) to store and allocate all
the matrices for the HD computing. This is a superb property of
HD computing as the memory footprint has a considerable impact
on the design of the embedded ultra-low power architectures.

6 CONCLUSION

This work presents accelerating HD computing on the PULP plat-
form with optimized operations and memory accesses. We show its
application on the EMG hand gesture classification that surpasses
the state-of-the-art SVM accuracy. For the end-to-end execution of
classification, our accelerator in PULPv3 achieves 3.7X speed-up
and 2X energy saving compared to its single-core execution; it also
achieves 9.9X energy saving compared to the ARM Cortex M4. We
further evaluate our accelerator in Wolf that demonstrates nearly
ideal speed-up by exploiting bit-manipulation ISA extensions and
larger cores: Wolf with single core and 8 cores achieves 2.8X and

18.4X faster execution compared to the single-core PULPv3. More-
over, we show that increasing the number of input channels to 256,
and the length of temporal window to 10 (i.e., the N-gram size)
poses only a linear growth in the execution time and the memory
footprint that are efficiently handled by our accelerator without
exceeding the 10 ms detection latency requirement.
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