
Hyperdimensional Biosignal Processing: A Case
Study for EMG-based Hand Gesture Recognition

Abbas Rahimi∗, Simone Benatti†, Pentti Kanerva‡, Luca Benini†§, Jan M. Rabaey∗
∗EECS Department, University of California, Berkeley. Email: {abbas, jan}@eecs.berkeley.edu

†DEI, University of Bologna, Italy. Email: {simone.benatti, luca.benini}@unibo.it
‡Redwood Center for Theoretical Neuroscience, University of California, Berkeley. Email: pkanerva@berkeley.edu

§D-ITET, Integrated System Laboratory, ETHZ, Zurich, Switzerland. Email: luca.benini@iis.ee.ethz.ch

Abstract—The mathematical properties of high-dimensional
spaces seem remarkably suited for describing behaviors produces
by brains. Brain-inspired hyperdimensional computing (HDC)
explores the emulation of cognition by computing with hypervec-
tors as an alternative to computing with numbers. Hypervectors
are high-dimensional, holographic, and (pseudo)random with
independent and identically distributed (i.i.d.) components. These
features provide an opportunity for energy-efficient computing
applied to cyberbiological and cybernetic systems.

We describe the use of HDC in a smart prosthetic application,
namely hand gesture recognition from a stream of Electromyo-
graphy (EMG) signals. Our algorithm encodes a stream of
analog EMG signals that are simultaneously generated from
four channels to a single hypervector. The proposed encoding
effectively captures spatial and temporal relations across and
within the channels to represent a gesture. This HDC encoder
achieves a high level of classification accuracy (97.8%) with only
1/3 the training data required by state-of-the-art SVM on the
same task. HDC exhibits fast and accurate learning explicitly
allowing online and continuous learning. We further enhance
the encoder to adaptively mitigate the effect of gesture-timing
uncertainties across different subjects endogenously; further, the
encoder inherently maintains the same accuracy when there is
up to 30% overlapping between two consecutive gestures in a
classification window.

I. INTRODUCTION

Over the past decades, the semiconductor industry has been
immensely successful at increasing computing power while
reducing cost and energy consumption. This has been achieved
thanks to availability of efficient predictable CMOS devices
supporting deterministic operations. Unfortunately energy ef-
ficiency of CMOS devices is challenged when scaling down
to nanometer dimensions. Maintaining a deterministic model
of computing ultimately puts a lower bound on the amount of
energy scaling that can be obtained. This bound is primarily
set by the variability and reliability of the devices.

It is therefore worth exploring alternative computational
models that enable further size and energy scaling by aban-
doning the deterministic requirement. Brain-inspired informa-
tion processing architectures provide significant increase in
energy efficiency, asymptotically approaching the efficiency
of brain computation, while aligning well with the variability
of nanoscale devices [1], [2]. Our approach is focused on
a computational theory called hyperdimensional computing
(HDC) [5]. In this formalism, information is represented in
high-dimensional vectors called hypervectors. The mathemat-
ical properties of high-dimensional spaces correlate strongly

with behaviors controlled by the brain [3], [4], [5], [6], hence
HDC explores the emulation of cognition by computing with
hypervectors as an alternative to computing with numbers. Hy-
pervectors are high-dimensional, e.g., 10,000 dimensions (D
= 10,000), (pseudo)random with i.i.d. components, and holo-
graphic. It means that every piece of information contained in
the hypervector is distributed equally over all the components.
Such hypervectors can then be mathematically manipulated to
not only classify but also to bind, associate, and perform other
types of cognitive operations in a straightforward manner [7].
In addition, these mathematical operations also ensure that
the resulting hypervector is unique and thus learning can take
place in a single shot.

By requiring very low energy, hyperdimensional computing
is a prime candidate for applications such as wearable biosig-
nal processing and cybernetic systems. In addition, HDC has
some unique properties and features that make it extremely
well matched to emerging 3D nanoscale technology. Key prop-
erties include: (1) HDC paradigm is universal and complete.
(2) In contrast to other neuro-inspired approaches, in which
learning is separate from execution, learning in HDC shares its
constructs with execution, is relatively lightweight, and can be
realized in an online fashion on a small low-energy device. (3)
By its very nature, HDC is extremely robust in the presence
of component variation, defects and failure, and it tolerates
noise in the signal leading to ultra low-energy computation.
(4) HDC is memory-centric by manipulating and comparing
large patterns, within the memory; operations are either local
or can be performed in a distributed fashion.

HDC has been used for language recognition as well as
text classification solely from a stream of input letters. More
specifically, HDC can identify the language of unknown
sentences from 21 European languages [8], [2], and classify
Reuters news articles to eight topics [9] with very high
accuracy. In this paper, we show how HDC can be used for
biosignal processing given a set of parallel and analog stream-
ing inputs. Accordingly, we develop an encoding algorithm
using HDC for hand gesture recognition from a stream of
EMG signals. Our algorithm encodes a stream of analog EMG
signals that are simultaneously generated from four channels to
a single hypervector representing a hand gesture. The proposed
encoding effectively captures spatial and temporal correlations
across and within the channels to describe a gesture. Our
proposed HDC surpasses the state-of-the-art support vector
machine (SVM) [10] for the hand gesture recognition in four978-1-5090-1370-8/16/$31.00 c©2016 IEEE



aspects: (1) HDC exhibits an average recognition accuracy
of 90.8% (2% higher than SVM) by only encoding spatial
correlation across the four channels. (2) Encoding also the
temporal correlation by considering consecutive samples over
time, boosts the accuracy of HDC to 100%, and on average
to 97.8% (8.1% higher than SVM). We further enhance the
encoder to adaptively mitigate the effect of gesture-timing un-
certainties by endogenously observing the distance measures
between the encoded input patterns and learned patterns. (3)
HDC maintains the aforementioned accuracy when there is
up to 30% overlapping between two gestures in a window of
classification, even with reduced dimensionality of D = 6,000.
(4) For the aforementioned comparisons, 25% of dataset is
used for training both classifiers. HDC learns quickly, making
it a prime candidate for online and continuous learning. For
accuracy on par with HDC, SVM requires 3.2× as much
training data. The algorithms and techniques described in this
paper are all publicly released.1

This paper is organized as follows. In Section II, we describe
EMG signal processing and its background, including data
acquisition, preprocessing, system description, and finally the
state-of-the-art SVM gesture classification. In Section III, we
introduce hyperdimensional computing and discuss how its op-
erations can be used to form a new classifier. In Section IV, we
present our algorithm for EMG-based hand gesture recognition
using hyperdimensional computing. In Section V, we provide
more experimental results. Section VI concludes this paper.

II. ELECTROMYOGRAPHY (EMG)
A. EMG Signal and Acquisition

The muscular contractions are generated by the electrical
activity of nerve cells called motoneurons. Their cell bodies
are located in the spinal cord and their axons are directly
connected to the target muscles. The stimulus that generates a
muscular contraction propagates from the brain cortex to the
target muscles as an electrical potential, named action potential
(AP). APs are generated by the passage of Na+ and K+ ions
along nerve cell membranes. As a result of this ion flow, the
nerve impulses propagate towards the muscle cells and start the
contractions [11]. The EMG signal represents the monitoring
of this electrophysiological activity. The signal results from the
superposition of all the APs of the cells underlying a couple
of metal electrodes, placed on the skin and aligned parallel
to the muscle fibers. The surface EMG electrodes are made
by two conductive plates each one connected to the inputs
of a differential amplifier that sense the action potential of
muscular cells.

The maximum amplitude of this signal is 20 mV (-10 to
+10) depending on the dimension of the muscle fibers, on the
distance between the muscle and the electrodes and on the
electrode properties. Signals of this kind are also very noisy
and difficult to manage even if the maximum bandwidth does
not exceed 2 kHz. The main causes are noise from motion
artifacts, fiber crosstalk, electrical equipment and the floating
ground of the human body.

Hence, the typical EMG acquisition in high-end gesture
recognition applications is based on active analog sensors that

1https://github.com/abbas-rahimi/HDC-EMG

(a)

(b)

Fig. 1. EMG Signal: (a) Raw acquired data, (b) Enveloped data.

provide a high-quality signal [12]. Such sensors represent the
commercial solution for EMG acquisitions, both in research
and industrial applications. These sensors perform a full-
analog signal conditioning based on a bandpass discrete filter,
an instrumentation amplifier with a high gain stage, and an
offset cancellation feedback circuit. The bandwidth of the
Ottobock [12] sensor is 90–450 Hz with a further notch filter
for the 50 Hz. This is because the sensors for the classification
of the gestures do not need extensive frequency information
but a clear low-noise signal is preferable. The EMG raw signal
is a zero-mean differential signal and the preprocessing is done
in hardware by the internal circuitry of the active sensors.
The EMG differential signal is integrated and a low pass filter
is applied to extract the envelope of the signal. Furthermore
a notch filter is applied to remove the residual power-line
interference. Fig. 1 shows the raw signal acquired from the
electrodes (a) and the enveloped output of the active EMG
sensor (b).

B. Background and Related Work

The robustness and the reliability are major requirements
in the design of EMG gesture recognition systems. In the
commercial devices, used in prosthetics [13] or telesurgery
[14], the recognition of the muscular activity is based on
threshold detections. The recognition of the users’ intended
movements are encoded in predefined sequences of muscular
contractions related to the wrist flexion and extension. Despite
its robustness, this approach suffers from several drawbacks,
since it is a unnatural way of interaction, requiring a high-
level of concentration and a long time to learn. Instead,
pattern recognition approaches aim to address these limits by
proposing a natural way to recognize hand gestures based on
EMG.

https://github.com/abbas-rahimi/HDC-EMG
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Fig. 2. Training and classification scheme for SVM and HDC.

Several studies focused on both acquisition setup and signal
processing algorithms required in this application. The number
of electrodes and their placement [15] has a high impact
on the design of an EMG hand gesture recognition system.
Moreover, many studies have focused on machine learning
techniques for EMG-based gesture recognition [16]. These
techniques include both linear and nonlinear methods, such
as LDA [17], SVM [18], [10], ANN [19], and a combination
of two heterogeneous classifiers to obtain a better classification
accuracy [20], [21]. Results show accuracies around and
beyond 90% with the use of feature extraction techniques
to improve the performance. The main limit of these typical
machine learning approaches is the high number of training
data needed to achieve such accuracies. We will show that
HDC can reach the same accuracy with much less training
data.

C. System Description and Experimental Setup

EMG data acquisition is based on a four sensors that cover
the muscles involved in hand movement from a physiological
point of view. The muscles of the forearm are divided in four
groups, and the use of surface EMG sensors requires that
muscle near the skin surface must be targeted for the clas-
sification. Functionally, we can separate the forearm muscles
in two classes: muscles in the internal part of the forearm
(flexor radialis carpi, palmares longus, flexor carpi ulnaris,
flexor superioris digitalis), involved in flexion movements, and
muscles placed in the external part of the forearm (externsor
comunis digitorum, extensor digiti minimi, externsor carpi
ulnaris), involved mainly in extension movements.

By placing sensors on the flexor carpi radialis, flexor
carpi ulnaris, extensor digitorum communis and extensor carpi
ulnaris we obtained a good differentiation in classification
patterns. The assumption for a multi-gesture control system
is that the set of signals and features describing a given state
of muscular activation are different from one state of activation
to another.

The dataset used in this paper is based on the collection of
the EMG signals of the most common hand gesture used in
daily life. The selected gestures are: closed hand, open hand,
2-finger pinch, and point index. The classification includes also
the rest position of the hand, recorded between two subsequent
gestures. The data were collected from nine subjects [22].
Here, we use a subset of the data for five subjects. The col-
lected sequences are composed of 10 repetitions of muscular
contraction three seconds each. Between each contraction there

are three seconds of rest. The gestures are sampled at 500 Hz.
Subjects wear an elastic strip with the four EMG sensors [12].
See Fig. 1.

The theoretical framework of the SVM is the evolution of
the logistic regression methods, through the application of the
large margin classification. The goal of training is to define the
optimal separation hyperplanes between classes by minimizing
a cost function. Such hyperplanes are made up of a subset of
the input data, and their vectors are called support vectors
(SVs). The SVs are calculated through the the solution of a
convex optimization problem [23] that produces the global
minimum of the cost function.

Due to its robustness and the good results reported in the
literature, SVM has become the classification technique of
choice for EMG-based gesture recognition [24], [25], [26].
The classification algorithm calculates the distance of the
input data from this decision boundary. When the two classes
are not linearly separable the data space is mapped to an
higher-dimensional space through a kernel trick to define a
similarity function between the margin hyperplane and the
classification data. The classification algorithm is based on
a decision function that calculates the distances of an input
vector with all the SVs. In particular, the formula of the
decision function to classify a new input instance is:

f(x) =
N∑
i=1

yiαiK〈x, si〉 − ρ
{
f(x) > 0, x ∈ Cl1
f(x) < 0, x ∈ Cl2

(1)

where Cl1 and Cl2, are the two classes, x ∈ Rk is the input
features vector, si ∈ Rk, i = 1, ..., N are the support vectors,
αi are the support values, while yi denotes the class they
reference (yi = +1 for Cl1, yi = −1 for Cl2) and K〈·, ·〉
denotes the kernel function.

Fig. 2 shows training and testing (classification) flows for
SVM. The EMG dataset is labeled using a threshold assigning
the gesture labels to the input EMG data. We use 25% of
this dataset to generate training data using a uniform random
sampling. This training session can be performed offline. In
Section V-B, we explore the trade-offs with increasing the
fraction of training data. These labeled data are the input of
the training algorithm that builds the SVM model (i.e., the list
of the SVs). The decision function (1) calculates the label of an
input vector comparing its distance from the SVs that represent
the decision boundary The output is the label associated with
a decoded gesture. The SVM and the HDC are trained and
tested on the same data as shown in Fig. 2.

III. HYPERDIMENSIONAL COMPUTING BACKGROUND

The brain’s circuits are massive in terms of numbers of
neurons and synapses, suggesting that large circuits are fun-
damental to the brain’s computing. Hyperdimensional comput-
ing [5], [6] explores this idea by looking at computing with
ultra-wide words – that is, with very high-dimensional vectors,
or hypervectors. There exist a huge number of different,
nearly orthogonal hypervectors with the dimensionality in the
thousands (D = 10,000) [27]. This lets us combine two such
hypervectors into a new hypervector using well-defined vector
space operations, while keeping the information of the two
with high probability.



Hypervectors are made using random indexing [3], [4] with
operations akin to multiplication, addition, and permutation
that form an algebra over the vector space (e.g., a field).
Random indexing represents information by projecting data
onto hypervectors. It is incremental, scalable, and computes
hypervectors in a single pass over the input data. Random
indexing generates hypervectors that are initially taken from
a 10,000-dimensional space and have an equal number of
randomly placed +1s and −1s, i.e., {−1,+1}10,000. Such
hypervectors are used to represent the basic elements, e.g.,
the 26 letters of the Latin alphabet and the (ASCII) space
for text inputs. These seed letter hypervectors are generated
(pseudo)randomly with i.i.d. components. Hypervectors are
holographic, too; a hypervector contains all the information
combined and spread across all its bits in a full holistic
representation so that no bit is more responsible to store
any piece of information than another. Hypervectors can be
compared for similarity using a distance metric over the vector
space.

Hyperdimensional computing has been used for identifying
the source language of text samples from a sequence of N
consecutive letters (N -grams) [8], [2]. The letter trigrams of
a text sample are encoded into a hypervector by the random
indexing and vector space operations to represent a language.
In the same vein, pentagrams of letters have been used for
classifying news articles [9].

A. MAP Operations
We consider a variant of the multiplication, addition, and

permutation (MAP) coding described in [28] to define the
hyperdimensional vector space. The MAP operations on the
hypervectors are defined as follows. Point-wise multiplication
of two hypervectors A and B, is denoted by A∗B. It produces
a vector that is dissimilar to its constituent vectors; hence
multiplication is well suited for binding two hypervectors.
Point-wise addition is denoted by A+B. Information from a
pair of hypervectors A and B is stored and utilized in a single
hypervector by exploiting the addition operation. That is, the
sum of two separate hypervectors naturally preserves unique
information from each hypervector because of the mathemat-
ical properties of vector addition. This addition is well suited
for representing sets. Multiplication, or binding, takes two
vectors and yields a third, A∗B , that is dissimilar (orthogonal)
to the two; and addition, or bundling, takes several vectors and
yields their mean vector [A+B + ...+X] that is maximally
similar to them. In the following, we describe how these two
operations can holistically encode a data record composed of
various fields [7].

A data record consists of a set of variables (attributes, fields)
and their values (fillers); for example, the variables x, y, z with
values a, b, c, respectively. The holistic encoding is done as
follows. The variable-value pair x = a is encoded by the
hypervector X ∗A that binds the corresponding hypervectors,
and the entire record is encoded by the hypervector R = [(X ∗
A) + (Y ∗ B) + (Z ∗ C)] which includes both the variables
and the values, and each of them spans the entire 10,000-bit
hypervector.

Finally, the third operation is a permutation, ρ, that rotates
the hypervector coordinates. It is implemented as a cyclic

right-shift by one position. The permutation operation gen-
erates a dissimilar pseudo-orthogonal hypervector that is good
for storing a sequence. In geometry sense, the permutation
rotates the hypervector in the space. For example, the sequence
trigram of a-b-c, is stored as the hypervector ρ(ρA∗B)∗C =
ρρA∗ρB∗C. This efficiently distinguishes the sequence a-b-c
from a-c-b, since a rotated hypervector is uncorrelated to all
the other hypervectors.

Cosine similarity is used to measure similarity between two
hypervectors by measuring the cosine of the angle between
them using a dot product. It is defined as cos(A,B) = |A′ ∗
B′|, where A′ and B′ are the length-normalized vectors of A
and B, respectively, and |C| denotes the sum of the elements in
C. It is thus a measure of orientation and not magnitude: two
hypervectors with the same orientation have a cosine similarity
of 1, two orthogonal hypervectors have a similarity of 0, and
two hypervectors diametrically opposed have a similarity of
−1.

IV. HDC ENCODING FOR EMG SIGNALS

In this section, we describe how MAP operations can be
used to encode the enveloped EMG signals. As described
in Section II-A, there are four channels and every channel
produces an analog signal with an amplitude of 0 mV to
20 mV. To have a linear quantization with a resolution of 1
mV, we discretize the channel’s signal to 21 discrete levels as
shown in Fig. 4. We design an encoder that accepts a stream
of such discretized levels from the channels and computes a
hypervector that represents a gesture. We first describe how
spatial correlation across the channels can be encoded.

A. Encoding Spatial Correlation into a Holistic Record
We draw an analogy from [7] to generate a holistic record to

bind information across the channels together. Each channel is
treated as a separate field, and its signal level is interpreted as
a value for the field. Hence, there are four fields in the record,
namely, CH1, CH2, CH3, and CH4. To represent these fields
into hyperspace, we use an item memory (iM) that assigns a
unique but random hypervector to every field. This assignment
is fixed throughout the computation, and formed four unique
orthogonal hypervectors, {iM(CH1) ⊥ iM(CH2) ⊥ iM(CH3)
⊥ iM(CH4)}, as the basic fields. Fig. 3(left) illustrates the
cosine similarity measures between these hypervectors in iM
which is implemented using a lookup table with four symbols.

Every field has to be assigned its value which is a signal
level ranging from 0 to 20. To represent these 21 discrete
levels, we use a method of mapping quantities and dates
“continuously” to hypervectors [29]. In this continuous vector
space, orthogonal endpoint hypervectors are generated for the
minimum and maximum levels in the range. Hypervectors for
intermediate levels are then generated by weighted interpola-
tion between these endpoints. To perform such mapping we
consider a continuous item memory (CiM). CiM assigns an
orthogonal hypervector for the minimum signal level (0 mV).
For the remaining 20 levels, their corresponding hypervectors
are generated by getting gradually further from the minimum
hypervector such that the hypervector for maximum signal
level (20 mV) is orthogonal to the minimum one, i.e., CiM(0
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mV) ⊥ CiM(20 mV). If two hypervectors are dissimilar in
D/2 of their components, they are orthogonal to each other.
Hence, in each step of generating a new hypervector for the
next intermediate levels, we flip D/2/20 components of the
hypervector assigned to the previous level. Such continuous
mapping better represents the adjacent levels since their cor-
responding hypervectors are similar to each other. Fig. 3(right)
illustrates the cosine similarity measures between each pair of
hypervectors in CiM. As opposed to iM, the similarity between
hypervectors in CiM is smooth, hence continuous. CiM is
implemented using a lookup table as catalogs of meaningful
levels with 21 symbols.

The projection of a channel to the hyperspace is done
by pairing a vector from iM with a vector from CiM. We
quadruple iM and CiM, with the same contents, for all four
channels to allow simultaneous mapping of the EMG inputs
to the hyperspace as shown in the left side of Fig. 4. After
projecting into the hyperspace, the multiplication operation
is used to bind each channel to its signal level for every
timestamp t, for instance, for the first channel, iM(CH1) ∗
CiM(SCH1[t]). Finally, to form a record (R[t]) all the four
bound fields are bundled by addition operations, i.e., R[t]
= iM(CH1) ∗ CiM(SCH1[t]) + iM(CH2) ∗ CiM(SCH2[t]) +
iM(CH3) ∗ CiM(SCH3[t]) + iM(CH4) ∗ CiM(SCH4[t]). This
record captures the spatial correlation between the four chan-
nels for a given time-aligned sample of EMG signals.

Next step is to generate a gesture hypervector, GV, to
represent a known gesture. We generate five such vectors, each

of which representing one of the five gestures described in Sec-
tion II-C. As mentioned, in our training dataset each timestamp
t is labeled with a gesture tag Label[t]∈ {1, 2, 3, 4, 5}, includ-
ing the rest position. For every gesture, its corresponding GV
acts as a set that contains all the records that are labeled with
that specific gesture. Hence, the addition operation bundles
R[t] observed in every timestamp to a single sum hypervector
GV as follows: GV(Label[t]) += R[t]. Before adding a new
record R[t] to GV, we check whether this record is already in
GV. This checking forms a conditional addition that adds R[t]
to GV when cos(GV(Label[t]), R[t]) < 0.9. If GV has a high
cosine similarity (≥ 0.9) with R[t], it means that the record
is already in GV, hence there is no need to add the redundant
record.

After training, these five GVs are stored in an associative
memory as the learned patterns. The same encoding is used
for both training and testing (i.e., classification) as shown in
Fig. 2. When testing, we call the output of the encoder a “query
hypervector” since its label is unknown. In the spatial encoder,
the query hypervector is a record R[t] because we are perform-
ing sample-by-sample classification. The query hypervector
is then sent to the associative memory to identify its source
gesture. Determining the gesture of an unknown sample is
done by comparing its query to all stored GVs using the cosine
similarity. Finally, the associative memory selects the highest
similarity among the five measures and returns its associated
label as the gesture that the query hypervector has been
generated from. Fig. 5 compares the classification accuracy
of HDC using this spatial encoding with SVM described in
Section II-C. Across five subjects, HDC achieved on average
90.8% classification accuracy, 2% higher than SVM. We have
observed that most of misclassifications take place during
transitions between two consecutive gestures. This is due to
purely vertical slicing of EMG signals. Moreover, a gesture
has time-dependent components that require considering a set
of samples over time. To address this issue, we develop a
temporal encoder applied in cascade after the aforementioned
spatial encoder, described in the following section.

B. Encoding Spatiotemporal Correlations by Rotating Records

HDC can encode sequences by using the permutation
operation, ρ. As shown in Section III-A, permutation has been
used to encode a sequence of N letters to form an N -gram

Different subjects
S1 S2 S3 S4 S5 Mean

A
c
c
u

ra
c
y
 (

%
)

50

55

60

65

70

75

80

85

90

95

100
SVM

HDC

Fig. 5. Sample-by-sample gesture classification using spatial encoder.



hypervector. By analogy, a sequence of four records with time
stamps t−3, t−2, t−1, t is encoded as follows: The first
hypervector R[t−3] is rotated thrice ρ3 R[t−3], the second
hypervector is rotated twice ρ2 R[t−2], the third is rotated
once ρ R[t−1], and finally there is no rotation for the last
hypervector R[t]. The four hypervectors are then combined
with point-wise multiplication into a single hypervector for
the tetragram, as shown in Fig. 4. For N -grams at large this
becomes N -gram[t]=

∏N−1
i=0 ρiR[t−i]. As done in the spatial

encoder, a single sum hypervector GV is computed for every
gesture using the conditional addition: GV(Label[t]) += N -
gram[t]. These five GVs are stored into the associative memory
as the spatiotemporal learned patterns.

With this encoding algorithm, one important step is to
determine the proper size of an N -gram to be able to capture
the entire gesture. In this regard, we measured the number of
samples available in a gesture. The first two columns of Table I
show the mean (i.e., duration) and standard deviation for the
number of samples during various gestures of every subject. As
mentioned in Section II-C, every gesture is three seconds long
sampled at 500 Hz. To fit the samples of a gesture in an N -
gram, we applied a downsampling by integer factors shown in
the third column. Hence, the gestures can be represented by N -
grams where N ∈ [1, 10]. However, for testing and classifying
a gesture, there is typically a window of W samples where
W > N . Hence, we slide the N -gram through the window
one step at a time and generate W − N + 1 N -grams as
query hypervectors, among which we choose the one that has
the highest similarity with the stored GVs in the associative
memory. Fig 7 shows accuracy results of this classification
when using different N -grams. Using N -grams with N ≥ 2
significantly improves the classification accuracy, while there
is a saturation or drop in accuracy for N -gram sizes larger
than 6. The last column in Table I lists the sizes for N that
maximize accuracy for each subject. Using these N -grams in
HDC leads to 97.8% classification accuracy averaged across
the five subjects. HDC with spatiotemporal encoding shows
7% higher accuracy compared to solely spatial encoding.

We also compare the classification accuracy of downsam-
pled EMG signals with SVM. In Section II-C, the four chan-
nels have been used as the input features for SVM compatible
with [10]. To capture temporal correlations in SVM, we use all
samples in an N -gram as the features. This forms a brute-force
SVM with 4N input features. As shown in Fig 7, accuracy of
SVM gets worse by using N > 1. Its best accuracy, on average
89.7%, is achieved with N = 1. By using the N -grams listed
in Table I HDC achieves on average 8.1% higher accuracy
compared to SVM with N = 1.

C. Adaptive Encoder Using Feedback

Although the temporal correlations are well-captured by the
proper N -gram, its size varies from subject to subject. For
instance, even with using the same downsampling rate of 250,
the best N -gram sizes for subjects S3 and S4 are 3 and 5.
To mitigate the effect of such dynamic gesture-timing uncer-
tainties across subjects, we design an adaptive mechanism to
adjust the size of N -grams during classification. To control
the size of N -grams on-the-fly, we define a feedback to close
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Fig. 6. Using feedback to adaptively tune N -grams based on stored patterns
in associative memory.

a loop from the associative memory to the encoder as shown
in Fig. 6. We use the cosine similarity metric produced in
the associative memory as the criterion and maximize it by
tuning the size of N -gram for the encoder. This controller
starts with an individual spatial record (N = 1) and measures
its corresponding cosine similarity through the feedback. If the
measured similarity is low, the controller keeps increasing N
in the available range until a maximum similarity is reached.

Fig. 8 shows the cosine similarity tested for various N -
grams, where N ∈ [1, 10], when the associative memory is
trained for a fixed N -gram. The graphs show average and
standard deviation of cosine similarity for all available gestures
in the dataset. As shown, the cosine similarity is maximized
when the size of N -gram used for encoder is matched with
the size of N -gram patterns that are stored in the associative
memory. Such a distinction is extremely robust: when the
tested N -gram (in the encoder) and the trained N -gram (in
the associative memory) are matched, the cosine similarity is
13.1× larger on average, with a very large safety margin. This
ensures that by looking at the output of the associative memory
the proper size of N -gram for the encoder can be inferred. The
presented feedback mechanism enables an adaptive encoder to
be robustly reused across various subjects (independent of their
chosen N ) for the classification.

V. EXPERIMENTAL RESULTS

In this section, we present more experimental results and
sensitivity analyses for classification accuracy. For every ex-
periment (Figs 9 and 10), we measure the mean and the
standard deviation of classification accuracy across the five
subjects.

A. Overlapping Gestures in a Classification Window
Although capturing temporal correlations of the EMG signal

improves classification accuracy in principle, it poses two
main challenges: (1) What is the proper size of an N -gram
to represent the gestures? (2) What if the window of the
signal to be classified is wider than the trained N -gram?
Using the feedback presented in Section IV-C addresses the
first issue; HDC can determine N -gram for encoding based
on the stored patterns in the associative memory. Here, we
address the second issue. Such an N -gram typically lies in a
window with W > N samples to be used for identifying the
gesture. The results presented in the earlier sections contain
only one gesture in the classification window. Here, we widen
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Fig. 8. Cosine similarity measures for various tested N -grams when the associative memory is trained with a fixed N -gram.

TABLE I
STATISTICS FOR THE NUMBER OF SAMPLES IN A GESTURE.

Subjects Mean Std Downsampling N
S1 1809 503 250 4
S2 1678 814 250 4
S3 1666 941 250 3
S4 1563 590 250 5
S5 1148 542 50 4

the window so that it can include multiple gestures (up to 3).
This experiment assesses the ability of HDC to identify the
correct gesture when there is no precise partitioning between
consecutive gestures but a “gray” region between them.

Fig. 9 shows the classification accuracy with increasing
gesture-timing uncertainties as the number of gestures in the
window is increased from 1 to 3. Our labeling considers the
first gesture in the window as the true label, assuming the
subject is moving very quickly. HDC maintains its original
accuracy of 97.8% if there is up to 30% overlapping between
two gestures in a single window of classification. The accuracy
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Fig. 9. Accuracy with overlapping gestures in a classification window.

drops to 79.8% when there are two gestures in the window,
and finally to 46.9% with three gestures.

B. Learning Rate

As mentioned in Section II-C, only 25% of the dataset is
used for training in the results presented thus far. Fig. 10
explores the classification accuracy as a function of training
set size. The classification accuracy is improved by increasing
the fraction of training data for both SVM and HDC, but their
learning slopes are different. HDC shows an average accuracy
of 86.8% when 10% of total dataset is used for training. By
increasing the training fraction to 25%, HDC reaches to 97.8%
accuracy; after this point increasing the training fraction does
not bring accuracy improvement. However, this is not the case
for SVM since it requires 3.2× as much training data (i.e.,
80%) to reach to the same accuracy as HDC does with 25%.

Increasing the fraction of training data increases the number
of support vectors used in SVM: by increasing the training
fraction from 10% to 80%, the number of support vectors
increases from 30 to 155. This translates directly to higher
execution time during classification. On the other hand, HDC
adds more patterns into the GVs since increasing the training
set size generates new N -grams that are not yet in the
sum hypervectors. For instance, HDC adds 83 new patterns
by moving from 10% to 25%. However, HDC uses the
same hardware structure to store these extra patterns, hence
increasing the number of learned patterns does not impact
the classification time. In addition, the operations needed for
learning and classification are similar in HDC, explicitly al-
lowing continuous learning. In a nutshell, HDC learns quickly
and its ability to exploit low-precision scalar operations within
a “fixed” hardware structure makes it a prime candidate for
online low-cost learning.

We further measure the accuracy of HDC while reducing
dimensionality of hypervectors from D = 10,000 to D = 100.
HDC is able to maintain its original accuracy by reducing D
to 6,000. After this point, the accuracy drops to 96% until D
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= 300. Below this dimension, the accuracy drops significantly
to 62%.

We should not that the implementation of HDC is hardware
friendly, and exhibits energy efficiency and robustness benefits
compared to the traditional machine learning methods [2].
Hyperdimensional computing is memory-centric and effec-
tively merges computation and storage into a single fabric.
Its implementation can be accomplished in a traditional 2D
process, however a 3D approach where logic and memory are
stacked on top of each other can lead to a far more efficient
realization.

VI. CONCLUSION

This paper presents an application of hyperdimensional
computing to the classification of hand gestures from Elec-
tromyography recordings. Very simple vector-space operations
are used to encode analog input signals for classification.
Our algorithm encodes spatiotemporal EMG signals from
multiple channels into a hypervector representing a gesture
and achieves a high level of accuracy (97.8%) with only 1/3
the training data required by state-of-the-art support vector
machines. Programming HDC is learning-based and uses the
same algorithms as subsequent classification. HDC can be
adaptive and the resulting classification accuracy is robust: our
encoder can adjust to variations in gesture-timing and other
uncertainties across different subjects, for each of which the
classification can be done correctly even with 30% overlapping
between two neighboring gestures.
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