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Classification and Recall With Binary
Hyperdimensional Computing: Tradeoffs in

Choice of Density and Mapping Characteristics
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Abstract— Hyperdimensional (HD) computing is a promising
paradigm for future intelligent electronic appliances operating at
low power. This paper discusses tradeoffs of selecting parameters
of binary HD representations when applied to pattern recognition
tasks. Particular design choices include density of representations
and strategies for mapping data from the original representation.
It is demonstrated that for the considered pattern recognition
tasks (using synthetic and real-world data) both sparse and
dense representations behave nearly identically. This paper also
discusses implementation peculiarities which may favor one
type of representations over the other. Finally, the capacity of
representations of various densities is discussed.

Index Terms— Associative memory (AM), gesture recogni-
tion, hyperdimensional (HD) computing, pattern recognition,
sparse distributed representation (SDR), vector symbolic archi-
tectures (VSAs).

I. INTRODUCTION

THE major challenge for intelligent electronic appliances
is to turn the raw data into information and knowledge

with minimum power consumption. Hyperdimensional (HD)
computing [1] also known as vector symbolic architec-
tures (VSAs) [2], which is the focus of this paper, answers
this quest having in mind an emerging class of imprecise
computational elements operating at ultralow voltages with
stochastic devices that are prone to bit errors [3]–[5].
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VSAs are a bio-inspired family of methods for representing
concepts (letters, phonemes, and features), their meanings
and allows implementing sophisticated reasoning based on
simple operations. The core of the method is HD distributed
data representation. In HD computing everything is repre-
sented by vectors of very high dimensionality (i.e., vectors
of several thousand bits). High-dimensional vectors (HD vec-
tors) represent data in a distributed manner, i.e., individual
positions do not have specific meaning in contrast to the
traditional (localist) data representation in computers. Over the
past few years, it has been demonstrated that the principles
of HD computing can be applied to create systems capable
of solving cognitive tasks, for example, Raven’s progressive
matrices [6]–[8] or analogical reasoning [9]–[11]. In [12]
and [13], it is advocated that VSA is one of the suitable
candidates for implementing functionality of general artificial
intelligence.

This paper focuses on engineering aspects of the VSA-
based technical systems. In particular, binary HD represen-
tations are considered. When it comes to using binary VSA
in practical applications, for example, solving classification
problems (e.g., [14], [15]) or creating one-shot reinforcement
learning pipeline [16]; several important design choices have
to be made as follows.

1) What density of the binary HD vectors to choose?
2) How to map the data from the original representation to

the HD space?

While the interest in HD computing is currently increasing,
these design choices are often made ad hoc without proper
justification or even understanding of the consequences of
for example power consumption, and alternative choices. This
paper fills this gap by presenting its major contribution: a
consideration of the tradeoffs of selecting major parameters
of binary distributed representations.

This paper is structured as follows. Section II introduces
fundamentals of HD computing and presents notations and
terminology used in this paper. Section III presents a con-
cise survey of the related work utilizing HD computing and
studying its properties. Section IV defines the problem of
classification using HD representations, describes the show-
case scenarios used for evaluation of the tradeoffs, and outlines
the approach. The tradeoffs of selecting hyperparameters of
HD representations are described in Section VI. The capacity
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of HD representations of various densities is discussed in
Section VII. Conclusions are drawn in Section VIII.

II. FUNDAMENTALS OF BINARY HYPERDIMENSIONAL

DISTRIBUTED REPRESENTATIONS

In a localist representation, which is used in all general
purpose computers, single bits or small groups of bits can be
interpreted without reference to the other bits. In a distributed
representation, on the contrary, it is only the total set of bits
that can be interpreted. Computing with distributed represen-
tations utilizes statistical properties of representation spaces
with very high dimensionality, which is fixed for a given
application. The operations in HD computing often return
noisy approximations to the correct answers. Therefore, item
memory, also referred to as clean-up memory, is needed to
recover clean representations assigned to specific concepts.
There are several flavors of HD computing with distributed
representations depending on the numerical type of HD vector
elements, which can be real numbers [17]–[20], complex
numbers [21], binary numbers [1], [22], or bipolar [18], [23].
This paper considers engineering aspects of binary distributed
representations only.

In this paper, binary HD computing is considered purely for
solving classical tasks of supervised machine learning (clas-
sification and pattern matching) leaving the more “cognitive”
aspects of VSA (analogical reasoning, semantic generalization,
relational representation, and analysis) outside the scope. For
the sake of further discussion the term pattern is used to refer
to a set of features. Distributed representations of features
could be either learned [24], [25] or produced through a
function of mapping.1 To highlight the engineering tradeoffs
this paper uses the it mapping method of producing distrib-
uted representations of the features. For example, symbolic
representations can often be represented by dissimilar dis-
tributed representations, while numeric data in turn require
preservation of the similarity between points in the original
space (see examples of such mappings for sparse distributed
representations (SDRs) in [26]). Therefore, there is no single
right way to perform the mapping and engineering choices
must be made about what properties of the input features are
to be preserved in the mapped representations.

There are two major hyperparameters to choose when using
binary distributed representations in the supervised learning
context: the density of HD vectors and the mapping function.
With respect to the density, the possibilities include computing
with sparse or dense distributed representations, where dense
binary representation is a vector in which the “1” and “0”
vector elements are roughly equiprobable. With respect to the
mapping function the possibilities are to map features with
preservation of their similarity in the original (low dimen-
sional) domain or without it. While the implications of the
choice of the mapping function are discussed in Section V-B,
the sections below introduce the major operations of sparse
and dense HD computing.

1In the literature, the term “projection” from an initial representation to a
distributed representation is sometimes used as a synonym of mapping

Fig. 1. Toy example of the CDT procedure according to (4) with one
iteration, T = 1. Two atomic HD vectors x1 and x2 (G = 2) form their
superposition vector Z. Next, the elements of Z are permuted to form ρ1(Z).
The permutation is done via the cyclic shift operation by two elements. Finally,
the thinned vector �Z� is the result of the elementwise conjunction between
Z and ρ1(Z).

A. Computing With Binary Sparse Distributed
Representations

From the point of view of the biological plausibility, SDRs
are the closest ones to neural representation of information in
brains of biological organisms. That is, in biological brains
only a small proportion of neurons is simultaneously active.
While this may be so in biological brains for reasons of
evolutionary accident, here we are concerned with engineering
reasons for choosing a level of sparsity. The fundamentals
of SDR computing are described in [13] and [22]. In SDR,
the number of “1” elements is much less than that of “0.”
Example of sparse representation is vector dimensionality
N = 100 000 and the number of “1” in an HD vector about
M = 1000. So the probability of “1” p1 � 0.5, p0 = 1 − p1.

The actual density (empirical probability of “1”) of an HD
vector x is determined as its Hamming weight |x|1 divided by
the dimensionality N , i.e.,

p∗
1 = |x|1/N ≈ M/N (1)

where M/N is the design target while |x|1/N is an approx-
imate realization via the vector |x|. The important properties
of the SDR hold when the realized sparsity is an adequate
approximation to the target sparsity, which is easily achievable
given that large N is used.

The similarity between two sparse representations is esti-
mated by their overlap d of “1” elements and determined as the
Hamming weight of elementwise conjunction (AND, denoted
by ∧) of two HD vectors

sim = |x ∧ y|1. (2)

It is equivalent to the dot product of x and y. The result d can
then be normalized, e.g., to the Hamming weight of one of
the compared HD vectors. Note that due to the asymmetric
treatment of “0” and “1” elements in SDR, the geometric
vectors by this definition have origin 0N and are, therefore,
all in the same hyperquadrant. This means that the similarities
between them must be nonnegative. On average, unrelated
vectors will be only slightly similar to each other. In particular,
the average value of the dot product for two random binary
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HD vectors equals N(M/N)2 = M2/N . No vector can ever
have negative similarity to another.

Atomic SDR vectors, i.e., vectors representing unre-
lated, unstructured entities, are generated randomly and
independently. Several atomic vectors xi can be combined
together (superimposed or bundled)2 by elementwise disjunc-
tion (OR, denoted by ∨). This operation preserves similarity
to its components (unstructured similarity). The density p1 of
the resultant HD vector increases with the number of atomic
vectors in the superposition. It is often convenient to maintain
the density of the result to be equal to the density of the indi-
vidual components. The density of the resultant vector can be
controlled through the context-dependent thinning (CDT) [22]
procedure. While there are several options for implementing
CDT here the additive CDT procedure [22] is used.

The procedure takes SDR vector Z as an input. Z is a
superposition of G vectors computed by their elementwise
disjunction

Z = ∨G
i=1xi . (3)

Vector Z is thinned as follows:

�Z� = ∨T
k=1(Z ∧ ρk(Z)) = Z ∧ ( ∨T

k=1 ρk(Z)
)

(4)

where ρk(Z) denotes kth permutation of elements of Z; each
kth permutation must be fixed, random, and independent.
In [13], it is mentioned that a single random permutation can
be recursively applied T times. In practical implementations,
cyclic shift operations can be applied using randomly cho-
sen (and then fixed) number of unit shifts for each k. Number
of permutations T controls the density of the thinned HD
vector. The equations describing how the density of the thinned
HD vector depends on the choice of p1, G, and T are provided
in Appendix A. The CDT procedure when N = 10, G = 2,
and T = 1 is exemplified in Fig. 1. The CDT procedure can be
thought of [22] as a similarity preserving (actually, similarity
transforming, unlike, e.g., random sampling), hash function of
Z that controls the sparsity of the result and also performs
binding of xi (unlike random sampling). More details can be
found in [28].

Because the vectors belong to one hyperquadrant, as the
density of a superposition vector increases it becomes more
similar to its component vectors and similar to more non-
component vectors. The distribution of similarity of random
pairs of vectors is very sharply peaked just above zero. The
practical impact of this is that any level of similarity above an
extreme (but still low) value on that distribution can be treated
as significant similarity. That is, the exact level of similarity
is not practically important so long as it is above some low
threshold between dissimilarity and similarity.

The recovery of atomic vectors from their thinned superpo-
sition is performed by the search of the atomic vectors most
similar to the thinned HD vector (all atomic vectors are stored
in the item memory). Note that there are several possible ways
of organizing the item memory but this paper does not explore

2In the context of VSA term “bundling” is often used when referring to the
operation of superposition. The algebra on VSA includes other operations,
e.g., binding, permutation [19], [27]. Since we do not use them in this paper,
we omit their definitions and properties for both sparse and DDRs.

particular implementations. There is a limit on the number of
reliably recoverable atomic vectors from their superposition,
which is regarded as the capacity of the HD representation.
The capacity of SDRs after the CDT procedure is discussed
in Section VII. It is worth noting that this is the capacity
of the superposition, which is not necessarily being used as
a system memory, but more likely as a working storage of
currently active item representations. Item memories can have
much higher capacity. The capacity of the superposition is
defined in terms of the ability to discriminate simultaneously,
randomly generated, unrelated entities. This operationalization
of capacity may not apply in other circumstances, e.g., when
the entities are similar or when groups of entities are related
via the item memory.

B. Computing With Dense Hyperdimensional Distributed
Representations

Kanerva [1] proposed the use of dense vectors comprising
N = 10 000 binary elements. The values of each bit of an
HD vector are independent and equally probable, hence they
are called dense distributed representations (DDRs). Similarity
between two binary DDR-vectors is characterized by Ham-
ming distance, which (for two vectors) measures the number
of elements in which they differ

distH(x, y) = 1

N
	x ⊕ y	1 = 1

N

N∑

i=1

xi ⊕ yi (5)

where xi and yi are values i th element of vectors x and y of
dimension N , ⊕ denotes the elementwise XOR operation.

In very high dimensions, Hamming distances (normalized
by the dimensionality N) between any arbitrary chosen HD
vector and all other vectors in the HD space are concentrated
around 0.5. Interested readers are referred to [1] and [29] for
comprehensive analysis of probabilistic properties of the HD
representation space. Note that in the case of DDR “0” and
“1” elements are treated symmetrically. This is closely related
to the bipolar representation. If the origin of the geometric
vectors is taken as 0.5N rather than as 0N then the geometric
vectors can be interpreted as filling the whole hyperspace
rather than being restricted to one hyperquadrant and the
Hamming distance (5) is a linear rescaling of the dot product
of the vectors (which can be interpreted as the cosine of the
angle between the vectors).

Atomic DDR vectors are generated randomly and inde-
pendently. Similar to the SDR case random vectors can be
obtained from any other random vector by the cyclic shift
operation. Hamming distance between such DDR vectors will
be approximately 0.5. Several atomic vectors xi can be bun-
dled together. The simplest bundling operation is elementwise
summation. When using elementwise summation, the vector
space is no longer binary. But from the implementation point
of view, it can be practical to restrict the resultant HD vector to
binary elements, because the magnitudes of the elements can
be thought of as the least significant digits of the representation
and most of the information on the direction of each vector
is conveyed by the zero/nonzero distinction, which can be
thought of as the most significant digits.
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Bundling with dense binary HD vectors is, therefore,
implemented with elementwise majority rule operation. An
elementwise majority rule of G vectors results in 0 when
G/2 or more arguments are 0 and 1 otherwise. The number
of vectors involved into majority rule must be odd. In the case
of even number of component vectors a tie-breaking vector is
randomly generated and added to the superpostion. Formally,
when bundling G vectors, the value H j in position j of the
resultant HD vector H is determined as follows:

H j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 when
G∑

i=1

xi j > G/2

0 when
G∑

i=1

xi j < G/2

B(1, 0.5) when
G∑

i=1

xi j = G/2

(6)

where xi j is the value of j th element of i th component
vector xi , and B(1, 0.5) denotes a draw of one value from
the binomial distribution, which is used for the tie-breaking.
The majority rule operation is further denoted as [a + b + c].

The result is a DDR vector with the same density, i.e., the
number of “1” elements is approximately equal to the number
of “0” elements. The result is similar to all vectors included in
the sum. For comprehensive analysis of similarity properties
of the majority rule in the context of supervised learning the
interested reader is referred to [30].

Similar to SDR, the recovery of atomic vectors from their
bundle is performed by the search of the most similar vectors
written in the item memory. There is also a limit on the
number of recoverable atomic vectors from the bundle, i.e., the
capacity. The capacity of dense distributed representations is
discussed in Section VII.

C. Computing With Bipolar Hyperdimensional Distributed
Representations

The previous sections introduced sparse and dense HD
representations using binary vectors, i.e., where each vector’s
component is encoded as either “0” and “1.” The description
can naturally be extended to the case of bipolar represen-
tations, i.e., where each vector’s component is encoded as
“−1” and “+1.” This definition is sometimes more convenient
for purely computational reasons. Bipolar HD representations,
however, possess a set of distinctive properties. The distance
metric is dot product as in the case of SDR. The bundling
operation is implemented by elementwise summation. When
using elementwise summation, the vector space is no longer
bipolar, the result of summation of each bit takes an integer
value. When the vector elements take integer bipolar values
they can be separated into the sign and magnitude of each
value. The signs of the N elements uniquely identify one of
2N hyperquadrants. The magnitudes of the vector elements
determine the direction of the geometric vector within the
selected hyperquadrant. Given that the dynamics of HD com-
puting systems are driven by the angles between geometric
vectors it can be seen that the dynamics are primarily driven
by the signs of the elements rather than their magnitudes.

Therefore, in practical implementations, it makes sense to
restrict the bit value by a certain threshold. The restriction
can result either in a bipolar-valued bits or bounded (clipped)
integers. Note that as the elements of unrelated vectors are
independent, the sum of some number of values at any element
is the sum of G {−1,+1} values which is approximately
normally distributed with zero mean. Thus, the sums lie with
high probability in a bounded interval centered on zero. This
makes it possible to choose a clipping limit which is very
rarely exceeded. More details on bipolar representations can
be found in [18] and [19].

D. Constructing Hyperdimensional Representation
of a Pattern

Let us define a class prototype as a bundle of HD encoded
pattern exemplars (Hi ) belonging to this class. Now consider
distributed representation of the pattern itself. It is constructed
in a similar manner. Suppose a pattern consists of G features.
The value of each feature is mapped to a distributed represen-
tation either reflecting the distance between the feature values
in the original representation space or to purely dissimilar HD
vectors. The tradeoffs of the different mapping approaches are
described in the next section. Note that the distributed repre-
sentations for different features are chosen dissimilar. Note
that in the considered HD spaces randomly generated vectors
will be dissimilar with overwhelmingly high probability. Thus,
after mapping for a given pattern there are G HD vectors
xi , i = 1..G dissimilar to each other, i.e., normalized (by N)
dot product between them is approximately p2

1 in the case
of unipolar representation and zero for bipolar representation.
The HD representation of the pattern is constructed by com-
bining G HD vectors into a single representation H. This is
done through the bundling operation. Note that the realization
of bundling depends on the type of representations. In the case
of bipolar HD vectors bundling is implemented as elementwise
summation of components and the resultant HD vector is

Hp =
G∑

i=1

xi . (7)

When using binary dense representations, the resultant HD
vector is formed by majority rule operation as

Hb =
[

G∑

i=1

xi

]

. (8)

Note that the result of (7) can also be restricted to bipolar
values when applying majority rule with the threshold equal
to zero.

Finally, the CDT procedure (4) is used when forming the
resultant HD vector with binary sparse representations

Hs = 〈 ∨G
i=1 xi

〉
. (9)

III. RELATED WORK

Some of the aforementioned HD representations were
used for modeling of human’s long-term associative mem-
ory (AM) [31], [32]. The two major principles of distributed
associative memories are aggregation of similar stimuli based
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on statistical similarity of their encoded representations and
reducing the overlap between the representations by stor-
ing them sparsely over a huge memory space. AMs were
extensively applied to pattern recognition [33], as the model
for implementing AM in the context of cognitive computing
architectures [13]. Abbott et al. [34] has demonstrated their
suitability for approximating Bayesian inference. One of the
major challenges attributed to HD distributed AMs is the
encoding problem, i.e., the problem of how to encode stimuli
into the distributed representation [29].

VSAs are a family of bio-inspired representations of struc-
tured knowledge and related operations. Their development
was stimulated by studies on brain activity that showed that the
processing of even simple mental events involves simultaneous
activity in many dispersed neurons [1]. Information in VSAs is
similarly represented in a distributed fashion: a single concept
is associated with a pattern of activation of many neurons.
This is achieved by using HD vectors of very large dimen-
sions (more than 1000 bits). Several different types of VSAs
have been introduced, each using different representations,
e.g., [1], [17], [18], [35]. Binary distributed representations
enable a hardware-friendly implementation of HD computing
machines. However, the HD mapping operations on these
random dense HD vectors increases the power consumption:
binding with XOR gates imposes a large amount of switching
activity, and bundling requires dedicated integer counter and
threshold unit per each dimension of HD vector. On the
other hand, the sparse binary representation with simple and
low-cost mapping operations can lower the switching activity
and power consumption by maintaining the sparsity while
exhibiting almost the same capacity of dense alternatives.

A simple mapping of patterns from heterogeneous sensory
inputs into binary dense HD vectors [36] was described in [30].
The modified version of the mapping into sparse HD vectors
was proposed in [37]. Conceptually, the methods first map a
value of each feature of a pattern into an HD vector. These
HD vectors are then bundled into the resultant HD vector,
which represents the pattern in the high-dimensional space.
Note that these methods map features of a single object.
In HD computing, it is also possible create a distributed
representation of a set or a multiset of objects. In this case,
the additional operation of binding should be used for encod-
ing features of the particular object. The binding operation,
however, addresses a diferent class of problems connected to
analogical reasoning, which is outside the scope for this paper.

Methods of formation of real-valued distributed representa-
tions using random projections are considered in [38] and [39].
These methods can be modified to produce dense and sparse
binary distributed representations [40]–[43]. Other methods
of similarity preserving hashing, including those producing
sparse binary representations are also surveyed in [43].

Recent usages of VSAs for solving classification tasks
in different domains (e.g., [4], [14], [15], [23], [44], [45])
report on a par or even better performance with the state-
of-the-art machine learning methods. In particular, in [23],
VSAs were applied to the task of hand gesture recognition
using electromyography (EMG) signals. It was shown that HD
computing with dense bipolar HD vectors ( p+1 ≈ p−1 ≈ 0.5)

surpasses the-state-of-the-art classifier [46] based on support
vector machines (SVMs) both in terms of the average recog-
nition accuracy and the required amount of training data.

HD Computing in the Scope of Machine Learning on Large
Data Sets and Artificial Neural Networks

The strength of HD computing in selected prediction and
classification tasks on large data sets were demonstrated
in [47] and [4]. The first work used HD computing for
fusing data streams from multiples sources and predicting the
behavior of users of mobile devices. The HD-based model
improved the prediction accuracy by 4% in comparison to a
mixed-order Markov model. The classification of texts based
on their language in the second work demonstrated 95%
accuracy with a gain in power efficiency of computations
compared to the traditional n-gram based models.

On the other hand, HD computing usually meets criticism
from the adepts of the traditional machine learning methods
mainly due to its manual engineering of encodings, tailored
to specific tasks and the absence of conventional optimization
procedures refining HD representations. The major implication
of this observation is that the accuracy of HD-based classi-
fication methods is not comparable with the state-of-the-art
deep learning artificial neural networks (ANNs) which can
learn representations of raw data (e.g., an image) with multiple
levels of abstraction.

Despite this, several recent works explain functionality
of deep neural architectures within the framework of HD
computing. In [20], functionality of the pooling layer in deep
convolutional ANNs is linked to a positional binding natively
implementable with VSA. The work in [48] elaborates on the
functionality of binarized ANNs [49] in terms of HD geometry.
In particular, it was shown that binarized ANNs work because
of the properties of binary high-dimensional spaces. The
binarized vectors of the convolutional layers approximately
preserve similarity to the original continuous vectors the dot
products are approximately preserved as well.

With respect to approaches other than deep learning ANNs,
the recent work in [50] explores direct similarities between
the main operations of the HD computing and the operations
of a special kind of recurrent ANNs—echo state networks
(ESNs) [51]. In particular, it was shown that the entire dynam-
ics of the reservoir can be implemented by HD arithmetic
on dissimilar vectors while matching the accuracy of the
traditional ESN.

We regard these trends as definite indication of at
least an important complementarity of HD computing to
ANNs. Whether HD computing will become a performance-
challenging competitor to ANNs depends on finding solutions
to yet unsolved problems. One of the most important ones
is defining optimization procedures directly in HD spaces or
finding training methods that do not rely on optimization.

IV. PATTERN RECOGNITION WITH HD COMPUTING:
PROBLEM STATEMENT, SHOWCASES, AND OUTLINE OF

APPROACH

Classification is one of the most common tasks in machine
learning. The task is to correctly associate a new pattern
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with one of the discrete classes where the number of classes
is finite. In order to perform the classification, models of
classes are needed. The models are constructed from a training
data set consisting of patterns labeled with their classes.
Traditional machine learning approach include instance-based
methods (k-NN) or model-based (linear and nonlinear clas-
sifiers such as SVM or artificial neural nets). The instance-
based methods suffer obviously from the scalability problems
associated with the memory size and the search times as the
number of the training examples grow. As for the model-based
methods, they all rely on complex optimization routines aimed
at minimizing the number of incorrect predictions on the test
data set. The complex optimization is usually restricted to the
training phase and prediction is typically some feed-forward
calculation that is quite fast.

Distributed representation of features in combination with
SVMs is reported in [23], [24], and [52]. Other mentions of
classification with distributed representations are given in [13],
[39], and [43]. However, training classifiers by optimization is
time consuming.

This paper presents the usage of distributed representations
for classification tasks based on the native properties of HD
computing without involving complex optimization proce-
dures. This approach results in construction of a single HD
vector representing one class (further on also called centroid
or class prototype).3 A fixed amount of memory is required
per class prototype to represent each prototype. The amount of
memory required per prototype in the recognition mechanism
may be different. It might be linear in the number of prototypes
in a matrix memory (effectively a lookup table) or less
than linear in an autoassociatve memory. Also, a similar
approach [54] can be used in order to accelerate the search
among a collection of high-dimensional vectors. Note that this
model can be generalized to multiple prototypes per class,
e.g., when relatively dissimilar inputs must be mapped to the
same class, but the article considers only the case of a single
prototype.

This section describes the approach for constructing HD
distributed class prototypes as well as discusses tradeoffs
of choosing its major hyperparameters: the dimensionality,
density, and the mapping methods.

The discussion is centered around two showcases: a syn-
thetically constructed classification scenario and the real-world
classification task.4 Both showcases are chosen for illustrative
demonstration of the major aspects of the approach. The
showcases are outlined in the following sections.

A. Synthetic Showcase: Classification of 7 × 5 Pixels
Characters

In the synthetic classification task, a set of patterns consist-
ing of black and white images of letters (7 by 5 pixels) of
the Roman alphabet is considered [30, Fig. 5]. In the recall

3The term “class prototype" is actively used in cognitive science and
semantic models [53] and refers to a holistic description of the class properties.

4MATLAB implementation of the experiments reported in this paper
is available online via https://github.com/denkle/Binary-Hyperdimensional-
Computing-Trade-offs-in-Choice-of-Density-and-Mapping.git.

phase, images of the same letters distorted with different levels
of random distortions by bit flipping (from 1 bit corresponding
to a distortion of 2.9%of the pattern’s size to 5 bits equivalent
to 14.3% distortion). An example of a noisy input can be found
in [30, Fig. 7].

B. Real-World Showcase: Gesture Recognition

As a practical HD-based classification task, we consider a
smart prosthetic application, namely, hand gesture recognition
from a stream of electromyography signals. The EMG signal
is the superposition of all the action potentials from the brain
cortex to the target muscles. It is measured by a couple of
metal electrodes, placed on the skin and aligned parallel to
the muscle fibers. The maximum amplitude of this signal
is 20 mV (−10 to +10) depending on the dimension of
the muscle fibers, on the distance between the muscle and
the electrodes and on the electrode properties. Signals of
this kind are also very noisy and difficult to manage even
if the maximum bandwidth does not exceed 2 kHz. The
main causes are noise from motion artifacts, fiber crosstalk,
electrical equipment, and the floating ground of the human
body.

The data set used in this paper is based on the collection of
the EMG signals of the most common hand gestures used in
daily life available in [23]. The selected gestures are: closed
hand, open hand, two-finger pinch, and point index collected
for five subjects. The classification includes also the rest posi-
tion of the hand, recorded between two subsequent gestures.
Thus, the task is formulated as a classification problem with
five possible classes.

The signals are collected from five subjects wearing an
elastic strip with the four EMG sensors. The EMG data set
is labeled using a threshold assigning the gesture labels to
the input EMG data. The collected sequences of sensory
signals are composed of 10 repetitions of muscular contrac-
tion three seconds each. Between each contraction there are
three seconds of rest. The gestures are sampled at 512 Hz.
Three repetitions of gestures of each type and the contiguous
rest periods were used for training and seven repetitions for
testing.

C. Constructing Hyperdimensional Class Prototypes

The class prototype is an HD vector representing the entire
class. The number of class prototypes equals the number
of classes in the task. The prototype HD vector resembles
significant similarity to its exemplars, i.e., to HD vectors in
the training data set which belong to that class. The prototype
HD vector for a given class is computed out of HD vectors for
all presented patterns of this class in the training data set. The
HD vectors are combined into the prototype using a specific
realization of the bundling operation. The dimensionality of
the prototype HD vector is the same as the dimensionality of
the HD vectors in the data set.

The realization of the bundling operation depends on the
choice of the type of used distributed representation. As out-
lined in Section II, the simplest realization of the bundling
operation is elementwise summation (as proposed in the
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Multiply–Add–Permute (MAP) VSA framework [19]). Note
that in this case the prototype is literally the sum of the
exemplars. So although the prototype is a single vector and
treated as a single vector by the implementing hardware,
a subsequent operation on the prototype may distribute over
addition, in which case applying the distributive operation to
the prototype is identical to applying the distributive operation
to each of the exemplars and then summing over the results.
This means that it is possible to save (potentially great)
computational cost because of an effect like parallelism by
virtue of the distributivity of the operations. Mathematically,
the prototype HD vector for class ci is constructed as

Pp(ci ) =
n∑

i=1

(Hi ). (10)

In (10), n is the number of the exemplars of class ci in the
training data set and Hi is the HD vector representing the
exemplar i . Recall that when using elementwise summation,
the vector space is no longer binary (or bipolar). From the
implementation point of view, it can be practical to restrict
prototype HD vectors to binary elements. When operating with
dense HD vectors, majority rule is applied to the result of the
elementwise summation. Then, the prototype HD vector for
class ci is formed as

Pb(ci ) =
[

n∑

i=1

(Hi )

]

. (11)

The square brackets in (11) indicate majority rule. The resul-
tant HD vector Pb(ci ) representing the prototype is a binary
HD vector. If component HD vectors Hi are dense with
p1 ≈ p0 then the prototype HD vector Pb(ci ) is also dense
with p1 ≈ p0 otherwise the density of ones is decreasing.

The majority rule cannot be applied to form prototypes with
sparse HD vectors because the resultant HD vector will consist
of all or almost all zeros. Therefore, for sparse HD vectors,
the bundling is realized through the thresholded summation.
The threshold controls the density of nonzero elements in the
resultant HD vector. It, for example, can be set to ensure
the required number of activated elements in the resultant
prototype HD vector (see [55]).

D. Classification Using Class Prototypes

The classification using class prototypes is straightforward.
An unseen pattern from the test data set is mapped to an HD
vector using the same method as for the training process. The
result of the mapping is used to calculate the value of similarity
metric to all class prototypes formed during the training phase.
The exemplar is assigned to the class for which similarity
between its prototype HD vector and the pattern’s HD vector
is maximal. Note that this is a computation level description
of the idealized classification task. Literal implementation
of the task as described above would have a computational
cost proportional to the number of class prototypes. Other
implementations (e.g., an autoassociative memory) might have
lower computational cost but a higher error rate.

Fig. 2. Example of mapping letter “A” into binary dense representation. Value
0 corresponds to black color, while value 1 corresponds to white color. Gray
filling in the table marks values of each pixel. For simplicity of presentation,
the mapping is exemplified on 10-dimensional vectors.

V. MAPPING TECHNIQUES

There are several approaches to mapping of features’ values
from the original representation space into the HD represen-
tation space. This section presents two classes of mapping: 1)
the mapping by the orthogonal distributed representations and
2) the distance preserving mapping.

A. Mapping of a Pattern Using Dissimilar Distributed
Representations of Feature Values

In the case when a feature can be described by a finite
alphabet of independent symbols, the mapping to HD vectors
is trivial. Each symbol is simply assigned a unique HD vector,
which is randomly chosen initially, but fixed over the life of the
system. This procedure is called orthogonal mapping. It can
be implemented in a memory efficient way using only one HD
vector per feature and the cyclic shift operation as a special
case of permutation (other examples of permutation usage are
considered in [27] and [56]) on it to derive a unique HD
vector for the particular level (a discrete value of a feature).
For illustration of orthogonal mapping consider encoding of
image “A” from the synthetic showcase described above. It is
demonstrated in Fig. 2. In this example, each pixel is a feature,
thus we have (7 × 5 = 35) features. Consider the case of
representing a pattern using binary dense HD vectors with
the orthogonal mapping of values. The mapping procedure
consists of the following steps.

1) Initialization of the mapping.

a) Set the dimensionality of the HD vectors.
b) Set the number of features. The image of a letter

consists of 35 pixels. Each pixel is treated as a
feature.

c) For every feature i generate one binary dense
random HD vector xi , that is 35 HD vectors are
generated in total. Note that generated HD vectors
for different features are dissimilar.

2) For each feature i shift its xi by the value of the pixel
(0-bit shift for black and 1-bit shift for white).

3) Form the distributed representation of the letter using
shifted xi vectors according to (8).
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4) Store the letter’s representation in the list of memorized
patterns.

Note that the mapping example above is just one way to
encode the feature values, not the only way. This method
means that the representations for different features are unre-
lated, but the zero and one values for every feature are
systematically related to each other by cyclic shifts—so the
HD vector encodes the pixel ID, and the shift encodes the
pixel value. For an alternative mapping, it would be possible to
choose a random HD vector for every pixel-value pair. In this
case there would be no systematic relationship between the
zero and one values of the same pixel. Also note that because
the mapping treats the pixel IDs as completely independent it
does not capture the spatial similarity of neighboring pixels.

B. Mapping of a Pattern Using Distance-Preserving
Distributed Representations of Feature Values

The task of mapping real numbers into HD vectors is of
practical importance since features of this type are common
in practical pattern recognition tasks. This section describes
three methods of such mapping.

Consider a feature whose values are real numbers between
0 and m. The task is to represent the current value of the
feature as an HD vector. All considered methods require
a finite amount of values, therefore, real numbers are first
quantized using a quantization scheme with the fixed number
of levels (values). For example, the current value of the feature
can be rounded to the closest integer. Then the considered
feature is described by m +1 unique levels. Next, each unique
level is associated with the corresponding HD vector.

1) Mapping Preserving “Linear Similarity” of Values:
The “linear mapping” [23], [57] (this name does not imply
mapping by matrix multiplication) preserves “linear similarity”
between HD vectors corresponding to different levels of a
feature. The method starts by initializing an HD vector for the
first level. The HD vector for the next level is formed using the
HD vector for the previous level by inverting several random
“1” and “0” (active and inactive) elements such that the total
number of activated elements stays the same, but some of
their positions are changed. This step is repeated until HD
vectors for all levels are generated. It is important that during
the iterations only elements activated at the initialization step
can be inverted and inactive elements to be inverted should
be selected from the pool of vector elements unprocessed
so far (sampling without replacement). It guarantees that the
similarity between HD vectors decreases linearly due to the
way the mapping scheme is designed. The number of elements
inverted at each iteration of the method is a tunable parameter.
In the simplest case, if the HD vector for the first level and
the HD vector for the last level should be dissimilar (i.e., their
normalized dot product equals p2

1 in expectation) then for m+1
levels at each iteration N p1(1− p1)/m activated elements (and
the same number of inactive elements) should be inverted. If
we do not want to repeat the HD generation procedure during
feature encoding, all m + 1 HD vectors should be stored in a
memory which requires more resources than in the orthogonal
mapping where only the seed HD vector can be stored.

2) Approximate “Linear Mapping”: Approximate linear
mapping [58] does not guarantee ideal linear characteristic
of the mapping, but the overall decay of similarity between
feature levels will be approximately linear. In contrast to the
ideal linear mapping values of similarity between neighbor-
ing levels could slightly vary. Approximate linear mapping,
however, requires storage of only two random HD vectors:
one for the first level and one for the last level. HD vectors
for intermediate levels are generated by the concatenation of
parts of the two HD vectors. The lengths of the concatenated
parts are defined by the value of the intermediate level.
Alternatively, one could form the weighted sum of the two end
points where the weighting reflects the position of the level
between the end points. The sum is then binarized by choosing
from {0, 1} with the probability proportional to each weighted
sum element. If further bundling operations are expected, a
fixed random permutation should be applied for each feature
HD vector in order to form dissimilar vectors even if two
features have the same or similar values. So an ideal linear
mapping can be easily obtained as follows: take an HD vector
with M first and M last elements assigned to “1” (2M ≤ N).
To encode level i , take (m − i)M/m successive “1” from
the “first M” and i M/m successive “1” from the “last M”;
to get HD vector, apply a random permutation fixed for the
particular feature (actually storing 2M numbers for a feature
is required instead of full permutation matrix). In the case
of the alternative method above, it is possible to randomly
choose the i th element of intermediate value HD vector from
the i th elements of the two endpoint vectors, with probability
of choosing each source vector proportional to the position of
the level between the two end points.

It is worth noting that approximate linear mapping is
cheaper than the ideal one as it requires storage of only
two random HD vectors. As it will be shown below in
Section VI-B, the usage of approximate linear mapping in a
classification task provides results comparable to ideal linear
mapping. However, for regression problems (see, [50]) where
prediction error is a key issue, ideal linear mapping would be
a preferable option due to its exact linear characteristic.

3) Approximate “Nonlinear Mapping”: The decreasing
similarity between HD vectors is not necessarily a linear func-
tion. The approximate nonlinear mapping method described
in [58] starts by initializing an HD vector for the first level.
Next, in the iterative manner, it forms HD vectors for all
other levels. In the version we use here, HD vector for
the next level is created via deactivating several activated
elements from the HD vector for the previous level and then
activating some number of elements so that the density of HD
vectors is maintained on approximately constant level. Unlike
“linear mapping,” multiple processing of the same vector ele-
ments is allowed (sampling with replacement). The similarity
between HD vectors decays (approximately) as a bell-like
curve.

It is worth noting that for all distance-preserving mappings
it is possible to have the situation where levels more than
some threshold apart are maximally dissimilar whereas levels
closer together are more similar. This might be useful for
representing a variable where nearby levels are able to be
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Fig. 3. Four schemes for mapping real numbers into HD vectors. During the experiments, N was fixed to N = 10 000. Density of ones p1 varied between
0.1 and 0.5 with step 0.1. Note that for all four panels the similarity value is the normalized dot product of the representation of each signal level with the
representation for 0 mV. Also, the normalized dot products for the nonidentical pairs in the “orthogonal mapping” panel are the dot products corresponding
to maximum dissimilarity (vectors are nearly orthogonal) and are, therefore, the values that the linear mappings tend to (by design).

judged by similarity, but all levels more than a certain distance
apart are treated as maximally dissimilar.

For the implementation details of the presented mappings
interested readers are referred to the simulation code used
for Fig. 3. It illustrates similarity decay for all mapping
methods when the feature is a voltage signal level from the
EMG sensors showcase. The value range is between 0 and
20 mV (denoted by number of signal levels in Fig. 3). Five
different densities of HD vectors ranging from 0.1 to 0.5 are
considered. The signal is quantized into 21 levels (integers
from 0 to 20). This makes dissimilarity linear in voltage differ-
ences. In some other situations (e.g., with wide input ranges),
it may be better to have resolution proportional to value.
In this case one could take the logarithm of the input before
discretizing it. The similarity decay is characterized by the
dot product between the HD vector for the first level (0 mV)
and all 21 HD vectors. Dot products were normalized by the
number of ones (N p1). For all mapping methods normalized
dot product for the first level is 1 because in this case the dot
product is calculated for the same HD vectors. Normalized
dot products for other levels in the orthogonal mapping are
the same and approximately equals p1. All other mappings
demonstrate smooth decay. The approximate linear mapping
behaves very similar to the ideal linear mapping. However,
the curves for the ideal linear mapping are literally straight
lines while the corresponding curves for the approximate linear
mapping have local deviations. It is especially clear in the
case of a low density of ones ( p1 = 0.1). The normalized dot
products between the first and the last levels for both mappings

are approximately p1. It is also clear that for the same number
of inverted elements dot product for the nonlinear mapping
decays slower than for the linear mappings.

VI. TRADEOFFS IN CHOICE OF DENSITY AND MAPPING

CHARACTERISTICS

This section evaluates the performance of binary HD vectors
in classification tasks. First, the effect of density on the
classification accuracy is demonstrated for the synthetic show-
case scenario of black and white 7 × 5 images. Second,
the effects of different types of mappings are demonstrated
on the example of EMG-based gesture recognition.

A. Effect of Density on the Accuracy of Classification

This section evaluates the effect of dense versus sparse
binary distributed representations on the classification accu-
racy. It is evaluated in two major recall modes: the one-shot
learning and the supervised learning (see sections later). The
first recall mode is studied for varying density of ones in
HD vectors for several dimensionalities. Next, more detailed
results of experiments are presented for sparse HD vectors for
three sets of parameters: N = 100 000 and M = 1000 (p(1) =
0.01); N = 10 000 and M = 100 (p(1) = 0.01); N = 2048
and M = 40 (p(1) = 0.02). N = 100 000 and M = 1000
are mentioned as a typical values for sparse representations
in [22]. The dimensionality N = 10 000 is chosen to match the
dimensionality of the dense HD vectors. The third set of para-
meters N = 2048 and M = 40 is motivated by the usage of
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Fig. 4. Average recall accuracy of black and white images of letters using the majority rule and the CDT procedure against varying density of ones in HD
vectors for three distortions levels: 1 bit (2.9%), 3 bits (8.6%), and 5 bits (14.3%). Dimensionality of HD vectors was set to 100, 1000, 10 000, 100 000, and
1 000 000 elements. The results were averaged across 1000 runs. Due to a large number of simulations (103) confidence intervals for 95% are narrow and
indistinguishable from the mean values.

SDR with these parameters in Hierarchical Temporal Memory
architecture [59]. As in [30] for the evaluation of dense HD
vectors with dimensionality N = 10 000 elements (bits) [1]
were used.

1) Best Match Recall Under One-Shot Learning: In the
learning phase, a set of noise-free images of letters (see [30])
was represented by HD vectors with different densities. All
26 letters were encoded and stored in the same way as
exemplified in Section V-A. Thus, at the end of the letters’
mapping procedure 26 HD vectors are created and stored in
the list of memorized patterns. In the case of the original
low-dimensional representations, twenty six 35-bits vectors
corresponding to activation of pixels in images of letters were
stored in a list.

In the recall phase images of the same letters distorted with
three different levels of random distortions, 1 bit corresponding
to a distortion of 2.9% of the pattern’s size, 3 bits equivalent to
8.6% distortion, and 5 bits (14.3% distortion) were presented
to the methods for the recall. An example of a noisy input
was presented in [30, Fig. 7]. In the case of the dense
HD vectors and the original low-dimensional representations,
the pattern with the lowest normalized Hamming distance
to the representation of the presented distorted pattern was
returned as the output. In the case of the sparse HD vectors
the pattern with the highest dot product to the representation
of the presented distorted pattern was returned as the output.

Fig. 4 presents the average recall accuracy against varying
density of ones in HD vectors. The density varied between
0.01 and 0.5 with step 0.01. Dimensionality of HD vectors
was changed with factor of 10: 100, 1000, 10 000, 100 000, and
1 000 000. Each panel in the Fig. 4 corresponds to a particular
level of distortion. Distributed representations of images were
done via either majority rule or CDT procedure. All curves
are characteristic in a sense that the CDT procedure shows the
best performance for low values of density while the majority
rule features the opposite behavior. At the same time, the best
performances of both approaches match each other for each
distortion level. When the dimensionality of HD vectors is
low (N = 100) there is a clear peak in accuracy for the CDT
procedure. In this case, the peak is due to the fact that at low
densities (e.g., p1 = 0.01) HD vectors with almost no ones

can be generated. This phenomenon does not appear at high
dimensionalities (N = 10 000 and above). Another observation
regarding the effect of dimensionality of HD vectors is that
there is a large improvement in accuracy when going from
N = 100 to N = 1000 while going from N = 1000 to N =
10 000 and above there is only a small improvement for 5 bits
distortion. Thus, the dimensionality is important, but only up
to a certain point beyond which increased dimensionality does
not affect the accuracy.

Fig. 5 presents the recall results for sparse and dense
HD vectors and for the reference original low-dimensional
representations. To obtain the results 1000 distorted images
of each letter for every level of distortion were presented for
recall. The charts show the percentage of the correct recall
output. Note, that in certain characters the recall is rather
inferior to other letters. For example, the recall for character
“O” is persistently lower than for other letters. This is due
to its similarity to several other characters: “C,” “D,” “G,”
and “Q.”

The analysis shows that: 1) there is no degradation of accu-
racy when the test problem is transferred from the original low-
dimensional representation into high-dimensional distributed
representations and 2) the result holds even for relatively low
dimensions of the sparse HD vectors (N = 2048 and M =
40). The gain from high-dimensional representation becomes
evident when distortions are added to the representations. For
the case of DDRs it was demonstrated in [30] that there is a
threshold on the noise level for the original low-dimensional
input patterns beyond which Hamming distance becomes
totally unreliable metric for detection of similarity, while
distributed representations are robust to substantially larger
noise levels. The robustness comes from the usage of random
HD vectors in high-dimensional spaces because in contrast
to the original low-dimensional representation they require
a substantial level of distortion for bringing two distributed
representation close to each other.

Also the accuracy of the HD recall is higher for nonbinary
input patterns, to which, for example, a third color is added as
the background to the letters in our test case. For the sake of
space saving the results of the corresponding experiments are
omitted in this paper, and interested reader is referred to [30]
for the details.
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Fig. 5. Test results for black and white images of letters using distortions of 1 bit (2.9%), 3 bits (8.6% ), and 5 bits (14.3%). Red bars depict 95% confidence
intervals.

Fig. 6. Accuracy of recall under supervised learning as a function of the
distortion level. Shaded areas depict 95% confidence intervals.

2) Recall Under Supervised Learning: This section presents
the results of the comparison of the pattern recognition accu-
racy under supervised learning. In the context of this exper-
iment, a supervised learning mechanism was implemented
using prototype HD vectors. Note that the procedure described
here as supervised learning is not exactly the traditional
definition of the term which usually involves some kind of
optimization of the representations with respect to an outcome
measure. This is not the case here. The prototypes were formed
by bundling distributed representations of distorted patterns of
the same letter into the distributed representation of the letter
during the training phase. In other words, in this scenario,
each prototype stores a set of noisy letters generated from the
same noise-free letter. Thus the prototype has information on
the natural variability of the images, whereas the prototypes in
the previous scenario with single shot learning do not. In the
case of dense representations the majority rule was used while
for sparse representations the thresholded summation was used
for making the prototypes. After the thresholded summation
the density of the prototype equalled the expected density of
an HD vector representing a single image.

In the first experiment, we used series of randomly distorted
images of letters with different level of distortion between
1 and 15 bits. In the experiments up to 50 original images
for each letter and images at every level of distortion were
presented for memorizing. For the particular level of distortion,
all HD vectors of presented distorted images of the particular
letter were combined together to form a single prototype HD

Fig. 7. Accuracy of recall under supervised learning as a function of the
number of presented examples for a given level of distortion. Shaded areas
depict 95% confidence intervals.

vector of that letter. Thus, by the end of the training phase
the AM contains 26 HD vectors, each jointly representing
all (presented) distorted variants of the particular letter. In the
recall phase for each distortion level 100 new distorted images
of each letter were used as input. The accuracy was measured
as the percentage of the correctly recognized letters averaged
over the alphabet.

Fig. 6 illustrates the obtained results: 90% accurate recall
was observed when training symbols were distorted by up
to 5 bits (14.3%). While the accuracy predictably decreases
rapidly with the increase of distortion in the presented images,
a reasonable 80% recall accuracy was observed for learning
sets with 7-bits distortion (20%). The accuracy curves for all
four compared configurations show identical behavior.

Fig. 7 illustrates the convergence of the recall accuracy with
the number of distorted original images presented to form the
prototypes for the case of 5-bits distortion (14.3%). For larger
training sets, the average accuracy in Fig. 7 is approaching
the average value in Fig. 6 for 5-bits distortion. Interestingly
learning curves for all three configurations of the sparse HD
vectors are steeper than the curve for the dense HD vectors.
For N = 2048 configuration, the curve starts from the lowest
accuracy, but at the size of training set more than 5 images it
performs as well as other sparse configurations of HD vectors.
Thus, for the supervised learning based on the distorted images
the sparse HD vectors require less images to achieve their
optimal performance. For example, in Fig. 7 all configurations
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Fig. 8. Average recognition accuracy for five subjects using four different classifiers against varying density of ones in HD vectors. All classifiers use ideal
linear mapping of integers to HD vectors. Shaded areas depict 95% confidence intervals. Dimensionality of HD vectors was set to 10 000 elements. The results
were averaged across 50 runs.

of sparse HD vectors achieve the recall accuracy around 90%
after 15 training images, while the dense HD vectors need
20 images to settle at the same level of the recall accuracy.

B. Effect of Different Mapping Approaches

This section considers the effect of different feature map-
ping approaches to dense and sparse HD representations. The
studies were performed on the hand gesture recognition task.

A gesture was characterized by a pattern of n latest mea-
surements of each sensor, where n is a parameter, which can
be tuned individually for each subject. Hence, a gesture is
described by a tuple of 4n features (real numbers) in the
range 0.0–20.0. These numbers were rounded to integers and
were used as levels when mapping them to HD vectors.
Each of 4n integers was assigned with a unique HD vector
according to one of the four mapping schemes described in
Section V-B. Two types of HD vectors were used: binary and
bipolar. For the given pattern HD vectors representing values
of features were bundled together using the chosen bundling
operation (see Section II-D) to form the resultant HD vector
representing the current gesture. During the training phase, for
each gesture class prototype HD vector was formed by one
of the operations (see Section IV-C). In the operating phase,
similarity scores between the HD vector for the unknown
gesture and the prototype HD vectors were used to assign the
class with the highest similarity. The similarity is measured
by cosine similarity for bipolar representations; by Hamming
distance for binary dense representations; and by dot-product
for binary sparse representations.

Ten different HD classifiers were used in the evaluation.
Each classifier is described by three parameters: 1—Type of
HD vectors for mapping features can be either binary or bipo-
lar; 2—Type of feature mapping: orthogonal, ideal linear,
approximate linear, and approximate nonlinear. Note that the
first type represents each level by a random HD vector, while

the last three types preserve similarity between the HD vectors
representing similar levels. 3—Types of bundling operations
used for constructing the HD vector of the pattern and the
prototype HD vector of the class. For bipolar representations
either elementwise summation (denoted by MAP) or majority
rule can be used for both tasks. For binary dense represen-
tations majority rule is also used for both tasks. For binary
sparse representations the CDT procedure is used to form
pattern’s HD vector while thresholded summation is used
when constructing prototypes. In the experiments the average
accuracy of the correct classification of a gesture for each
subject was studied against density of ones in HD vectors
representing features. In the case of bipolar representations
“−1” values were dominating for the low densities of ones.

Fig. 8 illustrates the average recognition accuracy for each
subject against varying density of ones in HD vectors for four
classifiers in the case of the ideal linear mapping. Note that
the classifier with bipolar representations, ideal linear map-
ping, and elementwise summation as the bundling operation
corresponds to the classifier presented in [23] and, therefore,
it is used as a benchmark for other classifiers. Its performance
does not depend on the density of ones. It is due to the fact
that the elementwise summation does not restrict the range of
values of the resultant HD vector.

It is, however, opposite for other classifiers. If, instead
of the elementwise summation rule, the majority rule with
threshold 0 is used with bipolar representations (“bipolar;
linear; majority rule; bipolar” in Fig. 8) then the performance
of such a classifier varies with the density of ones. Moreover,
this classifier behaves in the same way as the binary classifier
with majority rule (“binary; linear; majority rule; binary”
in Fig. 8) because they are essentially equivalent due to the fact
that, in the case of bipolar representations, the majority rule
with the threshold 0 produces the same result as the majority
rule with the threshold G/2 for binary representations (given
that ties are broken with the same random sequences as was the
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Fig. 9. Average recognition accuracy for five subjects using seven different classifiers against varying density of ones in HD vectors. Bipolar classifier with
ideal linear mapping is used as a benchmark. Other six classifiers are using three different mapping schemes for dense and binary sparse representations.
Shaded areas depict 95% confidence intervals. Dimensionality of HD vectors was set to 10 000 elements. The results were averaged across 50 runs.

case for the simulations in this section). The variation of the
performance against density of ones in HD vectors is explained
by the nature of bundling operations. If majority rule is used
with binary sparse HD vectors then at some point there will be
no elements in resultant HD vector which exceed threshold,
hence the resultant HD vector after majority rule consist of all
zeros.

Similarly, when the CDT procedure is used on dense HD
vectors there is a high chance that the HD vector after OR will
consist of all ones so that the thinning step of the procedure
cannot decrease density of ones. In this case, the resultant
HD vector after the CDT procedure is not more representative
than all zeros HD vector. Thus, classifier with these bundling
operations show satisfactory performance when operating in
the designed regions, i.e., low densities of ones for the CDT
procedure and high densities of ones for majority rule.

As a general guiding rule, a classifier with the bundling
operation for sparse representations will demonstrate the best
performance when the density of ones is small, while a clas-
sifier using the bundling operation for dense representations
will perform better when the density of ones is closer to
0.5. Results in Fig. 8 confirm this observation: both binary
classifiers achieve performance comparable with the bench-
mark bipolar classifier. The binary dense classifier shows the
best performance when p1 = 0.5. But for the binary sparse
classifier for each subject there is a value of density of ones
when it demonstrates its peak.

Fig. 9 demonstrates the effect of other mappings on the
performance. The bipolar classifier in Fig. 9 is used as a bench-
mark. The overall behavior of classifiers is similar to Fig. 8:
sparse classifiers perform better when density of ones is low;
for dense classifiers p1 = 0.5 is preferable. Approximately
linear classifiers correspond to their ideal versions in Fig. 8.
The performance does not suffer if the mapping is done
approximately. It is an important observation as the approx-
imate linear mapping has memory efficient implementation.

The approximate nonlinear mapping demonstrates slightly bet-
ter performance for subjects one, two, and four for the dense
classifier. In the case of the sparse classifier the performance
is higher for subjects one and two. It is concluded that the
approximate nonlinear mapping could improve performance
but the improvement is not guaranteed. Interesting results are
observed for the orthogonal mapping. For first three subjects
the accuracy of the classifiers with the orthogonal mapping
does not differ much from the accuracies for other types
of mapping. But the performance is significantly lower for
subjects four and five. It can be explained by large variations
of patterns produced by the last two subjects. Thus, in some
cases the orthogonal mapping can perform as well as linear or
nonlinear mappings, but there are situations when preserving
similarity between neighboring levels leads to the increased
accuracy. In the considered task, it is due to the fact that for
some subjects, gestures can be recognized reasonably well in
terms of absolute values of the measurements. Nevertheless,
it is advised to use the orthogonal mapping when possible as
it is the most efficient approach from the memory usage point
of view.

VII. CAPACITY OF DISTRIBUTED REPRESENTATIONS FOR

THE TASK OF CORRECT RETRIEVAL

This section discusses another important tradeoff of using
binary HD representations—the dependence of their capacity
on the density. The problem of the limited number of HD
vectors recoverable from the bundle, i.e., the capacity of
distributed representation, is common to both sparse and dense
representations.

The capacity characteristic of binary distributed represen-
tations is important for a class of pattern recognition appli-
cations which requires an understanding of the details of the
recall results. For example, noiseless memorization tasks [60]
are often used for assessing reservoir computing architec-
tures [24], [45], [61]. In the area of HD dimensional computing
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there is a similar task called trajectory association [21]. The
task consists of two stages. The first stage considers storage
of a pattern of tokens (e.g., a sequence of letters, phonemes,
etc) HD vector memory. In the second stage, the pattern is
retrieved from the memory HD vector.

A. On Capacity of Binary Sparse Distributed Representations

The capacity of the binary SDRs was not previously
reported in the literature and therefore is one of the main
contributions of this paper.

Denote the number of tokens existing in the system and
represented by sparse HD vectors as D. Suppose that this
number is finite. D is therefore also the size of the clean-up
memory. Denote an N-dimensional sparse vector representing
a token as x�.

Suppose a pattern of G tokens is stored in a single memory
HD vector using disjunction operation and the CDT procedure.

Suppose without the loss of generality that tokens are
bundled with preserved order.5 The token’s order in the
bundle is implemented by the permutation operation, which is
denoted as ρ. Note that tokens are randomly sampled from the
dictionary and, thus, the length of the sequence of tokens can
be arbitrarily long despite the finite size D of the dictionary.
Thus, the bundle HD vector ��� is formed as

��� = 〈 ∨G
m=1 ρm(x�m )

〉
. (12)

The bundle HD vector ��� is similar to its components due
to the properties of the CDT procedure. Hence, each element
of the pattern can be retrieved from the memory HD vector
via the search through the clean-up memory. To retrieve a
token from position m in the bundle, first, the permutation
corresponding to this position is inverted from the memory
HD vector as

x̂�m = ρ−m(���). (13)

Next, similarities between the unpermuted bundle HD vector
x̂�m and all HD vectors in the clean-up memory (i.e., D HD
vectors representing the dictionary) are calculated. The simi-
larity between two HD vectors is measured by dot product, d .
Finally, the token on position m of the bundle is found as the
most similar HD vector, i.e., the one with the highest value of
the dot product.

Due to the stochastic nature of the distributed represen-
tations and the cross-interference, which is introduced into
the bundle HD vector when storing many different tokens,
the reconstructed pattern contains errors. The task of charac-
terizing the capacity, therefore, converges to the probability of
the correct retrieval of a token from a bundle HD vector.

The process of retrieving tokens from the bundle HD vector
is also stochastic and can be described with the aid of two
random variables. The first variable characterizes the dot
product between the unpermuted bundle HD vector x̂�m and

5This assumption allows inclusion of several copies of the same token
because each position corresponds to a unique permutation. The permutation
in turn preserves orthogonality between HD vectors representing the same
token at different positions in the sequence. Note that this is just one possible
way of representing ordering in a sequence.

Fig. 10. Probability of the correct retrieval pcorr of a single token from the
memory HD vector against the number of stored tokens for three different
sizes of the dictionary D = 27; D = 100; and D = 1000. During the
experiments, N = 10 000, M = 100, and T = 1. The variances were estimated
as 1.1 of the corresponding means. Solid lines are analytical values according
to (14)–(18). Dashed lines are averaged experimental results.

the HD vector x�m in the clean-up memory, which corresponds
to the correct token. The second variable characterizes the
dot product between the unpermuted bundle HD vector and
all (D − 1) not correct HD vectors in the clean-up memory.

As in [18] both variables are approximated by normal
distributions. The former is referred as the hit distribution,
while the latter as the reject distribution. Both distributions
are defined via their means (μH and μR) and variances (σ 2

H
and σ 2

R). In the retrieval process, the correct token will be
chosen if and only if its HD vector has the highest value of
the dot product with the unpermuted bundle HD vector over
the entire clean-up memory.

Formally, the probability of the correct retrieval of a token
pcorr is calculated as follows (see [62] for the general capacity
theory):

pcorr =
∫ ∞

−∞
dh√

2πσH
e
− (h−(μH −μR ))2

2σ2
H

[
�

(
h

σR

)]D−1

. (14)

Equation (14) depends on values of five variables. The size
of the clean-up memory D is defined by the initial conditions
of the trajectory association task. Values of other variables
depend on the size of the pattern G, the dimensionality of HD
vectors N , the expected number of ones in an HD vector M ,
and the number of iterations in the CDT procedure T .

Mean values of the hit and reject distributions can be cal-
culated if the expected density of ones pT 1 in the bundle HD
vector is known. It can be calculated by (22), see Appendix
VIII for details. Then, the mean of the reject distribution μR is
the expected value of the dot product between two dissimilar
HD vectors with different densities p1 and pT 1 and it is
calculated as

μR = N p1 pT 1. (15)

The mean of the hit distribution μH is proportional to
the contribution of a single component HD vector into the



5894 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 12, DECEMBER 2018

Fig. 11. Capacity of the resultant HD vector versus the dimensionality for
dense and SDRs. The capacity shows the maximal number of components
which can be retrieved with 99% accuracy. D was set to 27.

superposition HD vector and depends on the expected density
of ones in the memory HD vector; μH is calculated as

μH = N pT 1/(pS1/p1) = N p1 pP1. (16)

The estimation of variances for the distributions (σ 2
H and

σ 2
R) is a nontrivial task due to the complexity introduced by

the CDT procedure. To complete the analysis these values
were estimated empirically. According to the heuristic, which
produces best estimation, the variances of both distributions
are approximately equal to their means (in fact 1.1 of their
means), i.e.,

σ 2
H ≈ 1.1μH (17)

σ 2
R ≈ 1.1μR. (18)

The probability of the correct retrieval of a token from the
bundle can be estimated using (14)–(18). Fig. 10 illustrates
the accuracy of the correct retrieval pcorr of a single token
from the bundle HD vector for different number of stored
tokens G for three different sizes of the dictionary. Analytical
estimations with (14) match the experimental results very well.
Note that all three curves demonstrate the accuracy lower than
100% when the number of stored tokens is small. It is caused
by the fact that the density of ones is too low after the CDT
procedure (see (22)). It is clear, that with the increase of D,
the chance of an incorrect retrieval increases. At the same
time, the probability is degrading gradually with the growth
of pattern’s size G. Eventually, for the large values of G the
bundle HD vector becomes dissimilar to all of its components.
In this case, the probability of the correct retrieval approaches
that of a random guess, i.e., limG→∞ pcorr = 1/D.

B. On Capacity of Binary and Bipolar Dense Distributed
Representations

The capacity of binary DDRs is extensively studied in
[30]. The capacity of the bipolar, i.e., consisting of “+1” and
“−1” elements, HD vectors is studied in [18]. Both analyses
largely agree with each other. Fig. 11 compares the capacity
for dense and sparse HD vectors versus the dimensionality.

Dimensionality N varied between 1000 and 30 000. For a
given dimensionality, Fig. 11 illustrates the maximal number
of components which can be retrieved from the resultant
HD vector with at least 99% accuracy. As defined above
in (14), the capacity also depends on the size of the dictionary.
In Fig. 11 it was fixed to D = 27. The number of “1” elements
for sparse representations was set to M = 85 irrespective of
dimensionality.

The solid line in Fig. 11 illustrates the capacity of binarized
dense representations. Analogous capacity curve for sparse
HD vectors after applying one iteration of the CDT pro-
cedure (T = 1) is depicted by the dash-dotted line. The
capacity of SDRs is significantly lower than that of dense
representations. But there are caveats to this. First, the variance
of number of “1” elements in sparse HD vector affects the
capacity as it is the source of noise. The variance is restricted
by drawing sparse HD vector from the hypergeometric distri-
bution rather than from the binomial distribution. In this case,
number of “1” elements in HD vector is exactly M rather than
approximately M in the case of the binomial distribution. The
corresponding capacity curve is illustrated by the dotted line.
The change of the distribution generating HD vectors increases
the capacity more than twice.

Finally, it should be noted that the usage of the CDT
procedure produces the thinned HD vector with lower density
of ones but there is a compromise between the capacity and
the sparsity of the thinned HD vector. The dashed line shows
the capacity of the bundled HD vector without the CDT
operation (T = 0). In this case, the capacity matches the
capacity of dense representations (the upper line; solid and
dashed lines coincide), but the bundled HD vector is also
dense. In fact, its normalized number of “1” elements can be
even higher than 0.5 as in dense representations. Hence, when
using sparse representations there is a compromise between
the sparsity of the bundled HD vector regulated by the CDT
procedure and its capacity.

VIII. CONCLUSION

This paper discussed tradeoffs of selecting parameters of
HD representations for classification and recall tasks. It is
demonstrated that for the considered pattern recognition tasks
both sparse and dense approaches behave nearly identical.
At the same time implementation peculiarities may favor one
approach over another (see Appendix B). One of such factors
is the number of features required in the potential applica-
tion. Sparse and dense representations use different mapping
operations for the construction of distributed representations
of patterns.

Dense representations use the majority rule operation when
bundling HD vectors of individual features. This operation
does not impose strict restrictions on the number of input
HD vectors in order to maintain the density of the resultant
HD vector. The resultant HD vector after the majority rule is
always dense p1 ≈ p0 ≈ 0.5. The density of the resultant HD
vector in the sparse representations depends on the number of
superimposed inputs due to the CDT procedure.

Note that the CDT procedure adjusts the density of the
resultant HD vector by iteratively applying permutation and
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conjunction operations. The conjunction operation is done
with two independent HD vectors each with probability of
non zero elements p1, which in turn depends on the number
of input HD vectors being superimposed by OR operation.
After conjunction the resulting density is p2

1. Therefore,
the density of the resultant HD vector increases with increase
in number of HD vectors in the OR-based superposition.
This implies a limitation on the number of superimposed
HD vectors for which the density of superposition can
be controlled. In order to address this problem appropri-
ate density keeping modifications to CDT operation must
be made.

Sparse representation favors lower switching activity with
simple and low-cost mapping operations compared to dense
alternative. It also requires lower memory footprint. Assuming
that the HD vector dimensionality for both approaches is the
same, e.g., 8192 then each dense HD vector requires 8192 bits
of memory. For sparse HD vectors, on the other hand, only
indexes of non-zero elements can be stored. For example,
to address each position in N = 8192 HD vector 13 bits are
needed. Thus, an HD vector with density 0.012 (M = 100) can
be stored using 13·100 = 1300 bits. Thus, the density of sparse
HD vectors is an important adjustable parameter allowing for
memory-efficient implementation of VSAs. Another important
advantage of sparse representations is in higher capacity of
some AM types [63]–[66].

Finally, the experiments in this paper considered the
approach of forming class prototypes with HD vectors but
there is another potential usage of binary sparse HD vectors.
They can be used as the feature vectors for the recently
proposed type of SVM [67], which requires that feature vectors
are sparse, high-dimensional, and binary. All these conditions
are fulfilled by the SDRs. Moreover, the characteristics of
representations (e.g., the density of the resultant HD vector)
can be easily adjusted as the mathematical mechanisms of the
mapping process are well understood.

APPENDIX A
DENSITY OF HD VECTORS IN SPARSE REPRESENTATIONS

This section introduces equations describing the density
of patterns’ distributed representations formed by the sparse
mapping with or without the CDT procedure. The density of
the resultant HD vector depends on the chosen parameters
of the mapping: the number of features in a pattern (G)
and the number of CDT iterations (T ) during the thinning
process. Dimensionality of an HD vector is denoted as N while
approximate number of ones in a component HD vector is M
so that p1 = M/N is the density of ones in the component HD
vector. The task is to characterize the density of the thinned
HD vector after the CDT procedure (denoted by pT 1). The
procedure is applied to G random component HD vectors.
Assume also that all component HD vectors have the same
expected density of ones, p1.

The first step of the CDT procedure is the construction
of the superposition HD vector that is created as a result of
elementwise OR operation on all components. The density of

Fig. 12. Comparison between experimental and analytical densities of ones
against the number of iterations in the CDT procedure for three different
values of p1. During the experiments, N was fixed to N = 10 000 and
G = 16. Number of iterations T varied between 0 and 10. Solid lines
are analytical calculations according to (22). Dashed lines are experimental
results, where each curve is the result of a single experiment using different
randomly generated vectors.

the superposition HD vector is defined as

pS1 = 1 − (1 − p1)
G . (19)

The thinning is performed on the superposition HD vector
using its independent permutations. During each iteration
of the CDT procedure, the elementwise AND operation is
performed on the superposition HD vector and its permuted
version. Due to the permutation, the vectors are independent
and the density of the result of elementwise AND is defined
as

pSP1 = p2
S1. (20)

Initially, the thinned HD vector is empty. During each iteration,
it is updated using the elementwise OR operation with the
result of elementwise AND operation between the superposi-
tion HD vector and its current permuted version. CDT proce-
dure can be also done in the different order as, first, forming a
thinning HD vector using the elementwise OR with T different
permutations of the superposition HD vector. Permutations of
an HD vector are dissimilar to each other, therefore, the density
of the thinning HD vector after T iterations is

pP1 = 1 − (1 − pS1)
T = 1 − (1 − p1)

GT. (21)

Second, the thinned HD vector is the result of the element-
wise AND operation between thinning and superposition HD
vectors. Note that these HD vectors are independent, then the
expected density of ones in the thinned HD vector is calculated
as

pT 1 = pS1 pP1 = (1 − (1 − p1)
G)(1 − (1 − p1)

GT). (22)

Thus, when there is only one iteration in the CDT pro-
cedure (i.e., T = 1), (22) simplifies to pSP1 as in (20).
Fig. 12 shows the comparison between experimental and
analytical densities of ones against the number of iterations
in the CDT procedure. The graph was obtained using HD
vectors with N = 10 000. Three different densities of ones
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TABLE I

SUMMARY OF BINARY HD COMPUTING FRAMEWORKS

in component HD vectors p1 were considered: 0.01 (M =
100), 0.02 (M = 200), and 0.03 (M = 300). Number of
iterations in the CDT procedure varied between 0 and 10,
where 0 means that the CDT procedure was not used and the
density of ones pT 1 is calculated according to (19). Solid lines
in Fig. 12 correspond to analytical results while dashed lines
show experimental densities for individual experiments. It is
clear from Fig. 12 that the averaged experimental results (the
averaged curves are not shown as they precisely follow the
analytical curves) follow the analytical ones for all considered
values of p1.

Note that the minimum values of pT 1 are achieved when
T = 1. However, in Fig. 12 these densities are higher than
the corresponding p1 values due to the large number of
components G involved in the superposition. Thus, when there
is a need for the CDT procedure to control the density when
G is large, additional CDT iterations are needed.

APPENDIX B
SUMMARY OF BINARY HD COMPUTING FRAMEWORKS

Table I presents a summary of binary HD computing
frameworks including the recommended reference for each
approach. The last column indicates the simplicity of preserv-
ing the density of ones in HD vectors after operations.

REFERENCES

[1] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognit. Comput., vol. 1, no. 2, pp. 139–159, Oct. 2009.

[2] R. W. Gayler, “Vector symbolic architectures answer Jackendoff’s chal-
lenges for cognitive neuroscience,” in Proc. Joint Int. Conf. Cognit. Sci.
ICCS/ASCS, 2003, pp. 133–138.

[3] H. Li et al., “Hyperdimensional computing with 3D VRRAM in-
memory kernels: Device-architecture co-design for energy-efficient,
error-resilient language recognition,” in IEDM Tech. Dig., Dec. 2016,
pp. 16.1.1–16.1.4.

[4] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-efficient
classifier using brain-inspired hyperdimensional computing,” in Proc.
IEEE/ACM Int. Symp. Low Power Electron. Design (ISLPED), 2016,
pp. 64–69.

[5] A. Rahimi et al., “High-dimensional computing as a nanoscalable
paradigm,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 9,
pp. 2508–2521, Sep. 2017.

[6] B. Emruli, R. W. Gayler, and F. Sandin, “Analogical mapping and
inference with binary spatter codes and sparse distributed memory,” in
Proc. IJCNN, Aug. 2013, pp. 1–8.

[7] D. Rasmussen and E. Eliasmith, “A neural model of rule generation in
inductive reasoning,” Topics Cognit. Sci., vol. 3, no. 1, pp. 140–153,
2011.

[8] S. D. Levy, C. Lowney, W. Meroney, and R. W. Gayler, “Bracketing
the beetle: How wittgenstein’s understanding of language can guide our
practice in AGI and cognitive science,” in Artificial General Intelligence
(Lecture Notes in Computer Science), vol. 8598. Cham, Switzerland:
Springer, 2014, pp. 73–84.

[9] D. A. Rachkovskij, “Some approaches to analogical mapping with
structure-sensitive distributed representations,” J. Experim. Theor. Artif.
Intell., vol. 16, no. 3, pp. 125–145, 2004.

[10] S. V. Slipchenko and D. A. Rachkovskij, “Analogical mapping using
similarity of binary distributed representations,” Inf. Theories Appl.,
vol. 16, no. 3, pp. 269–290, 2009.

[11] D. A. Rachkovskij and S. V. Slipchenko, “Similarity-based retrieval with
structure-sensitive sparse binary distributed representations,” Comput.
Intell., vol. 28, no. 1, pp. 106–129, 2012.

[12] S. D. Levy and R. Gayler, “Vector symbolic architectures: A new
building material for artificial general intelligence,” in Proc. 1st Conf.
Artif. Gen. Intell. (AGI), 2008, pp. 414–418.

[13] D. A. Rachkovskij, E. M. Kussul, and T. N. Baidyk, “Build-
ing a world model with structure-sensitive sparse binary distributed
representations,” Biol. Inspired Cognit. Archit., vol. 3, pp. 64–86,
Jan. 2013. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S2212683X12000552.

[14] F. R. Najafabadi, A. Rahimi, P. Kanerva, and J. M. Rabaey, “Hyperdi-
mensional computing for text classification,” in Proc. Design, Autom.
Test Eur. Conf. Exhibit. (DATE), Univ. Booth, 2016, p. 1.

[15] D. Kleyko, E. Osipov, N. Papakonstantinou, V. Vyatkin, and A. Mousavi,
“Fault detection in the hyperspace: Towards intelligent automation
systems,” in Proc. IEEE 13th Int. Conf. Ind. Inf. (INDIN), Jul. 2015,
pp. 1219–1224.

[16] D. Kleyko, E. Osipov, R. W. Gayler, A. I. Khan, and A. G. Dyer,
“Imitation of honey bees’ concept learning processes using vector
symbolic architectures,” Biol. Inspired Cognit. Architectures, vol. 14,
pp. 57–72, Oct. 2015.

[17] T. A. Plate, “Holographic reduced representations,” IEEE Trans. Neural
Netw., vol. 6, no. 3, pp. 623–641, May 1995.

[18] S. I. Gallant and T. W. Okaywe, “Representing objects, relations, and
sequences,” Neural Comput., vol. 25, no. 8, pp. 2038–2078, 2013.

[19] R. W. Gayler, “Multiplicative binding, representation operators & anal-
ogy,” in Advances in Analogy Research: Integration of Theory and Data
From the Cognitive, Computational and Neural Sciences, K. J. Holyoak,
D. Gentner, and B. N. Kokinov, Eds. Sofia, Bulgaria: New Bulgarian
Univ., 1998, pp. 1–4.

[20] S. I. Gallant and P. Culliton, “Positional binding with distributed
representations,” in Proc. IEEE Int. Conf. Image, Vis. Comput. (ICIVC),
Aug. 2016, pp. 108–113.

[21] T. A. Plate, Holographic Reduced Representation: Distributed Repre-
sentation for Cognitive Structures. Stanford, CA, USA: Center for the
Study of Language and Information, 2003.

[22] D. A. Rachkovskij, “Representation and processing of structures with
binary sparse distributed codes,” IEEE Trans. Knowl. Data Eng., vol. 13,
no. 2, pp. 261–276, Mar./Apr. 2001.

[23] A. Rahimi, S. Benatti, P. Kanerva, L. Benini, and J. M. Rabaey,
“Hyperdimensional biosignal processing: A case study for EMG-based
hand gesture recognition,” in Proc. IEEE Int. Conf. Rebooting Com-
put. (ICRC), Oct. 2016, pp. 1–8.

[24] O. Yilmaz, “Machine learning using cellular automata based feature
expansion and reservoir computing,” J. Cellular Automata, vol. 10,
nos. 5–6, pp. 435–472, 2015. [Online]. Available: http://www.
oldcitypublishing.com/journals/jca-home/jca-issue-contents/jca-volume-
10-number-5-6-2015/

[25] C. Eliasmith, How to Build a Brain. Oxford, U.K.: Oxford Univ. Press,
2013.

[26] S. Purdy. (2016). “Encoding data for HTM systems.” pp. 1–11. [Online].
Available: https://arxiv.org/abs/1602.05925

[27] G. Recchia, M. Sahlgren, P. Kanerva, and M. N. Jones, “Encoding
sequential information in semantic space models: Comparing holo-
graphic reduced representation and random permutation,” Comput. Intell.
Neurosci., vol. 2015, Jan. 2015, Art. no. 58. [Online]. Available:
https://www.hindawi.com/journals/cin/2015/986574/

[28] D. A. Rachkovskij and E. M. Kussul, “Binding and normalization of
binary sparse distributed representations by context-dependent thinning”
Neural Comput., vol. 13, no. 2, pp. 411–452, Feb. 2001.

[29] P. Kanerva, Sparse Distributed Memory. Cambridge, MA, USA: MIT
Press, 1988.

[30] D. Kleyko, E. Osipov, A. Senior, A. I. Khan, and Y. A. Şekercioǧlu,
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