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Abstract

The integrated circuit manufacturing technology improves almost daily, and enables designers to construct
circuits that are both smaller and are able to work faster. While this increases the performance and allows more
functions to be integrated on to micro-chips, it also poses significant challenges to designers.

Conventional digital circuits rely on a global clock signal to function. These circuits are called synchronous,
as the timing of all operations of the circuit are derived from the global clock signal. As a result of the
technological improvements with each new generation of integrated circuits, both the clock rate, and the number
of clock connections within the micro-chip continue to increase. Reliably distributing the clock signal over the
micro-chip has become one of the leading challenges of modern digital system design.

The Globally-Asynchronous Locally-Synchronous (GALS) system design has been developed to address this
problem. A GALS system consists of several sub-designs, called GALS modules, that have their own lo-
cal clock generators. Each module by itself is synchronous and can be designed using a conventional design
methodology. What is required is a reliable method to exchange data between these independent GALS mod-
ules. Instead of a global clock signal, GALS systems use an asynchronous handshaking protocol between
GALS modules. Each GALS module contains additional control circuitry that briefly pauses the local clock to
ensure data integrity during these transfers.

The feasibility of the GALS design methodology, and an extension of the methodology to support multi-point
connections between GALS modules has been investigated in two previous Ph. D. theses by J. Muttersbach and
T. Villiger. In this thesis, the GALS methodology has been applied to improve the security of cryptographic
systems.

Cryptographic systems are an integral part of modern digital society providing solutions to secure information
from unauthorized access. In its most basic form, a cryptographic algorithm uses a secret key (a series of 0’s
and 1’s) to transform information so that it can only be deciphered by others who have the same secret key.

There are several well established algorithms, like the Advanced Encryption Standard (AES), that provide a
very high level of security. However, once this algorithm is implemented, in either hardware or software, it
acquires several physical properties (heat, power consumption etc) that can be monitored during operation.
Starting in 1999, it was shown that it is possible to extract the secret key of a cryptographic system by only
monitoring the power consumption. This is a very serious problem, and immediately a number of countermea-
sures were developed against these so-called side channel attacks.

In this thesis, the design of a GALS-based AES implementation is presented. The design consists of three
independent GALS modules which have a local clock generator that is able to change its period randomly. By
combining this architecture with several well-known countermeasures against side channel attacks, the security
of the AES implementation has been improved considerably.

This work represents the first application of GALS to improve the side-channel security of a cryptographic
system. A mature GALS design flow, which is mainly based on industry standard electronic design automa-
tion tools, has been used to fabricate the circuit. Measurement results showed that the performance metrics
(throughput, area, power consumption) of the GALS integration are comparable to circuits that were designed
using conventional synchronous methods.
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Chapter 1

Introduction

This thesis combines two relatively different areas of research. On one hand, the Globally-Asynchronous
Locally Synchronous (GALS) design methodology and on the other hand the design of secure cryptographic
systems are covered in this thesis. In the end, the GALS design methodology is applied to a cryptographic
system to increase its security against certain attacks.

GALS has been introduced as a design methodology that will facilitate the design of multi-million transistor
integrated circuits in the future. Instead of designing a completely synchronous system where a global clock
signal has to be distributed over the entire circuit with considerable effort, GALS allows individual modules to
be clocked independently. This has two important consequences. The most visible result is that all problems
related to global clock distribution and meeting timing constraints at the final stage of design are virtually
eliminated. Secondly, the GALS methodology dictates a clear separation between functionality that is provided
by the locally synchronous part, and the communication that is asynchronous. Modules designed in this way
can be re-used much more easier.

The Integrated Systems Laboratory (IIS) of the Swiss Federal Institute of Zurich has been one of the leading
research institutes in GALS research, especially in practical realizations of GALS systems. TheMarilyn design
developed as part of Jens Muttersbach’s Ph.D. research is the first successfully integrated GALS system, and
theShir-Khandesign developed as part of Thomas Villiger’s Ph.D. research is the largest implemented GALS
system to date.

Despite all these advantages GALS has so far not seen universal acceptance and has remained a niche technol-
ogy at best. Among the most frequently cited reasons is the lack of design tool support and a test methodology.
The GALS design flow demonstrated in this thesis uses conventional design tools for most of the design stages.
Furthermore, a test methodology that combines standard stuck-at fault testing for the locally synchronous parts
with a functional test for the asynchronous communication is presented. While the GALS design flow presented
here may not be of industrial quality, it is not far from it.

GALS design is typically seen as a replacement for conventional design methods. It was presented as a ’fix’ for
clock distribution and top-level timing problems of standard synchronous design. However, GALS also offers
several new and interesting opportunities to designers. In this thesis, the ability of using independent clock
domains of GALS is exploited to increase the security of cryptographic accelerator circuits.

Unlike previous GALS research that was mainly project based, the experience on cryptographic hardware de-
sign started off as student semester thesis projects. Cryptographic algorithms are well suited as examples for
students learning how to design digital micro-chips. The first Advanced Encryption Standard (AES) imple-
mentation at the IIS was realized during the winter semester 2001/2002. Unfortunately a post-processing error
resulted in several shorts on the circuits. While the basic functionality of the chip could be verified on one
sample after extensive micro-surgery, the AES algorithm was implemented a second time the following year.
This implementation, calledFastcore, also included many features that were missing in the first one.

Cryptographic algorithms like AES are basically secure against algorithmic attacks. But once such algorithms
are implemented, be it on dedicated hardware or as software on a micro-controller, different physical properties
of the algorithm can be observed. Over the years, sophisticated attacks were developed that enabled attackers

7



8 CHAPTER 1. INTRODUCTION

to break cryptographic devices by such observations. A very popular and extremely efficient method is the so-
called Differential Power Analysis (DPA) attack that is based on observing the power consumption of a system
implementing the cryptographic algorithm.

For the most part, cryptographers are not good hardware designers, and hardware designers are equally bad
cryptographers. It is therefore not very surprising that chip designers, upon reading mostly theoretical papers
on DPA attacks, regard them as interesting, but not really practically applicable for dedicated chips. Following
such a dispute, the aforementionedFastcoredesign was successfully attacked using the DPA method. This was
the first successful practical DPA attack on a micro-chip implementing the AES algorithm.

In the following semesters, several other AES chips were developed as part of semester and diploma theses,
each using a set of different ideas for countermeasures against similar DPA attacks. The GALS-based AES
implementation presented in this thesis is a result of this continued involvement in the field of cryptographic
security. Cryptographic security is a difficult problem, and it would be foolish to imagine that the approach
presented here will solve the problem completely. However, it presents a fresh and different solution that could
prove to be a step in the right direction.

This thesis gives a comprehensive overview of the GALS design methodology and it presents a unique im-
plementation of the AES algorithm using GALS. The final design calledAcacia is as fast as its synchronous
counterpart while allowing efficient countermeasures against DPA attacks to be implemented. The GALS
methodology used for the design has been refined, new port controllers have been designed, and for the first
time a viable test methodology for a GALS system has been presented.

A brief overview of the GALS design methodology is given in Chapter 2. The GALS subject is then rested
until the example design is presented later in Chapter 4. Before that, Chapter 3 includes a short introduction
to cryptography, and it describes the Advanced Encryption Standard (AES) in detail. The AES algorithm is
examined from a hardware designers view, and solutions that result in different area and throughput config-
urations are compared. The chapter concludes with a discussion on cryptographic security. The secure AES
implementation using GALS is introduced in Chapter 4. The following Chapter 5 is dedicated to a series of
topics related to GALS design. These include the design flow and test methodology as well as a discussion
on how a standard synchronous design can be converted to GALS. Finally Chapter 6 presents a summary and
draws conclusions.



Chapter 2

GALS System Design

The design of multi-million transistor integrated circuits is a very challenging task. And yet, the continuous
improvement in the integrated circuit manufacturing technology enables even more complex systems to be
designed almost every day. Just to illustrate how far current manufacturing methods have come, consider the
following:

At the time of writing, commercially available micro-processors containing tens of millions of transistors were
running at a clock rate of 4 GHz. During one clock period (250 ps) of such a micro-processor, light would
merely be able to travel 7.5 cm in vacuum.

For several years, scientists have claimed that the present way of designing chips has reached the limit of its
capabilities. At least until now, this limit has been avoided mainly by endlessly refining all aspects of the
design methodology. Nevertheless, developing alternative design methodologies has remained an attractive
field of study.

The Globally-Asynchronous Locally-Synchronous (GALS) design methodology has been developed to address
several key problems of the widely used synchronous design methodology. GALS basically combines the
well-known synchronous design methodology with the asynchronous design style. The goal is to combine
the advantages of the respective design styles while avoiding their short-comings. The following is a brief
description of three design styles, synchronous, asynchronous and GALS.

2.1 Design Styles

2.1.1 Synchronous Design

Today the synchronous design style is by far the most established way of designing digital circuits. The defining
characteristic of a synchronous circuit is the omni-present clock signal throughout the circuit. All events in the
circuit are ordered by this clock signal.

In a synchronous circuit, the clock qualifies all data signals of the circuit. The circuit operates correctly as long
as all signals within the circuit have their intended values at the time of a clock event. The entire timing of
a synchronous circuit is therefore defined relative to the global clock signal. Since all parts of the circuit are
controlled by the same pacemaker, it is possible to have a deterministic schedule for all events in the circuit.

This design approach has been used with great success since the beginning of the digital design. As with all
engineering solutions, there are several problems with the synchronous design approach. Unfortunately, recent
developments in Integrated Circuit (IC) manufacturing technologies, besides increasing the performance of
ICs in several orders of magnitude, has also aggravated several problems of the synchronous design style. In
particular, the distribution of a global clock signal over the entire circuit has become a formidable challenge.

Since the timing of a synchronous circuit depends on the global clock signal, it is imperative to distribute the
clock signal to all clocked elements in the circuit at the same time. Modern IC technologies allow circuits to be

9



10 CHAPTER 2. GALS SYSTEM DESIGN

designed much smaller and to be clocked at a much faster rate. Consequently, the clock has to be distributed to
more elements in the circuit with an ever increasing precision. In a modern design, a significant portion of time
is spent in distributing the clock and achieving timing closure, a term used to describe that all timing conditions
of the circuit have been met.

Most modern designs are designed with more than one clock signal, which complicates design to no end. The
reasons for introducing additional clock signals are varied. The part of the system that communicates with
the environment may be forced to use a clock rate compatible to the specific communication protocol used.
Systems that have many such interfaces end up using different clocks. Modern ICs are often too complex
to be designed from scratch. In the so-called System-on-Chip (SoC) methodology, pre-designed modules are
combined to create highly complex systems on a single chip. The module of a SoC system may be designed
under different timing constraints and may require different clocks to fulfill operational requirements.

Strictly speaking, if more than one clock is used, the system is not always synchronous. Systems can be
classified depending on the frequency-phase relationship of their clocks. For an example with two clock signals,
the following classifications can be made:

synchronous Both clocks share the exact same frequency, and there is no phase difference between two clocks.

mesochronousBoth clocks share the same clock frequency, but there is a constant phase difference between
two clocks.

plesiochronous Both clocks have nearly the same frequency, but there is a small difference. As a result, the
phase difference between two clocks can accumulate to an unbounded value.

periodic There is a fixed ratio between the clock frequency of two clocks.

asynchronous There is no frequency (or phase) relationship between two clocks.

Complex SoCs can easily have up to thirty or more separate clock signals. Not all of these clocks may share
the same relationship with each other. But in most cases, portions of the design that share a single clock are
designed using standard synchronous design approach. The challenge at the top level of the design is to resolve
all timing conflicts between sub-designs that use different clocks. Solving the clock distribution problem for
a single clock is already difficult enough, reliably solving the problems of multi-clock-domain systems is
bordering on the realms of impossibility [Gin03].

2.1.2 Asynchronous (Self-timed) Design

Asynchronous circuits can be defined as sequential circuits that do not rely on a global clock signal for oper-
ation. An asynchronous circuit consists of many sub-blocks that use handshake signals to request data from
connected sub-blocks, and to respond to such requests. These handshake signals are generated locally in each
sub-block. Since asynchronous circuits do not rely on a global signal, they are sometimes also referred to as
self-timed circuits1. To improve readability, in parts of this thesis, the term self-timed will be used instead of
asynchronous.

Using a self-timed design style has several advantages:

• No clock

Self-timed circuits do not have problems associated with clock distribution. Since there is no clock used
in any part of the circuit, synchronization problems between clock domains do not exist as well.

• Average case performance

The clock in a synchronous system has to be chosen to enable ’worst case’ operation. Self-timed circuits
use completion detection. While the ’worst case’ operation would require the same time in both design
approaches, self-timed circuits would be able to work faster for the remaining cases. For circuits whose
average case and worst case performance differ, the average operation speed of a self-timed design over
multiple operations would be higher than a synchronous design.

1Some references make a clear distinction between asynchronous and self-timed circuits. Even according to these descriptions, for the
circuits that are discussed in this thesis, the two terms could be used interchangeably.
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• No idle power

A synchronous circuit continues to ’operate’ even if it has nothing to do, and it consumes dynamic power
during such idle states. A self-timed circuit would not be triggered in such a case and it would simply
wait.

• Better composability

Self-timed design is based on being able to exchange data safely without relying on absolute timing
information. Modules designed to communicate in this way can be easily combined to make larger
systems.

An extensive evaluation of asynchronous design is beyond the scope of this thesis. More detailed information
on asynchronous circuits topic can be found in [SF01].

Today, although it is at least as old as synchronous design, self-timed design remains to be a niche technology.
Steve Furber2 has identified three important reasons why, despite all of its perceived advantages, self design
methodology has not seen widespread acceptance:

• It is different

The approach in self-timed design is radically different from synchronous designs. It is not simply an ex-
tension to known design styles, but a totally new approach to circuit design. Most electrical engineers are
not familiar with self-timed design methods and they are more than hesitant to adapt such methodologies.

• It is hard

Despite what might be advertised about self-timed circuits, it is not mastered easily. There are not
many engineers who are experienced with self-timed design, and asynchronous design is seldom part of
engineering education.

• It is poorly supported

Since it is not commercially very viable, Electronic Design Automation (EDA) companies have not
invested in self-timed design tools. At the same time, significant improvements have been made in all
aspects of the synchronous design methodology, increasing the gap even further.

• Its value proposition is not high

It would take a significant amount of investment to address the problems listed above. However, the
expected return from using self-timed design is simply not sufficient to justify such an investment.

2.1.3 GALS

By itself, GALS is a very general description. It merely suggests that the system consists of multiple func-
tional blocks that communicate asynchronously. Neither the specific asynchronous communication between
the blocks, nor the synchronization method used at block boundaries is determined. Therefore many different
flavors of GALS have been presented in the literature:

• The ’first’ GALS description by D. Chapiro [Cha84] is more a theoretical study of how two modules with
different clocks can communicate with each other. Synchronization between clock domains is achieved
by so-called ’escapement machines’ that use a 2-phase protocol and a stretchable clock. No circuit
implementation is presented in the thesis.

• S. Moore et al. [MTMR02] presented a GALS system that uses a 2-phase bundled data communication
scheme. Data synchronization between modules was achieved by using pausable clock generator based
on a ring oscillator. This concept was successfully implemented in silicon.

2The following list is from a keynote speech at the 2002 Asynchronous Circuit Design Conference in Manchester, UK.
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Local Clock Generator

Locally
Synchronous

Island

Po
rt

Po
rt

GALS Module

Pen

Ta

Req

Ack

DataOUT

Ri
Ai

Lclk

Pen

TaReq

Ack

Ri
Ai

DataIN

Figure 2.1: An overview of a single GALS module with a input and an output port.

• A communication chip designed by E. Grass et al. [KGS05] uses an interesting variation of the GALS
idea. The design essentially consists of a number of datapath elements that process large data frames
one after another. The nature of the implemented algorithm consists of bursts of data transfers between
datapath elements, followed by a long time of inactivity. This allows the local clock pulses to be ob-
tained from special handshake signals directly. The datapath element that produces the data effectively
generates the local clock pulses for the data consuming datapath. A similar idea was also presented by J.
Kessels [KPWK02]. This approach is only suited for datapath architectures

• A recent paper by S. Smith [Smi04] reports on a GALS system that does not use pausable clocks, but
implements synchronizers designed to prevent metastability. A similar approach is presented by Chat-
topadhyay et al. [CZ05] where bidirectional asynchronous FIFO elements are used to prevent metasta-
bility.

• D. Bormann [BC97] presents a GALS system using a 4-phase bundled data asynchronous communication
with pausable local clock generators. In his thesis, J. Muttersbach [Mut01] uses a similar concept and
presents a working GALS implementation on silicon.

In the remainder of this thesis, the term GALS will be used to describe the specific GALS methodology devel-
oped by J. Muttersbach [Mut01] at the Integrated Systems Laboratory.

2.2 The GALS Methodology

The GALS module shown in Figure 2.1 is the basic building block of a GALS system. At the heart of each
GALS module is a locally synchronous (LS) island. This block contains the functionality of the module and is
developed using conventional synchronous design techniques. The clock signal for the LS island is generated
by a local clock generator. The data communication between GALS modules is governed by specialized port
controllers. These are asynchronous finite state machines (AFSM) that can pause the local clock generator
during data transfers in order to ensure data integrity.

The GALS module uses a four-phase bundled data protocol to exchange data with similarly designed GALS
modules. Figure 2.2 shows a timing diagram with three consecutive clock cycles of a D-type output port
controller (which is later described in section 2.2.1). The LS island uses the Port Enable (Pen) signal to
activate the port controller (A). The port controller immediately sends a request signal (Ri ) to pause the local
clock generator (B). The local clock generator issues the acknowledge signal (Ai ) only after it has stopped
the propagation of a new active clock edge (C). No new clock pulses will be generated after this point, which
effectively freezes the LS island. The port controller then activates theReq signal (D), which in turn tells
the receiving GALS module that new data is available for transfer. The port controller at the receiving GALS
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Figure 2.2: Timing for a D-type output controller for three consecutive clock cycles. In the first cycle shown,
the environment is slow to react to theReq signal. As a result the clock is stretched until the data transfer has
been processed. The second cycle shows another transfer where the handshake finishes within the clock cycle.
Finally in the third cycle, thePen signal is not enabled, and no data transfer is initiated.

module goes through similar stages and as soon as it is ready to accept new data, it will acknowledge the request
by activating theAck signal (E). At this moment, the local clocks of both GALS modules are halted and the
receiving GALS module can safely sample the data . Afterwards, the handshake signals are returned to their
initial states and the local clocks are released. On the transmitting sideReq is deactivated first (F). Once the
communication partner deactivatesAck (G), the local clock generator is released by deactivatingRi (H). The
local clock generator lowersAi (J) and continues to generate clock pulses (K). The port controller also sets
the transfer acknowledge (Ta) signal to notify the LS island of a successful data transfer (L).

In the communication scheme presented above, the LS island starts the data transfer by activating thePen
signal. To enable data transfers in consecutive clock cycles, Muttersbach used a two phase protocol only for
thePen signal. A new data transfer is initiated by changing the value ofPen. This can be seen in figure 2.2,
in the first cycle the data transfer is initiated by a rising transition of thePen signal (A) and in the second cycle
a new data transfer is initiated by a falling transition ofPen (M). In the third cycle,Pen stays low, and no data
is transferred. When compared to a four-phase realization, this arrangement doubles the throughput of the data
connection at the expense of more complex port controllers.

In the first clock cycle shown in figure 2.2, the local clock is stretched as the sending module awaits theAck
signal, effectively slowing the sending module. If both GALS modules are ready to communicate, the data
transfer can be completed without stretching the local clock at all as illustrated in the second clock cycle in
figure 2.2.

2.2.1 Port Controller Types

The timing diagram in figure 2.2 shows an output port controller that suspends the local clock of the LS
island as soon as it is ready to transmit data. This is a desired behavior for a system that can not continue
without completing the present data transfer. Muttersbach named the input and output ports that halt the clock
immediately ’Demand Type’ (D-type) ports.

In some cases however, a GALS module may initiate a data transfer and continue operating up to a point where
a data dependency occurs. The ’Poll Type’ (P-type) ports were developed to serve this purpose. In contrast to
a D-type output port, a P-type output port first activates theReq signal to tell its communication partner that it
is ready to send data. Until anAck signal is received the local clock is not paused and the LS island continues
to operate normally. As soon as the P-type controller receives anAck it issues aRi signal to pause the local
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Figure 2.3: Simplified block diagram of a pausable local clock generator.

clock generator momentarily. Then, after the four-phase handshake is completed and all control signals return
to their initial levels. For P-type controllers theTa signal is very important as the LS island needs to constantly
observe the value ofTa to determine the status of the last data transfer.

The first GALS demonstrator circuit presented in [MVF00] was designed by using only point-to-point connec-
tions with only the two port controller types mentioned above. A large set of additional port controllers was
developed by T. Villiger to support multi-point interconnections [Vil05].

There are various methods that can be applied to describe ASFMs that make up the port controllers. Mutters-
bach used the ’Enhanced Burst Mode’ [YD99a, YD99b] specification to describe the port controllers. The 3D
software developed by K. Yun converts the port specification into Boolean equations which are then mapped to
standard cells manually.

2.2.2 Local Clock Generator

The GALS methodology developed by Muttersbach relies on a pausable local clock generator to prevent
metastability during data transfers. Therefore, a fast and reliable local clock generator is the key to a suc-
cessful GALS implementation. The block diagram of the local clock generator is shown in figure 2.3. The
clock generator is basically a ring oscillator whose period can be controlled by programming the delay line.
The arbitration block provides the pausability feature to the clock generator.

The local clock generator provides several ports, each of which, when activated, can pause the clock. For each
port, the pause request signal (Ri ) is combined with the output of the delay line, using a mutual exclusion
element (MutEx). MutEx is a specialized circuit that allows only one of its outputs to be at logic-1 at a certain
time. There are different implementations of the MutEx. A twelve transistor full-custom implementation that
is used for the GALS implementations in the UMC 0.25 µm process can be seen in figure 2.4. A rising edge of
the local clock can only propagate through the arbitration block if theRi signals of all ports are logic-0. The
output of the arbitration block is combined using a Muller-C gate that essentially only changes its output when
both of its inputs are in agreement.

As long as one (or more) of theRi signals is at logic-1, a new clock pulse will not be generated and the local
clock will effectively be paused. The next rising edge will propagate through the Muller-C gate only after the
blockingRi signal is returned to logic-0. The MutEx directly generates the clock pause acknowledge signal
(Ai ) as well. If theRi request is able to propagate to theAi output, the clock is effectively paused3. Ai will
only return to logic-0 afterRi is lowered.

3Actually, a Ri request during the high phase of the local clock is not acknowledged, even if the outstandingRi request would
effectively prevent the next rising transition of the local clock. While this slows the handshaking protocol somewhat, it is very simple to
implement and it avoids many timing problems.
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Figure 2.4: The Mutual Exclusion element, transistor schematic (left) and layout (right) for the UMC 0.25 µm
technology.

The number of ports of a pausable local clock generator is not really limited, however combining the outputs
of multiple ports reduces the maximum attainable clock frequency somehow. Local clock generators with up
to 8 ports have been successfully implemented in practice.

The frequency of the local clock generator can be adjusted using the programmable delay line. However,
during normal operation the clock frequency is not changed. The delay line is usually programmed during
startup to match the critical path of the module it is connected to. Having a programmable delay line allows the
same clock generator to be used for GALS modules with different clock frequencies. Especially for aggressive
designs, the exact value of the maximum allowable clock period is not known until the very end of design
process. A programmable delay line is practical for such designs as well, since the clock period does not need
to be fixed as long as it is within the range of the local clock generator.

2.2.3 Timing Constraints

Depending on the methodology used, several timing assumptions are made during the design phase. As an
example, for synchronous designs it is assumed that all inputs of flip-flops are stable before the clock pulse
arrives (setup-time constraint) and that they remain stable until the flip-flop has safely sampled its input (hold-
time constraint). The circuit will only function correctly if these timing assumptions hold true.

In circuits that use multiple clock domains, this can be tricky, especially on the boundaries between the clock
domains. Furthermore, with decreasing feature sizes, an ever increasing portion of the timing is determined by
the interconnections. These can only be accurately determined at the final stages of the design, where placement
and routing is completed.

The goal of GALS is to handle most of the timing problems that arise in systems with multiple clocking
domains, and to impose the least amount of restrictions on the designer of LS islands. To achieve this goal,
components of the GALS system must satisfy several timing requirements.

The port controllers used in GALS are obtained using asynchronous synthesis tools [CKK+97, YD99a], that
convert state transition diagrams into boolean equations. Depending on the specific asynchronous description
used, several timing constraints have to be met to ensure proper operation. Similar constraints may exist for the
communication between port controllers as well.
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Figure 2.5: Two interconnected GALS modules. The latch at the data inputs in GALS module B is required to
make sure that the data is still present when the first data edge appears after the data transfer.

The data inputs and outputs are also of concern. Muttersbach strongly advises to use registers at the input and
outputs of the LS islands. For synchronous systems, this represents the best case in terms of input and output
timing. However, this is not sufficient. Figure 2.5 shows two interconnected GALS modules where the data
input of GALS module Bis latched by a handshake signal. The latch is only active during the handshake and
it stores the data outputs ofGALS module Aduring the data transfer. This is necessary because after the data
transfer,LS island Amay receive an active clock edge beforeLS island B. This could change the output ofLS
island Abefore LS island B has a chance to sample its inputs4.

The two control signalsPen andTa have additional problems. SincePen is used to activate an AFSM, it must
be free of glitches. The easiest method to guarantee this is to use a register for thePen signal. TheTa signal is
used to determine if a pending data transfer has been completed. This signal is required for P-type controllers,
where the local clock is only halted during the data transfer. TheTa signal is generated by the port controller
and sampled by the LS island. This signal must satisfy several timing constraints to function properly.

Specialized port controllers may have additional timing constraints. As an example, Muttersbach presents D-
type port controllers that are capable of exchanging data during consecutive clock cycles. As soon as a D-type
port is enabled by thePen signal, it immediately activatesRi to stop the local clock generator. This is shown
in figure 2.6. Practically all LS islands need a clock tree to distribute the clock signal. Depending on the size
of the LS island, this requires the insertion of several levels of buffers in the clock signal path, resulting in a
clock tree insertion delaytclocktree. The clock signal that arrives at the flip-flop generating thePen signal will
be delayed bytclocktree. The flip-flop generating thePensignal will have a finite propagation delay oftpen and,
finally, theRi signal will be produced with a delay oftri . The sum of all three delays must be less than the
nominal period of the local clock generator if the port controller is expected to send data every clock cycle.
Aggressive designs may require significant amounts oftclocktree to function properly. The clock tree insertion
delay may even exceed the clock period. Other solutions need to be explored for such systems.

2.3 GALS-Based Solutions

The GALS design methodology allows designers to partition a large system into several sub-modules, each of
which can be optimized independently. Since the modules do not rely on a global clock to communicate with
each other, less effort is required to maintain data integrity on data transfers between modules. Designers using

4This case is more common than one would normally expect. Imagine the following scenario:Module Ais waiting forModule Bto
acknowledge the data transfer. Assume thatModule Bis not immediately available. In this case, the next clock edge of theModule Ais
practically waiting at the Muller-C element shown in figure 2.3. OnceModule Benables its input port, the data transfer quickly takes place.
As the data transfer is completedModule Areleases its local clock. The active clock edge appears immediately. OnModule B, assuming
the data transfer has taken place within a fraction of the nominal clock period, the next active clock edge will appear later. By this time the
output ofModule Amight already have changed.
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GALS have more freedom to improve the performance of the system. However, this does not imply that simply
using GALS will automatically result in a system that is faster, smaller, consumes less power, and is designed
in a shorter time.

Most of the GALS systems presented in the literature are based on a working synchronous design. This design
is then partitioned into several independent GALS modules in a process that is known as GALSification. Such
GALSified systems are at heart still synchronous designs. Several decisions during the design phase of such
circuits are based on synchronous constraints. Such systems are less likely to harvest all advantages being
offered by GALS, than systems that were from the onset designed with GALS in mind.

The following is a brief discussion of what can be expected by using the GALS methodology for various design
parameters:

2.3.1 Low Power

The technological advances in micro-electronic fabrication have enabled the performance of integrated circuits
to increase at a rate defined by Moore’s Law for the last 4 decades. The factors that resulted in increased
performance (smaller transistors, denser circuits, faster switching times) have also increased the amount of
power dissipated per unit area. Contemporary high-end micro-processors reach power densities in excess of
100 W/cm2, which is an order of magnitude more than a heating plate used in the kitchen. Therefore reducing
the power consumption of digital circuits is of paramount importance.

In a GALS system, modules that are not used frequently can be made to consume less power by either pausing
their local clocks until they are needed, or by simply using a reduced local clock frequency (and/or supply
voltage) for that particular module. It is also possible to optimize this approach by designing systems that
dynamically adjust their frequency and or supply voltage on demand.

Pausing the local clock of a GALS module during times of inactivity is basically equivalent to clock gating
at the module level. It can be easily realized by using D-type ports. During a data transfer between GALS
modules the local clock will be paused until the interconnected GALS module is ready to send/receive data.
While the module is in this ’wait’ state, no new clock pulse will be generated, and the module will not consume
dynamic power. The power saving that can be achieved by this method depends entirely on how often the
module is utilized. Similar gains can also be obtained by using clock gating within the module as well.

The dynamic power consumptionPdyn of a CMOS circuit is known to be proportional to the activity factorα,
the amount of switched capacitanceC, the clock frequencyf , and to the square of the supply voltageVdd as
given by the well known relation 2.1:

Pdyn≈ α ·C · f ·V2
dd (2.1)

It follows from this relation that, if a module is used less frequently, it is more power efficient to use a lowerVdd

which in turn reduces the maximum operating frequencyf . So rather than having a fast module (with nominal
Vdd) that runs for a short time and then pauses, it is better to use a slow module (with reducedVdd) that runs at a
speed where it does not pause at all. The aim of Dynamic Voltage and Frequency Scaling (DVFS) systems is to
achieve this compromise automatically. GALS systems seem to be well suited for implementing DVFS systems
since the activity of a module can easily be determined by monitoring the local clock, or the handshake signals.
Based on results obtained through simulations, this idea looks promising. In a GALS system specialized for
real-time applications, Bhunia et al. [BDBR05] claim up to 67% improvement in throughput per watt over a
synchronous implementation.

While the idea seems interesting, there are some problems associated with this approach. Modern devices
require very low voltages for power supply around (or even below) 1 V. This does not leave much noise margin
for correct operation, and the supply voltage can not be reduced much further to reduce power consumption.
Also communication between modules that use different input/output voltages will require level converter
circuits.

Early implementations of GALS were based on a premise that using this methodology would result in lower
power consumption. While several aspects of the GALS design methodology are in line with practices devel-
oped to reduce power consumption, just using GALS does not result in achieving low power designs.
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2.3.2 High Performance

The operating frequency of a synchronous system has to accommodate the worst-case propagation delay in
the circuit. A self-timed implementation of the same circuit would have a similar performance under the
same worst-case condition. However, an optimal self-timed system would be able to finish processing other
non-worst-case conditions faster, and consequently, over a large range of samples, it would have an average-
case performance that exceeds that of the synchronous system5. For systems where such an average-case
performance deviates significantly from worst-case performance (like a ripple-carry adder for instance), self-
timed systems can achieve a higher throughput than their synchronous counter-parts. A GALS system may
benefit in a similar way as demonstrated by the following hypothetical example:

Assume a system that performs a singleoperationA, followed by tenoperationB. In a synchronous system
the slower of both operations would determine the overall clock rate. Let us assume that the critical path of
operationAis 3 ns and that ofoperationBis 2 ns. The synchronous system would require eleven clock cycles
of 3 ns totaling 33 ns.

A GALS system that implements each operation as a separate GALS modules would computeoperationA
within 3 ns and then wait for the result of tenoperationBthat could be calculated within 20ns. Communicating
between GALS islands adds latency to the system. Even if 3 ns communication overhead is added to the
system, the GALS system would be able to complete both operations in 26 ns, more than 20% faster than the
synchronous system.

The example given above is overly simplistic and makes several assumptions for a GALS favorable outcome.
Nonetheless it demonstrates that under certain conditions GALS systems can indeed increase the throughput,
or at least can compensate for the additional latency incurred by communication between GALS modules. A
more detailed analysis for a high performance micro-processor architecture is given in [SAM+04].

2.3.3 Ease of Integration

The GALS design methodology allows a very large system to be partitioned into smaller modules, each of
which can be optimized independently. At the top level, the designer only has to realize the interconnections
between GALS modules which have minor or no timing constraints set on them6. This is in stark contrast
to synchronous system-on-chip solutions, where most of the design effort is concentrated to ensure proper
distribution of the clock signal and timely arrival of data connections between functional blocks.

In a GALS system, the communication and the functionality are clearly separated. The communication between
GALS modules is handled by the asynchronous port controllers, and the functionality is provided by the LS
island. The designer of the LS island can therefore focus entirely on the functionality, without worrying about
the data communication to other LS islands. In synchronous systems, the sub-blocks typically use the system
clock, or derive their own clocks from a central clock, so that inter-block timing constraints can be met. This
frequently results in over-constrained sub-blocks, that have to be designed with tighter timing constraints than
is really necessary. Moreover, such a sub-block can not always be re-used in a different system, as the timing
requirements for this new system may differ from that of the original system. In a GALS system, this is not
necessary, the LS island designers are completely free to choose an appropriate local clock rate that fulfills the
requirements of the system. The GALS module can be readily re-used since its timing is independent from the
environment.

While the goal of earlier GALS implementations centered on improved performance metrics, such as lower
power consumption and increased throughput, later publications highlighted the ease of integration as its main
advantage.

5To achieve this an accurate completion detection is required. This is not always trivial. In practice most self-timed circuits use a delay
line that is matched to the worst-case delay of the circuit. Such circuits also have worst-case performance.

6Typically in an asynchronous data connection, fast signals cause timing violations. Such violations are easy to resolve even at later
stages of the design. The fast signals are delayed by inserting additional buffers.
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2.3.4 Secure Applications

In the fourth Workshop on Asynchronous Circuit Design held in June 2004 in Turku, Finland, a special ses-
sion was held for a joint Strengths Weaknesses Opportunities and Threats (SWOT) analysis for asynchronous
circuits. The question that defined the opportunities was:

“Assume you were asking a billion dollars from an investor (to develop self-timed circuits), what would be
your strongest argument ?”

Interestingly, cryptographic systems and smart cards was the most commonly stated answer. Practical realiza-
tions of cryptographic algorithms in hardware suffer from so-called side channel attacks that can be exploited
to compromise the security of the system. Over the years, various publications [SMBY05, TV03, FML+04,
YFP03] have claimed that asynchronous circuits are less susceptible to such attacks, mainly since they do not
rely on a synchronous clock (a more detailed discussion of this topic can be found in section 3.5.1).

While GALS circuits employ asynchronous communication at the top level, the main functionality is provided
by LS islands which are synchronous. Therefore, it may be argued that GALS systems are as susceptible to
side channel attacks as their synchronous counterparts. The design presented in chapter 4 is the first application
of GALS in a cryptographic system and uses several features of GALS design to improve side channel security.

Cryptographic hardware implementations are in widespread use for more than 30 years. Despite all the effort
of the cryptographic community, the threat of side channel attacks against hardware implementations was
first discovered in 1996. Evaluating the security of a countermeasure is not trivial. While a novel circuit design
method may prove to be effective against a particular side channel attack, it may be vulnerable to other (similar)
attacks. It could be argued that, asynchronous circuits, which are not used as widely, have not been scrutinized
at the same level as synchronous circuits, which has helped to bolster their reputation of being more ’secure’.
The only way to evaluate the security of new ideas, including the GALS-based design presented in this thesis,
is to make them available to the cryptographic community for pro-longed analysis.



Chapter 3

Cryptographic Accelerators

3.1 A Cryptology Primer

The word ’cryptology’ stems from the Latin word crypto that means ’hiding’. Surprisingly it is mostly associ-
ated with secret services, and dark sinister forces that forge evil plans to harm mankind. Throughout history,
cryptology was mostly used to protect secrets. With the advent of the digital age, cryptology has transformed
itself from a science that is used by the military and intelligence services to an essential part of the the digital
information society.

Storing information digitally has many advantages. A digital content can (at least theoretically) be stored
without loss or degradation indefinitely1. Not only that, but it can be copied, duplicated and transferred elec-
tronically with ease. Today, all sorts of information from simple letters to books, pictures, movies, medical
records and business transactions are stored and transferred electronically in digital form.

Despite these advantages, there are some important problems associated with digital content. It can be changed
at any time, without leaving a single trace. After all, it is not even possible to tell who has created a given
digital information. Businesses that rely on distribution of information (news, music and media industry) do
not take it too kindly that their revenue generating digital information can be copied freely either.

It is only with the help of cryptology that the above mentioned problems can be reliably addressed. The
following is a list of some essential security services that are required in a working digital society.

Confidentiality: The content of the information is kept secret. This is the basic service that is most commonly
associated with cryptology.

Integrity: The information has not been modified.

Authenticity: The author (origin) of the information is known.

Access Control: Access to information is restricted to certain users.

Non Repudiation: The author of an information can not deny creating the information. This is important for
digital transactions. Imagine a scenario where Alice places an order electronically. Once the order is
completed, Alice should not be able to claim that she did not place the original order.

The branch of cryptology that is dedicated to develop methods that provide these services is called ’cryptogra-
phy’. and systems providing these services are called cryptographic systems. The key part of a cryptographic

1Unfortunately, up to now no digital information has been preserved for more than 50 years, simply because these methods were not
known earlier. Storing information to last a long period of time involves challenges that have not yet been mastered. The main problem in
storing digital information over longer periods of time, is that the technology used to store the information changes very rapidly.

An interesting example is described in detail at the URL http://www.atsf.co.uk/dottext/domesday.html. In this project, an old English
book written in 1086 was digitized in an effort to preserve the book in the year 1986. In less than 15 years, the hardware required for the
digital copy was simply outdated and practically could not be used. The original book, however, can still be used.

21
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Figure 3.1: Simple model for cryptographic algorithms.

system is a cryptographic algorithm that essentially provides a method to transform legible information (plain-
text) into a form that is protected (ciphertext) with the help of a secret information (cipherkey).

The simple model given in figure 3.1 describes key components of a cryptographic algorithm. It has become
common to personify the users of cryptographic systems2. Alice and Bob are users of the crypto system and
have access to a secret cipherkey. Oscar represents the malicious attacker who does not have access to the
cipherkey, but is generally assumed to have unlimited access to the ciphertext. The process of transforming
plaintext into ciphertext is known as encryption and the reverse process is known as decryption. The security of
a cryptographic algorithm is defined by the difficulty in which the plaintext can be obtained from the ciphertext
without knowing the cipherkey, a process known as ’breaking a cryptographic algorithm’. A second branch
of cryptology, called cryptanalysis, concentrates on finding weaknesses of cryptographic algorithms and thus
contributes to development of better (more resistant) algorithms.

Designing cryptographic algorithms is a challenging process. The ultimate goal of such an algorithm is to
achieve ’unconditional security’. An unconditionally secure algorithm can not be broken even with infinite
amount of computation resources. Unfortunately, the practical realization of such algorithms have proven to be
difficult3. What is more frequently used are ’computationally secure’ algorithms. Breaking these algorithms
requires a very large amount of computational resources. As long as the effort required to break the algorithm is
sufficiently high4, the algorithm is considered to be secure. Most algorithms rely on well studied mathematical
problems considered to be difficult to solve. There is, however, no proof that these problems can not be solved
faster, because scientists were simply unable to do so over a long period of time. Cryptographers live in constant
fear of a discovery that provides a faster solution to a mathematical problem serving as a foundation of their
algorithm. This is the main reason that most modern cryptographic algorithms are required to go through a
public review process.

Depending on how the cipherkey is managed, the cryptographic algorithms can be classified into publickey
algorithms and privatekey algorithms. Publickey algorithms use a cipherkey that consists of two parts. Bob
makes the public part of the cipherkey known to the whole world, and keeps the second part secret. When Alice
wants to send a message to Bob, she uses this public key to encrypt the message. The public key algorithms are
designed in a way to enable a decryption of the ciphertext only with the second (secret) part of the cipherkey.
RSA [RSA78] is probably the best known publickey algorithm used today. Privatekey algorithms, on the other
hand, rely on a cipherkey that both Alice and Bob know and keep secret.

Publickey algorithms are usually computationally intensive and are therefore not suited for secure transmission
of lengthy messages. Privatekey algorithms are suited for bulk transmission, but it is a challenge to distribute
the required secret cipherkey. Typical secure applications on the Internet use a public key algorithm to negotiate

2The Alice and Bob After Dinner Speech given at the Zurich Seminar, April 1984 by John Gordon by invitation of Professor James
Massey, found (among other places) at http://hubble.physik.uni-konstanz.de/jkrueger/html/alicebob.html, tells a humorous account of Alice
and Bob.

3Remarkably, by using a simple XOR gate one can create an unconditionally secure system, provided an endless stream of totally
random cipherkey bits can be provided. The problem in the so-called ’one-time pad’ lies in the generation of the random cipherkey bits.

4Every service provided by cryptographic systems has a value to its user. It is the relation between this value and the cost of breaking
the cryptographic algorithm that is important. A malicious attacker is unlikely to invest 10 million dollars in breaking a cryptographic
system that protects information that is worth 1 million dollars.
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a sessionkey between Alice and Bob. This sessionkey is then used as the cipherkey of a privatekey algorithm
to transfer data between Alice and Bob.

Privatekey cryptographic algorithms that use the same cipherkey to process multiple plaintext ciphertext pairs
are called block ciphers. Common cryptographic algorithms like DES [Nat99] and its successor AES [Nat01a]
fall into this category.

3.2 Advanced Encryption Standard (AES)

The first algorithm that was widely used in public is the Digital Encryption Standard (DES) algorithm that has
been introduced as a U.S. federal standard in 1976. DES is a block cipher that operates on 64-bit words and
uses a 56-bit cipherkey. DES (with its variations) was widely used for more than 20 years.

The main problem of the DES algorithm was its relatively short cipherkey, with 256 possible keys. Although this
a fairly large number (72,057,594,037,
927,936), with sufficient computational resources brute force attacks on DES are feasible. So-called DES
challenges, where a large number of computers connected to the Internet exhaustively searched the key space,
demonstrated this weakness dramatically. The first DES challenge in 1997 was completed in 4.5 months, the
second in 1998 in 39 days and the third and final DES challenge in 1999 was completed in less than a day (22.5
hours)5.

In 1997 the US National Institute of Standards and Technology (NIST) started a public competition to select
an algorithm to replace DES. The algorithm was required to be a block cipher supporting cipherkey lengths
of 128, 192, and 256 and to be free of any patents. The selection process consisted of several rounds where
candidate algorithms were evaluated. At the end of the first round in August 1998, 15 algorithms were accepted
as candidates. In the next round in August 1999, the candidates were reduced to five finalist algorithms (MARS,
Blowfish, RC6, Rijndael, Serpent). Finally, in April 2000 the Rijndael algorithm was selected as the winner. On
2 October, 2000, NIST officially announced that Rijndael has been chosen as Advanced Encryption Standard
(AES).

The AES algorithm is a block-cipher operating on 128-bit data blocks6 supporting three different cipherkey
lengths of 128, 192 and 256 bits. These three flavors of the AES algorithm are also referred to as AES-128,
AES-192 and AES-256, for 128, 192, and 256-bit cipherkeys, respectively. An AES encryption process consists
of a number of encryption rounds (Nr) that depends on the length of the cipherkey. The standard calls for 10
rounds for AES-128, 12 rounds for a AES-192, and 14 rounds for a AES-256. During encryption, each round
is composed of a set of four basic operations. The decryption process applies the inverse of these operations in
reverse order. Figure 3.2 shows the basic structure of the AES encryption and decryption.

3.3 AES operations

In the AES standard [Nat01a], the ’state’ is defined as a byte matrix consisting of four rows and four columns as
shown in figure 3.3. The elementSr,c is a 8-bit value that corresponds to the rowr and columnc of the state. A
typical AES implementation uses a 128-bit state register as part of the round architecture. The operations that
make up the AES algorithm are defined as operations that modify the state. The following subsections explain
all operations in detail and provide a discussion on their implementations in hardware. All operations (except
AddRoundKey,which is its own inverse) have a similar inverse operation. For clarity purposes, the text will

5In the 20 years that DES was used, the computation power has increased by a factor of more than 10,000 according to Moore’s Law.
This alone corresponds to 13 bits (log210,000≈ 13.28). In other words, attacking a 56-bit cipherkey in the year 1996 is equivalent to
attacking a 43-bit cipherkey of the year 1976, if the improvement in computer technology is accounted for.

6The original specification by NIST required the candidates to support data block sizes of 128, 192 and 256 bits. However, the official
AES algorithm announced by NIST is only defined for 128 bits.
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S0,1S0,0

S1,0

S2,0

S3,0

S1,1 S1,2 S1,3

S0,2

S2,2

S3,2

S0,3

S2,3

S3,3

S2,1

S3,1
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refer to only the ’forward’ operations in general descriptions. A block diagram of a complete AES encryption
datapath is given in figure 3.4 for reference.

3.3.1 AddRoundKey

During each round of an AES process, a separate 128-bit roundkey is used. The roundkeys are derived from the
cipherkey using a key expansion routine. TheAddRoundKeyoperation is a simple bit-by-bit XOR operation
between the state and the roundkey. An AES process requires a total ofNr +1 AddRoundKeyoperations, as an
additional ’initial’ AddRoundKeyoperation is performed prior to the round operations. For an AES encryption
process this initialAddRoundKeyoperation XORs the plaintext with the cipherkey. Since XOR is an involutory
operation,AddRoundKeyis used during the AES decryption process as well.

There is little that can be done in a hardware implementation to optimize theAddRoundKeyoperation, as it
consists solely of XOR gates. Attempts to reduce the number of parallel XOR gates often require multiplexer
structures that have an area overhead comparable to the area saved.

There is a need for an additionalAddRoundKeyoperation during an AES process, as there areNr rounds and
Nr + 1 subkeys. For most cases it is more efficient to implement a separateAddRoundKeyfunction block in
hardware for this additional operation than to share one block for allAddRoundKeyoperations.

3.3.2 SubBytes and InvSubBytes

Cryptographic algorithms require non-linear operations to be successful.SubBytesis the primary non-linear
operation of the AES algorithm. It is an 8-bit transformation applied to each byte of the state independently. It
consists of two separate transformations:

1. The multiplicative inverse of each state byte in the finite field GF(28) is taken7. The hexadecimal value
0x00 is mapped on to itself.

2. The affine transformation over GF(28) described by the following pseudo-code:

-- Affine transformation in AES
-- S(i) is the ith bit of the 8-bit input
-- Z(i) is the ith bit of the 8-bit output

Z(0) <= S(0) xor S(4) xor S(5) xor S(6) xor S(7) xor ’0’;
Z(1) <= S(0) xor S(1) xor S(5) xor S(6) xor S(7) xor ’1’;
Z(2) <= S(0) xor S(1) xor S(2) xor S(6) xor S(7) xor ’1’;
Z(3) <= S(0) xor S(1) xor S(2) xor S(3) xor S(7) xor ’0’;
Z(4) <= S(0) xor S(1) xor S(2) xor S(3) xor S(4) xor ’0’;
Z(5) <= S(1) xor S(2) xor S(3) xor S(4) xor S(5) xor ’0’;
Z(6) <= S(2) xor S(3) xor S(4) xor S(5) xor S(6) xor ’1’;
Z(7) <= S(3) xor S(4) xor S(5) xor S(6) xor S(7) xor ’1’;

7For the AES algorithm, the irreducible polynomial of degree 8 is taken to bem(x) = x8 +x4 +x3 +x+1 for multiplication in GF(28).
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During a decryption process theInvSubBytesoperation is used. It is similar in nature to theSubBytesoperation
and consists of the following two steps:

1. The inverse affine transformation over GF(28) described by the following pseudo-code:

-- Inverse Affine transformation in AES
-- S(i) is the ith bit of the 8-bit input
-- Z(i) is the ith bit of the 8-bit output

Z(0) <= S(2) xor S(5) xor S(7) xor ’0’;
Z(1) <= S(0) xor S(3) xor S(6) xor ’1’;
Z(2) <= S(1) xor S(4) xor S(7) xor ’1’;
Z(3) <= S(0) xor S(2) xor S(5) xor ’0’;
Z(4) <= S(1) xor S(3) xor S(6) xor ’0’;
Z(5) <= S(2) xor S(4) xor S(7) xor ’0’;
Z(6) <= S(0) xor S(3) xor S(5) xor ’1’;
Z(7) <= S(1) xor S(4) xor S(6) xor ’1’;

2. The same multiplicative inverse for GF(28) that was used forSubBytes.

The performance of an AES chip depends mainly on the implementation of theSubBytesfunction. There
are basically two main implementation choices for hardware: using a look-up table or applying arithmetic
decomposition.

SubBytesis a 8-bit function. A look-up table that implementsSubBytescontains 256 entries that are 8-bit wide.
A mask ROM would be most suited for this purpose. However, ROM generators are technology dependent and
are sometimes not directly available for a given technology. Full custom design is another alternative, but is a
time-consuming process. A common, technology independent method is to map the look-up table to standard
cells using a synthesis tool like the Synopsys design_analyzer.

Most modern FPGA architectures contain dedicated RAM arrays. AES implementations on FPGA’s frequently
make use of these RAM arrays by initializing them with the look-up table contents [MM03].

The second approach would be to find an algorithmic way to compute theSubBytesfunction. The main dif-
ficulty in this is the multiplicative inverse in GF(28) which requires excessive calculation and circuit area.
However, an operation in GF(28) can be decomposed into operations in GF(24) as reported by Wolkerstorfer et
al. [WOL02]. Figure 3.5 compares this approach to the synthesized look-up table. The multi-level architecture
of the algorithmic decomposition results in a high propagation delay, compensated by the much smaller area.
Overall, it can be clearly seen that both implementations share a common AT product. Figure 3.5 also contains
the expected solution space for a mask ROM solution8.

Traditional logic synthesis programs have difficulties in processing large look-up tables. Better results can
be obtained by partitioning the look-up table into smaller ones. Figure 3.6 compares the circuit area and
propagation delay of four differentSubBytesimplementations. Instead of using a single look-up table with 256
entries, the use of 8 look-up tables each with 32 entries can reduce the area by almost 30%. Experience has
shown that the synthesized look-up tables result in netlists that require noticeably high routing overhead. It
is difficult to quantify this overhead, as it is technology and library dependent, but it can result in noticeably
larger circuits after the placement and routing phase.

8The expectations are based on preliminary simulation and layout studies for a full-custom mask ROM.
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Figure 3.7:ShiftRowsandInvShiftRowstransformations. Shaded bytes are wrapped around as a result of the
cyclic shift operations.

3.3.3 ShiftRows and InvShiftRows

TheShiftRowsoperation changes the order of bytes in each row of the state. The first row is not affected by
this transformation. The second row is shifted cyclically to left by one byte, the third row by two and the fourth
row by three bytes as seen in figure 3.7. The inverse operationInvShiftRowsis quite similar in style, with only
the cyclic shifts made to the right.

In a 128-bit parallel implementation of AES,ShiftRowscan be implemented by wiring between operations
without any hardware resources9. However, implementations that process fewer than 128-bits per clock cycle
face a data-dependency problem. If no precautions are taken, the output of the firstMixColumnsoperation
following ShiftRowswill replace unprocessed values in the state register. An obvious solution is to use an
additional 128-bit round register. Depending on the round architecture, the amount of additional flip-flops
can be reduced by clever scheduling of operations. However such elaborate organizations rely on selection
circuitry, with additional area and propagation delay penalties.

3.3.4 MixColumns and InvMixColumns

MixColumnsis a 32-bit operation that transforms four bytes of each column in the state. The new bytes of the
columnS′r,c are obtained by the given constant matrix multiplication in GF(28). If the polynomial representation
of binary numbers are used, this multiplication can be given as


S′0,c
S′1,c
S′2,c
S′3,c

 =


x x+1 1 1
1 x x+1 1
1 1 x x+1

x+1 1 1 x

 ·


S0,c

S1,c

S2,c

S3,c

 (3.1)

The addition in GF(28) is performed by the XOR operation. Multiplication on the other hand is more involved.
A practical xtime function is defined for multiplication withx in GF(28). This xtime function can be described
in the following pseudo-code:

9The wiring overhead for theShiftRowspermutation is not much different from a straight interconnection.
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-- xtime function
-- S(i) is the ith bit of the 8-bit input
-- Temp(i) is the ith bit of an 8-bit intermediate value
-- Z(i) is the ith bit of the 8-bit output

Temp(7 downto 0) <= S(6 downto 0) & ’0’;

if (S(7) = ’1’) then
Z <= Temp xor "00011011";

else
Z <= Temp;

end if;

The Inverse functionInvMixColumnsis similar but requires a more complicated matrix multiplication:


S′0,c
S′1,c
S′2,c
S′3,c

 =


x3 +x2 +x x3 +x+x x3 +x2 +1 x3 +1

x3 +1 x3 +x2 +x x3 +x+x x3 +x2 +1
x3 +x2 +1 x3 +1 x3 +x2 +x x3 +x+x
x3 +x+x x3 +x2 +1 x3 +1 x3 +x2 +x

 ·


S0,c
S1,c
S2,c
S3,c

 (3.2)

To obtain higher powers ofx, the xtime function can be used repeatedly.

It is apparent from equations 3.1 and 3.2 that theInvMixColumnsoperation is more involved than that of
MixColumns. Since all other operations in an AES round are more or less balanced in terms of both area
and propagation delay, the difference in implementingMixColumnsand InvMixColumnsis directly reflected
in the overall AES encryption and decryption performance. In a cryptographic system where a data stream is
processed, the overall system speed is determined by the slowest of the encryption and decryption operations.
In [GBG+04], this problem is examined in detail and a balanced architecture for both encryption and decryption
is presented. This is obtained by optimizing the decryption path that includes theInvMixColumnsoperation
aggressively to match the propagation delay of the encryption path. In terms of hardware complexity, the
MixColumnsoperation can be mapped to a couple of stages of XOR gates and ends up requiring roughly 2-4
times more gate area than that required by theAddRoundKeyfunction.

In the AES standard, the last encryption round does not require aMixColumnsoperation and similarly the last
decryption does not require anInvMixColumnsoperation. Apparently this was made to allow a symmetric
encryption and decryption flow. Hardware implementations hardly profit from this arrangement. Especially
high-performance implementations suffer from additional hardware overhead to treat the last round differently.

3.3.5 Key Expansion

The key expansion routine is used to generate the roundkeys from the cipherkey. The AES standard defines the
key expansion operations on four byte words calledwi . A subkey is composed of four such words. The key
expansion for AES-128 is relatively straightforward:

• The first subkey(w3,w2,w1,w0) corresponds to the cipher key itself.

• The following wordswi are calculated recursively from this initial set of words using a simple XOR
function:

wi = wi−1 ⊕ wi−4

for all values ofi that are not multiples of 4.
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• For the words with indices that are a multiple of 4 (w4k), a special transformation is used. First, the byte
ordering ofw4k−1 is changed by cyclic left shift, and then theSubBytesfunction is applied to all four
bytes. In the AES standard these operations are namedRotWordandSubWordrespectively. The result
rsk is XOR’ed withw4k−4 and a round constantrconk:

w4k = rsk ⊕ w4k−4 ⊕ rconk

Unfortunately, the key expansion routine for other cipher key lengths introduces more irregularity to this basic
process (see [Nat01a] for details). Implementations that support multiple cipher key lengths suffer excessively
from this problem. Although the key expansion routine contains much less hardware than a regular AES round,
the critical path of the AES system is more often located within the key expansion routine as a result of the
flexibility required to implement different key lengths.

3.4 AES Hardware Implementations

Cryptographic algorithms are computationally demanding algorithms. Even powerful 64-bit micro-processors
require hundreds of clock cycles to en/decrypt AES, which can be considered relatively software friendly.
Public key algorithms like RSA may require as many as a million clock cycles on the same processor. The
throughput of a cryptographic system is relevant when a continuous stream of data, such as video and audio
streams are processed10. Such data streams may require processing rates from few Kbit/s to hundreds of
Mbit/s. Especially for systems that require continuous execution of cryptographic operations, designing custom
hardware to accelerate cryptographic operations is an efficient alternative to using general purpose micro-
controllers.

Early stages of the AES evaluation process required “computationally efficient” implementations. Most algo-
rithms developed for AES were primarily optimized for a Pentium system. Eventually, in the later stages of
the evaluation, the candidate algorithms were also compared in terms of their suitability for hardware imple-
mentation. Several early papers [IKM00, WBRF00] provided a general overview without algorithm specific
optimizations. In [LTG+02] two of the finalist algorithms (Serpent and Rijndael) were actually implemented
in hardware.

After Rijndael was selected to be the AES standard, a relatively large number of AES hardware implemen-
tations were presented [VSK03, GBG+04, SMTM01, LT02, SLHW03, KMB03]. As described previously in
section 3.3, AES consists of few simple hardware operations. The main factors determining the design of an
AES hardware are described in more detail below.

3.4.1 Datapath Width

For a 128-bit parallel AES implementation as much as 80% of the area and more than 50% of the propagation
delay is contributed bySubBytes, and the datapath width is practically determined by the number of parallel
SubBytesoperations performed in one clock cycle. Since 128 bits of data need to be processed during each
AES round, the number of parallelSubBytesoperation also directly determines the number of clock cycles
required for an AES process. This represents a direct tradeoff between throughput and circuit area.

As described earlier, theShiftRowsoperation can be realized without any special hardware resources for a 128-
bit parallel implementation. However, AES datapaths that process less than 128 bits per clock cycle may be
forced to either add additional intermediate registers or use extra clock cycles to overcome data dependency
problems betweenShiftRowsandMixColumns.

10High throughput can also be important for other applications. One example from the industry used a hashing function to authenticate
the operating system of a mobile device. Such a hashing function processes the entire ROM where the operating system is located and
generates a checksum. The device only works if the checksum calculated from the ROM matches a hard-coded value. This is used to
prevent ’alternative’ operating systems from being used in the device. As the capabilities of the mobile devices increased so did the size
of the ROM required to hold the operating system and the time required to calculate the checksum. Although the device did not process
encrypted data at high rates, it still required a high throughput cryptographic solution to calculate the checksum in a time that is not
noticeable by the users.
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Datapath Width 8-bit 16-bit 32-bit 64-bit 128-bit

ParallelSubBytesunits 1 2 4 8 16

Complexity (gate equivalents) 5,052 6,281 7,155 11,628 20,410

Area (normalized) 1 1.266 1.472 2.432 4.269

Clock cycles for AES-128 160 80 40 20 10

Critical Path (normalized) 1.349 1.341 1.206 1.133 1

Total time for AES-128 (normalized) 21.580 10.729 4.825 2.227 1

Table 3.1: Synthesis results for five different datapath widths of a simplified AES encryption datapath. The
additional hardware resources forShiftRowshave not been taken into account in this analysis.

SubBytes InvSubBytes

Encryption Decryption Encryption Decryption

Mul. Inverse

Affine Trans.

InvAffine Trans.

a) b)

Figure 3.8: Two alternative realizations for implementing SubBytes andInvSubBytes.

In table 3.1, synthesis results from five AES encryption datapaths with different datapath widths are given for
comparison. While smaller datapath widths result in a small architecture, they require additional selection
circuitry between AES operators. This adds to the critical path, and increases the area.

3.4.2 Encryption/Decryption

One of the essential questions when designing custom AES hardware is whether or not the inverse AES process
(AES decryption) is going to be supported. The NIST standard defines five operation modes for AES [Nat01b]:

• Electronic Codebook Mode (ECB)

• Cipher Block Chaining Mode (CBC)

• Cipher Feedback Mode (CFB)

• Output Feedback Mode (OFB)

• Counter Mode (CTR)

Of these five modes, only ECB and CBC require the inverse AES operation for decryption. All other modes
use a stream of AES encryptions to generate a pseudo-random sequence that are used to encrypt the plaintext.
The decryption process for these modes requires exactly the same pseudo-random sequence that is generated
by using the same stream of AES encryptions. Therefore, there are some systems where AES decryptions are
not required at all.
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Figure 3.9: Comparison of look-up tables implementingSubBytes, InvSubBytesand multiplicative inverse in
GF(28). Synthesis results for 0.25µm CMOS technology.

As the AES encryption and decryption processes are very similar to each other, a datapath that implements both
functions is conceivable. The main problem in such an implementation is once again theSubBytesfunction.
The inverse functionInvSubBytesis equally complex and requires significant resources. Rather than using two
separate functions as seen in figure 3.8a, both functions can be realized by sharing the multiplicative inverse.
The resulting datapath will resemble the one shown in figure 3.8. When implemented as a synthesized look-up
table all three functions (SubBytes, InvSubBytes, Multiplicative Inverse) require identical hardware resources
(figure 3.9). The shared datapath as shown in figure 3.8b will result in a longer critical path due to additional
transformations and selection circuitry. Designs targeting high throughput rates will often use a structure that
supports only encryption or will employ separate datapaths for encryption and decryption.

3.4.3 The AES Round Organization

The goal of a hardware designer implementing AES is to come up with a datapath that implements the AES
round efficiently. Such a round would generally contain one register for the state. Although the structure of the
AES round has been defined in the standard for encryption and decryption, it is possible to re-order operations
without changing the result.

Figure 3.10 shows two possible organizations for the AES encryption round. A straightforward implementation
of the algorithm (similar to figure 3.3) is given in figure 3.10a. The multiplexer betweenMixColumnsand
AddRoundKeyis necessary for the last round of the encryption where theMixColumnsoperation is not executed.
This multiplexer remains in the critical path throughout the entire operation. By re-ordering the operations, this
multiplexer can be removed entirely from the hardware architecture. TheShiftRowsoperation is independent
from both SubBytes andAddRoundKeyand can be moved to a convenient location. The output is obtained by
tapping into the hardware round after theSubBytesoperation. In this organization, the additionalAddRoundKey
operation is executed separately at the end. This is not very costly, sinceAddRoundKeyis the AES function
with the least penalties for area and propagation delay. This architecture can be seen in figure 3.10b.
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A similar organization is made in [LTG+02] to insert a pipeline register into a datapath that supports both
encryption and decryption. Separate organizations are used for encryption and decryption to find a suitable
location to insert an additional pipeline register. Note that inserting pipeline registers may improve the clock
rate of the system, but a higher throughput can only be obtained if independent data blocks are processed at the
same time. Unfortunately, only ECB and CTR modes of operation can be used in such a pipelined system11.

3.4.4 Roundkey Generation

There are two main approaches to generate the roundkey used in the AES process. Keys can be generated
on-the-fly by a concurrently executing datapath that computes the next roundkey during the time the actual
datapath completes computing the current AES round. The second alternative is to pre-compute all roundkeys
and store them in a roundkey memory.

A critical point in the implementation of a cryptographic system is the “key setup time” which is defined as
the amount of time required to start cryptographic operations after a new cipherkey has been provided. On-
the-fly key generators can be designed in a way to completely eliminate any latency overhead when changing
cipherkeys, at least for encryption. For decryption, the first roundkey that is required is the last roundkey that
has been used for encryption. Since the key expansion uses recursion, there is no simple way to obtain the last
roundkey directly from the cipherkey. This must be done by computing all roundkeys for the encryption. The
last roundkey so obtained can be used as an initial vector for the inverse key schedule.

The AES-256 mode requires 15 roundkeys with 128 bits. An on-the-fly key generator of a flexible AES
implementation that supports both encryption and decryption for all standard key lengths needs to be able to
store 256 bits of cipherkey, 128 bits for the roundkey, and finally 128 bits for the last roundkey. This is more
than one fourth of the total amount of storage that is needed for all roundkeys. Consequently, pre-computing
all roundkeys is not always a bad decision.

At first sight, the key expansion defined for AES (section 3.3.5) does not look hardware intensive. After all, only
four SubBytesoperations are required per AES round. However, the additional flexibility required to support
all three key lengths results in a very cumbersome and slow implementation. For faster implementations with
large parallel datapaths, the critical path through the key generator is usually longer than the actual datapath.
For small implementations that use a datapath of 32 bits or less, more area is required to implement a key
generator than the actual datapath.

3.4.5 Comparison of AES chips

There are many reported hardware implementations of AES in literature. Table 3.2 on page 46 offers a com-
parison of the key properties of these implementations. Ichikawa et al. [IKM00] presented a comparison of
all AES candidates in hardware during the AES evaluation process. This early evaluation is not very repre-
sentative, as no optimizations of any sort were made. The very large reported area is a result of a completely
unrolled architecture for 10 hardware rounds. The reported throughput figure is a result of pipelining and only
achievable in the ECB mode.

The implementations reported in [VSK03] and [KMB03] are high-speed designs that support three plaintext
block sizes of 128, 192 and 256 bits as described in the original Rijndael specification. The additional block
sizes, which are not part of the AES standard, add to the complexity. Both designs are capable of delivering
higher throughput for these modes.

The SubBytesfunction has been implemented by using masked ROMs in [KMB03]. The high throughput
reported by [SLHW03] is achieved by pipelining, which can not be used in feedback modes. This chip uses an
algorithmic decomposition to implement theSubBytesfunction. Three of the four pipeline stages used in the
round are dedicated to implementing theSubBytesfunction.

11The remaining standard modes, require the output of a complete cryptographic process prior to a new input. These operation modes
could actually just as well use the outputs from previous cycles. It has been proven that these so-called interleaved feedback modes to
be just as secure as the original modes. Using interleaved feedback modes would enable a number of architectural transformations like
pipelining and parallelization to be applied to cryptographic accelerators. Alas, these modes are not supported by the official FIPS.
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The design in [LT02] shares major datapath components between encryption and decryption. TheSubBytes
and its inverse is performed by using a single look-up table for the multiplicative inverse. A range of archi-
tectures with different datapath widths are presented in [SMTM01]. Unfortunately none of the architectures
was implemented in silicon, and the presented results are from synthesis runs. While synthesis results certainly
contain useful information and can be reliably used to compare different approaches, we have found it difficult
to replicate the same performance obtained during synthesis after physical design. Most of the approaches and
optimizations require large data buses with 128 bits or more to be distributed, and require significant amounts
of selection circuitry, all of which are challenging tasks in the back-end design flow. Furthermore, look-up
tables often employed in AES have very high demands on placement and routing. Some designs also use high
clock rates and employ a large number of flip-flops, which results in severe clock distribution problems.

A total of six different AES implementations in silicon have been designed at the IIS. A comparison of these
architectures is listed in table 3.3 on page 47. The first chipRiddlerwas designed by Adrian Lutz, Andres Erni
and Stefan Reichmuth, as part of their semester thesis during the winter semester of 2001/2002. The goal of
the semester thesis was to compare the two leading AES candidates Rijndael and Serpent with an emphasis on
throughput. The students were in direct competition with a second group of students (Jürg Treichler, Gerard
Basler and Pieter Rommens) that implemented the Serpent algorithm. The results were surprising [LTG+02]:
both chips designed by teams with similar design experience within the same time, occupying exactly the same
area (49mm2 including pads in a 0.6 µm CMOS technology) had almost the same measured throughput (around
2 Gb/s). Riddler uses two identical 128-bit AES rounds in parallel. The throughput figure is therefore only
attainable for ECB and CTR modes of operation. The round structure uses a common multiplicative inverse
look-up table, similar to the configuration shown in figure 3.8. The roundkeys are pre-computed and are stored
in a register array.

Fastcorewas designed by Franco Hug and Dominique Gasser during the 2002/2003 winter semester. The goal
in this design was to support all operation modes and key lengths, and to obtain the highest possible throughput
within a pre-determined core area (3.56 mm2 in a 0.25 µm CMOS technology). The design has separate 128-
bit encryption and decryption datapaths each with an independent on-the-fly key generator. As reported in
[GBG+04] the design was optimized to have a balanced throughput for both decryption and encryption.

During the summer of 2003, using a differential power analysis (DPA) attack, parts of the cipherkey were
successfully recovered from aFastcorechip [OGOP04]. This is the first reported successful DPA attack on
an ASIC implementing the AES algorithm. The experience obtained from this attack has resulted in a string
of AES designs that include countermeasures against DPA attacks. In his diploma thesis, Norbert Pramstaller
investigated algorithmic countermeasures against DPA attacks[PGH+04]. TheAreschip was designed as part
of this thesis during the winter semester of 2003/2004. The chip includes a 128-bit datapath and a separate
(more flexible) 32-bit datapath both of which that support only 128-bit encryption. The numbers presented in
table 3.3 are from the 128-bit core.

While all these chips were designed with primarily high throughput in mind, theBabychip, by Peter Haldi
and Stefan Zwicky during the 2004/2005 winter semester, was designed as a small and efficient AES imple-
mentation. This chip serves as a reference design for thePamperschip that includes delay- and noise-based
countermeasures against DPA.Pamperswas developed by Stefan Achleitner as part of his diploma thesis during
the 2004/2005 winter semester in parallel withBaby. Both designs use a dedicated key generator that supports
all key lengths. Finally,Acacia,which will be explained in detail in chapter 4, is a GALS-based DPA-resistant
AES implementation.

3.5 Cryptographic Security

As mentioned earlier in section 3.1, cryptographic systems are used to provide various security services. To
illustrate the problems associated with these services let us consider the following smart card system used in
private banking12. As part of a general strategy to increase customer satisfaction and reduce personnel costs,
banks hand out so-called smart cards to account holders (users). By using Automated Teller Machines (ATM)
that are located at convenient locations, the users are able to access a large portion of the bank services any
time. Even in this relatively simple system different security aspects can be observed.

12The example is based on real systems, but is not necessarily 100% accurate in how certain problems are addressed in state-of-the-art
systems. An excellent discussion on this topic can be found in [And93].
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1. Alice, who has an account at the bank, has an interest in protecting her bank account from others. The
bank is primarily used as a safe place to deposit cash after all. Alice wants to be sure that only she is able
to determine how money can be withdrawn from her account. Much like a regular house key, physical
possession of the smart card is the primary method in which Alice is able to access her account.

2. Oscar, who lives in the same fictional city as Alice, is a person with malicious intent. He is an expert in
electronics, is extremely patient, and will consider all alternatives short of an armed robbery to get rich
by manipulating bank services. He also knows all there is to know about the computing system of the
bank.

3. Alice is worried that, if she accidentally misplaces her smart card, Oscar could find it before her and
instead of returning the smart card to her, he might decide to withdraw money from her bank account.
The bank decides to implement a security system to comfort Alice. She is able to determine a password
that is stored on the smart card. To access her bank account, Alice must use her smart card and correctly
type in the password before using the ATM.

4. Both the bank and Alice are worried about the fact that the communication from the ATM to the bank
computer can be observed or even altered by Oscar. Therefore, the data transmission that contains the
instructions from Alice to the bank, and information relayed back to Alice by the bank are encrypted.
This sort of encryption needs a secret key that is known to both Alice and the bank.

5. Since there are many similar account holders like Alice, the bank decides that it is more efficient to use
the same secret key for all account holders. While the bank enjoys having Alice as a customer, it also
does not want to entrust the secret to Alice directly. This is understandable, because Oscar might simply
pose as an innocent customer, open a bank account at the same bank. By doing so he would receive a
smart card himself and would automatically be given the same secret key. Oscar could then use his skill
in wire tapping, to create mischief while Alice is using the system. As a solution, the bank decides to
engrave the secret key into the smart card. Oscar can still obtain a smart card and try extracting the secret
key, but the bank is convinced that Oscar will fail in all attempts in doing so.

6. The ATM is another source of worry for both Alice and the Bank. Oscar has been known to place his
own ’evil’ ATMs that masquerade as the original ’good’ ATMs. Alice does not trust any ATMs, as she
does not know how to tell apart good and evil ATMs. The bank, afraid of losing good customers, adds
another feature to its electronic banking system. Before the smart card exchanges any vital information
with the ATM, it puts the ATM to a test. The smart card poses a question that can only be answered with
explicit knowledge of the secret key. The evil machines prepared by Oscar would not know this secret.
After all it is the desire to reveal this secret that drives Oscar to place these machines in the first place.

The first observation from this scenario is that a secure information system consists of several methods that
are used in combination. The security of the overall system depends on the security of individual components.
What is not discussed here, but is just as relevant, is the social side of the secure systems (see [And93] for some
examples). For it is also possible to imagine Oscar trying to bribe, extort or somehow obtain the cooperation
of bank employees.

When considering attacks on cryptographic systems, Oscar is assumed to have full knowledge of the entire
system, but is considered not to posses any prior information on the secret key (Kerkhoffs Principle). The
security of the system is defined by the effort that is required on part of Oscar to reveal the secret key. This
directly defines the cost of breaking the system. A successful system is one where the benefits obtained by
breaking the system is far less than the cost of performing such an attack.

The fact that Alice and Bob share a mutual secret (knowledge of the key), and their desire to exchange in-
formation, does not necessarily mean that they ’trust’ each other. In the example above, the bank (imagine
for arguments sake that the computer system of the bank is Bob) is not able to distinguish Alice from Oscar
directly. Therefore the bank treats all its customers as a potential Oscar.

One of the main challenges in building a secure system is to find an adequate method of distributing the secret
key used in various algorithms of the system. From a security point of view, it is desirable to use a different
secret key for each user or even for each transaction of each user. This is however not always feasible. There
are many instances, like the simplified smart card example above, where a secret key is embedded in a device
that is available to all users of the system, including potential malicious users like Oscar.



38 CHAPTER 3. CRYPTOGRAPHIC ACCELERATORS

3.5.1 Side Channel Attacks

Good cryptographic algorithms (like the AES algorithm presented in section 3.2) are designed to make it
practically impossible to extract the cipher key by observing the outputs (known ciphertext attacks), or by
providing specific inputs (chosen plaintext attacks). At least, the security in terms of the effort required by
Oscar to perform a successful attack is well known and is deemed adequate for specific applications.

The implementation of a cryptographic algorithm results in a black box that has several observable physical
properties such as power consumption, electromagnetic radiation, surface temperature, time required to com-
plete an operation, or even sounds generated by this black box. All these properties that can be observed to
change while cryptographic operations are processed, are information sources which can potentially be used
by Oscar to reveal parts of the cipherkey. Such information sources are called side channels.

In 1996, Paul Kocher [Koc96] presented the first attack that used side channel information to determine parts of
the cipherkey. In this attack “by carefully measuring the amount of time required for private key operations”, the
secret information used by several different cryptographic systems was revealed experimentally. This type of
attack, where the secret information is revealed directly by measurement, is called simple side channel analysis
attacks. Fortunately, these attacks are intuitive for both attackers and designers and are therefore (relatively)
easy to defend against.

Soon after the first ideas were presented, cryptanalysts started to examine cryptographic hardware13 from dif-
ferent angles and were able to come up with different ways of exploiting side channels. It was soon discovered
that side channel attacks which observe the power consumption are far more effective than other side channels.
As a result, power analysis attacks became almost synonymous with side channel attacks14. For the remainder
of this thesis only power analysis attacks will be considered as side channel attacks.

3.5.2 Differential Power Analysis

Little over three years after the discovery of side channel attacks, in 1999, Paul Kocher presented the first paper
on Differential Power Analysis (DPA) [KJJ99]. In a DPA attack, the power consumption of a cryptographic
device is measured while it processes a large set of cryptographic operations. In contrast to simple power
analysis attacks, where the information is directly extracted from the measurements, DPA attacks use statistical
methods to correlate the power measurement results to a set of hypothetical power consumption expectations.
This method has been proven to be extremely efficient in attacking cryptographic hardware and has been a
serious concern for developers of such hardware. In fact, in a joint work with S. Berna Örs from the Computer
Security and Industrial Cryptography group of the KU-Leuven, we were able to successfully attack 8 bits of
the cipherkey of theFastcoreAES chip, using a rather spartanic measurement setup, within only three days
[OGOP04]15. After this point, our attention has focused on developing DPA resistant cryptographic hardware.

A DPA attack relies on the fact that the power consumption of a cryptographic hardware depends on the data
that it processes. This is especially true for circuits using standard static CMOS logic style which is by far the
most established method for implementing custom hardware at the moment. Figure 3.11 shows a simple 2-
input NAND gate realized using standard static CMOS. The gate consists of a pull-up network that is activated
to charge the output high, and a pull-down network that is used to charge the output low. The two networks are
complementary, only one network is active at a time. Ideally, current only flows through the circuit when the
output changes state, i.e. is charged from a low value (GND) to a high value (VDD) or vice versa.

The SPICE simulation in figure 3.11 shows the supply current of the NAND gate for different transitions of
input. Even at this simplified simulation, it can be seen that the dynamic power consumption of the CMOS gate
can differ significantly depending on a variety of factors. It can be clearly seen that only inputs that charge the
output node from a low value to a high value result in a positive current to be drawn from the power supply.

• In the simulation, the two transistors of each network have gate widths that differ by 10%. This results
in different waveforms when only one PMOS transistor is charging the output (A)-(B).

13Cryptographic hardware includes dedicated hardware that is designed specifically to implement cryptographic algorithms and general
purpose programmable micro-controller/-processor based systems.

14Most of the side channels, like electromagnetic radiation and temperature, can directly be related to the power consumption as well.
15Extracting the cipher key using DPA attack is a rather difficult task. However when compared to attacking an exhaustively by trying

all combinations of the cipher key, it is tens of orders of magnitude easier.
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Figure 3.11: Circuit diagram (left) and SPICE simulation result (right) of a 2 input NAND gate in static CMOS
logic.

• Signals can arrive at different times to the logic gate resulting in glitches at the output. The current peak
at point (D) is a result of the input A arriving later than the input B.

• Furthermore, the slope of the input signals may alter the supply current waveform considerably. In figure
3.11, the peaks (E) and (C) correspond to the same inputs, but have different waveforms since the input
signals have different fall times.

In a typical AES implementation that is composed of tens of thousands of such gates, to determine the exact
shape of the power supply current seems to be impossible. Thus, simple power analysis attacks at a gate level
are highly infeasible. In the same way, it is also next to impossible to keep the power consumption of the
cryptographic hardware identical when processing two different datawords. DPA takes advantage of this fact
and is based on the variance of the power consumption.

Overall, there are three factors contributing to the power consumption of a CMOS gate: static power due to
leakage currents (Psta), short-circuit power due to non ideal switching characteristics (Psc), and the dynamic
power consumed by charging or discharging the output load (Pdyn) [KL02]. If the contributions ofPsta andPsc

are neglected16, the total powerP can be given with the well known equation (3.3).

P = Psta+Psc+Pdyn≈ α · f ·CL ·V2
DD (3.3)

If the supply voltageVDD and the operation frequencyf can be considered constant for a given circuit, the only
parameters that the designer can change are the load capacitanceCL driven by the circuit, and the activity factor
α. In effect,CL is determined by the netlist of the circuit andα is determined by the data that is being processed
by the circuit.

16For DPA attacks it is important to understand the nature of the power consumption, and not necessarily its absolute value. The short-
circuit powerPsc is a result of a switching activity that will manifest itself in thePdynas well. The static leakage powerPsta will differ for
different states of the output. Similarly, a change of the output state will also result in dynamic power consumptionPdyn. Therefore, these
two power components can be neglected without adverse results.
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Figure 3.12: Simple representation of the DPA attack.
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Figure 3.13: DPA attack results of theFastcorechip [OGOP04]. The graph on the left shows the correlation of
all K = 256 subkey permutations to the measurement results as a function of the number of measured samples
S. On the right, the correlation of allK = 256 subkey permutations is given forS= 10,000.

In a cryptographic algorithm, at some point the cipher key is combined with the data in some way. This leads
to a power consumption that depends on the cipher key and on the data processed by the cryptographic device.
DPA attacks target this specific operation of the algorithm. Rather than attacking the entire cipher key, only a
part, called the subkey, is attacked at once17. The bit length of the subkey (m) is chosen so that a manageable
number of subkey permutations exists. For anm bit subkey there will beK = 2m subkey permutations. Figure
3.12 shows the principle of the DPA attack. Using a simple model of the circuit18, for each one of theK subkey
permutations,S samples are processed and the hypothetical power consumptionH1..K,1..S is calculated. Then
the power consumption of the device is recorded while it processes the sameSsamples using the same unknown
key. This leads to a vectorP1..S, holding the different power consumptions for allSinputs. The correct subkey is
revealed by correlating the hypothetical power consumptionsH1..K,1..S with the measured power consumptions
P1..S. In a successful attack, the correct subkey hypothesisHkc,1..S will show a ’significantly’ higher correlation
to the measured powerP1..S than all other subkey hypotheses.

The results of a practical attack are shown in figure 3.13. The attack was performed on theFastcorechip
implementing the AES algorithm [OGOP04].Fastcorewas designed with purely performance in mind, and no
countermeasures against DPA attacks were implemented. For this attack, a subkey ofm= 8 bits was targeted.
The graph on the left of figure 3.13 shows the correlation of allK = 256 subkey permutations to the actual
measurements as a function ofS. It can be seen that the attack requires few thousand measurements to be
successful19. On the right hand side, the correlation of all subkey permutations is shown atS= 10,000.

3.5.3 Countermeasures Against Side Channel Attacks

Developing countermeasures against DPA attacks has been an active research area ever since the discovery
of the first attacks. The ultimate goal of DPA countermeasures is to increase the number of samples required
to reveal the subkey to a level where it is not feasible to perform such attacks. In practice, DPA countermea-
sures are rated according to their relative effectiveness. A countermeasure that requires an attacker to perform

17Such attacks are independent and can be repeated until all subkeys have been revealed.
18The DPA attack does not depend on this model. In most attacks, models based on hamming weights (number of logic ones in a vector)

or hamming distances (number of bit-flips between consecutive clock cycles) are used. It is possible to construct more elaborate and
accurate models if details of the architecture are known by the attacker. But the DPA attack does not require models of such complexity to
be successful.

19Since the attack requires considerable resources, it was repeated only twice. In the results shown above 3,000 measurements gave a
sufficiently confident indication to the correct subkey. The other attack required more than 5,000 measurements to come up with a similar
result.
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Figure 3.14: Adding a noise generator as a DPA countermeasure.

2S measurements to be successful will be considered twice as effective as a countermeasure that requiresS
measurements. As a hardware designer, it is important to understand the trade-offs between penalties involved
(additional circuit area, loss in throughput) and the relative effectiveness offered by various DPA countermea-
sures.

DPA countermeasures fall into several categories:

Adding Noise

When measuring the power consumption in order to perform a DPA attack, actually only the part that is caused
by an operation with the subkey is of interest. We refer to this part of the total power consumption asPQ. Part
of the dynamic power measured during a DPA attack is totally independent from the data being processed,
this portion of the power consumption will be calledPR. Since thePR component will remain constant over
all measurements, it will be filtered out during statistical analysis. There is a third component of the power
that is consumed by gates whose inputs are uncorrelated to the attacked subkey and appear to be random. This
component will be calledPN. It is only this portion of the dynamic power that acts as ’noise’ for DPA attacks.
Mangard [Man04] evaluates the impact of the uncorrelated noise to the number of measurements. The higher
PN, the higher the number of measurementsS required to perform a successful attack. Assuming that the part
of the circuit that generatesPN uses the same supply voltageVDD and clock frequencyf as the part generating
PQ, equation (3) from [Man04] can be rewritten after substituting equation (3.3) as:

Var(Q)
Var(N)

≈ PQ

PN
=

αQ ·CL,Q

αN ·CL,N
(3.4)

As can be seen from equation (3.4), the only way to increase thePN is to increase the switching activityαN

or the load capacitanceCL,N. Unfortunately the switching activityα can not be increased arbitrarily. A clock
oscillator output would have a switching activity of 2, meaning that the output changes at twice every cycle.
However, the load driven by this output would only generate aPR component. Theoretically, the maximum
value for uncorrelated switching activityαN is 0.5. This is the case, when all of the nodes of the circuit change
their value randomly.

Let us consider the simple cryptographic datapath shown in figure 3.14. The datapath processesn bits of
operation at a time. The particular DPA attack on this hardware targets onlym bits. The information that is
required for the DPA attack is contained inPQ. A large portion of the total consumed power of the cryptographic
datapath can be contained in thePR part. As mentioned earlier, this portion has no consequence for this attack,
no matter how large it may be in comparison toPQ. The remainingn−mbits of information will be processed



3.5. CRYPTOGRAPHIC SECURITY 43

by ’other’ operators in the datapath. The power dissipation of these other operations will appear asPN1, as long
as then−m bits that are processed are not correlated to thembits under attack.

In an attempt to increase the resistance against DPA attacks, a pseudo random number generating circuit can be
added to the system in figure 3.14. Using equation (3.4), it can be derived that the uncorrelated dynamic power
consumption contributed by the noise generatorPN2 must be equal to

PN2 = (β−1) ·PN1 (3.5)

in order to increase the relative security of the original circuit by a factor ofβ. This can be re formulated as:

CL,N2 = (β−1) · αN1

αN2
·CL,N1 (3.6)

A datapath optimized for implementing a cryptographic algorithm typically shows a high switching activity
(αN1 in equation 3.6). This is a direct result of cryptographic algorithm specifications that typically require to
switch half of its output bits, for a change of one bit at its inputs. Indeed, a post-layout analysis of an AES
datapath shows a switching activity of slightly less than 0.3. A pseudo random number generator, such as an
Linear Feedback Shift Register (LFSR), is used as a noise generator, since such circuits have an activity factor
close to 0.520 (αN2 in equation 3.6). Therefore any effort to substantially increasePN2 has to find ways to
increase the amount of switched capacitanceCL,N2. In standard static CMOS circuits, the amount of switched
capacitance consists of the input capacitances of the gates and the parasitic capacitances of the interconnects.
Increasing either of them directly corresponds to increasing the circuit area. In principle, adding random
number generators with large circuit area is the only way to attain highPN2. Adding noise is more efficient for
cryptographic datapaths where not many uncorrelated bits are processed in parallel (lowPN1). Cryptographic
datapaths that process many parallel operations at the same time (highPN1) are less vulnerable to DPA attacks
initially. To further increase their resistance against DPA attacks by adding noise generators is much more
costly. On the plus side, the addition of noise generators does not interfere with the cryptographic operation
and does not effect the throughput of the original circuit in any way.

Dummy Operations

When using DPA, the attacker needs to observe the power consumption of the same operation for a large number
of samples. If the exact time when this particular operation is performed can be varied randomly, the attacker
would be forced to collect more data. Clavier et al. [CCD00] describes DPA attacks on hardware protected
by random process interrupts. This countermeasure, defined on a micro-controller system, basically interrupts
the regular flow of the cryptographic process randomly with dummy instructions. The result is described as
“smearing the peaks of differential trace due to desynchronization effect”. The problem with this approach is
that the dummy instructions might result in a observably different power consumption.

In a custom ASIC, this idea can be refined so that an external observer is not able to distinguish between
a cryptographic operation from a Dummy Operation (DOP) that does not contain any activity related to the
cryptographic procedure. If all datapath units within an ASIC are supplied with uncorrelated data during every
cycle, it will not be possible to differentiate the operation through the power consumption. This holds true,
even if no datapath unit performs an operation on data related to the cryptographic algorithm, i.e. when the
ASIC performs a DOP.

When running a DPA attack, a certain cryptographic operationOPx is chosen where key dependent calculations
are assumed to happen. Then, as described earlier,S measurements of the power consumption during clock
cycle cy (that corresponds to the cycle during whichOPx is executed) is sampled. If it is not possible to
attribute theOPx to the clock cyclecy for each of the successiveS measurements, the attack is hampered. If
the probability ofOPx being executed in clock cyclecy is defined asP(OPx,cy), the number of measurements

20Using a post layout analysis, the switching activity of a large LFSR circuit was determined to be 0.4410, which is close to the
theoretical maximum of 0.5. The difference stems from nets like reset, that are not directly in the data propagation path, but are essential
for operation.
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required to perform an equivalent attack is given asS
P(OPx,cy)

. To protect a vulnerable operationOPx, a random

number of DOPS (N) are executed at clock cyclecx prior to OPx. If N is evenly distributed,OPx will be
executed somewhere in the intervalcx..x+N, and the probability ofP(OPx,cy), wherey = x..x+N, will be 1

N .

As long as the DOP cycles can not be distinguished from cryptographic operation cycles, this countermeasure
can significantly increase the number of measurements required for a successful attack with very limited or no
apparent area penalty21. On the other hand, inserting DOPS directly increases the number of cycles required
to complete the cryptographic procedure and therefore decreases the throughput of the system. Parallel imple-
mentations that have high throughput and require fewer cycles to complete the cryptographic procedure pay a
higher price than small implementations, that require more clock cycles.

Alternative Logic Styles

DPA attacks can be completely inhibited, if the power consumption of the cryptographic device can be made
totally independent of the processed data. Solving the DPA vulnerability entirely is a tempting prospect and as a
result several approaches have been proposed. Asynchronous logic styles have been considered by Moore et al.
[MAK00], or more recently a dual-rail pre charge logic style has been presented by K. Tiri and I. Verbauwhede
[TV03]. A similar concept was also presented by Sokolov et al. [SMBY05].

The main challenge of facing designers of these new methodologies is that they are not 100% compatible with
standard design methodologies. Some require the development of new standard cells, others require new design
tools to complement existing methodologies, both of which are not extremely popular with the industry. It
would be a major success if any one of these methodologies could present a solution that completely eliminates
DPA attacks. Present results however suggest a significant reduction of emanated side channel information.
While the relative security that can be obtained by adding noise sources or inserting dummy operations can be
determined easily, the same can not be made for alternative logic styles. This makes it even harder to justify
the application of a ’different’ methodology.

While methods using alternative logic styles may effectively combat power analysis attacks, they may be vul-
nerable to other side channel attacks. Even though CMOS circuits were widely used and their properties were
well known, it took years to discover that they could be attacked using power analysis attacks. Systems using
such alternative logic styles will need to be put under the scrutiny of members of the cryptanalysis community
so that their vulnerability against various side channel attacks can be fully explored. This is a Catch-22 prob-
lem, new logic styles are not put into use, as their side channel security has not been completely understood,
and the cryptanalysis community concentrates its efforts mainly on systems that are widely available.

Algorithmic Methods: Masking

There are also solutions that try to solve the side channel problem on an algorithmic level [PGH+04, GT03,
BGK04, AG02]. These countermeasures prevent direct operations between key and data by adding a random
’mask’ to data prior to cryptographic operations as seen in figure 3.15. A DPA attack will require multiple runs,
and for each of these runs a different mask will be used, effectively preventing the attack. At the end of the
operation the mask needs to be removed. This is not very easy, as the mask at the output has been modified by
the cryptographic algorithm as well. A dedicated mask modification block is used to predict the value of the
mask that can be removed after the operation. In practice, this mask modification block is equivalent in size to
that of the original circuit.

The principle of masking may seem very simple, but its implementation has many pitfalls. The mask addition
is - by definition - redundant. An ideal logical optimization tool would be able to recognize this redundancy
and would completely remove the masking part. Contemporary synthesis tools are far from achieving such an
optimization. However, the practical realization of a masked algorithm requires many fine grained redundant

21Adapting a datapath so that it can continuously perform uncorrelated operations requires certain modifications, most notably a source
for random data bits.
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Mask Addition
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PLAINTEXT

CIPHERTEXT
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Encryption
Process

Mask
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CIPHERKEY

Figure 3.15: The masking method against DPA attacks. A random mask is added to the plaintext before each
operation. This mask is removed at the end of the operation.

operations that need to be processed in a specific way. The designer must invest significant effort in ensuring
that the intended structure is present in the final netlist after logic synthesis.

On paper, masking countermeasures completely inhibit DPA attacks. However, Mangard et al. [MPG05] have
recently shown that these masking methods are only effective if glitches do not occur in the circuit. It is ironic
that practical realization problems hinder the effectiveness of an algorithmic countermeasure for a problem that
arises as a result of practical implementation of an otherwise secure algorithm.

3.5.4 Implementation Issues

In practice, cryptographic ASICs need to be protected against a variety of threats, both electrical and physical.
Various methods can be used to read out values of a circuit if physical access can be obtained. To protect
against such attacks, tamper resistant design methodologies are used. In such a device the secret key is deleted
as soon as a tampering attempt is detected.

All of the designs presented here are implemented as research chips and are not intended to be used in a
cryptographic system. Unlike cryptographic products where the secret cipherkey can be embedded into the
design by either an EEPROM or by mask programming, the chips presented here have interfaces that allow the
secret cipherkey to be loaded and retrieved from the circuit. In addition, all have test interfaces that can be used
to read out the state of all flip flops in the system, including those that hold the cipherkey.
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Table 3.2: Comparison of AES implementations reported in literature.
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Table 3.3: Comparison of AES implementations fabricated at the IIS.
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Chapter 4

Secure AES Implementation Using
GALS

The GALS design methodology described in chapter 2 was developed to combine the advantages of asyn-
chronous design with the convenience of using well supported digital design methodology. A significant por-
tion of present day asynchronous circuit design is geared towards secure cryptographic hardware design. The
power spectrum of an asynchronous circuit does not contain large peaks at multiples of a global clock fre-
quency and therefore is believed to reveal less information about the circuit operation. With this in mind, we
have asked the following question:

“How can we use the GALS methodology to improve the security of cryptographic hardware ?”

To answer this question the AES block cipher was implemented by utilizing new possibilities offered by the
GALS methodology. The new architecture, calledAcacia, presents additional challenges to attackers, espe-
cially to those who use DPA. The main contribution of the GALS methodology, to increase DPA security,
comes from a partitioning of the AES block cipher into multiple LS islands that are clocked independently.
Even though clock signals are present (and visible in the power trace), the attacker is unable to directly at-
tribute a given clock signal to the correct LS island easily. This task is made even more difficult by varying the
clock period of each LS island randomly. The remainder of this chapter discusses theAcaciaarchitecture in
detail.

4.1 Partitioning

Partitioning a design into several LS islands remains to be mostly an inexact science of the GALSification
process. There is an inevitable overhead both in circuit area and in communication when a design is partitioned
into multiple GALS modules. Experience has shown that small-sized GALS modules suffer noticeably from
such an overhead.

Two separate approaches to partitioning are common. A functional partitioning scheme determines the LS
islands according to functionality. In this way, parts of the circuit that exchange data often are located within
the same LS island and the communication overhead can be reduced significantly. However, the circuit size of
the resulting LS islands can not be kept at an optimum level in this way. The second alternative takes the circuit
area in account. In this method, the size of an LS island is frequently taken as the size of the circuit that can
go through the entire design flow (synthesis, placement and routing, verification) using contemporary tools and
computers within one day. While this approach is more suited for an automatic partitioning process, it creates
LS islands that suffer from excessive communication overhead.

The security concept developed forAcaciarequires multiple LS islands that are clocked independently. The
additional security offered by this approach is the increased effort required on part of the attacker to determine
the state of the operation. This has two main consequences:
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1. There must be multiple LS islands

2. The LS islands should not exchange data all too frequently, as during data transfers the local clocks of
two modules are synchronized to each other. If two LS islands would exchange data at each cycle, the
two clocks would remain synchronous to each other, this would take away any advantage gained by using
independent clocks.

It can be seen from previous designs (see section 3.4.3) that even a fully parallel AES cipher can be realized
using around 100,000 gates. This is not a large amount, even for a relatively mature technology like the
0.25 µm technology used in this project. The second constraint listed above basically rules out any parallel
implementation of AES, and calls for an iterative architecture. To achieve a suitable partitioning that satisfies
the above mentioned constraints, a new architecture must be developed. After a careful analysis of the basic
structure of the AES algorithm seen in figure 3.2, the base operations of AES are divided into two groups.

The first group consists of the operationsShiftRowsandAddRoundKeyand is designed to operate on 128-bit
data. TheShiftRowsoperation can be realized without significant hardware overhead if it operates on all 128
bits in parallel. TheAddRoundKeyoperation consists of a simple bitwise XOR operation, and does not add
significant hardware overhead even if it is implemented for 128 bits. Since the roundkey is used only by the
AddRoundKeyoperation, the roundkey generation is also placed into this group.

The second group consists of the remaining operationsMixColumnsandSubBytes. As mentioned in section
3.3.2, theSubBytesoperation can be further divided into two parts: a multiplicative inverse and an affine
transformation. In essenceMixColumnsis a 32 bit operation andSubBytesis an 8-bit operation. In reference
to the bit widths used within the two groups the first group (using 128-bits) is calledGoliath, and the second
group (using 32-bits) is calledDavid.

One round of AES transformations is equivalent to running the operations inGoliath once, and the operations
in David four times. Similarly, to complete the operations withinDavid, one 32-bitMixColumnsoperation
and four 8-bitSubBytesoperations are required. As described earlier in section 3.5.3 parallel running datapath
units contribute to DPA security by generating additional noise. To take advantage of this,David has been
designed to include two parallelSubBytesunits and similarlyGoliath is designed to interface to two identical
David units. Figure 4.1 shows the architectural transformation used inAcacia. To simplify the drawing only
encryption operators are shown.Acaciasupports decryption as well.

The new AES architecture is more suitable to partitioning for GALS. Figure 4.2 shows the block diagram of
Acacia. The system consists of two identical instances ofDavid and a single instance ofGoliath. These three
instances are realized as separate GALS modules and contain their own independent local clock generators.
The system includes an additional block that is clocked synchronously and is used as an interface to the outside
world.

4.2 DPA Countermeasures

Acaciawas specifically designed to incorporate several different layers of DPA countermeasures. As with all
such designs, it is a combination of different ’DPA aware’ design decisions that contribute to the overall security
of the system. The GALS design methodology employed inAcaciahas been instrumental in implementing a
number of efficient countermeasures. However, just using GALS is by far not sufficient to provide this security.

It is assumed that, although small, a portion of the power consumption ofAcaciawill contain a contribution
that directly depends on the cipher key. Rather than finding methods to completely eliminate this power con-
sumption, the security effort is concentrated on making the detection of this power consumption impractical.

A typical attack on the AES algorithm would target the output of one of the 8-bitSubBytesoperations. In a
standard AES encryption there are a total of 160 differentSubBytesoperations. Consider an architecture that
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is able to perform a single 8-bitSubBytesoperation at a time. Ideally the attacker would like to observe the
circuit while it is processing just the targetedSubBytesoperation and nothing else. For this, the attacker must
be able to precisely determine when the targeted operation is taking place. If the attacker is not able to perform
measurements at a precise time, the measurement will contain the contribution of severalSubBytesoperations
at the same time, just like in an architecture where multiple instances of 8-bitSubBytesoperations are executed
parallel. In the worst case, the attacker will be able to make just a single measurement over the entire encryption
operation.

In Acaciathe attacker is given as little reference as possible over the state of the AES operation. The GALS
methodology used inAcaciapresents additional means to increase the temporal uncertainty of a specific oper-
ation. This is further augmented by well-known design practices to increase the DPA resistance. The following
subsections explain individual aspects of the countermeasures in more detail.

4.2.1 Noise Generation

Adding noise and executing random operations are well-known countermeasures to improve the DPA security
of a cryptographic system as explained in section 3.5.3.Acaciaincorporates both of these methods in several
layers. The architecture ofAcaciaconsists of multiple parallel datapaths. As a design principle, all datapath
units in Acacia are constantly fed with data, regardless of the status of the cryptographic operation. The
necessary input data is generated by pseudo random number generators.Goliath uses as much as 242 bits of
random data per clock cycle and eachDavid unit uses an additional 76 bits (for details on random number
generation inAcaciarefer to section 4.3.4).

Power consumed by parallel operations on uncorrelated data appear as a noise componentPN for DPA analysis.
By keeping the datapaths constantly occupied, the exact state of the operations can not be observed exter-
nally. The power consumed by these additional dummy operations also add to DPA relevantPN. Thirdly, the
generation of pseudo random numbers adds additional activity to the circuit.

Since all datapath units withinAcaciaare constantly active, it is not possible to distinguish which parts of
the datapath are processing data that is part of the cryptographic operation. In fact, at any given timeAcacia
might be processing only randomly generated data. In this way, dummy operations can be inter-mixed with
real cryptographic operations seamlessly without an apparent change in behavior.

As an example consider one of theDavid units. It is assigned a 32-bit value byGoliath. It will continue to
process this data without really knowing whether or not the data is part of the cryptographic operation or a
randomly generated bit stream. After data has been processedGoliath will either continue using the output of
David, or will silently ignore it in case the input data was dummy.

4.2.2 Operation Re-Ordering

An AES architecture that does not processes all 128-bits in parallel, has to execute the same AES operation
multiple times. In a standard implementation, more often than not, the data is processed in some order, i.e.
least significant portion of the data is processed first, followed by higher order bits. Any operation targeted by
a DPA attack would always occur at the same time. If there is no data dependency between the operations, the
execution order of can be changed randomly to make it more difficult to predict when a certain operation is
performed.

Consider theMixColumnsoperation inDavid. To be able to compute a 32-bitMixColumnsoperation, the
result of four 8-bitSubBytesoperations are needed as described in section 3.3.4. Using the same notation as
in eq. 3.1 let us denote the outputs of theSubBytesoperationsS0, S1, S2 andS3 (neglecting the column index
c for clarity). In David there are two parallel datapath units that can be used to calculateSi and Sj at the
same time. TheoreticallyDavid could calculate the four outputs in two clock cycles. Since the operations are
independent, they can be calculated in any order. While there are 24 possible combinations that the operations
can be processed, the probability that a givenSubBytesoperation will be processed in a given cycle is 0.5.

David has been modified in a way to enable any combination of the two datapath units to process random data.
This adds more uncertainty as to when a specificSubBytesoperation will be processed. At any given cycle
David can choose one of the following methods to determine what to do next:
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Figure 4.3: Example operation flow of the three datapaths inAcacia. The figure shows one round of AES
operations. Four possible re-ordering schemes are shown on the twoDavid units.

• Dummy Operation: Both datapath units process random data, no cryptographic data is processed.

• Permutation:David chooses one or two operations that have not yet been processed for the next cycle.
In a single permutation, only one of the datapath units processes cryptographic data, the other one is fed
with random data from the LFSR.

• Random Ordering:David chooses one or two operations randomly. As opposed to the permutations, it
is possible to operate on data that has already been processed. In this case the output is ignored and is
not latched into the registers. In a single random ordering mode, only one of the datapath units processes
cryptographic data, and the other is fed with random data from the LFSR.

Daviddoes not decide on a fixed method, but rather chooses between methods as appropriate at runtime. During
normal operation each timeDavid is assigned data to process, a target cycle count is determined. This target
cycle count represents a loose guideline for the duration of the operation. The target count is continuously
decremented, and the method decision is affected by the urgency to complete the operation.David is more
likely to decide to use a permutation with two data words if the target cycle count is one and none of the four
SubBytesoperations have been completed, than choosing only one randomly. A simple register keeps track of
the processed operations. TheMixColumnsoperation will be executed only after all fourSubBytesoperations
are processed.

In Goliath a very similar method is used. During one AES round fourMixColumnsoperations have to be
completed in any order before a newAddRoundKeyoperation can be performed. There are two instances of
David that can process theseMixColumns(and associatedSubBytes) operations.Goliath assigns 32-bit data
blocks to theseDavid instances as soon as they are available. A similar target operation count method is used to
choose between the three ordering methods described above.Goliath keeps track of which operations process
cryptographic data and which ones process dummy data. However,David is not notified about the authenticity
of the data it processes.
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There is an important difference in the way this re-ordering is handled inGoliath. In David all sub operations
are synchronous, and once an operation is assigned, the result is available within the next clock cycle. InGoliath
this is not possible since the run time ofDavid is not deterministic. This can lead to interesting situations where
a David unit finishes ahead of the otherDavid unit even though it was assigned new data later. This results in
a slightly more complex control logic to accommodate for such cases.

Depending on the target operation count,Goliath can also assign several dummyAddRoundKeyoperations.
This is also different fromDavid, where theMixColumnsoperation is performed directly after allSubBytes
operations are processed. The re-ordering operations are demonstrated in figure 4.3. In this simplified timing
diagram, all three datapath units are shown to be performing one round of AES encryption. The diagram shows
all four combinations of operation re-ordering on bothDavid units (namedDavid PerelsandDavid Tschopp)
. The fastest results (and the least uncertainty) is obtained by using a permutation based re-ordering with both
datapaths. In normal operationAcacia does not use a single mode for re-ordering, but combines different
methods.

4.2.3 GALS Modules

A successful DPA attack needs to identify and measure a specific operation within the AES algorithm. In a
standard synchronous design, the power measurement traces clearly identify the clock signal. The attacker is
therefore able to identify individual clock cycles easily. In most systems, the attacker is also able to reduce the
clock rate (or manipulate the clock signal in different ways) to obtain better measurements.

As described in section 2.2, each GALS module contains an independent local clock generator that supplies
the clock signal for its LS island. In a system that uses multiple GALS modules, there are multiple clocks that
have no clear frequency phase relationship. This can be exploited to make DPA attacks more difficult.

The main problem in such an approach result through the data transfers between GALS modules. Two (or more)
GALS modules are essentially synchronized while exchanging data with each other. Two GALS modules that
need to exchange data at every clock cycle are practically synchronous with each other. To be resistant against
DPA attacks, the GALS modules must be allowed to run without transferring data for several clock cycles. This
aspect was the main criteria that determined the partitioning described in section 4.1.

As mentioned in section 2.2, there are two basic synchronization modes during data transfer between two
GALS modules. When D-type port controllers are used the GALS island is suspended as soon as it attempts
a data transfer. It remains suspended until the data transfer is completed. This can significantly reduce the
dynamic power consumption of the module, but on the other hand presents the attacker clear information on
the state of the AES operation. If on the other hand, P-type port controllers are used, the local clock is only
briefly halted when all communication parties are ready to transfer data. In this mode, the local clock is only
shortly, if ever, paused. From a DPA security point of view, this is a more desirable situation.

In total, three new port controllers were designed forAcacia. A detailed description of these ports and their
design criteria can be found in section 5.2.

Communication between Goliath and David

During an AES operationGoliathassigns a 32-bit part of its current state for processing toDavid. To reduce the
number of data transfers between two modules, both modules exchange data at the same time.David transfers
its last output toGoliathand records the new 32-bit input data.

Goliath uses a 3-bit control signal to configureDavid for different modes of operation1. An additional 9-bit
signal is used to determine the policy (see section 4.2.5) that will be used for calculating the next data.

During a normal AES round, eachDavid requires at least 4 clock cycles to process data. While this is not
overwhelmingly large, it offers a fair compromise between performance and security.

1Davidcan be configured for both encryption and decryption. During the last round of an AES operation or during roundkey generation,
theMixColumnsoperation needs to be skipped as well.
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Communication between Goliath and Interface

Acaciaprovides a standard synchronous interface to communicate with the environment. Once the interface has
received 128 bits of data from the environment it requests a data transfer. A specialized port controller has been
developed to enable safe data transfers betweenGoliath and the interface. This port controller synchronizes
the local clock ofGoliath to that of the synchronous clock for the duration of the data transfer.Goliathand the
synchronous interface exchange 128 bits of data simultaneously.

The interface provides a 7-bit control signal toGoliath to set the cipherkey length (128,192 or 256 bit), opera-
tion mode (encryption or decryption), and the security effort.

4.2.4 Variable Clock Periods

The local clock generator is an integral part of the GALS methodology developed at the IIS [OVG+02]. The
clock generator is basically a ring-oscillator structure where the feedback path can be controlled by the asyn-
chronous port controllers as seen in figure 4.4.

The local clock generators designed for previous projects [MVF00, OGV+03] were designed to have a pro-
grammable delay line so that the performance of the system could be tuned for optimum performance. The
delay line as seen in figure 4.4 consists of a series of identical delay slices. As long as the delay slice is enabled
by setting theDelCntrlxSI signal high, the clock signal propagates through the AND gate. As soon as one
delay slice is disabled by settingDelCntrlxSI to low the forward propagation is halted and the reverse path
is activated by the AND-OR gate. The fastest clock frequency (the shortest delay through the delay line) is
obtained by disabling all delay slices and the slowest clock frequency is obtained by enabling all slices. In this
case the input signal propagates through all delay elements and returns back. In all of these designs the clock
frequency was configured during startup and was not changed dynamically.



4.2. DPA COUNTERMEASURES 57

Stephan Oetiker has modified the local clock generator forAcaciain a way that the clock period can be changed
every cycle by reading a new value into the configuration register that controls the switches2. BothDavid and
Goliath use the same local clock generator type that has a delay line consisting of 15 identical delay elements.
Each delay element adds roughly 550 ps of delay when activated. There is an additional fine delay element,
seen on the far left side of figure 4.4, that can add 250 ps delay to the delay line . This configuration allows
for 30 different delay settings and the delay line is programmable between 4 and 12.5 ns with nearly 0.25 ns
accuracy.

A 6-bit random number is used byDavid andGoliath to determine the next clock period. Under no circum-
stances should the configuration result in a period that is less than the critical path of the module. The exact
value for the critical path of the circuit is typically known very late in the design process. Furthermore, in
Acacia, the same clock generator type is used for two datapaths that have different critical paths. An individual
minimum value for the clock delay is stored in a configuration register of each module. The random value
obtained from the LFSR is added to this minimum value to determine the clock period.

As described in section 4.2.5,Acaciais able to trade-off between throughput and security. The variation of the
clock period is one of the parameters that is controlled by the security effort. The high order bits of the random
number can be masked to reduce the random distribution of the clock period. In the most extreme case, the
random number is completely masked and the clock period is equal to the minimum period as determined by
the configuration register.

The local clock generator has an additional configuration interface controlled by an external synchronous clock
that allows a number of parameters to be set during operation. Most notable is the ability to switch the local
clock to the external synchronous clock, effectively converting the GALS system to a fully synchronous system
for test purposes. This mode is intended only for scan testing and not for normal operation.

In most attacks against cryptographic hardware, the attacker is able to control the clock signal of the system.
This allows the attacker to run the system at a frequency at which measurements can be made more easily3. An
additional advantage of using local clock generators is that the attacker is not given any chance to influence the
operation speed of the device.

Figures 4.5 to 4.12 illustrate the countermeasures step by step. One round of AES encryption is given in figure
4.5. All operations (with the exception ofShiftRows) are executed in a separate clock cycle. For illustration
pusposes it is assumed that the attacker is targeting the ninthSubBytesoperation. In this case, the attacker will
always target the twelfth clock cycle for his attacks. Note that for a successful attack, the attacker needs to
make thousands of measurements. Inserting dummy operations as shown in figure 4.6 changes the occurence
of the targeted operation. However, the occurence is only delayed. In our example, the probability of observing
the operation in cycle twelve has been reduced. It is clear that the operation can not be observed before the
twelfth clock cycle, depending on the number of additional dummy operations until the time of execution it
can be delayed arbitrarily. If dummy operations are inserted with the same probability, operations that are later
in the dataflow will be delayed more. This is not really helpful, as there is no telling which the operation the
attacker will target, in other words, the security depends on the security of the weakest link (in this case the
first operation). Reordering operations as shown in figure 4.7 can really help in this regard, since the occurence
of the targeted operation can be moved practically to any location within the round. Parallelization as seen
in figures 4.8 and 4.9 help increase the activity within the circuit, but the real improvement comes with the
modification shown in figure 4.10. All operational units are continuosly supplied with data. When the output
of one unit is not required, random input data is used. Figure 4.11 shows teh partitioning into GALS modules
while figure 4.12 illustrates the random clock period approach.

2It is pretty difficult to talk of a clock period, since the clock signal is for all practical purposes not periodic any more. It is not only
randomly interrupted for data transfers but each clock edge is separated by a random time interval.

3As an example theFastcorechip was clocked at 2 MHz so that 512 values per clock cycle could be sampled by a 1 Gb/s sampling
oscilloscope. IfFastcorewere to be clocked at its nominal operating frequency of 166 MHz, only 6 values would have been sampled per
clock cycle.
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Figure 4.5: Simplified timing diagram showing one round of the AES. To demonstrate the efficiency of the
countermeasures, oneSubBytesoperation has been targeted.

D
u

m
m

y

D
u

m
m

y 
O

p
er

.

D
u

m
m

y 
O

p
er

.

A
d

d
K

ey
 / 

S
h

if
tR

M
ix

C
 1S03 S04 S05

M
ix

C
 2

M
ix

C
 3S11 S12

M
ix

C
 4S14 S15D D D D D

D
u

m
m

y

D
u

m
m

y D D DS01 S02 S06 S07 S08 S09 S10 S13 S16S09

Figure 4.6: Inserting dummy operations randomly will confuse the attacker, by delaying the occurence of the
targeted operation. However the run time will increase
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Figure 4.7: Independent operations can be reordered. In this example you can see that both theMixColumns
operations in one round, and theSubBytesoperations required for a particularMixColumnsoperation can be
reordered
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Figure 4.9: The parallelization can be taken one step further. In this example, for eachMixColumnsoperation,
the data is provided by twoSubBytesunits executing in parallel. In total the system has fourSubBytesunits.
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Figure 4.10: Instead of using the parallel datapath units only when they are needed, the system can be modified
so that it executed dummy operations when the a result is not scheduled.

4.2.5 Security Effort

The countermeasures designed to introduce temporal uncertainty inAcaciaare able to do so at the expense of
the overall throughput. The variation of the clock period in individual GALS modules can only be achieved
by making the module operate slower (which reduces the throughput), since the clock period must be at all
times longer than the critical path in the module. Similarly, dummy operations reduce the throughput as they
are performed at the expense of cryptographic operations. There is an inherent trade-off between throughput
and the amount of effort undertaken to thwart DPA attacks.

All operations in an AES process are vulnerable to a DPA attack, but it is by far much more easier to attack the
first and the last round. The reasoning is simple: A successful DPA attack, requires a hypothetical power model
for all permutations of the attacked subkey. Developing the model for later rounds is increasingly difficult, as
these depend on the previous rounds4. The complexity of the power model increases with each round until the

4While the output of an 8-bitSubBytesoperation in the first round depends on only 8-bits of the plaintext and the 8-bits of the cipherkey,
the output of any 8-bitSubBytesoperation in the second round depends on 32-bits of the plaintext and 32-bits of the cipherkey.
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Figure 4.11: The operations as they are organized inAcacia. The MixColumns/ SubBytesoperations are
executed in twoDavid units that run in parallel and a singleGoliath unit that executes theAddRoundKey,
ShiftRowsoperations. Each unit is a stand alone GALS module.
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Figure 4.12: The operation is further randomized by changing the local clock generator period from cycle to
cycle.
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Mode Description Run time [ns] norm.

00 As fast as possible 114,400 1

01 Using slightly random countermeasures 165,320 1.44

10 Using highly random countermeasures 616,240 5.38

11 Using pre-programmed policy 203,840 1.78

Table 4.1: Simulation results comparing the run time ofAcaciausing different operation modes. The simulation
uses a 50 MHz interface clock and measures the time required to compute a mix of 100 en/decryptions.

halfway point. After that a model can be used that is based on the outputs of the system instead of the inputs,
and the complexity of the model decreases with increasing round numbers. Attacking the last round is (almost)
as easy as attacking the first round.

Acaciauses a simple policy system to be able to tune its DPA effort according to the round. Using this system,
the first round is executed with all DPA countermeasures at their maximum settings to foil attacks as much as
possible. With the progression of rounds, the effort is reduced, less dummy operations are performed and the
clock period is varied less than before. During the middle of the process, the GALS modules are clocked at
their maximum frequency and no dummy operations are executed. The DPA related effort is then ramped up
to protect later stages of the process. The last round effectively has the same level of countermeasures as the
initial round.

Acacia uses four basic operation modes. The first one is a high-speed mode that turns off any throughput
reducing DPA countermeasures. There are two modes that use the same level of random countermeasures for
all rounds and a fourth mode that effectively uses the policy system described above. The ’security profile’
of Acaciacan be changed using the configuration interface during initialization. Table 4.1 presents simulation
results that show the runtime required for a wide range of en/decryption operations. The pre-programmed policy
has the same level of random operations during its initial and last stages as the highly random configuration,
and is therefore just as secure, but is more than 3 times faster.

A typical DPA attack would target one of theSubBytesoperations within the first round of an AES encryption.
In Acacia, depending on the operational mode used, it may be executed at different times. Figure 4.13 shows
the distribution of a specificSubBytesoperation over 2,000 different encryptions for the different operation
modes.

When configured to run as fast as possible, no dummy operations are inserted and the GALS modules are
configured to run at their fastest rate. There are two distinct peaks visible in this operation mode (figure
4.13a). This is the result of operation re-ordering described in section 4.2.2, that evenly distributes the 32-bit
operations among the two availableDavid units. Since eachDavid unit is capable of processing 32-bits at a
time, there are two distinctive time-slots available for any given operation. The additional uncertainty is a result
of communication overhead between independently clocked domains.

The operational mode where all encryption rounds execute slightly random countermeasures shows a much
better distribution as seen in figure 4.13b. An even better distribution can be obtained if all rounds execute
highly random-countermeasures (figure 4.13c). However, as shown in table 4.1, this mode increases the run-
time of a single encryption significantly. The last distribution shown in figure 4.13d is a result of the pre-
programmed policy that dynamically adjusts the security effort between encryption rounds. In this mode, the
distribution is similar to the one obtained from executing highly random countermeasures, but the run time is
comparable to that of slightly random countermeasures.
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4.3 Realization and Results

4.3.1 David

David is essentially a 32-bit datapath that consists of theSubBytesand theMixColumnsoperation (and their
inverses) of the AES cipher.SubBytesis by far the most demanding operation of AES both in terms of area and
operation speed. In an architecture supporting both encryption and decryption, it is more efficient to divide the
operation into an affine transformation and an multiplicative inverse in GF(28) as described in section 3.3.2.
In David, operations are divided into two groups. One group consists of two instances of 8-bit look-up tables
that realize the multiplicative inverse function (shown on the left in figure 4.14) and the other group combines
theMixColumnsoperation and the affine transformation (shown on the right in figure 4.14). This organization
creates a more balanced critical path through both groups.

When used as part of an encryption round,David uses at least two clock cycles to calculate four multiplicative
inverse operations and then, in a single clock cycle performs the affine transformation and theMixColumns
operation. In the decryption mode the same operations are executed in reverse order.David processes the
InvMixColumnsand the inverse affine transformation in the first clock cycle, and requires at least two clock
cycles to process four multiplicative inverse operations.

The last round of an AES transformation does not include theMixColumnsor its inverse operation.David
is designed to skip theMixColumnsand its inverse upon request. This is equivalent to performing a 32-bit
SubBytesoperation. This operation is required during the key expansion as well.

The DPA countermeasure effort ofDavid is mainly determined by thePolicy input. This input consists of
two parts:

• PeriodMask (5-bits)

Determines the range that the local clock generator can be varied. The mask is ANDed with a 5-bit
random number. The resulting number shows how many delay slices will be active. This effectively
determines the clock period. The masked random number is added to the minimum period as configured
during initialization. This value is used to control the local clock generator. The mask stays the same
throughout one operation. A mask of (0’000)2 prevents random variations in clock, and a mask of
(1’111)2 allows maximum clock variation.

• TargetCount (4-bits)

TellsDavidhow many clock cycles it is expected to calculate5. TheTargetCount is used as a decision
maker to choose between different operation ordering options described earlier in section 4.2.2.

A four bit register is used to keep track of which multiplicative inverse operations have been completed. When
theTargetCount is high, random operation modes are more likely to be executed. If theTargetCount
decreases, depending on how many multiplicative inverses are still left, more deterministic decisions are taken.
As an example, ifTargetCount indicates that there are two cycles left, and only the third multiplicative
inverse has not been calculated until this time,David will assign the third byte to be calculated with 50%
probability. However, if it has not been calculated until the next cycle, theTargetCount will indicate that
there is only one cycle left, and the third multiplicative inverse will be definitely scheduled in this cycle6.

David includes an 89-bit LFSR to provide random data for DPA related operations. The circuit area ofDavid
(183,007 µm2) is nearly two times larger thanMatthias(93,131 µm2) which is built in the same way as reference
and does not include any DPA countermeasures7.

5Goliathdoes not keep track of the target count that it has assigned to theDavid units, as soon as it assigns one, it forgets about it.
6The decision of which multiplicative inverse unit to use will still be random.
7In all fairness it must be noted that the reference design that includesMatthiaswas optimized for small area. If both designs were

optimized similarly, the area overhead ofDavid would decrease slightly to around 80%.



64 CHAPTER 4. SECURE AES IMPLEMENTATION USING GALS

Multiplicative 
Inverse

Reg-32

89-bit LFSR

Mult. Inverse Mult. Inverse

Output Select

Affine Transform

MixColumns

InvMixColumns

Inverse Affine T.

Da
ta
IN
xD
I

Da
ta
OU
Tx
DO

Mo
de
xS
I

Po
li
cy
xD
I

De
bu
gD
at
aI
Nx
DI

De
bu
gE
Nx
SI

De
bu
gC
LK
xC
I

Ta
xS
I

Pe
nx
SO

Controller

32

8

8

9 3 32

32 8 32

3232 32

8

8 32 8

32

32
3232

32

32

32

32 32

32

32 32

Affine 
Transformation
MixColumns

Figure 4.14: Block diagram ofDavid. The control structure is simplified for clarity.

4.3.2 Goliath

Goliath is essentially a 128-bit parallel implementation of the AES cipher, that outsources theSubBytesand
MixColumnsoperations to twoDavid datapaths. TheShiftRowsand theAddRoundKeyoperations are the least
demanding operations of the AES cipher and can be realized without a significant overhead. The block diagram
of Goliathshown in figure 4.15 is very similar to that ofDavid shown in figure 4.14.

The datapath is divided into two main groups of operations. The part shown on the left hand side of figure
4.15 is used to communicate with the twoDavid instances. A 32-bit part of the current state is selected and
transferred to an output register so that it can be sent toDavid for further processing. The input fromDavid is
routed back to the state holding 128-bit register. The second part, seen in the middle of figure 4.15, is used to
execute theShiftRowsandAddRoundKeyoperations. During a given clock cycle only one of these groups is
active.

The main operation ofGoliath is determined in a similar manner toDavid. For each cryptographic operation,
a 2-bit value determines the overallPolicy . For each round of operation, a round policy is determined using
the round number and the overall policy. This value in turn determines the mask value that determines the
period of the local clock and assigns policies for the twoDavid units.

Comparable to theTargetCount in David, two separate counters are employed inGoliath. AddCount is
used to add a random number of dummy cycles prior to calculating theAddRoundKeyandShiftRowsoperations.
Unlike David, where the operation start is not easy to determine, the initial operations ofGoliath are easy to
detect. In order to protect the first few operations a random amount of dummy operations are required. The
ColsCount counter is similar to theTargetCount of David, and determines the scheduling of data on
the twoDavid units. TheColsCount is not decremented every cycle, but after every successful transaction
betweenDavid andGoliath.



4.3. REALIZATION AND RESULTS 65

Da
ta
IN
xD
I

Da
ta
OU
Tx
DO

Mo
de
xS
I

De
bu
gD
at
aI
Nx
DI

De
bu
gE
Nx
SI

De
bu
gC
LK
xC
I

Ta
xS
I

Pe
nx
SO

InvShiftRows

AddRoundKey

ShiftRows

Reg-128

Reg-32 Reg-32

Output Select

Round Key
Generator

242-bit LFSR Controller

64 x 32 SRAM

128

128

128

128

128

128

128 128

32 32

3232

32 32 32

128128

128

128

128

128

3232

32

32

David
Communication

ShiftRows
AddRoundKey

128

To
Da
vi
dP
xD
O

Fr
mD
av
id
Px
DI

To
Da
vi
dT
xD
O

Fr
mD
av
id
Tx
DI

16 32

De
bu
gA
dd
rI
Nx
DI

4

Reg-128

Key Expansion

Figure 4.15: Block diagram ofGoliath. The control structure is simplified for clarity.



66 CHAPTER 4. SECURE AES IMPLEMENTATION USING GALS

The scheduling control forGoliath is a little bit more involved as well. Once a 32-bit word is scheduled on a
Davidunit,Goliathhas no reliable information on when to expect the result back. Therefore, two separate 4-bit
registers are implemented. The first register keeps track of which 32-bit words were scheduled, and the second
4-bit register keeps track of the received results. One round is concluded as soon as all four 32-bit words are
processed.

Goliath also includes the key generator that implements the key expansion algorithm. This block seen on the
right side of figure 4.15 provides the roundkeys used by theAddRoundKeyoperation.Acaciasupports all three
standard AES cipher key lengths of 128, 192 and 256 bits. Rather than calculating the roundkeys on the fly, the
roundkeys are calculated and stored in memory. In this way, additional side-channel information leakage due
to continuous roundkey calculation is prevented.

A 32-bit wide SRAM memory serves as a roundkey storage due to practical limitations. Access bandwidth
is not a problem during the key expansion phase where only 32-bit operations are used (see section 3.3.5).
However, during normal AES operations a 128-bit roundkey is required. The roundkey generator requires four
clock cycles to ’assemble’ this roundkey. OnceGoliath consumes a roundkey, the next roundkey is automati-
cally requested. This is sufficient to fetch a new roundkey before the nextAddRoundKeyoperation for all but
the last round. Once the last round operation is performed, it is assumed that the AES mode will not change
from encryption to decryption (or vice versa) for the next operation and the corresponding roundkey is fetched.
If a new cipherkey is used, or the AES mode is changed between operations, the roundkey generator will be
caught with the wrong roundkey, and a new roundkey will have to be fetched. Operation is stalled until the
correct roundkey is available.

The key expansion algorithm that generates the roundkeys, and the actual AES operations are not performed at
the same time. It was decided to use oneDavid instance to realize the 32-bitSubBytesfunction that is required
by the key expansion routine. While this organization saves circuit area by re-using existing datapath elements,
it requires a more complex selection hardware to be able to route the signal to and from theDavid datapath as
well. It was later discovered that the chosen solution was far from ideal.

4.3.3 Interface

The AES algorithm operates on 128-bits of data and therefore requires a large number of inputs and outputs.
However, the I/O bandwidth can be reduced in cases where an output is not calculated every clock cycle. The
interface ofAcaciauses separate 16-bit data inputs and outputs to:

• Input 128-bits of data

• Output 128-bits of result

• Input up to 256 bits of cipherkey.

• Determine the operating modus of the circuit

• Load various configuration registers for the DPA countermeasures ofAcacia

An 8-bit control bus is implemented to select between the above mentioned operations. The interface also acts
as a buffer between the asynchronous communication of the GALS core and the synchronous environment. A
specialized port controller is used to ensure safe data transfers between the interface andGoliath. As a result,
the asynchronous behavior of the GALS modules is not observable directly. Depending on the specific interface
clock rate and the selected operation mode, the result may appear after different number of (interface) clock
cycles at the output. Therefore, all input and output words have dedicated handshake signals.

4.3.4 Random Number Generation

Most DPA countermeasures rely on the availability of random numbers to introduce unpredictable changes in
the circuit behavior. Generating truly random numbers in hardware is an involved task that will not be explored
in this thesis. Contrary to ’real’ random number generators, pseudo random number generators (PRNG) are
relatively simple circuits that can be built using standard digital design techniques. In essence, such PRNGs
generate a very long sequence of numbers that show properties similar to that of a true random generator.
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D5D4D3D2D1 OUT

x5+x2+1

CLOCK

Figure 4.16: LFSR that realizes the polynomialP(x) = x5 +x2 +1. This LFSR has a period of 25−1 = 31.

Initial D1 D2 D3 D4 D5

P(x) D2⊕D5 D1 D2 D3 D4

P(x)2 D1⊕D4 D2⊕D5 D1 D2 D3

P(x)3 D2⊕D3⊕D5 D1⊕D4 D2⊕D5 D1 D2

P(x)4 D1⊕D2⊕D4 D2⊕D3⊕D5 D1⊕D4 D2⊕D5 D1

P(x)5 D1⊕D2⊕D3⊕D5 D1⊕D2⊕D4 D2⊕D3⊕D5 D1⊕D4 D2⊕D5

Table 4.2: Result of the first five iterations ofP(x) = x5 +x2 +1 in terms of the initial values of the LFSR. The
bold elements signify the outputs that can be used. In the last caseP(x)5 five bits can be read out during each
clock cycle.

The Linear Feedback Shift Register (LFSR) is probably the best known and most widely used PRNG as it has
reasonable properties and is extremely easy to implement in hardware. An LFSR of degreem is a shift register
that consists ofm flip-flops. The next input value of this shift register is obtained from the present outputs by
linear XOR operations as seen in figure 4.16. The feedback function is frequently expressed as a polynomial
in the form

P(x) = xm+cm−1xm−1 + ...+c1x1 +1 (4.1)

whereci ∈ {0,1}. The period of the sequence generated by the LFSR depends directly on the polynomial
used. LFSRs that use ’primitive polynomials’ generate maximum length sequences with a period of 2m−1. An
excellent description of the LFSR and a list of primitive polynomials for different values ofm can be found in
the Handbook of Applied Cryptography[MvOV96]8.

In this form the LFSR generates a single output bit per clock cycle. There are several alternatives to increase
the number of random bits per clock cycle. Implementingn LFSR units in parallel or clocking a single LFSR
n times faster would result inn random bits. Both of these solutions are costly in practice. Since the function
is iterative, it is also possible to calculate the state of the LFSR inn cycles iteratively. Table 4.2 shows the
first five iterations of the LFSR shown in figure 4.16. The circuit corresponding toP(x)n is more complex than
P(x) but it producesn output bits per clock cycle. Since more bits are read out in parallel the maximum length
sequence decreases by a factor ofn as well.

A careful examination of the iteration reveals the following: Primitive polynomials with large coefficients have
less overhead during iterations. As an example consider the polynomialP(x) = x203+ x8 + x7 + x+ 1, when
iterated to have a parallel output of 200 bits, the synthesized circuit in a 0.25 µm technology occupies an area of
313,275 µm2. Less than 13% of this area is occupied by the flip-flops, the rest is occupied by the combinational
circuit required for the iteration. If the polynomialP(x) = x212+ x105+ 1 , which is of a higher degree, is
iterated to generate a 200 bit output, the resulting circuit area is only 50,355 µm2 where 65% of the area is
occupied by flip-flops. This second implementation is more than a factor 6 smaller.

There is a number of different places where a random number is required inAcacia. Both David andGoliath
consist of parallel datapath units of which only one is active at any clock cycle. In order to conceal which part
of the datapath is processing original cryptographic data, all other portions of the datapath are supplied with

8This excellent resource is also available online at the URL http://www.cacr.math.uwaterloo.ca/hac/
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random data. This accounts for most of the random bits required during each clock cycle. In addition, a limited
number of random bits are required by the state machines to make flow control decisions.

In order to get completely uncorrelated data, the random bits are only used once inAcacia9. Goliath requires
242 bits of random information per clock cycle. Two separate LFSRs are implemented to generate these bits.
The first one uses the polynomialP(x) = x124+ x37+ 1 and is iterated for 124 bits and the second one uses
the polynomialP(x) = x118+x33+1 and is iterated to produce an output of 118 bits.David requires 76 bits10

and uses a single LFSR that is based on the polynomialP(x) = x89+x38+1. All LFSRs can be initialized to a
given value during startup.

4.3.5 Reference Design

A standard synchronous reference design implementing the same architecture asAcacia was designed and
included on the ASIC as well. The AES architecture inAcacia is different from the standard architectures
used in other designs. For a purely synchronous implementation, it is probably not the optimal architecture,
as the arrangement requires several registers which would not necessarily be needed for an optimized design.
Nevertheless, the same architecture has been realized in the reference design, in order to be able to compare
the overhead required by the DPA countermeasures more directly. Several near-optimal implementations of the
AES algorithm in the same 0.25 µm technology exist for comparing the efficiency of the reference design if
needed.

The reference design consists of three modules, similar to theAcaciadesign. The reference equivalent ofDavid
is namedMatthias, and the reference implementation ofGoliath is namedSchoggi11. They do not contain any
additional logic for DPA countermeasures, and the interface between modules is optimized to reduce latency.

Schoggihas the same connections to the interface asGoliath. The user can select the cryptographic engine by
specifying theCmdxDI. The clock forSchoggiis the same one that drives the interface.

An extensive comparison of the two designs can be found in table 4.3. The first observation is that the area
overhead of GALS, even for this fine grained partitioning, is rather small (around 5%). The reference design
has an area that is less than half of the DPA version. However, this number is slightly misleading, as the
synchronous reference design had to be optimized for a smaller area due to area constraints on the final chip.
A speed-optimized synthesis run results in an area of 554,837 µm2 for the reference design. The LFSR units
used for DPA countermeasures account for roughly 15% of the total area (127,336 µm2). The remaining area
difference between the two implementations is a result of additional circuitry required to support different DPA
countermeasures.

The second notable difference between the two implementations is that the GALSified version of the datapath
elements require an additional clock cycle (David requires 4 clock cycles compared to 3 cycles ofMatthias).
In the best case this results in 30% more clock cycles per encryption round where oneGoliath (Schoggi) and
two David (Matthias) operations are required. In the synchronous system, the clock period is determined by
the longest of the critical path of the two design units (in this case 5.84 ns). In contrast, it is possible to run
both datapaths with a different clock in a GALS system. Theoretically (without taking the synchronization time
loses) the GALS system is able to complete encryption within 104% of the time required for the synchronous
solution. This also has consequences in the synthesis. Note that in the synchronous solutionMatthiasand
Schoggiboth have a critical path that is similar in length, while the critical path ofDavid is noticeably shorter
than that ofGoliath. The top-down approach used in the synchronous solution finds no advantage in reducing
the critical path ofMatthias, since the critical path ofSchoggidetermines the operating frequency. In the

9It is tempting to derive inputs for seemingly unrelated datapath elements from the same random bits. After analyzing the cost of the
PRNG for the additional bits, it was decided to use random bits only once. This is an overly conservative approach and it may be indeed
safe to re-use several random bits.

10Late in the design phase several random bits were no longer needed. The LFSRs were kept as they were, some random bits are simply
not used. In fact,David uses only 69 bits andGoliath234 bits.

11The originalDavid andGoliath names are directly related to their bit-widths. Since two instances ofDavid are used, in the code they
were named after two colleagues at the IIS David Perels and David Tschopp. It was intended to name the reference designVanilla, to
show that it did not include any countermeasures and was a plain implementation. The nameMatthiaswas used for the referenceDavid
implementations, since, just like the nameDavid, there were two members at the IIS that were namedMatthias: Matthias Braendli and
Matthias Streiff. At this point the nameVanilla was changed toSchoggi(Swiss German for chocolate), since Matthias Braendli does not
like vanilla flavor but prefers chocolate instead.



4.3. REALIZATION AND RESULTS 69

Synchronous GALS + DPA

Matthias Schoggi David Goliath

Area (µm2) - LS 93,123 207,031 183,007 551,194

Area (µm2) - ClockGen N.A. N.A. 7,579 7,626

Area (µm2) - Ports N.A. N.A. 6,225 11,412

Area (µm2) - TOTAL 393,277 963,855

Critical path (ns) 5.43 5.84 3.98 5.27

Latency (cycles) 3 1 4 2

Clock frequency (MHz) 170.96 250.8 189.6

Encryption round (cycles) 7 8 2

Encryption round (ns) 40.88 42.38

Table 4.3: Comparison of the GALS and synchronous implementations of the AES partitioning used inAcacia.
All numbers given are synthesis results for a 0.25 µm CMOS technology. The GALS version was configured
to run without delay inducing DPA countermeasures.

GALS solution, a bottom-up approach is used as each locally synchronous island is optimized separately. This
approach results in more optimized sub-units.

4.3.6 Physical Implementation

Acaciawas manufactured in a the 0.25 µm 5-Metal CMOS technology. While it is not the most recent tech-
nology, it is reasonably priced and is well supported at the IIS. As a result of a special arrangement with the
MPW manufacturer, the usable die size forAcaciawas fixed to 3.56 mm2. This also placed a hard limit on
the available I/O pads of 64. In addition, it was decided to implementAcaciawith a second unrelated student
design for cost reasons12.

A traditional back-end design flow, does not have a sense of hierarchy: all components of the netlist are treated
equally. In a hierarchical design flow, the design is partitioned into a hierarchy of sub-designs. A global
floorplan is used for the entire system, but other than that, each sub-design is treated separately. This allows
parts of the system to be redesigned without affecting the remaining part of the system. Such a hierarchical
design flow was used forAcacia. The floorplan of the design is shown in figure 4.17. The design hierarchy
is given in figure 4.18. At the top level of the hierarchy two designs,Acacia and the student design, are
instantiated. This top-level hierarchy also contains the necessary glue logic required to share the inputs and
outputs of both designs.Acaciaitself contains a further level of hierarchy that instantiates the GALS modules
and the synchronous part including both the reference design and the synchronous interface. Each of the GALS
modules contains the self-timed wrapper and an additional hierarchy level that instantiates the stand alone LS
island. In this arrangement, the self-timed circuit elements are always in a different hierarchy level than the
LS island. As seen in the floorplan, a small amount of space is reserved for the self-timed wrapper, so that the
asynchronous port controllers, the local clock generator and the necessary glue logic can be placed and routed.
The hierarchical design style is well suited for GALS design and a commercial placement and routing tool was
used without any difficulties.

12The MPW service of the Europractice foundation offers only 25 mm2 modules for this particular technology. Upon request, these
modules were divided into four equal parts. The price is still calculated for a full 25 mm2 module. This arrangement is frequently used to
manufacture student designs. The worst case in this scenario is when one more than a multiple of four designs need to be manufactured.
In such cases, a reasonable effort is made to merge two smaller designs.
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Figure 4.17: Photomicrograph of the chip. The asynchronous port controllers are placed between the LS
islands, . The student design on the left is unrelated toAcacia. The glue logic to share the pins is placed at the
bottom of the chip.
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Local Clock Generator
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Figure 4.18: The design hierarchy.

4.3.7 Simulation Results

In this section, simulation results will be used to explain the operation ofAcacia in detail. Three different
simulation waveforms, each showing a different level of detail, are presented:

• Figure 4.19 shows one complete AES encryption, together with all top level handshake signals.

• Figure 4.20 shows one round of AES encryption and highlights the scheduling of operation on twoDavid
units.

• Figure 4.21 shows one of theDavid units during two consecutive operations.

In the upper parts of the waveforms in figure 4.19, the handshake signals of the synchronous interface can be
seen. In this simulation, the interface is clocked by a 50 MHz clock. The result of the last encryption is stored
in the interface at the beginning. The interface supports 16-bit data transfers, and the result is clocked out in 8
steps. Directly after that, data for the next operation is loaded in 8 steps. At this point, the interface raises the
g2s_Req signal and waits untilGoliath is finished processing the current operation.

OnceGoliath finishes processing the current operation, it acknowledges theg2s_Req signal by activating
g2s_Ack . To be able to safely transfer data, the local clock ofGoliath is halted briefly. This is the only time
when one of the local clocks inAcaciais halted noticeably.

The simulation shows an encryption operation using 128-bit keys. This operation requires 10 encryption
rounds. Although all rounds are identical in nature, by observing theEnc.Round signal, it can be seen
that the first and last few rounds of the encryption require much longer time than the rounds in the middle. This
is a result of the pre-programmed security-effort described in section 4.2.5. The beginning and end of an AES
operation is more vulnerable to DPA attacks, and the pre-programmed security effort increases the amount of
random operations during this time.

The waveform in figure 4.19 also shows all three local clocks inAcacia. The average clock period can be
observed to change between 100 MHz and 200 MHz together with the security effort. However, individual
local clocks are not visibly influenced by the data transfers between modules.

The total time required for the encryption shown in the simulation is 1.100 ns (in reference to the synchronous
clock), and corresponds to a throughput of over 116 Mb/s.



72 CHAPTER 4. SECURE AES IMPLEMENTATION USING GALS

I
n
t
e
r
f
a
c
e

7
2
0
0
 
n
s

7
6
0
0
 
n
s

8
 
u
s

G
o
l
i
a
t
h

0
1

2
3

4
5

6
7

8
9

1
0

0

D
a
v
i
d
 
T
s
c
h
o
p
p

D
a
v
i
d
 
P
e
r
e
l
sO

ut
pu

t o
f L

as
t O

pe
ra

tio
n

In
pu

t f
or

 N
ex

t O
pe

ra
tio

n

R
eq

ue
st

 to
 s

ta
rt

S
ta

rt

E
n

d

A
ck

no
w

le
dg

e

m
o

re
 r

an
d

o
m

~1
00

M
H

z
~1

20
M

H
z

~1
70

M
H

z
~1

90
M

H
z

~2
00

M
H

z
~1

90
M

H
z

~1
80

M
H

z
~1

50
M

H
z

C
lo

ck
 P

au
se

~2
00

M
H

z
~2

00
M

H
z

le
ss

 r
an

d
o

m
fa

st
le

ss
 r

an
d

o
m

m
o

re
 r

an
d

o
m

C
lk

R
eq

A
ck

R
eq

A
ck

S
tr

b

R
eq

A
ck C
lk

R
eq

A
ck C
lk

R
eq

A
ck C
lk

Figure 4.19: Modelsim simulation showing handshake signals ofAcaciaduring one round of encryption. The
pre-programmed security profile can be clearly observed.
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Figure 4.20: Modelsim simulation showing the main signals ofGoliath and the handshake signals between
David units during one round of encryption. The highlighted data items represent ’real’ cryptographic opera-
tions.
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The second waveform in figure 4.20 shows only one round of encryption. The 128-bit register inGoliath
holding the state is shown as four separate 32-bit values for clarity. One encryption round is made up of a
random number of dummy addition cycles, followed by a real addition cycle, and a number of clock cycles
where 32-bit values of the current state is assigned toDavid units for further processing. The four-bit register
colassigned is used to keep track of which parts of the 128-bit state were assigned for processing. As
Goliath receives the processed 32-bit words, it updates another four-bit register namedcoldone .

In the simulation, bothDavid units are assigned one value at the beginning of the round. However,Goliath
receives the result ofDavid Tschoppone cycle prior toDavid Perels. The remaining two 32-bit words are
assigned toDavid Perels, while David Tschoppexecutes dummy operations. These dummy operations require
a random number of clock cycles. At the end of these cycles, the unit signals that it is ready for further
processing, but continues to process random data until the request is acknowledged.

The third waveform shown in figure 4.21 shows two consecutive operations of aDavid unit and all signals of
the associatedd2gport controller in detail. The local clock ofGoliath is shown for reference.

Initially, the David unit can be observed in a state where it is ready to accept data.Pen is enabled and theReq
signal is active. As soon asGoliath is ready to accept data, it activates theAck signal. At this time, the local
clock needs to be paused. However, the clock pause request signalRi arrives at the local clock generator just
after the rising clock edge. Therefore, clock pause request acknowledgeAi is delayed until the falling edge.
Since the handshake withGoliath is finished shortly after, the local clock is not stretched at all. The remaining
two data transfers are completed without stretching the clock at all.

A David operation for a typical encryption round starts with a state where the unit awaits the completion of the
data transfer. This is followed by a random number of cycles where the 32-bit state is processed by two parallel
8-bit multiplicative inverse functions. After all multiplicative inverses have been calculated, a single cycle is
used to compute the affine transformation, and theMixColumnsoperation.

David uses a method that is similar toGoliath in order to determine the ordering of the multiplicative inverse
operations. The four-bit registerimuldone keeps track of what part of the 32-bit state has already been
processed. The signalimulremaining shows the number of remaining inverse multiplication operations
as well. Thetargetcount is assigned byGoliath and together withimulremaining is used to guide
the decisions on how to schedule the operations. The signalselop displays the actual decision that is used
during each clock cycle. In the first operation shown in figure 4.21, the inverse multiplication is finished in
only three clock cycles. In the first clock cycle, two real operations are scheduled (two0 ). In the second clock
cycle David chose two operations randomly (rnd2 ). Coincidentally the two operations chosen had already
been completed, so the result is not stored. Since thetargetcount at the third clock has already reached 0,
the remaining two operations are scheduled for the third clock cycle (two2 ).

The second operation takes much longer, both because of more clock cycles are used and because the fact that
the average period length is longer. Since thetargetcount is relatively high,David occasionally assigns a
dummy operation. In this case, the inputs of both multiplicative inverse units are determined randomly. Note
that thetargetcount is not always achieved. In the second operation the execution finishes one clock cycle
earlier. This is not a bug, thetargetcount is meant as a guide, and not a deterministic target that has to be
met.

4.3.8 Measurement Results

A total of 20 samples were received from manufacturing. One of the samples was damaged mechanically prior
to any measurements. Extensive tests showed that all of the remaining 19 samples were functional.
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Figure 4.21: Modelsim simulation showing two consecutiveDavid operations. The first one is a rather fast op-
eration whereas the second one is a much slower operation. The pink shaded areas represent random operations
on theSubBytesfunctiond
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Figure 4.22: Power consumption ofSchoggi, the synchronous reference design, as a function of operating
frequency (Vdd = 2.5V).

First tests were conducted with the synchronous reference design calledSchoggi. All samples were operational
up to a clock frequency of 150 MHz. The power consumption ofSchoggifor different operating frequencies
is given in figure 4.22. The reference design consumes 160 mW power while operating with a clock rate of
150 MHz. The throughput while running the AES-128 more at this frequency is 164 Mb/s . Encrypting a
128-bit block of data requires an energy of 125 nJ.

The local clock generators used inAcacia, contain a programmable delay line. The local clock frequency
can be reduced by enabling an increasing number of delay slices as explained in section 4.2.4. Measurement
results of the local clock generator used inGoliath from two different chip samples are compared to post-layout
simulation in figure 4.23. As can be seen from the figure, the local clock period can be programmed between
4.5 and 12.5 ns with linear steps of 0.25 ns.

The chip number 14 is the fastest and chip number 1 is the slowest of the manufactured samples. While the
fastest sample matches the simulation results closely, the slowest sample is within 5% of the simulations.

Acaciacontains three different local clock generators. Figure 4.24 shows the operating frequency of all three
local clock generators of chip 1 (slowest chip) as a function of the number of activated delay slices. Contrary to
earlier GALS designs, the local clock generators inAcaciaare not placed and routed manually. The standard
cells that make up the local clock generator inGoliath are distributed over a larger area thanDavid. This
explains the frequency difference between the local clock generators ofDavid andGoliath.

As part of the DPA countermeasures, the GALS modules inAcaciaare able to determine a new clock period
every clock cycle. However, the clock period can not be reduced below the critical path of the LS island.
The minimum allowable clock period for each local clock generator inAcaciacan be determined during the
configuration phase. The measurement result shown in figure 4.25 is obtained by changing the setting for the
minimum allowable clock period.Acaciais operated in mode 00 where the local clock generator is not slowed
down by DPA countermeasures. The clock frequency given for the GALS modules is an approximate value, as
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individual GALS modules have slightly different clock frequencies. Furthermore, local clocks are occasionally
paused during communication, which effectively slows them. The synchronous I/O clock is set to 20 MHz for
this measurement. Running with this clock, the synchronous interface consumes around 35 mW of power.

The four different operating modes ofAcacia(see section 4.2.5) result in different power consumption charac-
teristics as seen in figure 4.26. Increased DPA effort results in the average clock period to be reduced which in
turn results in lower power consumption. The figure also shows the effect of the I/O clock. A certain amount
of power is consumed by the synchronous interface. The actual power consumption of the GALS modules is
unaffected by the change of the I/O clock period. Therefore, it is possible to extrapolate the contribution of the
synchronous interface from the curves in figure 4.26.

A summary of measurement results is given in table 4.4. The measurements for GALS modes show peak
performance values. Average case performance is around 10% lower. It can be seen that the pre-programmed
policy represents a good compromise between performance and security. The pre-programmed policy denoted
as mode 11, is able to distribute operations over a wide range as shown in figure 4.13, comparable to that ob-
tained by mode 10. Distributing operations over time increases the security against known DPA attacks. While
the mode 10 reduces the throughput, and increases energy per data item significantly, the pre-programmed
policy has penalties comparable to mode 01 which introduces only limited countermeasures.
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Mode Clock Number of Max. Time Throughput Energy

[MHz] Cycles [ns] [Mb/s] [mJ/Mb]

Acacia - 00 50 36 720.0 177.7 1.232

Acacia - 01 50 44 880.0 145.4 1.362

Acacia - 10 50 112 2,440.0 57.1 2.704

Acacia - 11 50 46 920.0 139.1 1.198

Schoggi 150 117 779.2 164.2 0.976

Table 4.4: Throughput measurement results for different operational modes. The numbers forAcaciamodes
represent peak performance. Energy figures include only the Cryptographic core, not the interface.
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Chapter 5

Designing GALS Systems

The main advantage of the GALS design methodology over other self-timed design methods is that only a well-
defined, small fraction of a GALS system contains self-timed circuits. This has two important consequences:

1. The majority of a GALS system can be designed using synchronous design methods.

2. The problems commonly related to self-timed design are limited in complexity and can be practically
solved with non-optimal methods.

As a result, the design of a GALS system does not differ significantly from a standard synchronous design.
There are obviously several GALS specific issues that have to be addressed while designing GALS systems.
This chapter discusses these issues, and basically describes the differences between standard synchronous
design flow and GALS design flow.

5.1 Design Automation Issues

Over the years many EDA companies have developed powerful tools to support a well established synchronous
design flow. Self-timed design methodologies on the other hand, are not used as widely, especially for industrial
designs. The EDA industry has therefore not invested in tools that support self-timed design flows1. As a result,
small research groups have been left to develop tools for self-timed design. These efforts have been further
hampered by the fact that there is no unified design methodology. Every research group has developed its own
approach to design self-timed circuits.

As with every newly proposed design methodology, the industrial acceptance of the GALS design methodology
depends mainly on how well suited it is to design automation. Fortunately, up to 99% of a GALS system
consists of standard synchronous design, and for the most part a standard design flow can be used. A design
automation solution has to solve the following issues:

• Develop a library with self-timed port controllers

The port controllers are the only real self-timed elements in the GALS system. They are realized as
asynchronous finite state machines (AFSMs) and, depending on the approach used, can be synthesized
using a variety of tools like Petrify [CKK+97], 3D [YD99b] or Minimalist [FNT+99]. The end result is a
gate level netlist that typically consists of 5 to 20 standard cells of the target process. If the port controllers
can be standardized ,it would also be possible to use transistor level optimized port controllers that are
realized as standard cells.

1This is a typical Catch-22. The micro-electronics industry claims the lack of tool support as the main reason for not using self-timed
circuit techniques, and the EDA industry does not develop such tools, since the industry does not use them.

There are several companies which have developed self-timed design flows like Handshake Solutions (formerly part of Philips) and
Theseus Logic. However the products of these companies have had little impact on the acceptance of self-timed circuits.

81
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These port controllers are (usually) not design specific. They can be designed, optimized and verified
separately. In addition, generally only a very limited set of port controllers is used. As an example,
Acaciauses only three different port controllers. A detailed description of how the ports were developed
for Acaciacan be found in section 5.2.

• Develop the local clock generator

The local clock generator is a critical element of the GALS system. The clock generator relies on a
special MutEx element that needs to be provided as part of the standard cell library (see section 2.2.2 for
details). The clock period is determined by using a delay line. Depending on the resolution required, a
number of different methods can be used to realize the delay line[OVG+02]. Similar to the self-timed
port controllers, the local clock generator is not design specific and can be designed and optimized
separately.

• Providing a partitioning method

Functionality, separate clock domains, and the gate count can all be used as parameters that determine
the partitioning. Ideally, a GALS partition needs to be able to work on its own for longer periods of time
and should consist of a single clock domain. In addition, the LS island should be of reasonable size. It
should be sufficiently large to justify the overhead, but should not be overly large2.

This is probably the only part of the GALS design methodology that is not yet supported by design
automation tools. It requires manual skill and experience to determine a partition that will result in an
efficient GALS system.

• Assembling individual GALS modules

A GALS module is created by encapsulating the LS island by a self timed wrapper that contains the local
clock generator and the asynchronous port controllers. By itself, this is not a very difficult task and can be
easily automated. Some elements of the self-timed wrapper require special attention from certain design
tools. For example, the structure of the port controllers may not be optimized by the synthesis tool.
Similarly, the standard cells making up the delay line elements within the local clock generator should
not be placed randomly. These are, comparatively, minor issues and can easily be added to standard
design scripts.

• Verifying the timing constraints of the asynchronous connections

The asynchronous port controllers need to meet certain timing constraints to guarantee proper operation.
For most circuits, it is only possible to determine the final timing after the placement and routing of
the system has been completed. The timing of all ports controllers must be verified at this stage. Stan-
dard timing analyzers usually require a synchronous clock to perform the timing analysis, and can not
automatically be used to verify self-timed port controllers.

However, almost all industrial timing analyzers can be programmed to measure worst case and best
case propagation delays through any given path. Since the asynchronous port controllers contain few
standard cells, all relevant path delays can be calculated with reasonable effort. These results can then be
processed to determine whether or not any timing assumptions have been violated [GOV+03b].

Interestingly, most of the timing violations occur through fast connections. Resolving such conflicts,
even at later stages of a design is very easy. Additional buffers are placed in the signal path. It is also
possible to design the port controllers more conservatively from the beginning. In this way, the timing
verification effort can be reduced significantly as well.

• Assembling the GALS system

The GALS system basically consists of interconnected GALS modules. In a synchronous design method-
ology, the back-end design is a difficult task that requires considerable effort which increases with in-
creasing circuit size.

In contrast, the top-level design for a GALS system is very straightforward. The modules are simply
placed and the interconnections are made. The GALS design methodology is especially suited to a
hierarchical design methodology, where parts of the design are placed and routed independently.

2“A reasonably sized block” is sometimes defined as a design for which the the entire design flow from source code to final layout
information can be completed using a standard workstation in a day.



5.1. DESIGN AUTOMATION ISSUES 83

The design flow used forShir-Khan, a fairly large GALS system consisting of 25 different GALS modules, can
be seen in figure 5.1. There are five different design levels atShir-Khan:

1. The Self-Timed Library

Shir-Khanwas designed to investigate different multi-point interconnect architectures for GALS [Vil05].
This required a large collection of experimental port controllers. Contrary to a more traditional GALS
design, the self-timed library used inShir-Khancontains 57 different port controllers. All of the ports
were synthesized by the 3D tool. The generated boolean equations were mapped to standard cells of the
target technology by the help of a custom tool calledeqn2gate3.

2. The Local Clock Generator

An important requirement of the local clock generator was a high period resolution. This required the
design of an additional standard cell to be able to control the delay line with sub-gate delay accuracy.
To achieve optimum performance, the local clock generator was designed as a hierarchical module. The
design was synthesized, placed and routed separately and instantiated as a macro cell by the GALS
modules.

3. The SIMD Micro-Controller

The LS island of all GALS modules consisted of a specialized 4-bit micro-controller namedport pro-
cessor. Theport processorwas designed specifically to activate any combination of 4 input and output
ports simultaneously. It was used to generate different traffic patterns on the multi-point interconnects.
Theport processorwas designed using a standard synchronous design flow.

4. GALS Modules

Shir-Khan has 25 GALS modules and a total of 181 port controller instantiations. A special design au-
tomation script calledmoduleassemblerwas written to automate the design process.moduleassembler
used a textual description of the GALS system, and automatically generated the VHDL code for each
GALS module. Furthermore, it generated tool-specific scripts to complete the design flow. All GALS
modules inShir-Khanwere assembled automatically by scripts and source code generated bymodule-
assembler. Similar to the local clock generator each GALS module was designed as a hierarchical
module.

5. GALS System

The remaining tasks of the design was to instantiate, place and route the GALS modules at the top-level4.
The source code of the top-level instance was made manually. The GALS modules were placed on the
chip and a power routing was devised. The signal interconnections were made using standard routing
tools.

The scripts developed forShir-Khancould have been modified to support the design flow forAcaciaas well.
However, sinceAcacia is much smaller in comparison and uses only two unique GALS modules with only
three port instantiations, it was more practical to conduct the design flow manually.

The main difference between the two designs is in the back-end design flow. InShir-Khan, Silicon Ensemble
from Cadence Design Systems was used. However, this older tool does not directly support a hierarchical
design flow. Rather complex design scripts which were automatically generated bymoduleassemblerhad to
be used to emulate a hierarchical design flow.Acaciaused SOC-Encounter from Cadence Design Systems
that inherently supports a hierarchical design flow. This design flow is well suited for GALS and made it
considerably easier to design the chip.

3The mapping is by no means optimal. For the most part, the resulting netlist could be used directly. In some cases, several optimizations
were performed manually.

4Shir-Khan also contained several additional test structures that were not part of the GALS system. These were placed and routed
during this stage as well.
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5.2 Designing Asynchronous Finite State
Machines

The basic design principle between synchronous and asynchronous finite state machines (AFSMs) are very
similar. Both types of state machines preserve their state until certain conditions are met. The input signals and
the present state of the machine is used to determine the next state. In a synchronous finite state machine, the
next state change occurs after the next active clock event, whereas an AFSM moves to the next state as soon as
the conditions to change the state are met. This results in extremely fast state transitions. Since decisions are
sudden, all input signals that are used for these decisions have to be stable. AFSMs are very sensitive to glitches
at their inputs5. The synthesis of AFSMs is therefore more involved than their synchronous counterparts.

There are different classes of self-timed circuits [SF01]. Each class has its own set of assumptions that results
in slightly different realizations. The most robust and general class of self-timed circuits are delay-insensitive
(DI) circuits. These circuits will function correctly regardless of the gate and wire delays in the circuit. Unfor-
tunately, only few practical DI circuits can be realized. A more practical class of self-timed circuits is obtained
from DI circuits by assuming that two wires that split from a common wire have the same unbounded delay.
The class of self-timed circuits that function correctly under this isochronic-fork assumption are known as
Quasi-delay-insensitive (QDI) circuits. Even less assumptions are made for Speed-independent (SI) circuits
that only assume bounded gate delays but no wire delays. At first sight this assumption seems unrealistic
for modern integrated circuits. However, circuits whose wire delays are lumped into gate delays can still be
considered speed-independent.

Before an AFSM can be synthesized, it needs to be described in a way that is convenient for the developer and
understandable for the tools. A popular method for expressing AFSMs is using signal transition graphs (STG),
that is essentially a simplified form of the Petri-Nets. An example STG can be seen in figure 5.4. In this graph,
the boxes represent a signal transition. The signal name followed by a ’+’ represents a raising transition of the
signal, and similarly a ’-’ represents a falling transition. Solid and dotted lines are used to represent outputs
and inputs respectively. The large dot is called a “token” and represents the current state of the system. The
STG can also be represented in machine readable form. The following is a textual description of the STG seen
in in figure 5.4.

.model d2g

.inputs Pen Ack Ai

.outputs Req Ri Ta

.graph
Pen+ Req+
Req+ Ack+
Ack+ Ri+
Ri+ Ai+
Ai+ Req- Ta+
Ta+ Pen-
Req- Ack-
Ack- Ri-
Ri- Ai-
Ai- Pen-
Pen- Ta-
Ta- Pen+
.marking{<Ta-,Pen+>}
.end

An AFSM synthesis tool is able to convert this description into a set of boolean equations, or even a gate-level
netlist. Depending on the self-timed circuit style, the AFSMs are synthesized using certain timing assumptions.

5Not all glitches will cause an erroneous state change in an AFSM. They are not as error prone to glitches as some publications lead
people to believe. However, certain unwanted input transitions will lead to errors. Because it is not easy to differentiate or identify harmful
glitches from harmless glitches, it is common practice to try to avoid all of them.
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In the final circuit implementation, these assumptions must still hold true. For modern IC technologies the
interconnection delays can vary significantly depending on the placement and routing of the final circuit. It is
important to verify the correctness of the AFSMs after final placement and routing.

5.2.1 Port Controllers in Acacia

Although a library of port controllers developed for earlier GALS projects was available at the start of the
project, a new set of port controllers were specifically developed forAcacia. The main reasons for the additional
effort are the following:

• Level sensitive port enable

In an effort to enable data transfers at every clock cycle, the port controllers developed by Muttersbach
used an edge sensitive port enable signal. This practically doubles the number of states in the AFSM
and results in slightly larger realizations. The GALS modules inAcaciawere explicitly designed not to
transfer data during consecutive clock cycles. Therefore, this overhead was deemed to be unnecessary.

• Different transfer acknowledge

The transfer acknowledge signal (Ta) as implemented by Muttersbach uses a flip-flop that could be set
during data transfer and would be cleared by the first active clock edge. The most important problem
with this approach is that theTa signal must be sampled immediately since the first clock cycle will clear
the information. In addition, the clock signal used in the port controller must be balanced with respect to
that used in the LS island.Acaciauses a more “relaxed”Ta signal that remains active until a new data
transfer starts.

• One-sided port

The interface betweenGoliath and the synchronous environment is special since only the local clock of
Goliath can be paused for synchronization. A special port that is able to transfer data safely between
the synchronous environment and a GALS module was designed for this purpose. The port is called
one-sided since it can only influence one side of the data transfer.

Mainly due to the level sensitive input to enable the port controllers, earlier GALS ports designed by Mut-
tersbach used the “extended burst mode” circuit description [YD99a] and were synthesized using the 3D tool.
The port controllers inAcaciaare speed-independent AFSMs that are synthesized from signal transition graphs
using a tool called Petrify [CKK+97].

The idea to use three independently clocked GALS modules is a key part of the DPA countermeasures imple-
mented inAcacia. The pausable clock generator is used to ensure data integrity during data transfers between
GALS modules. If the clock is paused for longer durations, an attacker could potentially determine the time
when two modules exchange data, and could use this information to refine the attack. To deny the attacker any
such opportunity, the port controllers inAcaciawere designed to reduce the synchronization time as much as
possible. These ports work similar to P-type ports developed by Muttersbach. The port controller pauses the
local clock only momentarily when its communication partner has signaled that it is ready for data transfer.

5.2.2 Data Exchange between David and Goliath

The block diagram in figure 5.2 shows the data communication channel betweenDavid andGoliath. There
are two separate port controllers,d2g on theDavid side andg2d on theGoliath side. Unlike earlier GALS
implementations, the port controllers inAcaciaare bi-directional. Once both GALS modules are synchronized,
both modules exchange data.
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The STG and the gate-level circuit diagram ofd2gcan be seen in figure 5.4. The corresponding timing diagram
is given in figure 5.3 The port, once activated byPen (A), immediately activates theReq signal (B) and waits
for Ack+ (C). The local clock is only paused after theAck signal is received. After the clock is paused (D),
the data can be safely sampled. At this point, the data transfer is effectively concluded and theTa signal is
activated (E). Afterwards, the handshake signals are returned to their idle states and the clock pause request
signalRi is deactivated (F). TheTa signal remains active (G) as long as thePen signal remains active (H).
This is an important change from older port controllers designed by Muttersbach, where theTa signal was only
available at the first active clock edge.

Theg2d port controller seen in figure 5.5 is very similar to thed2g. TheRi+ transition, that will instruct the
local clock generator to pause the clock, can only fire after bothPen+ (coming fromd2g) andReq+ (coming
from Goliath) are received. At this point,David is ready to transfer data, the local clock is paused immediately,
and theAck signal is generated. Once theReq- signal is received, data transfer has been completed and the
local clock is released again. Similar tod2g, the Ta signal is set immediately after pausing the clock and
remains active untilPen- is received.

5.2.3 Data Exchange between Goliath and Synchronous Interface

The block diagram in figure 5.6 shows the data channel betweenGoliathand the synchronous interface. This is
a specialized interface as the synchronization effort is only on theGoliathside of the channel. Note that, in this
organization, safe data transfers are only possible under specific timing assumptions. InAcacia the external
clock used in the interface is chosen to be slower than the local clock generator ofGoliath. The port controller
g2s ensures thatGoliathcan synchronize within one clock period of the external clock signal.

The STG and the gate-level circuit schematic for the port controller g2s is given in figure 5.76. The Muller-C
elements shown in figure 5.6 are used to change the handshake signals synchronous to the external clock.
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The synchronous interface initiates the data transfer by activating theEnable signal, which is propagated to
theReq signal that triggers theg2sport. As soon as the port controller is enabled byGoliath, Ri is activated
to pause the local clock. At this moment, it is safe to transfer data between two modules and theAck signal
is activated. The Muller-C element ensures that theAck signal generated byg2s is only propagated during
the first half of the clock period. In this way, theDone signal can safely be sampled by the synchronous
interface. The synchronous interface then deactivates theEnable signal. The Muller-C element allowsReq
to be deactivated within the first half of the clock period only. The local clock ofGoliath remains paused until
the arrival of theReq signal. Contrary to the data transfers betweenDavid andGoliath, there is no need to
disguise the data transfers betweenGoliathand the synchronous interface for DPA security.

No latches are required for the data transfer between the synchronous interface andGoliath. The output regis-
ters of the synchronous register are stable before the data transfer is initiated by theEnable signal. The local
clock of Goliath is paused as soon as it starts the data transfer. The clock is paused until theEnable signal is
deactivated. This only happens after an active clock edge on the synchronous interface. By this time the same
clock edge will safely sample the data inputs.

5.3 Testing Acacia

As soon as a design using self-timed circuit techniques is mentioned, the first question that pops up is:

“How are you going to test this circuit ?”

Self-timed circuits have always been regarded as being difficult to test. A good overview of the self-timed
testing problem is given in a survey conducted by Hulgaard et al [HBB95]. There are two main properties of
self-timed circuits that make traditional testing approaches infeasible:

1. It is not possible to hold the state of a self-timed circuit using a global signal.

6Although the STGs of bothg2sandg2d look very similar, there are differences in the way internal state variables are handled. Initially,
both ports were very different. Only in the later stages of the design, the handshake protocol betweenGoliathand the synchronous interface
was changed, resulting in the present design.
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In synchronous systems, once the clock is halted, the state of the system is frozen. It can be observed and
manipulated with ease. There are well established methods (i.e. scan based testing) and proven tools to
support this approach. It is possible to support similar functionality for self-timed circuits as well. But
the required test functionality must be part of the circuit definition from the beginning7.

2. Self-timed circuits are (in principle) sensitive to all transitions of their inputs.

This increases the amount of failure sources. In synchronous systems, as long as all nodes have the
correct value at the time of a clock transition, the system will function correctly. Parasitic transitions
of intermediate nodes have no negative effect on functionality8 in a synchronous system. In self-timed
circuits, such glitches can have terminal consequences. Not only that, but signal transitions that are faster
or slower than normal may result in the circuit malfunctioning.

The problem is also exaggerated by the fact that there are many different flavors of self-timed design method-
ologies, each with its own special requirements.

Testing is an essential part of the IC manufacturing process. Since there are very few self-timed circuits that
have been manufactured in the industry [Ron99], the quality of test solutions for self-timed circuits, when
compared to their synchronous counterparts, is clearly lacking .

The self-timed test problem is tackled in two main directions:

1. Using a functional approach

Certain faults in self-timed circuits lead to clearly observable behavior, usually such circuits stop func-
tioning altogether. Several approaches have been proposed that rely mainly on such ’self-checking’
behavior [MH91, Wie95, GVO+02].

2. Modifying the self-timed circuit to support scan-based testing

Since scan based testing is well-known and effective, most self-timed test methodologies try to add scan
capability to state holding elements [PF95, KB95, BPtB02]. Unfortunately, full-scan based self-timed
test methods incur a very large area penalty, at times doubling the circuit area. In order to keep the
overhead at acceptable values, partial-scan methods have been suggested as well.

The GALS methodology developed by Muttersbach used a synchronous fall back method, in which, for test
purposes, all AFSMs were bypassed and synchronous state machines were used instead. The resulting system
was a fully synchronous system that can be tested normally. This method was more of an emergency solution
and several alternatives were considered that actually tested the AFSMs as well. The AFSMs used in the
GALS system are very limited in complexity. Therefore, instead of devising a general method that is capable
of testing any given AFSM, practical methods that ensure adequate test coverage for the AFSMs used in the
GALS methodology were investigated

At first, a method that added scanable elements to the asynchronous connections was considered. This method,
similar to the one presented in [BPtB02] introduces a very large area overhead. Such an arrangement also inter-
rupts the asynchronous handshake signals between GALS modules, slowing the communication and reducing
the throughput. Since all AFSMs are tested in isolation, this method fails to detect delay faults that occur be-
cause signal transitions between two AFSMs are either too slow or too fast. On top of that, it was shown that
the stuck-at test coverage of this approach is not above 90%.

In a GALS system, only a very small portion of all stuck-at faults are in the AFSMs. As an example, inAcacia,
the total number of stuck-at faults is 154,604. Only 182 (0.118%) of these faults are within the AFSMs. This
was the main motivation to develop a functional approach to test the AFSMs within the GALS system. This
approach [GVO+02] adds a Test Extension Element (TEE) to the each GALS module. The TEE is clocked by
a synchronous test clock. During test mode, the TEE is able to decouple thePen signal from the LS island and
initiate data transfers on all self-timed connections. In this way, all data connections within the GALS system

7A designer working on a standard synchronous circuit, does not need to instantiate scanable flip-flops, or connect the scan chain
manually. This is all done automatically by the test automation tools.

8Glitches are not desirable as they increase the switching activity and thus the dynamic power consumption of the circuit. Their
presence, however, does not affect the functionality.
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can be tested individually. This idea is very similar in principle to the IEEE P1500 standard proposed for
testing embedded cores [MZK+99]: Inter-module communication is tested by initiating data transfers between
modules.

Individual TEEs are controlled by a centralized test controller as seen in figure 5.8. The centralized test con-
troller could be implemented in hardware, giving the system a built-in self-test capability, or implemented as
a test program on automated test equipment. The TEE also enables the test controller to access the LS island
through a JTAG interface. In this methodology, all LS islands are assumed to have their own test solution.

Two GALS designs have been implemented after the test extension methodology was developed.Shir-Khan
[GOV03a] was designed primarily as a test platform for various multi-point interconnection schemes for GALS
[Vil05]. Shir-Khanconsists of twenty five identical 4-bit micro-controllers with large buffers at their inputs
and outputs. These so-calledport processorswere specifically designed to test the self-timed connections
between the GALS modules. A special local clock generator developed by Stephan Oetiker [OVG+02] enabled
switching between the locally generated clock and an external synchronous clock for configuration. In a way,
the functionality of the TEE was integrated into the LS island and the local clock generator.

The local clock generator forAcaciauses a similar method to switch between the locally generated clock and
an external synchronous test clock. During test mode, all GALS modules are run with the same synchronous
test clock. This allows standard tools to be applied to generate the ATPG patterns. All LS islands are fully
tested using this method. However, the stuck-at faults within the AFSMs, the local clock generators, and the
data interface including the latches used for retaining data, can not be detected with these patterns. Figure 5.9
shows the configuration that has been used inAcacia. The shaded areas represent the portions of the system
that contain stuck-at faults that can not directly be detected using the scan chains.

The final gate-level netlist ofAcaciawas analyzed using Synopsys Tetramax. All faults regarding the local
clock generators9 and reset signals10 were removed from the fault library. The tool reported a test coverage of
96.2%. A further analysis yielded the following:

• 2,900 faults were classified as ’possibly detected’. Tetramax classifies a fault as possibly detected if the
fault simulation does not result in a logic-1 or logic-0, but an unknown. By default, 50% credit is given
for such faults. Although this increases the test coverage by few percentage points, these faults need to
be investigated further

• 2,529 faults were listed as ’ATPG Undetectable’. Faults classified as ATPG undetectable are tied to a
constant value during the fault simulation. Most of the faults in this class are a result of the test mode
signals that enable the circuit to be run synchronously.

• 351 faults were listed as ’Undetectable’. There are a number of reasons why a fault can be placed in this
class. Most common reasons are not connected outputs or inputs that are tied to a constant value. Most
of these are plain design errors and could be eliminated during the design phase. Tetramax automatically
removes these faults from the statistics.

• 1,897 faults were not detected.

After this analysis, all questionable faults were collected. Several of the faults were equivalent. In addition,
for some nodes both the stuck-at-1 and stuck-at-0 faults could not be detected. A total of 3,089 unique nodes
were determined by parsing the fault reports. A gate-level simulation was performed and all of these 3,089

9The local clock generators are practically disabled during the scan test mode. A simple functional test was devised, and all local clock
generator outputs were made observable.

10During fault simulation, the reset signal has to be held high (inactive). As a result the ATPG algorithm reports all reset/set inputs of
the flip-flops to be untestable against stuck-at-1 faults. This can be easily verified by special test vectors, and therefore, these faults have
been removed from the fault library



5.3. TESTING ACACIA 93

Lo
ca

l C
lo

ck
 

G
en

er
at

or

AFSM

LS
 Is

la
nd

Re
q

A
ck

Pe
n

Ta

Lc
lk

G
AL

S 
M

od
ul

e

A
i

Ri

Te
st

 E
xt

en
si

on
 E

le
m

en
t

JT
AG

TD
I

TD
O

TC
K

TM
S

Lo
ca

l C
lo

ck
 

G
en

er
at

or

AFSM

LS
 Is

la
nd

Lc
lk

G
AL

S 
M

od
ul

e

Te
st

 E
xt

en
si

on
 E

le
m

en
t

JT
AG

TD
I

TD
O

TC
K

TM
S

A
i

Ri

Pe
n

Ta

Ce
nt

ra
liz

ed
 T

es
t C

on
tro

lle
r

Te
st 

Co
nt

ro
l

Te
st 

Cl
oc

k

TestIn

TestOut
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nodes were observed for the duration of a simple encryption and decryption. Each node that was observed to
have changed its value more than 4 times during this simulation was considered to be detectable for stuck-at-1
and stuck-at-011. This method reported 2,796 (90.5%) of the specially analyzed nodes detectable for stuck-at
faults. Once these nodes were mapped back to the individual faults, only 175 faults remained undetected in the
entire design. This results in a respectable test coverage of 99.89%.

5.4 Adapting Modules for GALS

In principle, any standard synchronous design can be converted into a GALS system. However, the advantages
offered by the GALS methodology can only be exploited if the system is designed with GALS in mind from the
beginning [GOK+05]. In a GALS system, the synchronous design will be partitioned into several LS islands
that will eventually become individually clocked GALS modules. Each of these LS islands have to be adapted
to, or better yet designed according to, the requirements of the GALS design. The better the synchronous
system is adapted to a GALS methodology, the better the performance will be. However, this may result in a
design that is noticeably different from a system that is optimized for synchronous clocking.

As an example, consider the AES algorithm presented in this thesis. An efficient synchronous design would
most probably use a block diagram like the one presented in figure 3.10. However, a direct GALS implemen-
tation of this block diagram would not be able to offer the same kind of DPA countermeasures asAcaciadoes.
Similarly, a designer would not come up with the transformation presented in figure 4.1 without thinking about
a GALS implementation.

The following is a brief discussion of several key issues that must be considered when designing GALS-friendly
LS islands:

11A proper fault simulation would have been much more conclusive in this regard. While it is trivial to modify the simulations to perform
actual fault simulations, it has not been performed due to time constraints.
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• Additional registers at inputs and outputs

The interface between the (locally) synchronous domain and the self-timed domain is always prone to
timing violations. The self-timed port controllers ensure safe data transfers under the assumption that
output data is available when the port is activated and input data can be sampled by the first active clock
edge that follows the data transmission. This can be achieved by using registers at both inputs and
outputs. Note that these registers are not strictly necessary for correct operation, but they eliminate the
costly timing verification effort at the interface.

The obvious side effect of this approach is additional latency in the LS island. However, this additional
latency is in local clock cycles and may not translate to an overall latency in the system. By isolating
LS islands from the rest of the system, it may be possible to run individual LS islands at a higher rate
than what it would be possible in a synchronous system. As an example inAcacia, David can be clocked
much faster thanGoliath as can be seen in table 4.3. As a net result, although the GALS implemen-
tation requires 30% more clock cycles, the time required to complete an AES round does not change
significantly.

• Limited interaction between modules

Basically each data transfer between GALS modules has a chance to slow the participating modules
down. Therefore, a successful GALS partitioning aims to limit the rate of data transfers between GALS
modules as much as possible. This requires fairly independent modules that can operate on a set of data
over several clock cycles before requiring data exchange.

In synchronous systems, the actual state of a module can be easily communicated across the system by
several status bits. This can be used to improve performance in the synchronous system. Communicating
such signals between GALS modules can be costly and should be avoided. Again takingAcaciaas an
example:David requires several cycles to process its input. OnceDavid is finished,Goliath needs to
make a decision as to what to do next. In the synchronous reference realization ofAcaciathe current state
of Matthiascan be made available toSchoggiat all times. This enables the decision process inSchoggito
be triggered as soon asMatthiasstarts processing the last step. By the timeMatthiasis finished,Schoggi
has already reached a decision. In the GALS implementation, communicating the actual state ofDavid to
Goliathwould require continuous data transfer between the modules and is therefore not very practical.

The LS islands of a GALS system must be designed to operate using one-time or burst-type parallel
data/control signal transfers rather than a continuous interaction. This may require re-engineering of
several control structures and result in performance loss in local clock cycles.

• Proper handshake signals

There are various forms of handshake protocols that are available to designers. However, a significant
part of designers that are used to synchronous systems do not apply them properly. Many designs use
protocols that are not complete and make a lot of (hidden) assumptions on the system. Strobe signals are
a good example for this. A strobe signal basically qualifies an accompanying data signal as valid during
a clock cycle. This is equivalent to a request signal used in standard handshake protocols. Such a signal
assumes that the system is ready to accept data at any clock cycle. Whether or not the data has been
accepted by the receiver is never really checked.

The LS islands of a GALS system needs to support proper handshaking between the LS island and the
port controllers. The exact handshake protocol depends on the design of the specific port controllers used
in the system.

• More complex state machines

A GALS system consists of multiple GALS modules, each of which uses its own local clock. When seen
from a LS island that is part of a GALS system, a data transaction to a connected GALS module may
take an undetermined amount of clock cycles. LS islands that have connections to more than one GALS
module are at times unable to make any assumptions on the completion order of the data transactions.

Consider the controller inGoliath that schedules 32-bit operations on two separateDavid units. Assume
that initially bothDavid modules,David PerelsandDavid Tschopp, are able to accept data.Goliath
will now wait for the modules to finish processing, and schedule new operations on both units. At any
given clock cycle, both, any, or none of the twoDavid modules may return a result. Again, assume for a
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moment thatDavid Perelshas returned a result and was assigned a third 32-bit data. Even now, it is still
possible thatDavid Perelsreturns a result prior toDavid Tschopp12.

Although it is very difficult to quantify, a controller within a GALS module needs to consider more cases
than a purely synchronous design, and as a result is more complex.

• Reducing clock domains

One of the main challenges in modern SoC design is to handle a multitude of clock domains. This
requires considerable effort in synchronization, and more often than not results in large FIFO structures
between blocks.

Most of the clock domains are introduced to the system in order to support a specific standard commu-
nication protocol. Different clock domains are also used when parts of the SoC can not match certain
clock rates that are used throughout the system.

GALS is a method for synchronizing different clock domains. Although it might sound strange, the goal
of a GALS design must be to reduce the number of clock domains. Each LS island will eventually be a
separate clock domain, and GALS provides a method to synchronize these domains. If the synchronous
system includes several clock domains, the GALS system will have to be designed in a way to encapsulate
each clock domain in a separate GALS module. This may severely restrict the partitioning and result in
sub-optimum designs.

The data connection between two GALS modules can, in a way, be considered as a single-stage dis-
tributed FIFO. At least theoretically, additional FIFO buffers between individual modules should be
unnecessary.

For an efficient SoC implementation, most of the tricks that were added to the system in hope of support-
ing a synchronous design flow need to be undone first. This may require at times radical changes to the
system.

• Real-time processing

Since GALS modules use a pausable local clock, it is very difficult to guarantee that a certain operation
can be processed in a fixed number of clock cycles. At first sight, this makes it difficult to interface
external signals that have fixed clock rate.

However, most external interfaces use a decidedly slower clock rate when compared to internal clock
rates. Depending on the clock rates used, it may still be possible to design interface modules that can
finish processing input and output in time for a fixed interface clock. These interfaces have additional
timing constraints set on them, and especially with modules that have more than one connection, the
conditions to guarantee safe operation is not well defined.

Acaciauses such a port controller to communicate with a fixed-clock interface. The particular interface
described in section 4.3.3 uses a handshake protocol and does not expect results in a fixed number of
clock cycles. As long as the throughput requirement can be met by the GALS modules, it would have
been possible to meet fixed clock cycle demands as well.

5.5 Related Research Directions

This thesis primarily presented an application of GALS to secure cryptographic hardware design. There are
other interesting fields where GALS could have a potential impact. The following is a short description of three
active research fields where GALS could be used.

5.5.1 Network-on-Chip Systems

As SoCs grow in size, supporting a global communication that connects all sub-modules becomes an increas-
ingly difficult task. A solution to this problem might be adapting network solutions commonly used for com-
puter communications within the SoC. Such systems are generally referred to as Network-on-Chip (NoC)
[JT03].

12In Acacia, the situation is exaggerated even further as the number of clock cycles required for aDavid operation varies randomly.
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A classical NoC system, consists of several resources, which are regular users of the network. Each resource
is connected to the network by a switch that is able to route data packets to and from the resource. The NoC
system clearly separates function from communication. The functionality is provided by the resources, and the
communication between resources is handled by the switches.

Most of the topologies presented in the literature make use of the two dimensional structure of an integrated
circuit. Some architectures like Nostrum [MNT+04] use a homogeneous mesh-based system, while others like
Xpipes [BB04] use a heterogeneous approach where the geometry and size of resources is determined by the
functionality. The problem is very similar to the partitioning problem presented for GALS systems in section
4.1. It is easier to resolve the timing issues for homogeneous systems since all connections between switches
will have approximately the same size, on the other hand it is difficult to imagine practical systems where all
resources are of identical size.

NoC solves one important problem of large system designs. Instead of using overly long interconnections
between sub-modules, data transmission over longer distances is routed over switches in the network. Still the
problem of distributing a global clock to the entire system, and synchronizing between different clock domains
remains to be a challenge.

There are many parallels between NoC system design and GALS design. First of all, both methods separate
function from communication. As mentioned earlier, the partitioning problem is very similar for both ap-
proaches. Furthermore, both methods were developed to address problems of large SoC designs. Combining
both methods could potentially be mutually beneficial. In fact, there are several recent publications that talk
about GALS-based NoC architectures [BCV+05, RVFG05].

A successful GALS-based NoC should be able to manage implementing the resource as the LS island and
realizing the switch as part of the self-timed wrapper of a single GALS module. The switch should not interfere
with the LS island, as long as there is no data transfer between the network and the resource. Note that, while
the resource is not receiving or sending data, the switch still needs to be able to route traffic to and from
connected switches. Depending on the NoC system, this might require a more complex switch. In case the
network switch can not be realized easily using a self-timed design method, it might be necessary to implement
the switch as a second LS island with an independent local clock generator, which would increase the overhead
of the system.

GALS would definitely address the problems of distributing the clock and synchronizing between different
clock domains. However, one of the most requested features from a NoC system is a way to provide Quality-
of-Service (QoS). This guarantees a specific bandwidth between selected resources under all circumstances.
On the positive side, the operation speed of the switches in a GALS-based NoC can be made independent from
the resource, adding more throughput and thus more flexibility to the network. However, defining an upper
limit for the time that is required to transfer data between two GALS modules is difficult13.

Overall, GALS and NoC promise to be two very compatible technologies. Combining both could potentially
help overcome several serious problems that both technologies are facing at the moment.

5.5.2 Dynamic Voltage and Frequency Scaling

The more tightly circuits can be integrated, the more energy has to be dissipated over the same area. Coupled
with the demands of mobile applications, where the power supply is one of the limiting design parameters, this
has strongly motivated the designers to find ways to reduce the power consumption of integrated circuits over
the last years.

As outlined briefly in section 3.5.2, the power consumption of an IC has a dynamic and a static part. While
decreasing technology size has increased the ratio of static power consumption significantly, most of the power
consumed by the integrated circuits remains to be dynamic power consumption14 given by the following well-
known equation:

13All known synchronizer circuits basically need to avoid metastability. No matter what approach is chosen, there is either a probability
that the circuit will fail, or the time required to produce an output is unbounded. In the GALS methodology developed by Muttersbach the
basic element that resolves metastability, the MutEx element, falls into the latter category.

14For the UMC 0.25 µm technology used to implement the designs presented here, even for extreme low power designs, the static power
consumption is barely measurable (much less than %1).
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Pdyn≈ α ·C · f ·V2
dd (5.1)

The total switched capacitanceC is determined mainly by the circuit netlist, and the activity factorα is de-
termined by the function and input data. Even if the circuit is not changed in any way (andC andα remain
constant), the dynamic power consumption can be reduced by both the operating frequencyf and the supply
voltageVdd.

The throughput of the circuit is directly determined by the operating frequency, and reducingf will reduce
the throughput of the circuit. There are however some synchronous designs where the operating frequency is
chosen as a compromise to satisfy different requirements of the circuit. In this case, some sub-blocks of the
circuit may remain idle over several clock cycles. Similarly, the throughput requirement of the circuit may
change throughout the operation of the circuit. Peak throughput might only be required for short time intervals.

Reducing the supply voltage reduces the dynamic power consumption even more decidedly. However, the
power supply can not be reduced indefinitely, and the circuits will slow down as the supply voltage is reduced
[CSB92].

Dynamically changing the frequency and the supply voltage for sub-blocks to reduce power consumption has
been successfully implemented for high-performance micro-processors[NCM+02]. The so-called Dynamic
Voltage and Frequency Scaling (DVFS) methods are very attractive for the micro-processors, as they are well-
known for their excessive power consumption, and their performance requirements strongly depend on the
program they are executing. Most DVFS applications are rather coarse grained and adjustments are made after
thousands or even millions of clock cycles.

There is no reason why not also large SoC systems could benefit from DVFS. There are some important differ-
ences between two design styles. Unlike micro-processors, that have a relatively fixed architecture, SoC archi-
tectures are more varied. Consequently, algorithms that are developed to control DVFS for micro-processors
are not always well suited for SoC designs.

GALS offers several interesting advantages that could be exploited to realize DVFS systems. The GALS design
methodology already enables modules to be clocked at different clock rates. At least theoretically, it would be
possible to extend this idea to support different voltages as well. One important issue in DVFS is monitoring
or predicting the activity of the module to be controlled. In a GALS system that uses D-type port controllers
which pause the clock until data transfer is completed, both theReq-Ack signal pairs or the duty cycle of the
local clock can be used to determine how active a module is. If the duty cycle is

50% the module is running without being interrupted by data transfers. This means that the environment is
faster than (or at least as fast as) the module itself. Potentially, the environment could interact even with
a faster module. Therefore, if it is possible, increasing the operating frequency and the voltage of the
module could result in improved throughput.

(50-δ)% the module is running just as fast as the environment. This is the ideal operating condition. Theδ
value is required, as it shows that the environment is just keeping up with the module, and the module
has to be paused occasionally.

25% the module is spending half the time waiting for the environment. The module is producing results too
fast. The supply voltage of the module and the operating frequency of the local clock can be reduced to
save energy.

An important problem that needs to be addressed is to avoid cyclic dependencies, where in the end all modules
in a GALS system end up slowing each other down until there is no activity at all. Also, instead of relying
solely on the environment to speed up operation, individual GALS modules could be “warned” in advance
about changes in activity15. These problems could be addressed by designing a centralized power controller to
monitor and control the DVFS effort in the GALS system.

A second problem is communication between modules with different power supplies. Special level converters,
or independent power supplies for input and output registers could be used for this purpose. Unfortunately,

15As an example, as soon as the keypad of a mobile device is activated, computational modules could be “brought to life” in anticipation
of activity as a result of user interaction.
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modern technologies have dramatically reduced power supplies to allow small transistors. This reduces the
available margin to adjust the power supply of the module somewhat16.

There is fair amount of interest and research already taking place in adapting DVFS for GALS. However,
published results are far away from practical realizations. There are early theoretical studies on the performance
gains of GALS-based micro-processors using DVFS [IM02]. More recently published papers on GALS, like the
GALDS approach by Chattopadhyay et al. [CZ05], mention DVFS as a possible application without providing
concrete solutions.

5.5.3 Latency-Insensitive Design

Latency-insensitive circuits developed by Carloni et al. [CMSV01] formally addresses the problem of de-
signing systems whose inputs may arrive with different latencies due to interconnection delays. Rather than
trying to find methods where all inputs arrive at the same time, Carloni suggests adding relay stations on long
interconnections. The question is:

“Is it possible to have a functionally equivalent circuit under these circumstances ?”

For the formal description of the system, a tagged signal model is used. In this model, all signals are represented
by a set of value-tag pairs. The tag is essentially a timestamp that tells when the signal has the given value.
Using this notation, Carloni was able to prove that, as long as the system consists of patient processes, it is
indeed possible to have a functionally equivalent system. Such systems are called latency insensitive. A patient
process is described as a stallable process which can be halted until all data inputs required to generate the next
output are present.

Latency insensitive design was developed with synchronous systems in mind. Most of the publications in this
field try to address practical issues on how relay stations can be added to the system. Functional blocks are
encapsulated by a shell that converts the system into a patient system, mostly by adequate clock gating. This
approach is remarkably similar to a GALS system that consists of functional LS islands encapsulated by a
self-timed wrapper, which contains a pausable local clock. The analysis methods used in latency-insensitive
design may be applied to GALS systems and can be used to address formal aspects of GALS system design.

16Most digital circuits designed for a 2.5V technology would be able to operate safely (albeit much slower) with a supply of 1.2V.
However, running a circuit designed for a 1.2V technology with 0.6V may not be possible at all.
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Chapter 6

Conclusion

This thesis essentially combines two different research areas: cryptographic hardware design, and the GALS
design methodology. Separate conclusions can be drawn for both areas:

6.1 Cryptographic Hardware Design

A hardware designer’s view of implementing cryptographic hardware is presented in this work. As a result of
the experience obtained during the design of six different ASICs with different constraints on operation speed,
area and side-channel security, an extensive analysis of hardware implementations of the popular Advanced
Encryption Standard is given.

As part of this work, a completely new implementation of the AES with improved countermeasures against
the differential power analysis (a particularly efficient form of side-channel attacks) has been developed. This
implementation, calledAcacia, is based on the GALS design methodology and utilizes several levels of coun-
termeasures.

Several of the implemented countermeasures, like adding noise generators or inserting ’dummy’ operations,
are well-known. Some of the countermeasures are however new, and were only made possible as a result of
using the GALS design methodology.Acaciaconsists of three datapath units that are clocked independently.
In addition, Acacia is able to change the period of individual clock cycles randomly. Combined with the
aforementioned countermeasures, this results in a very unpredictable operation order and is expected to present
a formidable challenge to attackers.

Almost all countermeasures incur some sort of performance penalty. Additional pseudo random number gen-
erators used for generating additional noise increase circuit area, and not surprisingly, power consumption.
Dummy operations used to interrupt the regular operation flow increase the time required to complete a cryp-
tographic operation, and reduce the throughput. In addition, the AES datapath needs to be modified in a GALS
friendly way, which results in lower performance when compared to an optimized implementation.

Acacia is able to dynamically change its security effort during an operation. The so-called policy can be
programmed to increase the effort for countermeasures during the initial and final rounds of an AES operation,
where it is more vulnerable. During middle rounds, where it is more difficult to stage a DPA attack, the security
effort is reduced. Measurement results have shown that, when run using this policy setting, the throughput of
Acacia is only 15% less than that of the synchronous reference design and consumes only 20% more energy
per data item.

This thesis provides a fresh idea on how to implement DPA countermeasures. The evaluation of the efficiency
of the proposed countermeasures requires the help of the cryptanalysis community, and is beyond the scope of
this thesis.

There are many practical problems associated with determining the quality of the countermeasures. For in-
stance, to be able to verify whether or not a proposed countermeasure results in 10x improvement in DPA
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security, the design must be attacked with no countermeasures first. Then with the countermeasures activated,
it must be shown that an attack with comparable certainty can only be obtained with at least 10x more effort1.

The successful DPA attack onFastcoreshown in figure 3.13 required more than three days of automated mea-
surements. Unless the measurement setup is refined to reduce the attack time dramatically, it is impractical
to demonstrate the efficiency of the countermeasures using the current measurement setup. Even if such mea-
surements could be performed in reasonable time, they would not offer conclusive proof that the proposed
countermeasures are effective against side-channel attacks of similar nature.

6.2 GALS Design Methodology

Up to now, GALS implementations have been limited to demonstrator circuits or large-scale testbeds. The
Acaciadesign presented in this thesis is the first circuit where GALS has been applied to address a specific
problem. The GALS design flow has been proven to produce results comparable to what can be expected from
more established industrial design flows. The design effort was comparable to that of a synchronous design
of the same complexity, and all major steps of the design flow were performed using industry-standard design
tools.

Designs that employ self-timed circuits are often criticized to have poor testability. Similar concerns have
been raised over GALS applications over the years. By using a combination of scan-based test and a simple
functional test, a stuck-at fault coverage of more than 99.8% has been obtained forAcacia.

Since GALS-based designs have pausable local clock generators, it is considered to be hard to interface to
external sources that use synchronous clocking. While a generic solution for this problem has not been for-
mulated, it was shown that under certain timing assumptions, it is indeed possible to transfer data between a
GALS module and a standard synchronous design reliably.

The main design criteria behindAcaciawas to improve the resistance against differential power analysis at-
tacks. Such countermeasures invariably add penalties to system parameters such as circuit area, operation
speed, and power consumption. However, even with significant countermeasures, the GALS-basedAcacia
achieves throughput and power figures within 20% of those from a fully synchronous version without any
countermeasures. This shows that it is indeed possible to design GALS systems that have similar or even better
performance metrics than their synchronous counterparts.

As can be seen from table 4.3,Acacia is more than two times larger than the reference design. However, the
overhead required for the self-timed wrapper is less than 5% of the total area ofAcacia. Most of the additional
area inAcaciacan be attributed to the countermeasures and the pseudo random number generators.

The most critical aspect of GALS remains to be partitioning the design into GALS modules. The partition-
ing has more influence on the performance of the system than all other factors combined. A well-defined
methodology to determine the partitioning for GALS designs has yet to be developed.

In an attempt to make GALS design attractive to a broader audience, it has been often suggested that a syn-
chronous design can be easily converted to a GALS design in a process called GALSification. While it is
possible to design working GALS systems using this method, more efficient systems can only be realized if it
is designed with GALS in mind in the first place.

This will be more apparent for larger SoCs that are expected to benefit significantly from GALS-based design.
Present SoC designs require several tens of clock domains. Several of these domains are introduced to enable
system wide communication protocols between blocks with different operating speeds. If such SoC circuits
were designed with GALS in mind, several of such clock domains would not be required. Moreover, especially
for inter-module communication, inherently asynchronous communication protocols would be favored over
synchronous versions that are more difficult to implement in a GALS system.

1A proper analysis would require more than one attack, since individual measurements may differ significantly. As an example, for the
two separate attacks onFastcore, the first attack required around 6,000 plaintexts while the second attack (of which the results are shown
in figure 3.13) required around 3,500.
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6.3 Final Words

This work shows that the GALS approach is indeed a relatively mature design methodology that can be safely
applied to design digital systems. As long as the system has been designed with GALS in mind, a designer
using GALS should not expect a notable performance loss or an increased design effort.

The main advantage of the GALS design methodology is that it reduces the effort required for integrating mul-
tiple blocks on a large System-on-Chip design. However, in the example design described in this thesis, GALS
has been applied to address a completely different problem. By implementing a common cryptographic algo-
rithm using GALS, it was shown that completely new countermeasures against common side-channel attacks
can be developed.
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Appendix A

’Guessing’ Effort for Keys

Most popular accounts that deal with overly large numbers make an effort to describe the large number in
quantities that can be more easily visualized. For cryptographic algorithms, the question is usually how much
effort is required to guess the correct cipherkey using a brute force attack. It is a lot. Although scientists dealing
with theoretical cryptography will tell otherwise, it is practically impossible to succeed in a brute force attack
against a good cryptographic algorithm with a cipherkey length exceeding 100 bits.

Table A.1 should help the reader to easily come up with dramatic expressions that describe the amount of time
and resources required to find the correct permutation of bits in ann-bit cipherkey. Note that in average 2n−1

attempts are required for guessing the correct cipherkey. Simply choose some quantities and time spans from
the table and add up the indicated bits so that the total matchesn−1 .

As an example for AES-128 (127 bits) the following expression can be derived:

“If everyone living on this world would possess the fastest known computer in the world, guessing one 128-bit
cipherkey would take approximately 1000 times longer than the written history of mankind (roughly 6 million
years)”
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Description bits value

quantities

a million 20 1·106

number of AES encryptions that can be calculated per
second using the fastest Pentium processor

24 20·106

number of processors that can be powered by one nuclear
reactor

25 40·106

number of people living in the world 32.5 6.5·109

number of processors that can be powered by the total
amount of energy consumed in the world

39 500·109

number of floating point operations calculated by the
fastest supercomputer of the world each second (as of
June 2005)

47 136·1012

number of atoms in a drop of water 73 10·1021

number of processors that can fill all oceans of the world 78 323·1021

number of processors that can be powered by the sun 84 16·1024

number of atoms in a human body 92.5 7·1027

number of atoms in planet earth 166.5 133·1048

time spans

seconds in a year 25 31.5·106

average life of man in seconds 31 2.4·109

written history in seconds 37.5 189·1012

age of the world in seconds 57 145·1015

age of the universe in seconds 59 630·1015

Table A.1: Some practical examples for large numbers and the equivalent amount of cipherkey bits. Most of
the values are approximations found on the Internet and are only for comparison purposes.
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Appendix B

List of Abbreviations

Ack Acknowledge (signal for GALS systems)

AES Advanced Encryption Standard

AFSM Asynchronous Finite State Machine

ASIC Application Specific Integrated Circuit

AT Area Time (product)

ATM Automated Teller Machine

CBC Cipher Block Chaining Mode

CFB Cipher Feedback Mode

CMOS Complementary Metal Oxide Semiconductor

CTR Counter Mode

DES Digital Encryption Standard

DI Delay Insensitive (asynchronous circuit)

DOP Dummy Operation

DPA Differential Power Analysis

DVFS Dynamic Voltage and Frequency Scaling

ECB Electronic Codebook Mode

EDA Electronic Design Automation

EEPROM Electrically Erasable Programmable Read Only Memory

FIFO First-In First-Out

FIPS Federal Information Processing Standard

FPGA Field Programmable Gate Array

GALS Globally Asynchronous Locally Synchronous

I/O Input and Output

JTAG Joint Test Action Group

LFSR Linear Feedback Shift Register
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LS Locally Synchronous (Island)

MPW Multi Project Wafer

MutEx Mutual Exclusion Element

NIST National Institute of Standards and Technology

NoC Network on Chip

OFB Output Feedback Mode

Pen Port Enable (control signal for GALS systems)

PRNG Pseudo Random Number Generator

QDI Quasi Delay Insensitive (asynchronous circuit)

QoS Quality of Service

RAM Random Access Memory

Req Request (signal for GALS systems)

ROM Read Only Memory

RSA Rivest, Shamir, Adleman (authors of the public key cryptographic algorithm)

SI Speed Independent (asynchronous circuit)

SoC System on Chip

STG Signal Transition Graph

Ta Transfer Acknowledge (signal for GALS systems)

TEE Test Extension Element

UMC United Microelectronic Corporation


