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ABSTRACT
Heterogeneous embedded systems on chip (HESoCs) co-integrate a stan-

dard host processor with programmable manycore accelerators (PMCAs)

to combine general-purpose computing with domain-specific, efficient

processing capabilities. While leading companies successfully advance

their HESoC products, research lags behind due to the challenges of build-

ing a prototyping platform that unites an industry-standard host proces-

sor with an open research PMCA architecture.

In this work we introduce HERO, an FPGA-based research platform

that combines a PMCA composed of clusters of RISC-V cores, imple-

mented as soft cores on an FPGA fabric, with a hard ARM Cortex-A

multicore host processor. The PMCA architecture mapped on the FPGA

is silicon-proven, scalable, configurable, and fully modifiable. HERO in-

cludes a complete software stack that consists of a heterogeneous cross-

compilation toolchain with support for OpenMP accelerator program-

ming, a Linux driver, and runtime libraries for both host and PMCA.

HERO is designed to facilitate rapid exploration on all software and hard-

ware layers: run-time behavior can be accurately analyzed by tracing

events, and modifications can be validated through fully automated hard-

ware and software builds and executed tests. We demonstrate the useful-

ness of HERO by means of case studies from our research.
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1 INTRODUCTION
Heterogeneous embedded systems on chip (HESoCs) are used in vari-

ous application domains to combine general-purpose computing with

domain-specific, efficient processing capabilities. Such architectures co-

integrate a general-purpose host processor with programmable many-

core accelerators (PMCAs).While leading companies continue to advance

their products [14, 23, 24], computer architecture research on such sys-

tems lags behind: little is known on the internals of these products, and

there is no research platform available that unites an industry-standard

host processor with a modifiable and extensible PMCA architecture.

An important aspect of processors is their instruction set architec-

ture (ISA), because it is the interface between software and hardware

and ultimately determines their usability and performance in the system.

The RISC-V ISA [32] has recently gained considerable momentum in the

community [8, 12, 33] because it is an open standard and designed in a

modular way: a small set of base instructions is accompanied by standard

extensions and can be further extended through custom instructions [16].

This work was partially funded by the EU’s H2020 projects HERCULES (No. 688860) and
OPRECOMP (No. 732631).
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This allows computer architects to implement the extensions suitable for

their target application. Moreover, the ISA is suitable for various types of

processors from tiny microcontrollers [27] to high-performance super-

scalar out-of-order cores , because it does not specify implementation

properties. Combined, these characteristics make RISC-V an interesting

candidate for specialized PMCAs.

There are many different PMCA architectures, such as Kalray MP-

PA [11], KiloCore [3], STHORM [19], Epiphany [21], and PULP [22]. PULP

is an architectural template for scalable, energy-efficient processing that

combines an explicitly-managed memory hierarchy, ISA extensions and

compiler support for specialized DSP instructions, and energy-efficient

cores operating in parallel to meet processing performance requirements.

PULP is a silicon-proven [12], open [27] architecture implementing the

RISC-V ISA and can cover a wide range of performance requirements by

scaling the number of cores or adding domain-specific extensions. Thus,

it is ideally suited to serve as a baseline PMCA in research on HESoCs.

Research on heterogeneous systems traditionally follows a two-pron-

ged approach: hardware accelerators are developed and evaluated in iso-

lation [9, 15], and their impact on system-level performance is estimated

through models and simulators [4, 18]. Compared to implementing ac-

celerators in prototype heterogeneous systems, this approach has signif-

icant drawbacks, however: First, interactions between host, accelerators,

the memory hierarchy, and peripherals are complex to model accurately,

making simulations orders ofmagnitude slower than running prototypes.

Second, even full system simulators such as gem5 [2] model HESoCs to

a limited degree only [6]. For example, models of system-level intercon-

nects or memory management units (MMUs), which dynamically influ-

ence the path from accelerators to different levels of the memory hierar-

chy, are missing. Third, simulations are based on assumptions. Contrary

to results obtained through implementation, simulated results burden au-

thors and reviewers with having to justify and validate the underlying

assumptions. Working prototypes, on the other hand, enable efficient,

collaborative, and accurate computer architecture research and develop-

ment, which can compete with industry’s pace [17]. To perform system-

level research using standard benchmarks and real-world applications,

however, the system must additionally be efficiently programmable: a

heterogeneous programming model and support for shared virtual mem-

ory (SVM) between host and PMCAs are indispensable.

In this work, we present HERO, the first (to the best of our knowledge)

heterogenousmanycore research platform.HERO combines anARMCor-

tex-A host processor with a scalable, configurable, and extensible FPGA

implementation of a silicon-proven, cluster-based PMCA (ğ 2.1). HERO

will be released open-source and includes the following core contribu-

tions:

• A heterogeneous software stack (ğ 2.2) that supports OpenMP 4.5 and

SVM for transparent accelerator programming, which tremendously

simplifies porting of standard benchmarks and real-world applications

and enables system-level research.

• Profiling and automated verification solutions that enable efficient hard-

ware and software R&D on all layers (ğ 2.3).

With up to 64 RISC-V cores running at more than 30MHz on a single

FPGA (ğ 3.1), HERO’s PMCA implementation is nominally capable of ex-

ecuting more than 1.9GIPS and outperforms cycle-accurate simulation

by orders of magnitude. We demonstrate HERO’s capabilities by means

of case studies from our research (ğ 3.2 to ğ 3.4).
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2 PLATFORM
In this section, we present first the hardware and then the software in-

frastructure of our research platform.

2.1 Hardware
HERO can be implemented on different hardware platforms consisting

of a hard-IP, ARM Cortex-A host CPU and an FPGA fabric used to imple-

ment the PMCA. Fig. 1 gives an overview of the implementation of HERO

on the Juno ARM Development Platform (Juno ADP), which will be dis-

cussed in detail in ğ 3.1. On all platforms, logic instantiated in the FPGA

can access the shared main dynamic random access memory (DRAM)

through a low-latency AXI interface coherently with the caches of the

host. This qualifies the platforms for development and prototyping of

tightly-integrated accelerators and the associated software infrastructure.

Programmable manycore accelerator (PMCA). As PMCA, HERO uses

the latest version of the PULP platform [22]. PULP has been employed

in multiple research application specific integrated circuits (ASICs) de-

signed for parallel ultra-low power processing. To overcome scalability

limitations, it uses a multi-cluster design and relies on multi-banked,

software-managed scratchpad memories (SPMs) and lightweight, multi-

channel direct memory access (DMA) engines instead of data caches.

The 32b RISC-V processing elements (PEs) [12] within a cluster primar-

ily operate on data present in the shared L1 SPM to which they con-

nect through a low-latency, logarithmic interconnect. The PEs use the

cluster-internal DMA engine to copy data between the local L1 SPM and

remote SPMs or shared main memory. Transactions to main memory

pass through the remapping address block (RAB) [28], which performs

virtual-to-physical address translation based on the entries of an inter-

nal table, similar to the MMUs of the host CPU cores. This lightweight

hardware block is managed in software directly on the PMCA [30]. The

host and the PMCA can thus efficiently share virtual address pointers.

As such, SVM substantially eases overall system programmability and

enables efficient sharing of linked data structures in the first place.

Since HERO uses FPGA logic to implement the PMCA, it cannot reach

the high clock frequency and energy efficiency of an ASIC implemen-

tation. Nevertheless, the performance of a fully integrated HESoC can

be accurately determined: One option is to proportionally scale down

the clock frequency of host and DRAM. Even more accurately, the pro-

vided tracing infrastructure (ğ 2.3.1) can be used to monitor the inter-

faces of the PMCA, from which the effect of clock frequency ratio differ-

ences between PMCA, host, and DRAM can be calculated. The platform

is perfectly suited for studying the system-level integration of a PMCA,

developing heterogeneous software, and exploring architectural varia-

tions of the PMCA including, e.g., cluster-internal auxiliary processing

units (APUs) and application-specific accelerators, hardware-managed

caches and coherency protocols, interconnect topologies, and scalable

system MMUs. In essence, the PMCA is composed of exchangeable and

modifiable blocks and interfaces, and different architectures can be de-

rived from our implementation to match individual research interests.

The PMCA is highly configurable. Tab. 1 gives an overview of the

different configurability options currently supported. Besides the num-

ber of clusters and the number of PEs and SPM banks per cluster, the

32b RISC-V PEs themselves can be configured to trade off hardware re-

sources and computing performance. The single-precision floating-point

unit (FPU) can be private, moved to the APU to be shared among multi-

ple PEswithin a cluster or completely disabled. Similarly, the integer DSP

extension unit, the divider, and the multiplier can be private or shared in

the APU. In addition, different designs for the shared instruction caches

(single- or multi-ported) and top-level interconnects (bus or network on

chip) can be selected. Also the design of the RAB is configurable: The

number of translation lookaside buffer (TLB) entries and levels as well

as the architecture of the second-level TLB can be adjusted.

Table 1: Configuration options for HERO’s PMCA

Component Options

# Clusters 1, 2, 4, 8

System-level interconnect Bus or network on chip

# PEs per cluster 2, 4, 8

FPU Private, shared (APU), off

Integer DSP unit, divider, multiplier Private, shared (APU)

L1 SPMs # banks 4, 8, 16

L1 SPMs size [KiB] 32, 64, 128, 256

L2 SPM size [KiB] 32, 64, 128, 256

Instruction cache design Single- or multi-ported

Instruction cache size [KiB] 2, 4, 8

Instruction cache # banks 2, 4, 8

RAB L1 TLB size 4, 8, 16, 32, 64

RAB L2 TLB size 0, 256, 512, 1024, 2048

RAB L2 TLB associativity 16, 32, 64

RAB L2 TLB # banks 1, 2, 4, 8

Bold and underlined values refer to implementations discussed in ğ 3.1.

2.2 Software
In this section, we describe the various components of HERO’s software

stack. Fig. 2 shows how the different software layers and components

of host and PMCA interact. These components seamlessly integrate the

PMCA into the host system and allow for transparent accelerator pro-

gramming using OpenMP 4.5. The application developer can write and

compile a single application source. Application kernels suitable for of-

floading to the PMCA can simply be encapsulated using the OpenMP

target directive. The actual offload is then taken care of by the OpenMP

runtime environment (RTE).

2.2.1 HeterogeneousOpenMP programming. To allow the host OpenMP

RTE to actually perform an offload to the PMCA, a custom plugin that

contains the PMCA-specific implementations of the generic application

programming interfaces (APIs) is required [7]. For example, this plugin

defines how the input and output variables specified in the target con-

struct are passed between host and PMCA. HERO currently supports

both copy-based and zero-copy offload semantics. The latter exploits the

SVM capabilities of the platform to just pass virtual address pointers,

thereby avoiding costly data copies to a physically contiguous, uncached

section in main memory and enabling efficient sharing of linked data

structures.

2.2.2 Heterogeneous cross compilation. Generating both host and PMCA

binaries from a single application source requires a set of compiler ex-

tensions to build a heterogeneous cross-compilation toolchain based on

GCC 5.2 [7]. When the compiler expands a target construct in the front

end, a new function is outlined that is ultimately also compiled for the

PMCA. This is achieved by first streaming the functions to be offloaded

into a link-time optimization (LTO) object, which is then fed to a custom

offload tool at link time. This tool first recompiles the functions for the

target PMCA using the RISC-V back-end compiler and links all PMCA

runtimes and libraries. It then creates the hooks for the offloadable func-

tions required by the host OpenMP runtime. Finally, the tool packs ev-

erything inside a dedicated section in the host binary.

An additional compiler pass is used to instrument all load and stores

of the PMCA to variables in SVM within the target constructs with

calls to low-overhead macros [29]. These macros protect the PMCA from

using invalid responses returned by the hardware in case of TLB misses

in the RAB and interface with the virtual memory management (VMM)

library [30].
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Figure 1: HERO’s hardware, as implemented on the Juno ADP.
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Figure 2: HERO’s software stack.

2.2.3 Host runtime library and Linux driver. The host RTE library in-

terfaces the host-side OpenMP runtimewith the Linux driver. In addition,

it is used to reserve all virtual addresses overlapping with the physical

address map of the PMCA. This is required as any access of the PMCA

to a shared variable located at such an address would not be routed to

SVM but instead to its internal SPMs or memory-mapped registers. The

driver handles low-level tasks such as interrupt handling, synchroniza-

tion between PMCA and host, host cache maintenance, operation of the

system-level DMA engine (e.g. to offload the PMCA binary), operating

the profiling hardware, and initially setting up the RAB to give the PMCA

access to the page table of the heterogeneous user-space application.

2.2.4 PMCA virtual memory management (VMM) library. Having ac-

cess to the page table of the heterogeneous user-space application, the

PMCA can operate its virtual memory hardware autonomously. A VMM

library [30] on the PMCA abstracts away differences between host archi-

tectures and RAB configurations and provides a uniformAPI to explicitly

map pages and handle RAB misses. When a core accesses virtual mem-

ory through the RAB, the corresponding address translation may not be

configured. In this case, the core that caused the miss goes to sleep and

the miss is enqueued in the RAB. To handle a miss, the VMM library de-

queues it, translates its virtual address to a physical one by walking the

page table of the host user-space process, selects a RAB table entry to

replace and configures it accordingly, and wakes up the core that caused

the miss. The VMM library is compatible with any host architecture sup-

ported by the Linux kernel.

2.3 Tools forHardware andSoftwareR&D
2.3.1 Event tracing and analysis. Fine-grained information on the run-

time behavior of the PMCA in the HESoC is crucial for both hardware

and software engineers to evaluate their designs and implementations.

While simulations can provide first estimates, they do not accurately

reproduce run-time behavior of HESoCs, as stated in the introduction.

Instead, this information can be extracted by tracing events in the run-

ning HESoC prototype, which poses the following challenges: First, the

tracer must not interfere with program execution; in particular, inserting

instructions (e.g., to write memory) is not an option. Second, the tracer

must be cycle-accurate to allow analysis of rapid, consecutive cause-effect

events yet be able to handlemeasurements spanningmillions of events to

cover complex applications. Third, the tracer should use FPGA resources

economically to not hamper the evaluation of complex hardware. Fourth,

the tracer should not require modifications of applications, but should al-

low application-specific analyses.

HERO’s event tracing solution is a hybrid design composed of light-

weight tracer hardware blocks, which can be inserted anywhere on the

FPGA, and a driver on the host. The customizable tracer hardware blocks

are attached to signals and record their values as timestamped event

when user-specified activation conditions are met. They store events in

dedicated, local buffers implemented with block RAMs (BRAMs). When

a buffer is full, the tracer hardware stops the PMCA by disabling its clock

and raises an interrupt to delegate control to a driver on the host. The dri-

ver then reads out all events from the buffers to main memory, clears the

buffers, and re-enables the clock of the PMCA. This process is entirely

transparent to the PMCA, whose state is frozen during the transfer. The

timestamps of all loggers are synchronized because they are driven from

a common clock, which is disabled with the PMCA clock.

After an application terminated, all traced events are available in main

memory for analysis. HERO’s event analysis software processes the data

in three layers. The first layer is generic: it reads the binary data from

memory and creates a time-sorted list of events, which contain generic

meta data and the ID of the tracer, and a collection of properties of the

platform onwhich theywere recorded. The second layer is measurement-

and platform-specific. For example, if a logger traced memory accesses

by cores, each of its generic events is converted to a read/write access to

a memory address by one core; if a logger traced synchronization events,

each is converted to a set of involved cores. The third layer is application-

specific and optional: by linking run-time information such as memory
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accesses and synchronization events with knowledge about algorithms

and data structures, questions about bottlenecks and how hardware and

software design choices affect them can be answered very precisely.

change HDL simulate unit test commit HDL change

simulate all TBs
build bitstreams
for all targets

check results and
deploy bitstreams

target
platforms

execute all
(app., build conf., run param.)
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u
te

if failed

automated

manual

hardware-related

software-related

Figure 3: HERO’s automated HW/SW build and test flow.

2.3.2 Automated Implementation and Validation. Automated full-sys-

tem builds and tests are a prerequisite for many effective development

paradigms. In our case, the system consists of an entire heterogeneous

hardware and software stack. As shown in Fig. 3, different parts of the

stack have to be built and tested depending on the change: When modi-

fying hardware, for example, we change code, evaluate the change with

a unit test in the simulator, and commit the change once it passes that

test. Then, an integration server simulates all testbenches and builds bit-

streams for all target platforms (in parallel) with the commit applied. If,

for a given target platform, all testbenches pass and the bitstream builds,

the bitstream is deployed to the target platform. Finally, the integration

server starts all target platforms with updated bitstreams, runs all test

and benchmark applications in all configurations (more on this below)

on all platforms, collects the results, and reports them to the developer.

The automated hardware builds are relatively simple: the PMCA hard-

ware description contains synthesis conditionals and parameters, whose

values are defined in a platform-specific configuration file.With the hard-

ware description, this configuration file, and a uniform build script, Vi-

vado generates platform-specific bitstreams.

The automated software builds and test runs are more complex: To

maximally optimize every PMCA kernel for streamlined execution, the

PMCA runtime is co-compiled with each PMCA application and stati-

cally linked into a single binary with the same build parameters. There

are platform-specific build parameters, which are defined in one config-

uration file per platform, and each application comes with its own set of

build parameters and run arguments, which are defined in an application-

specific configuration file. Each application must specify on which target

platform which builds can be executed with which run arguments. As

the number of combinations grows exponentially with the number of

parameters and arguments, listing all combinations manually would be

redundant, error-prone work. Instead, the combinations are specified in

a compact, graph-based notation. By flattening the graph, the integration

server obtains the list of platform-application-parameter combinations,

which are then built and executed automatically.

3 EVALUATION
In this section, we describe the currently supported platforms and how

their FPGA resources are used (ğ 3.1), demonstrate exploration of parallel

execution and memory hierarchy usage (ğ 3.2), show the positive impact

of SVM on the total PMCA run time (ğ 3.3), and give examples how event

tracing and analysis can be used to efficiently and accurately validate and

characterize run-time behavior (ğ 3.4).

3.1 SupportedPlatforms
HERO is currently implemented on two different development platforms,

and we are working on an implementation on the next-generation Xilinx

Zynq UltraScale+ MPSoC. Porting HERO to a new Xilinx platform is an

effort of approximately two man weeks.

Juno ARM Development Platform (Juno ADP). The Juno ADP features

an ARMv8-based, multi-cluster host CPU (two A57 and four A53 cores),

a Mali-T624 graphics processing unit (GPU), and 8GiB of DDR3L DRAM.

In addition, the system on chip (SoC) offers a low-latency AXI chip-to-

chip interface (TLX-400) connecting to a Xilinx Virtex-7 FPGA, through

which 4 to 8 PMCA clusters on the FPGA can access the shared DRAM

coherently with the caches of the host. The ARMv8 host CPU runs 64b

Linaro Linux 4.5 with a 64b root filesystem (both aarch64-linux-gnu)

generated using the OpenEmbedded build system. We have configured

the root filesystem to have multilib support, such that the host can also

execute 32b binaries (arm-linux-gnueabihf) in ARMv7 mode, which

guarantees compatibility of data and pointer types between the host and

the 32b PMCA architecture in heterogeneous applications.1

Xilinx Zynq ZC706 Evaluation Kit (ZC706). The Xilinx Zynq-7045 SoC

found on the ZC706 combines an ARMv7, dual-core A9 host CPU with

a Kintex-7 FPGA on a single chip. The two subsystems are connected

through a set of low-latency AXI interfaces and share 1GiB of DDR3

DRAM. Using the Accelerator Coherency Port (ACP), the single PMCA

cluster instantiated in the FPGA can also coherently access data from

the data caches of the host. The main advantages of the ZC706 is higher

availability and better affordability compared to the Juno ADP. The 32b

ARMv7 host CPU runs Xilinx Linux 3.18 with a root filesystem generated

using Buildroot.

FPGA resource utilization. Tab. 2 shows the FPGA resource utilization

of the PMCA on the two development platforms in terms of lookup ta-

ble (LUT) slices, flip-flops (FFs), DSP slices, and BRAM cells. The table

lists both the absolute and the relative usage of the clusters and the top-

level module containing also the host interfaces. The configuration pa-

rameters selected for implementation are highlighted as bold and under-

lined text Tab. 1 for the Juno ADP and the ZC706, respectively. The clus-

ters dominate resource usage: 8 clusters on the Juno ADP and 1 cluster

on the ZC706 account for more than 90% and 80% of the total resource us-

age, respectively.While LUT and DSP slices scale linearly from the single

cluster on the ZC706 to the 8 clusters on the Juno ADP, BRAMs and FFs

behave differently due to different instruction cache designs: the larger,

single-ported cache on the Juno ADP uses more FFs and less BRAMs per

cluster than the multi-ported cache on the ZC706. Neither configuration

includes FPUs, and the integer data path alone uses relatively little DSP

slices, even though it supports multiplication and division. The top-level

configuration is identical for both platforms, with the exception of the

different interfaces to the host and the number of clusters, which en-

larges the registered SoC bus. On both platforms, the available LUTs and

BRAMs are the limiting factors. The PMCA can be clocked at 31MHz and

57MHz on the Juno ADP and the ZC706, respectively. The difference is

due to the denser utilization of the Juno ADP and the fact that the Vir-

tex-7 FPGA of the Juno ADP consists of multiple dies connected through

stacked silicon interconnects.

3.2 Case Study: Parallel SpeedupAnalysis
To demonstrate the parallel execution and data transfer capabilities of the

PMCA, we use a matrix-matrix multiplication benchmark. The computa-

tions for calculating the product of two matrices,C = AB, are distributed

over the clusters by tiling A and C row-wise. Each cluster iterates over

1This compatibility could also be achieved by running the application binary in ILP32 mode,
which would allow the host to use ARMv8-specific CPU features. However, the support for
ILP32 is still experimental in Linaro.
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Table 2: PMCA FPGA resource utilization

Juno ADP ZC706

All Clusters

LUT 936 k 76% 128 k 59%

FF 450 k 18% 43 k 10%

DSP 384 18% 48 5%

BRAM 1152 89% 384 70%

Top Level and

Host Interface

LUT 70 k 6% 24 k 11%

FF 61 k 2% 26 k 6%

DSP 0 0% 0 0%

BRAM 75 6% 71 13%

1 cluster
(8 cores)

2 clusters
(16 cores)

4 clusters
(32 cores)

6 clusters
(48 cores)

8 clusters
(64 cores)

1 x
2 x

4 x

6 x

8 x
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la

tiv
e 

Pe
rfo

rm
an

ce

Figure 4: Overall execution speedup by parallelizing matrix-

matrix multiplication.

its rows and parallelizes each row block-wise over its cores: it transfers

a row of A and a column of B from the DRAM to its local L1 SPM banks,

computes the resulting row ofC into its L1 SPM, and transfers the result-

ing row to the DRAM.

Fig. 4 shows the speedup achieved when parallelizing the workload

over multiple clusters. In the baseline (leftmost bar), a single cluster per-

forms the work. The bars to the right of the baseline are for two, four, six,

and eight clusters. Parallelizing execution over two, four, and six clus-

ters leads to ideal speedups compared to the baseline. For eight clusters,

the interconnect between the clusters becomes the bottleneck to data

transfers and limits the speedup to ca. 2% below the ideal value. In the

evaluated implementation, the interconnect is a bus, which provides low

latency but no scalable bandwidth. A network on chip, which is the other

option for the interconnect between the clusters, scales in bandwidth and

can thus, depending on the target workload, reduce the overall execution

time by supporting parallel data transfers for even more PEs.

3.3 Case Study:VirtualMemoryPerformanceAnalysis
SVM support in the PMCA is essential for efficient data sharing between

host and the PMCA: Without SVM, data must be copied to and from a

dedicated, physically-contiguous, uncached memory section before and

after accelerator execution, respectively. This copy operation depends on

the data structure and may be very complex; e.g., the values of all point-

ers in a linked data structure must be changed. With SVM, offloading

simply means passing a pointer.

Fig. 5 shows the run time of different benchmarks executed on the

PMCA with (orange, right bar in a pair) and without SVM (blue, left bar

in a pair). The run time is broken down into offload time, i.e., the time

it takes the host to offload the computation and prepare the data for the

PMCA, and the actual kernel execution time on the PMCA. All times are

normalized to the total run time without SVM. PageRank (a) is a well-

known algorithm for analyzing the connectivity of graphs and is used,

e.g., for ranking web sites. It is based on a linked data structure (LDS),
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Figure 5: Offload and kernel execution time for different bench-

marks with and without SVM support.

Core 0 0x4A0 L1 hit DRAM load

(a) RAB L1 TLB behavior and DRAM access latency.

Core 0 0x9FC L1 miss L2 search and hit DRAM load

Core 1 0x40A L1 hit DRAM load

(b) RAB L1 hit-under-miss behavior and L2 TLB behavior.

C0 0xC00 L1miss 0xC00 L1 hit DRAMload

C7

L2 searchandmiss sleep

PTW RAB config.

(c) RAB miss and miss handling (PTW and RAB reconfiguration).

Figure 6: Memory access events by different cores at the RAB.
For space efficiency, only the LSBs of each VA are shown and events that take

many clock cycles to complete have been compressed, as indicated by dots.

which makes copy-based offloading expensive because the host must

modify many pointers. With SVM, virtual addresses must be translated

at run time. This causes a run time overhead if translations are not in the

TLB of the RAB. Nonetheless, the offload time of copy-based SM domi-

nates, and SVM reduces the run time by nearly 60%. Random Hough

Forests (b) consist of multiple binary decision trees and are used, e.g., for

image classification. The trees have a very large memory footprint, but

only a part of them is accessed, depending on the input data. With SVM,

the PMCA can readily access the entire trees by performing the necessary

address translations at run time. With copy-based SM, the trees must be

made available to the PMCA in their entirety before classification can

start. This leads to a lot of data being copied by the host that is never ac-

cessed by the PMCA. SVM reduces the run time bymore than 60%.Mem-

Copy (c) simply copies a large array into the PMCA and back to memory.

This benchmark is representative of streaming applications that require

the PMCA to perform only little work. With copy-based SM, letting the

host copy data to and from the physically contiguous, uncached memory

to prepare the offload clearly dominates the run time. In contrast, the

PMCA benefits from high-bandwidth DMA transfers. SVM removes the

need for data copying by the host, reducing the total run time by more

than 95%. Thematrix-matrixmultiplication benchmark (d) involves

three matrices stored in arrays, thus shows the same basic behavior as

MemCopy. However, as the PMCA performs computations while travers-

ing the data, the copy-based offload becomes a lesser part of the total run

time. In this case, SVM reduces the total run time by nearly 80%.
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3.4 Case Study:AdvancedEventTracing
To evaluate different aspects of the interaction between PMCA and host,

we inserted event tracers on the AXI read and write request and re-

sponse channels of the RAB as well as on its configuration port. We

then executed different short programs on the PMCA to stimulate dif-

ferent behaviors of the memory subsystem. The AXI tracers recorded

raw memory access requests and responses and identified the related

core through the AXI ID. Finally, we used the event analysis tool to con-

vert that data into series of events per core for each program, as shown

in Fig. 6.

In the first program (a), a single core loads data from the DRAM

through a virtual address (VA) that is in the L1 TLB of the RAB. After a

single-cycle address translation, the load is passed to the DRAM. With

the PMCA running at much lower clock frequencies than it would in a

silicon implementation, this load takes fewer cycles (an average of 7.8

at 20MHz) than it would in a real HESoC, which would distort perfor-

mance evaluations. By tracing all memory accesses in the execution of

a benchmark, however, performance can be accurately determined by

multiplying all access latencies with the implementation-to-emulation

clock ratio.

In the second program (b), one core accesses a VA that misses in the

L1 TLB, which triggers a multi-cycle search in the L2 TLB. While the L2

TLB is being searched, a second core accesses a VA that is in the L1 TLB

and is indeed translated within a single clock cycle. To verify that this

hit-under-miss behavior is always maintained, the analyzer supports de-

finable assertions. Additionally, the number of clock cycles taken to find

a VA in the L2 TLB can be used to evaluate different placement strategies

in the set-associative L2 TLB.

In the third program (c), a core accesses a VA that misses in both

the L1 and the L2 TLB, upon which it reports the miss to another core

and goes to sleep. The other core handles the miss through the VMM

library by walking the page table and configuring a L1 TLB entry to

translate that VA. It then wakes the first core, which retries the memory

access and proceeds with the load. We used this to evaluate our VMM

implementation on the PMCA in [30].

4 RELATED WORK
HERO extends the principle of prototyping computer architectures on

FPGAs to HESoCs. In the FPGA Architecture Model Execution (FAME)

taxonomy [25], HERO is a Direct FAME system, meaning it implements

the target architecture with a one-to-one correspondence in clock cycles

on an FPGA. More sophisticated FAME levels decouple timing and func-

tionality, exchange structural equivalence formodeling abstractions, and

share FPGA resources in time between components of the target ar-

chitecture to increase model flexibility and emulation throughput. An

example of a sophisticated FAME system is RAMP Gold [26], which is

designed for the rapid early-design-space exploration of manycore sys-

tems. It is cycle-accurate and comparable in throughput to HERO, but

requires the development of a behavioral model that is not directly used

in the silicon implementation. In contrast to highly sophisticated FAME

systems, HERO is not designed for early-stage design explorations but

for the evaluation, advancement, and extension of a proven PMCA tem-

plate and for studying the integration of PMCAs in a HESoC. By staying

as close to the silicon implementation as possible, co-development and

maintenance of separate models are avoided. Commercial Direct FAME

systems, such as Cadence Palladium and MentorGraphics Veloce, are

targeted at the verification of entire ICs. To reach the required capac-

ity, they employ custom logic simulation engines and highly intrusive

tracing systems in addition to FPGAs. They come with proprietary tools

and protective licenses at very high costs, which bars the vast majority

of the research community from using them.

The Flexible Architecture Research Machine (FARM) [20] is a sys-

tem for prototyping custom hardware implemented on an FPGA that

is connected to an AMD multiprocessor. Both FARM and HERO pro-

vide a cache-coherent link to the host processor and data transfer (or

DMA) engines. While FARM leaves the task of implementing an accel-

erator from scratch and integrating it with the system to the researcher,

HERO comeswith a RISC-Vmanycore implementation, a heterogeneous

toolchain, and tools to allow efficient hardware and software research

using standard benchmarks and real-world applications.

Intel uses FPGAs to prototype heterogeneousÐin their definition two

sets of cores of the same ISA but different power-performance design

pointsÐarchitectures [10, 31]. They combine aXeon [31] and anAtom [10]

CPU with an FPGA on which they implement up to four łvery oldž [10]

Pentium 4 cores.While an evaluation platformwith a Xeon and anAtom

CPU (both hardwired) was shared with selected academic partners, the

reconfigurable, FPGA-based prototypes remain restricted to Intel [10].

HERO, on the other hand, is openly available, implements a modern

RISC-V manycore on an FPGA, and uses the extended concept of het-

erogeneity with different ISAs.

HERO is more than a PMCA implemented on an FPGA, but its PMCA

implementation is nonetheless related to the following recent works:

OpenPiton [1] is the first open-source, multithreaded manycore pro-

cessor and is available in FPGA implementations for prototyping. Our

PMCA implementation on the FPGA differs from that of OpenPiton in

two ways: First, our PMCA implements the RISC-V ISA, which has re-

cently gained a lot of momentum. Second, it allows evaluation on the

FPGA with more cores: we currently support up to 64 cores compared

to OpenPiton’s maximum of 4 cores (both on a Xilinx Virtex-7, albeit of

different size). GRVI Phalanx [13] is an array of clusters of RISC-V cores

interconnected by a network on chip (NoC). Cores, clusters, and theNoC

are optimized for FPGAs and utilize FPGA blocks very efficiently, allow-

ing to implement hundreds of RV32I cores on a mid-range FPGA. While

FPGAs are the design target of GRVI Phalanx, HERO uses FPGAs as a

prototyping target to support a wide range of implementation targets

and architectural exploration. Moreover, GRVI Phalanx is programmed

bare-metal, whereas the PMCAonHERO comeswith a runtime that sup-

ports well-established programming paradigms such as OpenMP includ-

ing seamless accelerator integration. lowRISC [5] is a work-in-progress

open-source SoC implementing the RISC-V ISA. Its goal is to lower the

barrier of entry to producing custom silicon by establishing an ecosys-

tem of IP blocks around RISC-V cores. In contrast, HERO aims to facil-

itate exploration on all layers of software and hardware in HESoCs by

implementing a modifiable, working full-stack prototype accompanied

by tools for validation and evaluation of novel concepts.

5 CONCLUSION
We presented HERO, the first heterogeneous manycore research plat-

form, which unites an ARM Cortex-A host processor with a fully modi-

fiable RISC-V manycore implemented on an FPGA. Our heterogeneous

software stack, which supports SVM and OpenMP 4.5, tremendously

simplifies porting of standard benchmarks and real-world applications,

thereby enabling system-level research. Our profiling and automated

verification solutions enable efficient hardware and software research

on all layers. We have been successfully using HERO in our research

over the last years andwill continue its development. To further advance

the research community, we are currently working towards releasing

HERO under an open-source license on pulp-platform.org/hero.

http://pulp-platform.org/hero
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