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Abstract—To interact naturally and achieve mutual sympathy
between humans and machines, emotion recognition is one of
the most important function to realize advanced human-computer
interaction devices. Due to the high correlation between emotion and
involuntary physiological changes, physiological signals are a prime
candidate for emotion analysis. However, due to the need of a huge
amount of training data for a high-quality machine learning model,
computational complexity becomes a major bottleneck. To overcome
this issue, brain-inspired hyperdimensional (HD) computing, an
energy-efficient and fast learning computational paradigm, has a
high potential to achieve a balance between accuracy and the
amount of necessary training data. We propose an HD Computing-
based Multimodality Emotion Recognition (HDC-MER). HDC-
MER maps real-valued features to binary HD vectors using a
random nonlinear function, and further encodes them over time, and
fuses across different modalities including GSR, ECG, and EEG. The
experimental results show that, compared to the best method using
the full training data, HDC-MER achieves higher classification
accuracy for both valence (83.2% vs. 80.1%) and arousal (70.1%
vs. 68.4%) using only 1/4 training data. HDC-MER also achieves
at least 5% higher averaged accuracy compared to all the other
methods in any point along the learning curve.

Index Terms—Hyperdimensional computing, affective computing,
emotion recognition, physiological signal processing

I. INTRODUCTION

Affective computing is emotional artificial intelligence that can
recognize, realize, and respond to human affect, which is a key
technology to build cognitive human–computer interfaces in the
era of Internet of Things (IoT) [1]. A wide range of potential
applications of affective computing have been proposed, including
driver warning systems, automated tutoring systems, and health
care systems [2], [3]. Therefore, to accurately interpret human
emotions, their recognition is one of the most important functions
in affective computing.

Emotion is a subjective mental state caused by some specific
events that is usually accompanied by characteristic behaviours
and involuntary physiological changes. General approaches of
emotion recognition commonly gather data from faces and voices
to measure human emotions [4], [5]. However, the emotions are
not always expressed through facial expression or voice. Unlike
these controllable signals, physiological signals are spontaneous
and not controlled by the subject, some of which become useful
inputs for enhancing emotion analysis. Moreover, as intelligent
IoT continues to advance, more and more wearable devices are
equipped with different kinds of sensors that continuously monitor
and collect various signals sensed from subjects. Recent machine
learning-based methods are proposed to use these physiological
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Fig. 1. HD computing-based multi-modality emotion recognition framework.

signals to improve the accuracy of emotion recognition. The state-
of-the-art (SoA) methods include Bayes classifier [6]–[9], support
vector machine (SVM) [8]–[10], and extreme gradient boosting
(XGB) [10].

However, these SoA methods require a large amount of train-
ing data for a high-quality machine learning model. Moreover,
their computational complexity is a major bottleneck for their
real-time execution on wearable devices. Specialized architec-
tures for machine learning can boost energy efficiency towards
TOPS/Watt [11], but further improvement requires a novel look
at data representations, associated operations, circuits, and at ma-
terials and substrates that enable them [12]. Novel brain-inspired
computational paradigms that support fast learning could lead
the way: hyperdimensional (HD) computing [13]—an emerging
computational framework based on computing with random HD
vectors—provides energy-efficient, robust, and fast learning [14]–
[20]. HD computing demonstrates fast learning in various biosig-
nal processing tasks [14]–[16], each of which operates with a
specific type of biosignals (see [17] for an overview). In this
paper, we extend HD computing for multimodal sensor fusion
from different types of physiological signals. This paper makes
the following contributions:

• We propose HDC-MER1 as an HD computing-based mul-
timodal emotion recognition from galvanic skin response
(GSR), electrocardiographic (ECG), and electroencephalo-
graphic (EEG) recordings. Such fusion of information and
scalability to different modalities is achieved by a robust,
distributed, HD vector representation that allows multiple
alternatives to be superposed over the same HD vector and
processed as a single unit. To jointly monitor the different
aspects of physiological changes, HDC-MER fuses the
features from all modalities to a composite HD vector that
is further processed for learning and inference.

• We propose a simple embedding that maps a real-valued
feature to a binary HD vector that modulated by a sparse
random HD vector. This embedding expands the original

1Source codes are available at http://github.com/enjui/HDC-MER



feature representation into a higher dimensional binary rep-
resentation, in an unsupervised fashion, using a randomly
generated nonlinear function to set every component of the
HD vector.

• HDC-MER optimizes the number of taps in the temporal
encoder to capture the meaningful time-dependent emotional
fluctuations for better learning quality. HDC-MER surpasses
the SoA methods in both speed of learning and classification
accuracy. Compared to XGB using the full training data,
HDC-MER achieves higher classification accuracy for both
valence (84.9% vs. 80.1%) and arousal (70.1% vs. 68.4%)
using only 1/4 training data. HDC-MER also achieves at
least 5% higher averaged accuracy compared to all the SoA
methods in any point along the learning curve confirming
its superior accuracy with arbitrary amount of training data.

II. RELATED WORK AND BACKGROUND

A. Related Work of Emotion Recognition with Biosignals

Basic human emotion can be described as a circumplex model
[21]. This model suggests that emotions are distributed in a
two-dimensional circular space, including valence and arousal.
Valence describes how positive or negative the emotion is, and
arousal indicates the intensity of emotion. Based on this model,
affective states can be represented at any level of valence and
arousal. For example, the excitation is a high-arousal and positive-
valence state, and the depression is a low-arousal and negative-
valence state.

A common machine-learning-based emotion recognition con-
sists of signal preprocessing, feature extraction, and classification.
Input data are physiological signals, and output are the results of
classification for valence and arousal. To improve the accuracy
of classification, most related works focus on how to process
physiological signals effectively and extract features from dif-
ferent modalities. Additionally, emotion-related factors, such as
personality and mood, are also discussed in the related works.
ASCERTAIN [8] examines the relationship between emotion
and personality traits via users’ physiological responses and
classifies the emotion by using Naive Bayes (NB) and SVM.
AMIGOS [9] provides a dataset for the affect research as well
as applies Gaussian Naive Bayes (GaussianNB) and SVM for
the emotion classification. Moreover, to measure the complexity
of physiological signals, the entropy-assisted approach [10] was
proposed to extracts the entropy domain features to quantify
the regularity and randomness of signal. In [10], the schemes
of emotion recognition based on SVM and XGB also were
implemented. However, these SoA methods require large amount
of data for training, and impose high computational complexity
that hinder their application for resource-limited wearable devices.

B. Background of HD Computing

The operation of the human brain relies on billions of neurons
and synapses, suggesting that massive neural activities are fun-
damental to its computational power. Brain-inspired HD comput-
ing [13] aims to model the neural activity patterns by computing
with vectors in a very high (e.g., thousands) dimensionality
called HD vectors. Hence, distributed data representation with
HD vectors is the core of HD computing. Namely, any item
can be represented as an HD vector where independent and

identically distributed components do not have specific meaning.
With dimensionality (d) of 10,000, there are billions of nearly
orthogonal HD vectors. This enables HD computing to combine
two such HD vectors into a new HD vector using well-defined
vector space operations, while keeping the representative infor-
mation of the original two HD vectors with high probability.
Other leading properties of HD computing includes robustness,
energy efficiency, massively parallel operations, and fast one-shot
learning [12]. These make it well-suited for efficient biosignal
processing [17], e.g., 2× lower energy at iso-accuracy when com-
pared to a highly-optimized SVM on an ARM Cortex M4 [15].
Larger energy saving is achieved by using emerging 3D nanoscale
devices [18], [19]. HD computing has been applied to various
learning and multiclass inference tasks, such as the language
identification [22], [23], EMG gesture recognition [14], [15],
EEG-based brain–machine interfaces [16], and in general ExG
processing [17].

As a hardware-friendly coding for HD computing, we focus on
binary dense codes [12] where the components of HD vectors are
binary with equally probable 1s and 0s (see [20], [23] for binary
sparse code and related operations). Using the dense binary code,
arithmetic operations in the HD space simply involve bitwise
addition, multiplication, and permutation, defined as follow:

• Addition: The sum of two HD vectors A and B is denoted as
[A+B] and defined as the componentwise majority function
with ties broken at random, also called as bundling. Bundling
two HD vectors produces a new HD vector that is similar
to both input HD vectors. Therefore, it is well-suited for
representing sets.

• Multiplication: The product of two HD vectors A and B is
denoted as A⊕B and defined as the componentwise XOR. It
generates a dissimilar HD vector to the corresponding input
HD vectors and is suited for variable binding.

• Permutation: It shuffles the components of an HD vector A
by one-bit cyclic right shifting, denoted as ρ(A). Permutation
produces a dissimilar HD vector, which is good for encoding
a sequence.

HD computing starts by generating a set of seed HD vectors
in an item memory (IM) to represent basic items defined in the
system. These seeds can be combined to encode a composite
HD vector using the aforementioned operations to represent an
event of interest. This composite HD vector can be stored, or
make incremental updates, in an associative memory (AM) during
learning; it can also be compared (using Hamming distance) with
already learned HD vectors during classification.

III. PROPOSED HDC-MER SCHEME

The proposed HDC-MER scheme consists of 1) HD binary
embedding of features, and 2) multimodality fusion, learning,
and classification in the HD space, as shown in Fig. 2. The
features of GSR, ECG, and EEG are inputs. In this work, we
use the same preprocessing and features in [10] to extract 214
features (i.e., GSR:32, ECG:77, EEG:105) based on statistical and
frequency domain. These multimodal features include 1) GSR:
skin response/conductance and skin conductance slow response,
2) ECG: heart rate variability and heart rate time series, 3) EEG:
average power spectral density of theta band, alpha band, beta
band, and gamma band. All features are normalized to a range



from −1 to +1. This work does binary classification for both
valence and arousal. Thus, HDC-MER returns two labels as
outputs per trial for the positive/negative valence (i.e., V + or
V −) and high/low arousal (i.e., Ah or Al), respectively.

A. HD Embeddings with Random Nonlinearity

The main goal of our embedding is to represent a real-valued
feature with a binary HD vector. In Fig. 2, two inputs from a
feature, i.e., its actual values and its unique identifier (ID), are
mapped from the original representation to the HD representation.
An ID of a feature is treated as a basic field, and its value is
viewed as the filler of this field.

We propose a simple function that nonlinearly maps a real-
valued feature to a sparse HD vector where the number of 1s is
much lower than the number of 0s. The nonlinear behaviour is
randomly but programmatically inscribed based on the HD vector
component that the function operates with. The detailed execution
of our mapping is as follows:

• Step 1. For mapping every feature value (vi), we use a
random Si vector. Let Si be a d-dimensional sparse ternary
vector where its j-th element is denoted by sij . These
elements are independent random variables with probability
distribution defined as:

sij =


+1 with probability (1− p)/2
0 with probability p

−1 with probability (1− p)/2
i ∈ {1, ...,m} , j ∈ {1, ..., d}

where m is the number of features, d is the dimensionality
of embedding, and p is a sparsity factor (i.e., probability of
0s).

• Step 2. We set each bit of the embedding HD vector (bij)
based on the sign of product between the feature value, vi ∈
[−1,+1], and sij as:

bij =

{
1 if vi · sij > 0

0 if vi · sij ≤ 0

Therefore, the value of a feature is mapped to a d-bit sparse
HD vector that is denoted as σ(vi×Si). For a hardware-friendly
design, the HD embeddings can be equivalently implemented by
multiplexers with three input HD vectors S+

i , S−
i , and S0

i . The
selection signal is the sign of feature value vi. For example, when
vi > 0, the positive vector S+

i (i.e., b(Si + 1)/2c) is selected.
Besides mapping the value of a feature, its ID is also mapped to
a unique HD vector Di via the IM. In contrast, the IM maps the
IDs to dense HD vectors that are nearly orthogonal. Binding an ID
of a feature to its value in the HD space, Di⊕σ(vi×Si), produces
another dense HD vector. This resulting HD vector can be readily
used by the arithmetic operations for dense coding in the next
stage. In other words, our embedding maps the entire range of
every normalized float feature vi to three dense binary HD vectors
whose relative distances can be controlled by p (derived from Di

and modulated by one of S+
i , S−

i , S0
i ).

B. Multimodality Fusion, Learning, and Classification

After embedding, the generated HD vectors are sent, sequen-
cilly, to the spatial encoder, temporal encoder, fusion unit, and
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Fig. 2. The block diagram of HDC-MER.

AM for learning and classification. Firstly, the spatial encoder
bundles the information across all features of a modality at a
given time point t. It is done by applying the majority function
among the components of HD vectors. For example in GSR, it is
given by:

Rt
GSR = [(σ(vt1 × S1)⊕D1) + ...+ (σ(vt32 × S32)⊕D32)]

Secondly, the emotion is continuously changing over time.
Therefore, the temporal encoder is applied to capture the changes
of features between videos (i.e., the stimuli to evoke the emotion
of a subject) to capture the time-dependent emotional fluctuation.
By using permutation operation, the temporal encoder can gener-
ate an n-gram HD vector based on a sequence of n features [17],
which can be derived as a d-bit temporal HD vector:

TGSR =

n∏
t=1

ρt−1Rt
GSR

After the encoding in spatial and temporal domain, the next step
is to fuse the multimodal HD vectors. To keep representative
information from all modalities, the fusion unit bundles the
corresponding HD vectors as a fused d-bit HD vector:

F = [TGSR + TECG + TEEG]

Then, this output of fusion unit (F ) is sent to the AM for the
training and inference. During the training phase, F generated
from the training data is bundled to its corresponding class
prototype in the AM. That is, AM collects all F of the same
class and bundles them to a prototype HD vector by the majority
function. For example, the prototype HD vector P of V + can be
given by:

PV + = [F1st trial + ...+ Flast trial]

Therefore, after the training, there are in total four prototype
HD vectors in the AM for V +, V −, Ah, and Al. During the
inference phase we use the same encoding but the label of F
is unknown, hence we call it the query HD vector. To perform
classification, the query HD vector is compared with all learned
prototype HD vectors to identify its source class according to the
Hamming distance (i.e., the measure of similarity), defined as the
number of bits that differ between the two HD vectors. Finally,
two emotional labels with the minimum distance are returned.
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IV. EXPERIMENTAL SETTINGS AND RESULTS

A. Dataset and Simulation Settings

We use the physiological signals provided from AMIGOS
dataset [9] to generate the corresponding features by means
of a 30 s window by sliding over 15 s. There are in total 33
subjects and 16 short-length videos in the database after removing
outliers [10]. Each recording contains 1 channel for GSR, 2
channels for ECG, and 14 channels for EEG. Leave-one-subject-
out method is conducted to evaluate the performance, and the
final performance is calculated by the averaging method.

B. Analysis of n-gram and Learning Curve

Firstly, to capture the significant period of emotional fluctu-
ation, we have to determine the proper size of an n-gram to
represent the affective state. In this work, when n-gram is 4, the
accuracy of valence and arousal can achieve the highest value
of 0.832 and 0.701, respectively. This means that a sequence of
4 feature windows (i.e., 75 s signals) is to be formed as a rep-
resentative HD vector to capture temporal correlations. Notably,
increasing the n-gram does not bring accuracy improvements, due
to the long-term uncorrelated data that are out of 75 s period.

Fig. 3(a) compares the learning curve among GaussianNB [6],
SVM [9], XGB [10] and HDC-MER. As the amount of training
data increases, the average accuracy of valence and arousal grows
gradually. When using 25% of the total dataset for training,
the average accuracy of HDC-MER reaches 76.6%, with an
improvement of at least 16.2% compared to the SoA classifiers.
Although the accuracy can be improved by increasing the training
data for all the methods, the learning curve of HDC-MER is
always superior to the others After using 25% of training data,
the accuracy of HDC-MER is almost saturated. This is in contrast
with the other methods that require further training to improve
their accuracy. In all the points along the learning curve, HDC-
MER achieves the highest accuracy.

C. Accuracy Analysis with Different Levels of Sparsity

Fig. 3(b) shows the average accuracy of our embedding with
different sparsity (p values) and dimensionality (d={5000, 10000,
20000}). Notably, varying sparsity for the HD embedding is a way
to change distances between Di and the modulated HD vectors
(Di⊕σ(vi×Si)). The HD embedding with a higher p keeps more
elements of Di unchanged and bypasses them to the next stage. In

TABLE I
ACCURACY FOR DIFFERENT EMOTION RECOGNITION SCHEMES

Classifiers Accuracy
GSR ECG EEG All

V GaussianNBa 0.538 0.543 0.585 0.588
SVMa 0.640 0.615 0.589 0.680
XGBa 0.776 0.634 0.581 0.801
HDC-MERb 0.822 0.628 0.626 0.832

A GaussianNBa 0.553 0.561 0.598 0.589
SVMa 0.644 0.623 0.566 0.663
XGBa 0.682 0.542 0.579 0.684
HDC-MERb 0.694 0.614 0.661 0.701

a Learning Fraction=97% b Learning Fraction=25%, p=0.7

contrast, the HD embedding with a lower p can flip more elements
of Di, which increases the distance. Therefore, according to the
different range of p in Fig. 3(b), we can further define three
regions to qualitatively describe those relative distances: region
I (p < 0.2) as uncorrelated modulation, region II (p = 0.2–0.8)
as effective modulation, and region III (p > 0.8) as correlated
modulation. In the region I, the accuracy quickly increases with
lower dimensionality of d=5000. In the region II, the accuracy
falls slightly from 0.748 (p=0.2) to 0.710 (p=0.8). After p=0.8, it
keeps dropping to around 0.55 due to the close distance between
modulated HD vectors. Similarly with higher dimensionality of
d={10000, 20000}, the accuracy degrades considerably in region
I and III. In contrast, in region II, the accuracy remains stable
within a range of ±0.016. Therefore, to keep the accuracy high
and stable, we can choose p=0.2–0.8 with higher dimensionality
for HDC-MER. In this paper, we use p=0.7 and d=10000 to
analyze accuracy for different scenarios of modalities in the next
section.

D. Accuracy Analysis for Different Scenarios of Modalities

Table I shows the comparison of accuracy with four scenarios,
including only GSR, or ECG, or EEG, and all the modalities.
Using all the modalities, HDC-MER can improve the accuracy
of valence by 3.1%–24.4% and arousal by 1.7%–11.2% with
only 1/4 of training data. In addition, HDC-MER outperforms
the other three classifiers in almost every scenario. Notably, the
arousal can be improved by up to 9.5% with only unimodal EEG
features, and the maximal improvement of valence is 28.4% by
only using GSR features. It implies that each modality provides
different information for the emotional intensity and reaction.
Therefore, by using the multimodal HD fusion, HDC-MER can
achieve the highest accuracy for valence and arousal.

V. CONCLUSIONS

This paper presents HDC-MER that jointly considers multi-
modal fusion of physiological signals and a sequence of features
to represent the temporal aspect of emotion for the accuracy im-
provement. Additionally, HDC-MER effectively maps features of
biosignals to binary HD vectors, and quickly learns a meaningful
pattern for classification with fewer training data. Based on our
experimental results, HDC-MER achieves the highest average
classification accuracy up to 76.6% with the fastest learning
among all the existing emotion recognition schemes.
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