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1. INTRODUCTION
Over the past six decades, the semiconductor industry

has been immensely successful thanks to the set of well-
defined abstraction layers, starting from robust switching
devices that support a deterministic Boolean algebra and go-
ing up to a scalable and stored program architecture, which
is Turing complete, and hence capable of tackling (almost)
any computational challenge. Unfortunately this abstrac-
tion chain is being challenged as device scaling continues to
nanometer dimensions and also by exciting new applications
that must support a myriad inputs such as brain–computer
interfaces [1]. A brain–computer interface is a device that
enables communication and control without movement. For
these applications, cognitive functions such as classifica-
tion, recognition, synthesis, decision-making and learning
are of crucial importance for fast and efficient information-
extraction. This is in sharp contrast to the past when the
central objective of computing was to perform calculations
on numbers and produce results with extreme numerical ac-
curacy. It is therefore worth exploring alternative computa-
tional models for emerging applications by abandoning the
deterministic requirement.

Brain-inspired information processing architectures pro-
vide significant increase in energy efficiency, asymptotically
approaching the efficiency of brain computation, while align-
ing well with the variability of nanoscale devices [9, 19,

The mathematical properties of high-dimensional (HD) 
spaces show remarkable agreement with behaviors controlled 
by the brain. Computing with HD vectors, referred to as 
“hypervectors,” is a brain-inspired alternative to computing 
with numbers. HD computing is characterized by general-
ity, scalability, robustness, and fast learning, making it a 
prime candidate for utilization in application domains such 
as brain–computer interfaces. We describe the use of HD 
computing to classify electroencephalography (EEG) error-
related potentials for noninvasive brain–computer interfaces. 
Our algorithm encodes neural activity recorded from 64 
EEG electrodes to a single temporal–spatial hypervector. 
This hypervector represents the event of interest and is used 
for recognition of the subject’s intentions. Using the full 
set of training trials, HD computing achieves on average 
5% higher accuracy compared to a conventional machine 
learning method on this task (74.5% vs. 69.5%) and offers 
further advantages: (1) Our algorithm learns fast by us-
ing 34% of training trials while surpassing the conventional 
method with an average accuracy of 70.5%. (2) Conven-
tional method requires prior domain expert knowledge to 
carefully select a subset of electrodes for a subsequent pre-
processor and classifier, whereas our algorithm blindly uses 
all 64 electrodes, tolerates noises in data, and the resulting 
hypervector is intrinsically clustered into HD space; in addi-
tion, most preprocessing of the electrode signal can be elim-
inated while maintaining an average accuracy of 71.7%.
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16, 21]. The mathematical properties of high-dimensional
spaces correlate strongly with behaviors controlled by the
brain [15, 22, 12, 14]. We focus on a model of com-
puting with high-dimensional (HD) vectors—hereafter HD
computing—where the dimensionality is in the thousands
(e.g., 10,000 dimensions). HD computing is also referred
to as “hyperdimensional computing” [12] on account of the
very high dimensionality. In this formalism, information
is represented in HD vectors referred to as “hypervectors”.
HD computing explores the emulation of cognition by com-
puting with hypervectors as an alternative to computing
with bits and numbers. Hypervectors are holographic and
(pseudo)random vectors with i.i.d. components. It means
that every piece of information contained in the hypervector
is distributed equally over all the components. Such hyper-
vectors can then be mathematically manipulated to not only
classify but also to bind, associate, and perform other types
of cognitive operations in a straightforward manner [13]. In
addition, these mathematical operations also ensure that the
resulting hypervector is unique and thus learning can take
place in one-shot.

Key properties of HD computing include: (1) HD com-
puting paradigm is universal and complete. (2) By its very
nature, HD computing overcomes large variability and un-
certainty in both data and implementation platform to per-
form robust decision making and classification. (3) In con-
trast to other neuro-inspired approaches, in which learning
is separate from subsequent execution, learning in HD com-
puting shares its constructs with execution, is relatively fast,
and does not rely on biologically unlikely algorithms such
as back-propagation. (4) HD computing is memory-centric
by manipulating and comparing large patterns, within the
memory using ubiquitous parallel operations. Such general-
ity, robustness against data uncertainty, and one-shot learn-
ing make HD computing a prime candidate for utilization in
application domains such as brain–computer interfaces and
wearable cyberbiological systems.

HD computing has been used for text analytics solely from
a stream of input letters. More specifically, HD computing
can identify the language of unknown sentences from 21 Eu-
ropean languages [10, 21], and classify Reuters news articles
to eight topics [18] with very high accuracy. It has also been
adapted to wearable biosignal processing characterized by
a set of parallel and analog streaming inputs. Very simple
vector-space operations are used to classify hand gestures
from four electromyography (EMG) electrodes [20].

In this paper, we further extend the application domain
of HD computing to noninvasive brain–computer interfaces.
We develop an encoding algorithm and a classifier for recog-
nition of the subject’s intentions from error-related elec-
troencephalography (EEG) potentials. Our algorithm en-
codes neural activity that is recorded simultaneously by 64
EEG electrodes, to a single temporal–spatial hypervector
representing the intention of a subject. Our proposed HD
classifier surpasses the state-of-the-art method [4]—referred
to as baseline in this paper—for classifying EEG error-
related potentials in the following aspects: (1) With an
equivalent setup, HD classifier achieves an average classi-
fication accuracy of 74.5%, 5% higher than the baseline. (2)
HD classifier learns ≈ 3× faster by using only 34% of train-
ing trials while maintaining average accuracy of 70.5% which
is higher than the baseline using the full set of training tri-
als. (3) HD classifier blindly uses all 64 electrodes without

requiring any domain expert knowledge for the classifica-
tion task, and the resulting hypervector is intrinsically clus-
tered into HD space; in contrast, the authors in [4] carefully
chose one or two electrodes, depending upon the subject, to
be used for the baseline classifier. Moreover, (4) most pre-
processing of the electrode signal can be eliminated in our
classifier. These blind operation with all electrodes and less
preprocessing result in minimal loss of accuracy (from 74.5%
to 71.7%). MATLAB code for our encoding algorithm and
classifier is open access1.

This paper is organized as follows. In Section 2, we de-
scribe EEG error-related potentials and its usage in non-
invasive brain–computer interfaces followed by its baseline
preprocessing and classification. In Section 3, we introduce
HD computing and discuss how its operations can be used
to form an HD classifier. In Section 4, we present our algo-
rithm for encoding and classifying EEG error-related poten-
tials. In Section 5, we provide experimental results followed
by discussion in Section 6. Section 7 concludes this paper.

2. NONINVASIVE BRAIN–COMPUTER
INTERFACES

Noninvasive brain–computer interfaces and neuroprosthe-
ses aim to provide a communication and control channel
based on the recognition of the subject’s intentions from
spatiotemporal neural activity typically recorded by EEG
electrodes. What makes it particularly challenging, how-
ever, is its susceptibility to errors in the recognition of hu-
man intentions.

2.1 EEG Error-Related Potentials
As an alternative interaction approach, the user can mon-

itor the performance of an autonomous agent endowed with
learning capabilities, and the erroneous behavior of the agent
can be recognized directly from the analysis of the user’s
brain signals, i.e., EEG error-related potentials (ERP). In
the frame of brain–computer interaction, Ferrez and Millán
have described an ERP elicited by errors in the recognition
of the user’s intention when operating a brain–computer in-
terface [7, 6]. In their experimental protocol, the human
subject tries to move a cursor towards a target location ei-
ther using a keyboard [7] or mental commands [6]. Next,
they have observed that similar error-related signals are gen-
erated when a human user monitors the performance of an
external agent upon which the user has no control [4]. In this
approach, the user does not provide any commands, but only
monitors the agent’s performance. Efficient and fast learn-
ing methods of encoding these ERPs for accurate classifying
user’s intentions with regard to the agent further motivates
its application for noninvasive brain–computer interfaces.

2.2 Dataset for Error-Related Potentials
Here, we first describe a publicly available dataset [2] for

ERPs, and then outline the baseline method [4] that is used
for processing of these potentials. Six subjects are seated
in front of a computer screen where a moving cursor is dis-
played. A colored square at either the left or right of the
cursor indicates a target location. At each trial the cursor
moves horizontally depending on the location of the target.
During the experiment, the user has no control over the

1https://github.com/abbas-rahimi/HDC-EEG-ERP



cursor’s movement and is asked only to monitor the perfor-
mance of the agent, knowing that the goal is to reach the
target. To study signals generated by erroneous actions, at
each trial, there is a probability of ≈ 0.20 for the cursor
to move in the wrong direction (i.e., opposite to the tar-
get location). A trial is labeled as “correct” if the curser is
moved toward the target; otherwise it is labeled as “error”,
e.g., when the target is located in the left and the cursor is
moved to the right.

Trials have an approximate duration of 2000 ms. There
are two recording sessions, the first one is used for training,
and the second one is used for testing. Each experimen-
tal session consists of 10 blocks of 3 min each (≈ 64 trials
per block). Full details of the experimental protocol are
provided in [4]. In the following, we explain their methods
for EEG signal acquisition, preprocessing, and classification.
We refer them as the baseline for comparing with our HD
computing method.

2.2.1 Baseline Preprocessing and Classification
EEG potentials were recorded at a sampling rate of 512

Hz using 64 electrodes according to the standard 10/20 in-
ternational system. For preprocessing, data was spatially
filtered using common average reference (CAR) [17]. By ap-
plying the CAR filter to an electrode, the average signal level
of the entire electrode array is subtracted from that of the
electrode of interest. If the entire head is covered by equally
spaced electrodes and the potential on the head is generated
by point sources, the CAR results in a spatial voltage dis-
tribution with a mean of zero [3]. We show in Section 5.2
that this spatial filter preprocessing can be eliminated with
negligible effect on the classification accuracy thanks to the
HD operations that can work on raw data. Then, a 1–10 Hz
band-pass filter (BPF) was applied to remove the unwanted
frequency components. For every subject, a time window
corresponding to erroneous and correct cursor movements
was extracted for further analysis and classification (listed
in the third column of Table 1).

A Gaussian classifier was used for recognition of a single
trial, as described in [7]. This statistical classifier estimates
the posterior probability of a given trial corresponding to
one of the two classes: “error,” and “correct”. FCz and Cz
electrodes were used as the inputs to the classifier following
their earlier studies for electrode selection process [5]. The
same learning rates and number of prototypes were used
in all cases. Classifier parameters are then tuned using a
stochastic gradient descent on the mean square error [7]. To
tune the classification performance, the choice of electrodes
(FCz, Cz, or both) and time windows were selected inde-
pendently per subject [4] (see Table 1).

Our aim is to develop an efficient and fast learning method
based on HD computing that replaces the aforementioned
preprocessing and classification enabling blindly operating
with all electrodes, and with raw data. We provide back-
grounds about HD computing in Section 3, and then present
details of our method in Section 4.

3. HD COMPUTING
The brain’s circuits are massive in terms of numbers of

neurons and synapses, suggesting that large circuits are fun-
damental to the brain’s computing. HD computing [12, 14]
explores this idea by looking at computing with ultra-wide
words – that is, with hypervectors. There exist a huge num-

ber of different, nearly orthogonal hypervectors with the di-
mensionality in the thousands (e.g., D= 10,000) [11]. This
lets us combine two such hypervectors into a new hypervec-
tor using well-defined vector-space operations, while keeping
the information of the two with high probability.
Hypervectors are made using random indexing [15, 22]

with operations akin to multiplication, addition, and per-
mutation that form an algebra over the vector space (e.g., a
field). Random indexing represents information by project-
ing data onto hypervectors. It is incremental, scalable, and
computes hypervectors in a single pass over the input data.
Random indexing with a bipolar dense code generates hy-
pervectors that are initially taken from a 10,000-dimensional
space and have equally probable randomly placed +1s and
−1s, i.e., {−1,+1}10,000.

3.1 Item Memory
Item memory (iM) is a symbol table or dictionary of all

the hypervectors defined in the system. In a typical language
application, the 26 letters of the alphabet and the space are
the initial items, and they are assigned hypervectors at ran-
dom (with i.i.d. components). They stay fixed throughout
the computation, and they serve as seeds from which further
representations are made. HD computing has been used for
identifying the source language of text samples from a se-
quence of n consecutive letters (n-grams) [10, 21]. For ex-
ample, letter trigrams of a text sample were encoded into
a hypervector by random indexing and vector-space opera-
tions to represent a language. In the same vein, pentagrams
of letters have been used for classifying news articles [18].
Text and language applications are well-matched to the

HD computing framework because the input data already
comes in the form of symbolic primitives (letters, or words),
which can be readily mapped to hypervectors. On the other
hand, biosignal processing applications often operate on ana-
log time series with multiple sensory inputs demanding a
different mapping scheme to hypervectors. Accordingly, we
have extended the notion of iM to a continuous item mem-
ory (CiM) that maps an analog input after a discretization
step [20]. CiM utilizes a method of mapping quantities and
dates “continuously” to hypervectors [23]. In this continu-
ous vector space, orthogonal endpoint hypervectors are gen-
erated for the minimum and maximum levels in the range.
Hypervectors for intermediate levels are then generated by
linear interpolation between these endpoints so that the sim-
ilarity of vectors corresponds to the closeness of levels.
For example, if an analog signal is discretized into m lev-

els, we choose a random hypervector for the minimum level
and randomly flip D/2/(m − 1) of its bits for each succes-
sively higher level (once flipped, a bit will not be flipped

Table 1: Classifier parameters: selected electrodes and time
windows used in Gaussian classifier [4]; and n-gram sizes for
our HD classifier.

Subjects Electrodes Time window (ms) n-gram

S1 FCz, Cz 200–450 16
S2 Cz 150–600 29
S3 FCz, Cz 200–450 16
S4 FCz 0–600 19
S5 FCz, Cz 150–600 29
S6 FCz, Cz 150–600 29



back). The vectors for the minimum and the maximum lev-
els will then be D/2 bits apart or orthogonal to each other.

3.2 MAP Operations
The seed hypervectors that are stored in iM and CiM can

be further combined using the following well-defined set of
arithmetic operations. We consider a variant of the multipli-
cation, addition, and permutation (MAP) coding described
in [8] to define the hyperdimensional vector space. The MAP
operations on the hypervectors are defined as follows. Point-
wise multiplication of two hypervectors A and B is denoted
by A∗B, and point-wise addition is denoted by A+B. Mul-
tiplication takes two vectors and yields a third, A ∗B , that
is dissimilar (orthogonal) to the two and is suited for vari-
able binding; and addition takes several vectors and yields
their mean vector [A+B+ ...+X] that is maximally similar
to them and is suited for representing sets. In the following,
we describe the use of these two operations to holistically
encode a data record composed of various fields [13].

A data record consists of a set of fields (vari-
ables/attributes) and their values (fillers); for example, the
variables x, y, z with values a, b, c, respectively. The holis-
tic encoding is done as follows. The field–value pair x = a
is encoded by the hypervector X ∗ A that binds the corre-
sponding hypervectors, and the entire record is encoded by
the hypervector R = [(X ∗ A) + (Y ∗ B) + (Z ∗ C)] which
includes both the variables and the values, and each of them
spans the entire 10,000-bit hypervector.
Finally, the third operation is a permutation, ρ, that ro-

tates the hypervector coordinates. It is implemented as a
cyclic right-shift by one position. The permutation oper-
ation generates a dissimilar pseudo-orthogonal hypervector
that is good for encoding sequences. In geometry sense,
the permutation rotates the hypervector in the space. For
example, the sequence trigram of a-b-c, is stored as the hy-
pervector ρ(ρA ∗ B) ∗ C = ρρA ∗ ρB ∗ C. This efficiently
distinguishes the sequence a-b-c from a-c-b, since a rotated
hypervector is uncorrelated to all the other hypervectors.

3.3 Associative Memory
Hypervectors can be stored in an associative memory to

be compared for similarity using a distance metric over the
vector space. We use cosine similarity as the distance met-
ric between two hypervectors by measuring the cosine of
the angle between them using a dot product. It is defined
as cos(A,B) = |A′ ∗ B′|, where A′ and B′ are the length-
normalized vectors of A and B, respectively, and |C| de-
notes the sum of the elements in C. It is thus a measure of
orientation and not magnitude: two hypervectors with the
same orientation have a cosine similarity of 1, two orthogo-
nal hypervectors have a similarity of 0, and two hypervectors
diametrically opposed have a similarity of −1.

4. HD COMPUTING FOR EEG ERP
In this section, we describe how HD computing can be

used to encode ERPs into hypervectors. Our proposed en-
coder first captures a sequence of electrical activities of an
electrode into a temporal hypervector (Section 4.1) and then
encodes the information across all the electrodes at a mo-
ment into a temporal–spatial hypervector (Section 4.2) for
the HD classifier (Section 4.3). Figure 1 shows the structure
of proposed temporal–spatial encoder.

4.1 Temporal Encoder for One Electrode
There are 64 EEG electrodes with unique names, and each

electrode produces an analog signal with an amplitude. We
draw an analogy from [13] to generate a holistic vector rep-
resenting information about a given electrode by using a
field–value pair. Hence, we decouple the name and the sig-
nal level of an electrode. The electrode name corresponds to
a field of a traditional data record, and its signal level cor-
responds to the value for the field. Since the name of every
electrode is a unique string, it forms a field that can be easily
mapped to a hypervector (N) using an iM with 64 entries.
The iM represents the 64 basic fields by assigning a unique
orthogonal hypervector to every field: N1 ⊥ N2... ⊥ N64.

Ni = iM (name of ith electrode) (1)

Although the names of electrodes can be readily mapped
to hypervectors, mapping their signal levels requires a quan-
tization step. Here, the signal level can be the raw analog
data or the preprocessed data as described in Section 2.2.1.
The signal levels of each electrode are scaled linearly from
0 to 100, and quantized into 100 discrete levels. This quan-
tized signal level is mapped to a hypervector (L) using a CiM
with 100 entries. In CiM, the hypervector that is assigned
to the minimum signal level is orthogonal to the hypervector
representing the maximum signal level: CiM (0) ⊥ CiM(99).
An event of ERP is not a single signal sample but rather

a sequence of samples spanned over a time window forming
a temporal component. Hence, we should design a temporal
encoder to capture all the signal levels generated during the
entire event of an ERP. We can encode a sequence of sym-
bols by using the permutation operation, ρ. As shown in
Section 3.2, permutation has been used to encode a sequence
of n letters to form an n-gram hypervector. By analogy, for
example, a sequence of three signal levels of electrode i that
are generated at time stamps of 1, 2, and 3 is encoded as
follows: the first hypervector Li1 is rotated twice ρ2Li1, the
second hypervector is rotated once ρ1Li2, and finally there
is no rotation for the last hypervector Li3. These three hy-
pervectors are then combined with point-wise multiplication
into a trigram hypervector, Gi = ρ2Li1 ∗ ρ1Li2 ∗ Li3. For
n-grams at large this becomes:

Lit = CiM (signal level of ith electrode at time stamp t)
(2)

Gi =

n∏

t=1

ρn−tLit (3)

With this temporal encoding algorithm, one important
step is to determine the proper size of an n-gram to be able
to capture the entire event of an ERP for the subjects. In
this regard, we measured the number of samples available
in an event of ERP. Table 1 shows the time windows in
which the events of ERP are observed during the trials of
2000 ms for each subject. As shown, this time window can
be as large as 600 ms (for S4) containing 308 samples with
sampling rate of 512 Hz. Computing an n-gram of this size
is inefficient; earlier, we overcame such issue for the EMG
signals by highly downsampling the electrode such that the
hand gestures can be fit into n-grams where n ∈ [3, 5] [20].
Similarly, the electrical activity on the EEG electrodes was
downsampled to 64 Hz [4]. Consequently, we partition the
time widow of ERP to a set of nonoverlapping slices of equal
length. The length of every slice is 8 samples as the ratio of
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Figure 1: Temporal–spatial encoder for EEG ERPs: Temporal encoder rotates the signal level to capture its history that
produces a temporal n-gram (Gi) to be bound with the electrode name (Ni) for constructing a record (Ri); Spatial encoder
adds these records across 64 electrodes to produce a temporal–spatial hypervector (E) representing the entire event of ERPs.

sampling rate (512 Hz) to the downsampling rate (64 Hz).
With 8 samples in a slice, the number of slices in the window
is proportional to the duration of the window, and varies
from 16 slices to 29 slices2. Then, we take the mean value of
samples in the slice, apply the scaling and quantization step
and use it as the quantized signal level for CiM. Therefore,
the event of ERP can be represented by an n-gram where n ∈
[16, 29]. The last column in Table 1 lists the exact size of n-
gram used for each subject. Please note that the n-gram size
is the only parameter of our encoder that we naturally set it
per subject solely based on the duration of ERP event. This
is in sharp contrast with other learning methods as we do
not rely on inefficient or biologically implausible algorithm
for parameter tuning and optimizations.
Our temporal encoder accepts the sequence of n quantized

signal levels from the ith electrode and computes the n-gram
hypervector Gi. Gi represents the temporal activities of the
signal levels of the ith electrode.

4.2 Temporal–Spatial Encoder: Adding Tem-
poral Hypervectors of 64 Electrodes

The 64 temporal hypervectorsGi for the electrodes are en-
coded into a single temporal–spatial hypervector E for the
event in a manner analogous to the holistic record of [13].
The electrode name is treated as a field, and its signal
is treated as a value for the field. The channel names
N1, N2, . . . , N64 are hypervectors that reside in the item

2For S4, we double the length of slices (16 samples in each)
that results in 19 slices to cover the window instead of 38.

memory, iM. They are random, independent, and approx-
imately orthogonal to one another. The signal Gi is bound
to its channel name Ni with point-wise multiplication and
is represented by the hypervector

Ri = Gi ∗Ni (4)

and the entire event is represented by a hypervector E that
is the sum of 64 hypervectors for the field–value pairs:

E =
64∑

i=1

Ri (5)

The structure of the encoder is shown in Figure 1.

4.2.1 Class Prototypes
The classifier construction is purely based on native op-

erations of HD computing without the involvement of any
optimization procedure. The approach is based on the no-
tion of a class prototype. The class prototype is a hyper-
vector representing the entire class. The number of class
prototypes equals the number of classes in ERP. Hence, we
generate two hypervectors C and W as the class prototypes
for ERP: C represents the “correct” class and W represents
the “error” (wrong) class. The hypervector C is computed
by adding all the hypervectors produced by the temporal–
spatial encoder from the“correct” events of ERP. Hence, the
addition operation bundles Ej observed in training trial j to
a single hypervector C as follows:

C += Ej | cos(C,Ej) < 0.5 (6)



Before adding a new event Ej to C, we check whether this
event is already in C. This checking forms a conditional
addition that adds Ej to C when cos(C,Ej) < 0.5. If C
has a high cosine similarity (≥ 0.5) with Ej , it means that
the event is already in C, hence there is no need to add the
redundant event. Similarly, the hypervector W is computed
for the “error” events.

4.3 HD Classification
After training, C and W hypervectors are stored in the

associative memory as the learned patterns of ERP. The
same encoding algorithm is used for both training and test-
ing (i.e., classification). When testing, we call the output
of the temporal–spatial encoder a query hypervector (Q)
since its label is unknown. The query hypervector is then
sent to the associative memory to identify its source class.
Determining the class of an unknown ERP event is done
by comparing its Q hypervector to all learned hypervectors
(i.e., C and W ) using the cosine similarity. Finally, the as-
sociative memory selects the highest similarity among the
two measures and returns its associated label as the class
that the Q hypervector has been generated from.

5. EXPERIMENTAL RESULTS
In this section, we present experimental results and sen-

sitivity analyses for classification accuracy of our proposed
HD method. We compare it with the baseline method pre-
sented in [4] using their dataset available at [2]; session #1
is used for training, and session #2 is used for testing the
accuracy. The classification accuracy throughout this paper
is measured as macroaveraging that computes a simple av-
erage over classes. The macroaveraging gives equal weight
to each class, whereas microaveraging gives equal weight to
each per-event classification decision. The macroaveraging is
a better measure of effectiveness with small classes (the size
of “correct” class is ≈ 4× of the “wrong” class). Our HD en-
coding algorithm and classifier are developed in MATLAB.

5.1 Fast and One-Shot Learning
Here, we assess how fast the HD training can be done

while maintaining high classification accuracy. As described
in Section 2.2, the training session is composed of 10 blocks
of recording that are shown by vertical dashed lines in Fig-
ure 2. These consecutive blocks provide a total number of
≈ 640 trials for training per subject. We have observed
that only some of these training trials can produce a non-
redundant temporal–spatial hypervector for addition to the
class prototype (i.e., meeting Equation 6). For instance, as
shown in Figure 2, the training session contains 191 and
348 non-redundant trials for S3 and S5, respectively. Hence,
during the training session, every time that we encounter
a new non-redundant ERP event, we update the associa-
tive memory and measure the classification accuracy for the
entire test set.
Figure 2(a) shows the classification accuracy of both

classes for S3. For the very first trials the associative mem-
ory is almost empty, but as we encounter new trials it will be
lightly populated leading to an increase in the microaveraged
accuracy. Training with only the first five non-redundant tri-
als (2.6% of the total), the accuracy of HD classifier reaches
to 79.3% which is higher than the baseline accuracy (75.9%)
using all training trials. Similarly but with a slower learning
rate, the HD classifier achieves the accuracy of 66.3% for

S5 by using 183 non-redundant trials (53% of the total) as
shown in Figure 2(b).
We repeat the aforementioned experiment for all subjects

and the results are summarized in Figure 3. We target the
classification accuracy of the baseline that is achieved by
using all available trials in the training session, one or two
electrode(s) (c.f. Table 1), and with the CAR preprocessing
technique. We provide the same conditions for the HD clas-
sifier3, but with fewer training trials, to assess how fast it can
reach to the target accuracy. As shown, the HD classifier is
able to learn faster: it uses only 0.3% of the non-redundant
training trials for S6, and up to 96% for S1. On average,
the HD classifier reaches the target classification accuracy of
70.5% when trained with only 34% of non-redundant train-
ing trials. This translates directly to ≈ 3× faster learning.

5.2 Blindly Using all Electrodes without Pre-
processing

Figure 4 compares the classification accuracy of the base-
line method with two instances of our HD classifier. The
first one has a setup equivalent of the baseline as aforesaid:
uses one or two electrode(s) based up on the subjects, applies
the CAR preprocessing filter on every electrode before the
BPF step, and uses the entire of training trials. As shown in
Figure 4, this instance of HD classifier surpasses the baseline
accuracy across the six subjects. The HD classifier exhibits
67.7%–82.7% classification accuracy and on average 74.5%
which is 5% higher than the baseline with the same condi-
tions.
Next, we want to assess the ability of HD classifier to

blindly operate with raw data from all the 64 EEG elec-
trodes without requiring the prior domain expert knowledge
to carefully select a subset of the electrodes for a preproces-
sor. Hence, the second instance of our HD classifier operates
with the 64 electrodes and without the CAR preprocessing
filter. It is illustrated in Figure 1 where the temporal–spatial
encoder accepts the inputs from the 64 electrodes; every elec-
trode signal is immediately passed through a BPF, and its
mean is computed over 8 samples followed by the scaling
and quantization step before mapping to the HD space by
a CiM. As shown, there is no CAR filter in the chain of
data. Note that the simple BPF cannot be removed since
the ERPs are in the frequency range of 1–10 Hz.
Despite using the 64 electrodes and no CAR filtering, the

HD classifier maintains almost the same range of classifi-
cation accuracy (i.e., 62.3%–79.1%) across the six subjects
as shown in Figure 4. This HD classifier shows on average
2.2% higher classification accuracy compared to the base-
line. Note that this has been accomplished while this classi-
fier blindly uses all 64 electrodes in the encoder regardless of
the subjects, while for the baseline authors carefully selected
a subset of electrodes per individual subject that can pro-
vide meaningful information for the classifier (listed in the
first column of Table 1). This also confirms the amenability
of HD computing to operate with raw data. In HD com-
puting, the input data is naturally clustered in HD space,
and the noise generated by meaningless electrodes tends to
cancel out. This desirable property makes it possible to ap-
ply HD computing for clustering data with little or no prior
knowledge about the nature of data.

3Equation 5 for the spatial encoder is limited to one or two
electrode(s) and the CAR filter is applied before the BPF.
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Figure 2: Classification accuracy of both classes when we increase the size of non-redundant training trials for two subjects:
(a) S3 and (b) S5. Dashed lines separate the 10 blocks of training session.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50%

55%

60%

65%

70%

75%

80%

85%

90%

S1 S2 S3 S4 S5 S6 Mean

N
on

-r
ed

un
da

nt
 tr

ai
ni

ng
 tr

ia
ls

 (%
)

Ac
cu

ra
cy

 (%
)

Classification accuracy (macroaveraged)
Percentage of trials used in HD training

Figure 3: The percentage of non-redundant training trials
that are used to train the HD classier, with resulting accu-
racy, instead of using all trials.

6. DISCUSSION
We have earlier used HD computing to encode biosignals

from EMG electrodes for hand gesture recognition [20]. We
used a spatial–temporal encoder with small n-gram sizes to
deal with EMG recoding from four electrodes. However, en-
coding EEG data requires larger n-gram sizes which brings
up the following issue. In the spatial encoder, the point-wise
addition of bipolar hypervectors produces 0s and the point-
wise multiplication in the temporal encoder makes them con-
tagious. After a certain size of n, this results in generating
an n-gram hypervector where all elements are 0.

We can start with bipolar hypervectors, meaning that a
sum hypervector can have 0s. We can leave the 0s alone,
except that when we multiply two hypervectors, we check
for 0s and turn them into a +1 or a −1 at random. This
introduces noise but keeps the hypervectors from eventually
turning into all 0s. We will be able to make vectors for n-
grams of any length, but the amount of noise will increase
with the length of the n-gram. The noise grows as follows. If
the noise probabilities of two independent bipolar hypervec-
tors are p1 and p2, the noise probability of their product is

81
.0

%

69
.8

% 75
.9

%

64
.5

%

66
.3

%

59
.6

%

69
.5

%

81
.2

%

75
.1

%

82
.7

%

67
.9

% 72
.6

%

67
.7

%

74
.5

%78
.1

%

69
.9

%

79
.1

%

62
.3

%

73
.9

%

67
.2

% 71
.7

%

50%
55%

60%
65%
70%

75%

80%
85%

90%

S 1 S 2 S 3 S 4 S 5 S 6 M e a n

Ac
cu

ra
cy

 (%
)

Subjects

Baseline: 1-2 electrode(s) + CAR filter
HD: 1-2 electrode(s) + CAR filter
HD: 64 electrodes + No CAR filter

Figure 4: Comparison of microaveraged accuracy of the
baseline [4] classifier with two instance of our HD classi-
fier: (1) Using 1 or 2 electrode(s) and CAR preprocessing as
in the baseline; (2) Using 64 electrodes without CAR pre-
processing.

p1+p2−2p1p2. In contrast, if we let 0s be, they grow faster,
at the rate of p1 + p2(1− p1) = p1 + p2 − p1p2. Therefore, in
this paper, we chose to change the order of encoders: first
doing the temporal encoding of each electrode that produces
a bipolar hypervector, and then doing the spatial addition.

7. CONCLUSION
This paper presents an application of HD computing

to the classification of error-related potentials from EEG
recordings. Very simple vector-space operations are used to
encode analog input signals from 64 electrodes for classifi-
cation. The proposed HD classifier requires neither prior
knowledge about selecting the electrodes nor extra prepro-
cessing steps. Our HD algorithm blindly encodes the elec-
trical activity of error-related potentials into a temporal–
spatial hypervector representing a binary class of the sub-
ject’s intentions. The classification accuracy of our HD clas-
sifier for EEG error-related potentials is comparable to a



classifier crafted by a skilled professional. Our HD classifier
also achieves it with fewer training data.
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