
One-shot Learning for iEEG Seizure Detection Using
End-to-end Binary Operations: Local Binary Patterns

with Hyperdimensional Computing
Alessio Burrello∗, Kaspar Schindler†, Luca Benini∗, Abbas Rahimi∗

∗Integrated Systems Laboratory, ETH Zurich, Switzerland †Sleep-Wake-Epilepsy-Center, Inselspital Bern, Switzerland
Emails: bualessi@student.ethz.ch, kaspar.schindler@insel.ch, lbenini@iis.ee.ethz.ch, abbas@iis.ee.ethz.ch

Abstract—This paper presents an efficient binarized algorithm
for both learning and classification of human epileptic seizures
from intracranial electroencephalography (iEEG). The algorithm
combines local binary patterns with brain-inspired hyperdimen-
sional computing to enable end-to-end learning and inference with
binary operations. The algorithm first transforms iEEG time series
from each electrode into local binary pattern codes. Then atomic
high-dimensional binary vectors are used to construct composite
representations of seizures across all electrodes. For the majority of
our patients (10 out of 16), the algorithm quickly learns from one or
two seizures (i.e., one-/few-shot learning) and perfectly generalizes
on 27 further seizures. For other patients, the algorithm requires
three to six seizures for learning. Overall, our algorithm surpasses
the state-of-the-art methods [1] for detecting 65 novel seizures with
higher specificity and sensitivity, and lower memory footprint.

I. INTRODUCTION
Epilepsy is a chronic neurological disorder affecting 0.6–

0.8% of the world’s population [2]. One third of patients
with epilepsy continue to suffer from seizures despite phar-
macological therapy [3]. For these patients with drug-resistant
epilepsy [4], efficient algorithms for seizure detection are needed
in particular during pre-surgical long-term iEEG recordings.
iEEG currently provides the best spatial resolution and highest
signal-to-noise ratio to record electrical brain activity.

Most seizure detection studies assume that there are two
distinct states of brain activity in patients with epilepsy (i.e.,
interictal and ictal), and that these states can be detected by
iEEG. One major challenge then is to reliably detect seizures
from a small number of ictal examples. The difficulties are
due to the patient-specific nature of seizure dynamics, and to
the asymmetry inherent in long-term iEEG, namely that the
ratio of interictal to ictal segments is typically very large [5].
This requires a fast algorithm that learns from few ictal iEEG
segments and generalizes well for novel seizure recordings.

Another challenge is to realize such algorithm with low
complexity suitable for execution on implantable devices for
long-term operation. One promising option is computing with
simple linear binary codes to avoid otherwise expensive op-
erations such as costly floating-point arithmetic. Combining
methods from symbolic dynamics and information theory is a
computationally efficient approach. At its core it consists of
analyzing the occurrence of patterns and even bears similarity
to classical visual EEG interpretation [6]. Local binary patterns
(LBP) [7], as an elegant symbolization, map a sequence of iEEG
samples into a small bit string, depending solely on whether
their amplitudes increase or decrease. These basic symbols can
be further combined over time and across electrodes to generate
a compact representation for encoding the state of interest. Such
representations can be effectively constructed by using brain-
inspired hyperdimensional (HD) computing [8] that offers the
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ability to learn object categories from one or few examples—
also referred to as one-shot or few-shot learning—with simple
distributed operations on long binary vectors [9]–[12].

In this paper, we propose a new algorithm that jointly
exploits LBP and HD computing to address the aforementioned
challenges by the following contributions. First, the algorithm
operates with end-to-end simple binary operations: (1) The LBP
feature extractor directly transforms the time series into a short
bit string, as a symbol, for every iEEG electrode. (2) HD
computing then projects the bit strings to a high-dimensional
vector to compute a holistic binary representation that encodes
occurrences of the symbols among all electrodes. (3) The
training and classification are performed by simply bundling
and comparing the binary high-dimensional vectors. (4) The
classification decision is followed by a patient-dependent voting
to reduce false alarms. Second, the algorithm quickly learns
from one seizure, i.e. one-shot learning (for eight patients out
of 16), or two seizures (for two more patients), and perfectly
generalizes on detecting 27 novel seizures with k-fold cross-
validation. For the remaining six patients, the algorithm requires
3–6 seizures for learning. Our algorithm surpasses state-of-the-
art methods using local pattern transformation coupled with a
linear support vector machine (SVM), and a multilayer percep-
tron (MLP) neural network [1]. Furthermore, the algorithm is
truly scalable and provides a simple interface (with minimal
number of parameters) to universally operate with all patients
having 36 to 100 electrodes implanted. We provide the public
access1 to our anonymized dataset and codes.

II. BACKGROUND
A. Local Binary Pattern (LBP)

A class of data-analysis methods is referred to as sym-
bolization, which describes the process of transforming raw
experimental measurements into a series of discrete symbols.
Symbolization is particularly interesting for EEG analysis, be-
cause as recent experience has clearly demonstrated, it faithfully
preserves dominant dynamical signal characteristics while sig-
nificantly increasing the efficiency of detecting and quantifying
information contained in real-world time series [13]. Symbol-
ization may be efficiently achieved by mapping a sequence of
iEEG samples into a bit string, i.e. a one-dimensional local
binary pattern (LBP) [7]. A LBP code reflects relational aspects
between consecutive values of the original iEEG signals only,
but not the values themselves.

Computing a LBP code is simple: (1) The iEEG signal
samples are converted into a bit string depending on the sign of
the temporal difference of adjacent samples. If the difference is
positive, we assign a 1 to the sampling point, otherwise a 0. (2)
A LBP code of length l is associated with every sampling point

1Available for download at http://ieeg-swez.ethz.ch
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Fig. 1: iEEG signal during: a) interictal state, and b) ictal state,
with examples of their LBP codes of l=5. c) Their corresponding
histograms of LBP codes inside a 0.5 s window.

by concatenating its bit with the successive l − 1 bits. Fig. 1a-
1b show examples of LBP code with l=5. Fig. 1c illustrates
how histograms of LBP codes differ between interictal and ictal
states. During the interictal state the LBP codes are almost
evenly distributed over all the possible codes. In contrast the
ictal window has a predominant portion of a single LBP code
and many LBP codes are missing due to the typically slow and
asymmetric oscillations evolving during seizures.

B. Hyperdimensional (HD) Computing
The human brain consists of billions of neurons, glial cells

and synapses, suggesting that large circuits are fundamental to
its computational power. HD computing explores this idea by
invoking vectors of very high dimensionality for computing,
i.e., d=10,000 dimensions [8]. There exists a huge number of
different, nearly orthogonal vectors with the dimensionality in
the thousands [14]. This lets us combine two such vectors
into a new vector using well-defined vector space operations,
while keeping the information of the two vectors with high
probability. HD computing has further unique features including
fast learning, robustness, and efficiency of realization [10].

HD computing has been used for classifying various biosig-
nals including EEG [12] and electromyography (EMG) [11]. Its
learning and classification are composed of three main steps:
1) mapping symbols to atomic high-dimensional vectors; 2)
combining atomic vectors with well-defined arithmetic opera-
tions in an encoder to produce composite structural vectors;
3) storing/updating (i.e., learning) these vectors inside an asso-
ciative memory and finally comparing with query vectors (i.e.,
inference). HD computing begins with selecting a set of random
high-dimensional vectors (with i.i.d. components) to represent
basic objects. They serve as atomic vectors and are used as
building blocks to construct representations of more complex
objects. To generate these atomic vectors, we use random d-
dimensional vectors of equally probable 1s and 0s, i.e., dense
binary elements of {0, 1}d. These vectors are stored to a so-
called item memory (IM), i.e. a symbol table or dictionary of
vectors defined in the system. In our seizure detection system,

the names of electrodes and the LBP codes are the basic
symbols. The IM assigns a random orthogonal vector to every
symbol.

Here, we focus on two main operations of HD computing
for encoding with the atomic vectors: bundling and binding.
Bundling, or addition, of binary vectors [A+B+ . . .] is defined
as the componentwise majority with ties broken at random.
Binding is defined as the componentwise XOR (⊕). Both
operations produce a d-bit vector with an important distinction:
bundling produces a vector that is similar to the input vectors,
whereas binding produces a dissimilar vector. Hence, bundling
is well suited for representing sets, and can combine field/value
bindings to produce a larger structure (e.g., record or tuple).
Representations of such composite structures are constructed
directly from representations of the atomic vectors by applying
these operations without requiring any learning for the encoder.

The output vector of the encoder is then fed into an associa-
tive memory (AM) for training and inference. During training
the output vector of the encoder is stored in the AM as a learned
pattern. During inference the output of the encoder is compared
with the learned patterns. Comparison is based on a distance
metric over the vector space. The AM uses Hamming distance,
defined as the number of different components of two binary
vectors.

III. PROPOSED ALGORITHM: LBP FEATURES AND BINARY
HD LEARNING AND CLASSIFICATION

The LBP feature extractor and HD computing can be com-
bined to quickly learn from ictal iEEG to then detect further
seizures. Our proposed algorithm uses LBP codes to directly
symbolize the iEEG signal of an electrode. Then a composite
d-dimensional binary representation is constructed to capture the
statistics of the LBP codes across all electrodes and over time.
The final classification is followed by simple postprocessing as
shown in Fig. 2.

A. Preprocessing and LBP Feature Extraction
The iEEG signals are sampled by a 16-bit ADC, filtered by a

fourth order Butterworth filter between 0.5 Hz and 150 Hz, and
downsampled to 512 Hz. A LBP code with l = 6 is computed for
every sampling point. The LBP code considers six consecutive
samples, and moves by one sample. Our LBP code generates 2l
different symbols that are fed into the next stage for learning and
classification. Using larger code sizes impairs its applicability
to non-stationary signals and latency of classification.

B. HD Learning and Classification
HD computing first projects the LBP codes to the high-

dimensional space via the IM that assigns an orthogonal vector
to every LBP code, i.e., C1⊥C2 . . .⊥C64. To combine these
vectors across all electrodes, HD computing generates a spatial
record (S), in which an electrode name is treated as a field, and
its LBP code is treated as the value of this field. The IM is
also used to map the name of electrodes to orthogonal vectors:
E1⊥E2 . . .⊥En for a patient with n electrodes. This allows
to bind the name of each electrode (Ej | j ∈ [1, n]) to its
corresponding code (Ci | i ∈ [1, 64]). The spatial record (S) is
then constructed by bundling these bound vectors using majority
gates: S = [E1 ⊕ Ci + E2 ⊕ Ci + ...+ En ⊕ Ci].

Vector S is computed for every new sample, and represents
the spatial information about the LBP codes of all electrodes.
The next step is to compute the histogram of LBP codes for
a moving window of 0.5 s. This window size should be large
enough to theoretically permit at least a single occurrence of all
possible LBP codes [6], [15]. The window of 0.5 s contains 256
LBP codes constructed with maximal overlap. To have a high
probability that every code occurs inside this window, we should
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Fig. 2: Binarized seizure processing chain: (1) Feature extraction generates a 6-bit LBP code for each electrode; (2) HD computing
projects these codes into d-dimensional space and constructs vector H that represents the histogram of 0.5 s recording. During
training the AM learns from this vector, and during inference provides a label for it; (3) As postprocessing, a simple patient-
dependent (tp) voting decides based on the last 10 labels.

hold 256 > 2l+1, hence l < 7. To estimate the histogram of LBP
codes inside this window, a multiset of temporally generated S
vectors is computed as H = [S1 +S2 + ...+S256]. A majority
gate is applied in the temporal domain through accumulation
(i.e., componentwise addition) of St vectors t ∈ {1, ..., 256},
that are produced within the window, and then thresholding at
half.

We observe that the interictal and ictal states show different
distributions of LBP codes inside the window: during an in-
terictal segment, we have a nearly random signal, with a well
distributed count histogram; conversely, during a seizure we typ-
ically observe rhythmic signals, i.e., slow and often temporally
asymmetric oscillations, which yield polarized histograms as
demonstrated in Fig. 1c. This shows that the distribution of LBP
codes, not necessarily their sequence, is an important indicator
to distinguish ictal vs. interictal states. The high-dimensional
space naturally encodes such histograms in H by accumulating
and thresholding the spatial vectors. To reconstruct the his-
togram from H , we compare it with C1⊥C2 . . .⊥C64, inside the
IM, and calculate the normalized Hamming distances that reflect
relative frequency of the symbols. The reconstructed histograms
achieve a Pearson correlation coefficient > 0.9 compared to
the exact histograms. The output of HD encoding is vector H ,
which is updated every 0.5 s. To quickly train the classifier,
we use this vector to build the AM containing two prototype
vectors representing ictal and interictal labels. To train the
interictal prototype, all H vectors computed over an interictal
window of 40 s are accumulated (summed), and then thresholded
(binarized) to be stored in the AM. Correspondingly, an ictal
prototype vector is generated from a smaller window of 10–
30 s depending on seizure duration. For classification, a newly
computed H vector is compared to every prototype of the AM
using Hamming distance to determine its label.

C. Postprocessing
The last part of the algorithm postprocesses the labels pro-

duced by the HD classifier every 0.5 s. It defines a window of
5 s where a final decision is made based on the last 10 labels
collected from the HD classifier (shifting labels of 0.5 s at a
time). The decision is made based on a patient-specific threshold
(tp): the algorithm detects the seizure onset when the number
of ictal labels inside the 5 s window is equal or greater than tp.
During the training, tp is initially set to 10 (out of 10, to reduce
the false alarms) and is decreased such that the algorithm can

detect the training ictal segment. After the training, we obtain
tp between 10 to 8 depending upon the patient.

Overall, our algorithm has five parameters: the size of LBP
codes (l), the duration of the two windows (0.5 s and 5 s), d,
and tp. Only the last parameter is patient-dependent, whereas
the others are fixed for all patients. Nevertheless, to reduce
the memory load, d can be adjusted to the individual patient
depending on the number of electrodes and seizure dynamics.
We observe that the algorithm works with d=10,000 for all
patients. For some patients it may even be reduced to 1000
without impairing its performance.

IV. DATASET AND EXPERIMENTAL RESULTS
We include the anonymized dataset of 16 patients of the

epilepsy surgery program of the Inselspital Bern in this study for
a total of 99 recordings. Each recording consists of 3 minutes
of interictal segments (immediately preceding the seizure), and
the ictal segment (ranging from 10 s to 1002 s), followed by
3 minutes of postictal time. Table I and II list the number of
electrodes, the number of seizures, and the seizure duration for
every patient. To evaluate the performance of our algorithm, we
use specificity, sensitivity, the number of trained seizures, and
delay of detection. The delay is measured as the total time that
an algorithm takes to classify an unseen seizure after the seizure
onset time point that is marked by the expert; note that it is not
the implementation delay but the working delay of an algorithm.
Based on these criteria, we observe that patients may be roughly
partitioned into two groups. For the majority of the patients
(10 out of 16 in Table I), our algorithm quickly learns from
one or two seizures, and achieves perfect (100%) specificity
and sensitivity with k-fold cross-validation, where k is the total
number of seizures minus the number of trained seizures. Our
algorithm shows 18.2 s average delay in detection, which is
well suited for several important applications considering that
iEEG seizure onset often precedes clinical onset by more than
20 s [16]. Furthermore, a 20 s delay from seizure onset detection
may in many cases be fast enough to quench seizure activity or
to prevent further spreading and secondary generalization, which
is the hallmark of disabling or even life-threatening seizures.

For the remaining minority of 6 patients, listed in Table II,
our algorithm requires more seizures (3–6) for training. We train
with the first m accrued seizures listed in Table II and test with
the remaining seizures. For these patients we use 22 seizures for
training and test with the remaining 38 seizures. The algorithm



TABLE I: Learning from one/two seizure(s) with perfect (100%) generalization for patient majority using k-fold cross-validation.

Patients information LBP + HD Computing LBP + Linear SVM LGP + MLP

ID Elect.
[#]

Seiz.
[#] Seizure duration [s] Trained

seiz. [#] k-fold Mean
delay [s]

Spe.
[%]

Sen.
[%]

Mean
delay [s]

Spe.
[%]

Sen.
[%]

Mean
delay [s]

Spe.
[%]

Sen.
[%]

Mean Min Max

1 100 5 14 10 22 2 4 6.3 100 100 6.9 100 100 6.9 96.76 100
2 64 4 146 89 179 1 4 15.1 100 100 10.1 91.74 75 12.2 98.26 100
4 42 4 223 96 301 1 4 34.5 100 100 29.3 100 100 35.2 100 100
5 59 6 88 67 117 1 6 20.9 100 100 14.7 92.09 100 14.6 84.54 100
6 36 2 15 14 16 1 2 6.3 100 100 9.0 100 100 7.5 100 100
8 61 3 121 52 184 1 3 13.2 100 100 11.9 100 100 10.3 100 100

11 59 2 57 52 61 1 2 7.0 100 100 6.5 100 100 6.5 100 100
13 98 2 99 73 125 1 2 10.0 100 100 16.3 100 100 9.8 100 100
15 56 9 144 104 198 2 8 36.4 100 100 31.3 99.86 100 30.8 91.71 100
16 64 2 109 83 135 1 2 32.3 100 100 29.3 100 100 29.5 96.81 100

TABLE II: Learning from three to six seizures, and testing with the remaining seizures for patient minority.

Patients information LBP + HD Computing LBP + Linear SVM LGP + MLP

ID Elect.
[#]

Seiz.
[#] Seizure duration [s] Trained

seiz. [#]
Mean

delay [s]
Spe.
[%]

Sen.
[%]

Mean
delay [s]

Spe.
[%]

Sen.
[%]

Mean
delay [s]

Spe.
[%]

Sen.
[%]

Mean Min Max

3 62 14 98 31 139 3 21.8 94.17 100 15.6 87.80 100 16.8 91.47 100
7 74 7 587 154 1002 3 5.0 44 100 5.0 45.24 100 7.6 69.37 100
9 92 6 79 19 100 3 16.2 100 100 11.0 99.95 100 21 98.61 100

10 47 13 71 10 252 3 9.3 99.47 90 9.2 99.10 90 13.3 99.66 70
12 54 10 99 80 154 6 12.6 93.10 100 14.5 81.61 100 12.6 77.58 100
14 49 10 45 23 93 4 21.7 100 100 9.3 91.08 100 7.2 82.30 100

almost maintains its top performance with 100% sensitivity for
5 of 6 patients. Only one patient causes a low specificity. It is
worthwhile to discuss two types of variability that can occur
in epileptic seizures. On one hand, seizures may start focally
and remain focal (i.e. restricted to one cerebral hemisphere)
or they may secondary generalize and involve both cerebral
hemispheres. Importantly for this kind of variability the iEEG
patterns emerging at seizure onset are very similar and thus
seizure onsets should be rapidly detected. On the other hand, few
patients may have seizures starting in different regions of the
brain with for example some seizures beginning in the left, some
in the right temporal lobe (i.e. in cases of bilateral temporal lobe
epilepsy). Then there will be different iEEG patterns at seizure
onset for the different types of seizures, and both types have to
be learned by the algorithm.

We also compare our algorithm with two recent methods
using local pattern transformation [1]: 1) A method using his-
tograms of LBPs (2l integer features per electrode) that performs
best with a linear SVM classifier; 2) Akin to LBP, a local
gradient pattern (LGP) is further proposed that with an MLP
neural network outperforms LBP+SVM. In an identical setup,
the postprocessing is tuned for them accordingly. As shown
across both tables, our algorithm, on average, achieves higher
specificity and sensitivity than the other methods, but with
≈2 s higher detection delay on average. The low specificity of
LBP+SVM and LGB+MLP clearly limits their usage for long-
time recordings. In addition, let us optimistically assume that we
could aggressively quantize their weights: SVM weights with
32-bit fixed-point still require 4–10× larger memory (depending
on the number of electrodes) than our algorithm; and MLP
weights with 1-bit demand 5–13× larger memory.

V. CONCLUSION
We present a simple algorithm for one-shot learning and

classification of seizures. Our algorithm exploits LBP codes
and HD computing to enable completely binary operations
during training and inference. It further provides a universal
and scalable interface to analyse all iEEG recordings (36–100

electrodes) with a minimal set of parameters. Our algorithm
learns from one seizure, two seizures, and three-to-six seizures,
for eight, two, and six patients, respectively. It outperforms the
LBP+SVM and LGP+MLP for detecting 65 novel seizures with
higher specificity and sensitivity, and lower memory.
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