
A Variability-Aware OpenMP Environment for Efficient Execution 

of Accuracy-Configurable Computation on Shared-FPU Processor 

Clusters  
Abbas Rahimi†, Andrea Marongiu‡, Rajesh K. Gupta†, Luca Benini‡ 

†Department of Computer Science and Engineering, UC San Diego, La Jolla, CA 92093, USA 
‡Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione, Università di Bologna, 40136 Bologna, Italy 

{abbas, gupta}@cs.ucsd.edu, {a.marongiu, luca.benini}@unibo.it 

ABSTRACT 

We propose a tightly-coupled, multi-core cluster architecture with 

shared, variation-tolerant, and accuracy-reconfigurable floating-

point units (FPUs). The resilient shared-FPUs dynamically char-

acterize FP pipeline vulnerability (FPV) and expose it as metadata 

to a software scheduler for reducing the cost of error correction. 

To further reduce this cost, our programming and runtime envi-

ronment also supports controlled approximate computation 

through a combination of design-time and runtime techniques. We 

provide OpenMP extensions (as custom directives) for FP compu-

tations to specify parts of a program that can be executed approx-

imately. We use a profiling technique to identify tolerable error 

significance and error rate thresholds in error-tolerant image pro-

cessing applications. This information guides an application-

driven hardware FPU synthesis and optimization design flow to 

generate efficient FPUs. At runtime, the scheduler utilizes FPV 

metadata and promotes FPUs to accurate mode, or demotes them 

to approximate mode depending upon the code region require-

ments. We demonstrate the effectiveness of our approach (in 

terms of energy savings) on a 16-core tightly-coupled cluster with 

eight shared-FPUs for both error-tolerant and general-purpose 

error-intolerant applications. 

Categories and Subject Descriptors 

B.8.0 [Performance and Reliability]: General  

General Terms 

Reliability, Design, Performance, Algorithms. 

Keywords 

PVT variability, timing error, floating-point, resilient, approxima-

tion, OpenMP, multi-core. 

1. INTRODUCTION 
Variability is a growing challenge in microelectronic designs 

[1],[2]. Static process variations manifest themselves as die-to-die 

and within-die variations. Die-to-die variations affect all compu-

ting units on a die equally, whereas within-die variations induce 

different characteristics for each computing unit. Dynamic varia-

tions are caused by the operating conditions. Examples of these 

types of variations include dynamic voltage droop, and on-die hot 

spots. These factors are expected to be worse in future technolo-

gies [3]. Variations may prevent a circuit from meeting timing 

constraints thus resulting in timing errors. IC designers commonly 

use guardbands on the operating frequency or voltage to ensure 

error-free operation for the worst-case variations. Given the in-

creasing costs of guardbands, it is important to make a design 

inherently resilient to errors and variations. In this paper, we focus 

on resiliency to timing errors caused by variations. 

Resilient designs typically employ in situ or replica circuit sensors 

to detect the variability-induced timing error in both logic and 

memory blocks. For logic, error-detection sequential (EDS) [4] 

circuit sensors have been employed, while an 8T SRAM arrays 

utilized a tunable replica bits [5]. A common strategy is to detect 

variability-induced delays using data that arrives shortly after the 

relevant clock edge and flagging it as a timing error. On detection, 

the timing failures are corrected by replaying the errant operation 

with a larger guardband through various adaptation techniques. 

For instance, a resilient 45-nm integer-scalar core [6] places EDS 

within the critical paths of the pipeline stages. Once a timing error 

is detected during instruction execution, the core prevents the 

errant instruction from corrupting the architectural state and an 

error control unit (ECU) initially flushes the pipeline to resolve 

any complex bypass register issues. To ensure error recovery, the 

ECU supports two separate techniques: instruction replay at half 

frequency, and multiple-issue instruction replay at the same fre-

quency. These techniques impose a latency of up to 28 extra re-

covery cycles per error with an energy overhead of 26nJ for the 

resilient 7-stage integer core [6]. 

The cost of these recovery mechanisms is high in the face of fre-

quent timing errors in aggressive voltage down-scaling and near-

threshold computation [7] in an attempt to save power. This cost 

is exacerbated in floating-point (FP) pipelined architectures be-

cause FP pipelines typically have high latency, e.g., up to 32 cy-

cles to execute depending upon the type and precision on an ARM 

Cortex-A9 [8], and higher energy-per-instruction costs than their 

integer counterparts. Further, deeper pipelines induce higher pipe-

line latency and higher cost of recovery through flushing and 

replaying. These energy-hungry high-latency pipelines are prone 

to inefficiencies under timing errors because the number of recov-

ery cycles per error is increased at least linearly with the pipeline 

length. More importantly, FP pipelines are often shared among 

cores due to their large area and power cost. For instance, the 

AMD Bulldozer architecture shares a floating-point unit (FPU) 

between a dual-clustered integer core, with four pipelines [9]. 

UltraSPARC T1 also has a shared-FPU between eight cores. This 

makes the cost of recovery even more pronounced for a cluster of 

tightly-coupled processors utilizing shared resources. 
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1.1 Contributions 
Our goal is to reduce the cost of a resilient FP environment which 

is dominated by the error correction. Tolerance to error in execu-

tion is often a property of the application: some applications, or 

their parts, are tolerant to errors (notably, media processing appli-

cations), while some other parts must be executed exactly as spec-

ified. We either explicitly ignore the timing errors − if possible − 

in a fully controlled manner to avoid undefined behavior of pro-

grams; or we try to reduce the frequency of timing errors by as-

signing computations to appropriate pipelines with lower vulnera-

bility. Accordingly, this paper makes three contributions: 

1. We propose a set of accuracy-reconfigurable FPUs that are 

resistant to variation-induced timing errors and shared among 

tightly-coupled processors in a cluster. This resilient shared-FPUs 

architecture supports online timing error detection, correction, and 

characterization. We introduce the notion of FP pipeline vulnera-

bility (FPV), captured as metadata, to expose variability and its 

effects to a software scheduler for reducing the cost of error cor-

rection. A runtime ranking scheduler utilizes the FPV metadata to 

identify the most suitable FPUs for the required computation ac-

curacy for the minimum timing error rate.  

2. Using the notions of approximate and accurate computations, 

we describe a compiler and architecture environment to use ap-

proximate computations in a user- or algorithmically-controlled 

fashion. This is achieved via design-time profiling, synthesis, and 

optimization in conjunction with runtime characterization tech-

niques. This approach eliminates the cost of error correction for 

specific annotated approximate regions of code if and only if the 

propagated error significance and error rate meet application-

specific constraints on quality of output. For error-tolerant appli-

cations our OpenMP extensions specify parts of a program that 

can be executed approximately, thus providing a new degree of 

scheduling flexibility and error resilience. At design-time, code 

regions are profiled to identify acceptable error significance and 

error rate. This information drives synthesis of an application-

driven hardware FPU. At runtime, as different sequences of 

OpenMP directives are dynamically encountered during program 

execution, the scheduler promotes FPUs to accurate mode, or 

demotes them to approximate mode depending upon the code 

region requirements. Section 3 and Section 4 cover these details. 

3. Our approach enables efficient execution of finely interleaved 

approximate and accurate operations enforced by various compu-

tational accuracy demands within and across applications. We 

demonstrate the effectiveness of our approach on a 16-core tight-

ly-coupled cluster in the presence of timing errors. For general-

purpose error-intolerant application, our approach reduces the 

recovery cycles that yield an average energy saving of 22% (and 

up to 28%), compared to the worst-case design. For error-tolerant 

image processing applications with annotated approximate direc-

tives, 36% energy saving is achieved while maintaining accepta-

ble quality degradation. In Section 5, we present experimental 

results followed by conclusions in Section 6.   

2. RELATED WORK 
Characterization and use of variability-affected execution of in-

structions is an active area of research. Rahimi et al. have consid-

ered execution vulnerability at the instruction level [10], across a 

sequence of instructions [11] to expose variability and its effects 

to the software stack. Another technique is to use procedure-level 

vulnerability [12] for guiding a runtime system to mitigate dynam-

ic voltage variations by hopping a procedure (subroutine) from 

one core to a favor core within a shared-L1 processor clusters. An 

extension to the OpenMP 3.0 tasking programming model is also 

proposed to dynamically characterize task-level vulnerability in a 

shared memory processor clusters [13]. Here, the runtime system 

matches different characteristics of each variability-affected core 

to various levels of vulnerability of tasks. A configurable-

accuracy integer adder is proposed in [14], where the error correc-

tion module is power-gated during approximate operations. By 

contrast, this paper focuses on energy-hungry FP operations. 

To ensure practical use, approximate computation must be con-

trollable at the granularity of instructions [15] given the difficul-

ties in identifying large blocks of ‘error-tolerant’ instructions. 

This requires interleaved execution of approximate and precise 

computations. Error resilient system architecture (ERSA) [16] 

isolates execution of control-intensive tasks (on super reliable 

cores) from execution of data-intensive tasks (on relaxed reliabil-

ity cores). ERSA is suited for applications consisting of a set of 

coarse-grained isolated tasks that can be expressed entirely with 

approximate computation. However, in case of a fine-grain inter-

leaving of accurate and approximate instructions, ERSA migration 

costs of over thousand cycles [17] are simply too high to be use-

ful. Further, ERSA does not support any standard parallel pro-

gramming model of execution. 

EnerJ [18] is a programming language supporting disciplined 

approximation that lets programmers declare which parts of a 

program can be computed approximately to save computational 

effort (and power). A program is decomposed into two compo-

nents: one that runs precisely, and another that runs approximate-

ly, carrying no guarantees on the output of computation. Green 

[19] also trades off quality of service for improvements in energy 

consumption, while providing statistical quality of service guaran-

tees. Truffle [15], a dual-voltage microarchitecture design, sup-

ports mapping of disciplined approximate EnerJ programs through 

ISA extensions. It applies a high voltage for precise operations 

and a low voltage for approximate operations. Truffle relies on the 

programming language to provide safety guarantees statically to 

the programmer. Truffle does not provide dynamic invariant 

checks, and error recovery that yield to an unsafe ISA. Further-

more, EnerJ and Truffle impose excessive guardbands on the pre-

cise conventional computation due to lack of full resiliency sup-

ports. They also target single-core machines. We consider an 

OpenMP environment, as the de facto standard for parallel pro-

gramming on shared memory multi-cores systems, to support both 

resiliency and configurability for accuracy. Moreover, we guaran-

tee a controlled, thus safe, approximation computation leveraging 

both design-time and runtime techniques.    

3. CONTROLLED APPROXIMATION 
Approximate computation leverages the inherent tolerance of 

some (type of) applications within certain error bounds that are 

acceptable to the end application. Two metrics have been previ-

ously proposed to quantify tolerance to errors [24]: error rate and 

error significance. The error rate is the percentage of cycles in 

which the computed value of a FP operation is different from the 

correct value. The error significance is the numerical difference 

between the correct and the computed results. 

Disciplined approximated programming allows programmers to 

identify parts of a program for approximate computation [15]. 

This is commonly found in applications in vision, machine learn-

ing, data analysis, and computer games. Conceptually, such pro-



grams have a vector of ‘elastic outputs’ than a singular correct 

answer. Within the range of acceptable outputs, the program can 

still appear to execute correctly from the user’s perspective 

[15],[16],[18] even if the individual computations are not exact. 

Programs with elastic outputs have application-dependent fidelity 

metrics, such as peak signal to noise ratio (PSNR), associated 

with them to characterize the quality of the computational result. 

The degradation of output quality for such applications is ac-

ceptable if the fidelity metrics satisfy a certain threshold. For ex-

ample, in multimedia applications the quality of the output can be 

degraded but acceptable within the constraints of PSNR ≥ 30dB 

[25]. 

The timing error must be controllable because it could occur any-

time and anywhere in the circuit. Therefore, three conditions must 

be satisfied to ensure that it is safe not to correct a timing error 

when approximating the associated computation:  

i. The error significance is controllable and below a given 

threshold; 

ii. The error rate is controllable and below a given error 

rate threshold; 

iii. There is a region of the program that can produce an ac-

ceptable fidelity metric by tolerating the uncorrected, 

thus propagated, errors with the above-mentioned prop-

erties.       

These conditions can be satisfied either through a set of profiling 

phases, or a set of threshold values specified by a domain expert 

via application knowledge. As we will detail in Section 5.1.2, the 

output information of our profiling phase is a set of threshold 

values that guarantee an acceptable fidelity metric. Any timing 

error greater than the set of thresholds triggers the recovery mech-

anism during the approximate operation to avoid unacceptable 

accuracy and undefined program behavior (e.g., in case of data-

dependent control-flow), therefore guaranteeing a safe approxi-

mate computation.  

In Section 4, we describe how we use these rules in OpenMP 

environment to ensure that approximate computations always 

deliver the required accuracy, and how they can be used for effi-

cient hardware FPU synthesis and optimizations.  

4. VARIABILITY-AWARE OPENMP EN-

VIRONMENT 

4.1 Accuracy-Configurable Architecture 
We now describe the architectural details of the proposed pro-

cessing cluster with variation-tolerant accuracy-reconfigurable 

shared-FPUs, shown in Figure 1. The architecture is inspired by 

the tightly-coupled clusters in STMicroelectronics P2012 [20] as 

the essential component of a many-core fabric. In our implemen-

tation, each cluster consists of sixteen 32-bit in-order RISC cores, 

a L1 software-managed Tightly Coupled Data Memory (TCDM) 

and a low-latency logarithmic interconnection [21]. The TCDM is 

configured as a shared, multi-ported, multi-banked scratchpad 

memory that is directly connected to the logarithmic interconnec-

tion. The number of TCDM ports is equal to the number of banks 

(32) to enable concurrent access to different memory locations. 

Note that a range of addresses mapped on the TCDM space pro-

vides test-and-set read operations, which we use to implement 

basic synchronization primitives (e.g., locks). The logarithmic 

interconnection is composed of mesh-of-trees networks to support 

single cycle communication between processors and memories 

(see the left part of Figure 1). When a read/write request is 

brought to the memory interface, the data is available on the nega-

tive edge of the same clock cycle, leading to two clock cycles 

latency for a conflict-free TCDM access. The cores have direct 

access into the off-cluster L2 memory, also mapped in the global 

address space. Transactions to the L2 are routed to a logarithmic 

peripheral interconnect through a de-multiplexer stage. From 

there, they are conveyed to the L2 via the system interconnection 

(based on the AHB bus in this work). Since the TCDM has a 

small size (256KB) the software must explicitly orchestrate con-

tinuous data transfers from L2 to L1, to ensure locality of compu-

tations. To allow for performance- and energy- efficient transfers, 

the cluster has a DMA engine. This can be controlled via 

memory-mapped registers, accessible through the peripheral inter-

connect. 

We extend this baseline cluster architecture with our resilient 

shared-FPUs. Similar to the DMA, our FPU design is also con-

trolled via memory-mapped registers, accessible through a slave 

port on the peripheral interconnect. The designed FPU is based on 

32-bit single precision, compatible with the IEEE standard 7541 

[22], and supports addition (ADD), subtraction (SUB), multipli-

cation (MUL), division (DIV). As shown in the rightmost part of 

Figure 1, the FPU has three pipeline blocks which work in paral-

lel. The first pipeline has two stages and handles ADD and SUB 

operations, the second pipeline also has a latency of two cycles for 

MUL operation. The third pipeline has 18 stages to manipulate 

DIV operation. Each pipeline’s inputs and outputs are retrieved 

from a minimal register file (one register file per pipeline to allow 

for parallel execution). A common write-only optr register en-

codes the targeted operation, and is used to select the target pipe-

                                                                 
1 In this standard, each 32 bit FP number contains 1 sign bit, 8 bits as 

exponent, and 23 bits as fraction. The standard provides special repre-

sentation for exception cases, such as infinity, not a number (NaN), etc. 

Figure 1: Variability-aware cluster architecture with shared-FPUs. 



line. For each pipeline there is a write-only opmode register that 

determines whether the current operation is accurate or approxi-

mate. The next registers are also write-only operand registers 

(opnd1 and opnd2) that contain the input operands. The res 

register is read-only and stores the output of the pipeline. Finally, 

the last register (done) is also read-only and is used for synchro-

nization with the processor, as it holds a signal that notifies pipe-

line execution completion. 

Every pipeline block has two dynamically reconfigurable operat-

ing modes: (i) accurate, and (ii) approximate. To ensure 100% 

timing correctness in the accurate mode, every pipeline uses the 

EDS circuit sensors as well as the ECU to detect and correct any 

timing error due to static and dynamic delay variations [6]. Note 

that the area overhead of EDS and ECU is negligible (3.8% area 

overhead [6]). During accurate operation if a timing error is de-

tected, the EDS circuits prevent pipeline from writing results to 

res register and thus avoid corrupting the architectural state. To 

recover the errant operation without changing the clock frequen-

cy, the ECU employs a multiple-issue operation replay mecha-

nism. Prior to replaying the errant operation, the ECU initially 

flushes the pipeline, and reissues the errant operation multiple (M) 

times. The ECU sets the number of replica operations equals the 

number of corresponding pipeline stages (M=2 for 

ADD/SUB/MUL and M=18 for DIV) to ensure the register inputs 

for each pipeline stage are set to the appropriate value, thus guar-

anteeing correct execution of the valid operation (M-th operation). 

This recovery technique allows entire components of the cluster 

work at same frequency (with memories at a 180° phase shift) 

therefore avoiding the cost of inter-clock domain synchronization 

that can significantly increase communication latency. However, 

this recovery mechanism incurs the energy overhead. 

In the approximate mode, the pipeline simply disables the EDS 

circuit sensors on the less significant N bits of the fraction where 

N is reprogrammable through a memory-mapped register. The 

sign and the exponent bits are always protected by EDS. This 

allows the pipeline to ignore any timing error below the less sig-

nificant N bits of the fraction and save on the recovery cost. While 

other configurable-accuracy integer block implementations [14] 

power gate the error correction unit during the approximate opera-

tions, for FP pipelines with complex circuit topology, we only 

disable the error detection circuits partially on N bits of the frac-

tion. This enables the FP pipeline for executing the subsequent 

accurate or approximate software blocks without any problem in 

power retention. Further, this ensures that the error significance 

threshold is always met, but limits the use of the recovery mecha-

nism to those cases where the error is present on the most signifi-

cant bits. To keep focus on the FPU architecture, we assume that 

the scalar integer cores and the memory components are resilient, 

for instance by utilizing the error detection and correction mecha-

nisms [6], and tunable replica bits [5]. 

4.1.1 Floating-point Pipeline Vulnerability 
To characterize vulnerability of every FP pipeline to the variabil-

ity-induced timing error, we propose the notion of FP pipeline 

vulnerability (FPV) as a metadata. The FPV metadata is defined as 

the percentage of cycles in which a timing error occurs on the 

pipeline reported by the EDS sensors. To compute FPV, the ECU 

dynamically characterizes this per-pipeline metric over a pro-

grammable sampling period. The characterized FPV of each pipe-

line is visible to the software through memory-mapped registers. 

Thus, the runtime software scheduler leverages this characterized 

information for better utilization of FP pipelines, for example, it 

can assign fewer operations to a pipeline with higher FPV 

metadata. The runtime software scheduler can also demote a pipe-

line to the approximate mode.  

We leverage this dynamic reconfiguration capability to allow the 

runtime scheduler to perform on-line selection of best FP pipeline 

candidates. This allows us to match oncoming program requests 

for accurate or approximate FP computation. The granularity at 

which a FP pipeline is configured for accurate/approximate oper-

ating mode is that of a software block, annotated by the program-

mer through specific language constructs (directives), as we ex-

plain in the following section. We consider eight shared FPUs 

integrated in our cluster. Since the number of FPUs is smaller 

than the number of processors, we describe our scheduling 

scheme in Section 4.3. 

4.2 OpenMP Compiler Extension 
Recently the programming model has been explored as a means to 

enable new opportunities for power savings [18]. The disciplined 

approximated programming allows programmers to identify re-

gions of code that may be subjected to approximate computation, 

and are consequently tolerant to energy–accuracy trade-offs 

[15],[18],[19]. Applied to our architecture, FPUs under device 

variability are subject to timing errors, which require energy- and 

performance- expensive techniques to be corrected. However, the 

correctness of the result could be traded-off for reduced energy if 

the programmer took responsibility for indicating which program 

parts could tolerate errors as an approximation of the expected 

result (e.g., lower than a given error significance threshold). We 

provide two custom directives to OpenMP to identify approximate 

or accurate computations with an arbitrary granularity determined 

by the size of the structured block enclosed by the two custom 

directives: 

 

The approximate directive allows the programmer to specify 

the tolerated error for the specific computation through an addi-

tional clause: 

 

The error is specified as the least significant N bits of the fraction. 

By default, if the programmer does not specify an error signifi-

cance threshold it is assumed zero-tolerance (i.e., the approxi-

mate directive behaves as the accurate). By using this clause 

the approximate structured blocks have deterministic fully-

predictive semantics: the maximum error significance for every 

FP instruction of the structured block is bound below the less 

significant N bits of the fraction. Moreover, any approximate 

instruction cannot modify any register other than its own res and 

done registers. 

To show how the compiler transforms a region of code annotated 

with these directives, let us consider the code snippet for Gaussi-

an smoothing filter [14],[23] in Figure 2. Here, the programmer 

has indicated the whole parallel block as an accurate compu-

tation, with the exception of the FP multiplication and accumula-

tion of the input data. These two operations are annotated for the 

approximate computation with a tolerance threshold of less signif-

error_significance_threshold (<value N>) 

#pragma omp accurate  

  structured-block 
 

#pragma omp approximate [clause] 

  structured-block 

 



#pragma omp parallel 

{ 

 #pragma omp accurate 

 #pragma omp for 

 for (i=K/2; i <(IMG_M-K/2); ++i) { 

 // iterate over image 

  for (j=K/2; j <(IMG_N-K/2); ++j) { 

   float sum = 0; 

   int ii, jj; 

   for (ii =-K/2; ii<=K/2; ++ii) { 

   // iterate over kernel 

    for (jj = -K/2; jj <= K/2; ++jj) { 

     float data = in[i+ii][j+jj]; 

     float coef = coeffs[ii+K/2][jj+K/2]; 

     float result; 

     #pragma omp approximate \ 

               error_significance_threshold(20)                    

 { 

         result = data * coef; 

        sum += result; 

 } 

    } 

   } 

   out[i][j]=sum/scale; 

  } 

 } 

} 

 

icant 20 bits of the fraction derived from profiling phases in Sec-

tion 5.1.2. The compiler transforms the approximate block as 

follows: 

 

The first instruction generated inside a translated approximate 

block is a call to the GOMP_resolve_FP runtime library func-

tion. This API implements the variation-tolerant scheduling algo-

rithm, described in the following section. It takes two integer 

parameters as inputs. The first describes the target operating mode 

of the FP pipeline, approximate or accurate, and the second one 

contains the error significance threshold value, extracted from the 

error_significance_threshold clause. As a result, this 

function returns a unique identifier number (ID) for the FP pipe-

line block. From this point, the FP pipeline will be associated to 

the processor that has invoked this function. The scheduler inter-

nally marks this FP pipeline resource as busy, so that no new up-

coming requests could consider it for execution. Once a link to a 

physical FP is set, it is configured for the desired mode. The com-

piler also transforms statements containing a FP operation into a 

call to the GOMP_FP runtime library function. Within this func-

tion we actually program the target shared-FPU. 

 

A FPU programming sequence consists of three writes and two 

reads (not considering polling) into the memory-mapped FPU 

register file (see rightmost part of Figure 1). The first parameter of 

GOMP_FP is used to resolve the address of the target register file. 

Parameters two and three are the operands of the FP operation, 

while parameter four specifies which operation has to be execut-

ed. Parameter five points to the storage (variable) into which the 

result from the FPU is read. Before reading this output the proces-

sor polls on the done register to check that FPU has produced the 

result. 

A similar transformation process is applied to accurate blocks, 

with the only difference that the GOMP_resolve_FPU function 

will be invoked with GOMP_ACCURATE and “0” as input param-

eters. 

4.3 Runtime Support and FPV  Utilization 
The runtime library is a software layer that lies between the varia-

tion-tolerant shared-FPU architecture and the compiler-

transformed OpenMP application. The goal of our variation-aware 

scheduler is to inspect the status of the FPUs and allocate them to 

approximate and accurate software blocks in such a way to 

reduce the overall cost of timing error correction. This is accom-

plished in a two-fold manner: (i) the variation-aware scheduler 

reduces the number of recovery cycles for accurate blocks by 

favoring utilization of FPUs with a lower FPV, thus lower error 

rate and energy; (ii) the variation-aware scheduler further reduces 

the cost of error correction by deliberately propagating the error 

toward application, thus excluding the correction cost. The latter 

guarantees the quality of service for approximate blocks by 

demoting FPUs to the approximate mode for ignoring errors that 

match the tolerance expressed via the er-

ror_significance_threshold clause.    

To allow for quick selection of best suited devices for the accura-

cy target at hand, our scheduler ranks all the individual pipelines 

based on their FPV. For every type of FP operations (ADD, SUB, 

MUL, DIV), the scheduler reads the corresponding characterized 

FPV, and then sorts all the pipelines by increasing FPV across 

FPUs. The sorted list is maintained in the shared TCDM, to make 

it visible to all the cores and accessible with low latency. The FPV 

for every FPU could be statically pre-determined (e.g., during a 

profile run), but in general when the program starts such infor-

mation may not be available. In this case FPUs are simply sched-

uled with a round-robin policy, but our system performs online 

characterization in the background to dynamically collect FPV 

signatures for every FPU. 

Once this information is available in the sorted lists, the scheduler 

can optimize FPU allocation for accurate software blocks. 

This is implemented in the GOMP_resolve_FP function. 

 

Within this function, once the operating mode has been deter-

mined (the opmode parameter), as a first step the scheduler locks 

the sorted list structure, to prevent inconsistencies due to concur-

rently executing accurate or approximate blocks, then it 

traverses the list, starting from the head, until it finds an available 

pipeline. Once the target FP pipeline has been identified, it is 

configured to the desired opmode on-the-fly, and its ID is re-

turned to the application for offloading the consecutive FP in-

struction. This configurability partially enables/disables the error 

detection on the less significant N bits of the fraction determined 

through the error_significance_threshold clause. 

Consequently, the FP pipeline is able to detect and correct any 

timing error if it is reconfigured for the accurate mode; on the 

other hand, in the approximate mode the FP pipeline ignores any 

timing error on the less significant N bits of the fraction. Using 

int ID = GOMP_resolve_FP (GOMP_APPROX, 20); 

GOMP_FP (ID, data, coeff, GOMP_MUL, &result); 

int ID = GOMP_resolve_FP (GOMP_APPROX, 20); 

GOMP_FP (ID, sum, result, GOMP_ADD, &sum); 

int GOMP_FP (int id, float op1, float op2, 

                enum operation, float* dest) 

 

 

GOMP_resolve_FP (int opmode, int thresh) 

 

 

 

Figure 2: Code snippet for Gaussian filter utilizing OpenMP 

variability-aware directives. 
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these sorted lists, for every type of FP operations the ranking al-

gorithm tries to highly utilize those pipelines with a lower FPV 

(and rarely allocate operations to the pipelines at the end of list), 

thus the aggregate recovery cycles for execution of FP operations 

will be reduced. Figure 3 illustrates the ranking (RANK) algo-

rithm.  

When handling requests for approximate FPU resources, the pipe-

line selection phase can have an additional check to assure effi-

ciency of approximate executions. If a FP pipeline displays a high 

error rate, i.e., a FPV close to one, it might not be a suitable can-

didate for the approximation execution, mainly because there is a 

high probability that a timing error could also happen in the more 

significant bits. In this case, the FP pipeline enforces the cost of 

recovery which wipes out the benefit of the relaxed approximate 

execution. To avoid this situation, the scheduler can selectively 

virtualize K number of FP pipelines (with a low FPV) among all 

available FP pipelines, for every type of operations. In this reac-

tive technique, two (or more) OpenMP-visible virtual FP instruc-

tions must share a single physical FP. This is implemented by 

determining the end point of the sorted list through specifying the 

error rate threshold. When the error rate threshold is specified the 

scheduler limits its search for the approximate operations until a 

certain element of the sorted list, e.g., in Figure 3 until K-th pipe-

line. As soon as the scheduler finds a pipeline which has a higher 

FPV than the error rate threshold, it marks it as the virtual end 

point of the list for the approximate operations. Therefore, for the 

following approximate requests, the scheduler starts from the start 

point of the sorted list, and traverses down toward the virtual end 

point of the corresponding sorted list for finding a free pipeline. 

However, this virtualization technique limits the available paral-

lelism discussed in the Section 5.  
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Figure 3. RANK scheduling based FPV of FP pipelines. 

4.4 Application-Driven Hardware FPU Syn-

thesis and Optimization  
In the earlier sections, we describe the three essential components 

of our variability-aware OpenMP environment: the language di-

rective extensions, the compiler and runtime support, and the 

accuracy-configurable architecture. In this section, we introduce 

an optional yet effective methodology to generate efficient hard-

ware FPU. The design flow should be done by choosing a thresh-

old that is acceptable on a wide class of application, and if an 

application cannot tolerate this type of inaccuracy, the runtime 

system must reconfigure architecture to the accurate mode. We 

couple the proposed methodology with the application tolerable 

error analysis presented in Section 3. As we have mentioned earli-

er, the output information of the profiling phase is two threshold 

values, i.e., the error significance threshold and the error rate 

threshold, that guarantee the acceptable fidelity metric (in our 

case: PSNR ≥ 30dB). This information is utilized during design-

time flow for synthesis and optimization of hardware FPUs; Fig-

ure 4 illustrates the proposed methodology.     

The error significance threshold indicates that any timing error 

below the bit position of e.g., N can be ignored since it will not 

induce large deviations from the corrected value. This means for 

the approximate computation the only important parts are the bit 

positions higher than N since any timing error on these bits have 

to be corrected to guarantee the acceptable fidelity metric. There-

fore, an efficient FPU for the approximate mode should eliminate 

the possibility of any timing error on the high order bits, while 

relaxing this constraint on the low order bits. At the same time 

they should not be too relaxed, to avoid the generation of many 

errors that have to be recovered in the accurate mode. Conse-

quently, a set of tight timing constraints is generated to guide the 

hardware synthesis and optimization flow for providing fast paths 

connected to the high order bits (thus the lower delay, and the 

lower probability of timing errors). The synthesis CAD tool meets 

these constraints by utilizing fast leaky standard cells (low-VTH) 

for the paths with the tight timing constraint, while utilizing the 

regular and slow standard cells (regular-VTH and high-VTH) for 

the rest of paths. As a result, the new generated hardware FPU 

will experience a lower probability of the timing error on the bit 

positions higher than N, at the power expense of higher leaky 

cells.             

We have applied the proposed methodology to optimize the netlist 

of the shared-FPUs. The approximation-aware timing constraints 

try to deliver fast paths connected to bit position of 20 up to 32. 

As a result, the optimized shared-FPUs experience lower timing 

error rate; compared to the non-optimized shared-FPUs, the total 

recovery cycles are reduced by 46% and 27% in the accurate and 

approximate modes, respectively. On the other hand, the total 

power overhead of the optimized shared-FPUs is 16% in compari-

son with the non-optimized shared-FPUs (19% overhead in leak-

age power). However, this power overhead is highly compensated 

because the optimized shared-FPUs spend smaller number of 

clock cycles to compute the same amount of work. Experimental 

results in Section 5.1.3 quantify the energy benefit of this pro-

posed methodology. 

Figure 4: Methodology for application-driven hardware FPU 

synthesis and optimization.   



The proposed optimization methodology is based on either de-

signer knowledge (provided from a domain expert), or static pro-

filing (derived from the fidelity metric and error analysis). We 

should note that the static profiling is a common technique for 

approximate computation analysis [19],[23]. However, our meth-

odology takes advantage of the maximum allowable error signifi-

cance at design-time, while the error detection and correction 

circuits embedded in FPUs are responsible to dynamically handle 

any non-maskable timing error.       

5. EXPERIMENTAL RESULTS 
We demonstrate our approach on an OpenMP-enabled SystemC-

based virtual platform for on-chip multi-core shared-memory 

clusters with hardware accelerators [27]. Table I summarizes the 

architectural parameters. A cycle-accurate SystemC model of the 

shared-FPUs is also integrated to the virtual platform, which ena-

bles the variability-affected emulation. To accurately emulate the 

low-level device variability on the virtual platform, we have inte-

grated the variability-induced error models at the level of individ-

ual FP pipelines using the instruction-level vulnerability charac-

terization methodology presented in [10]. The RTL description of 

shared-FPUs are generated and optimized by FloPoCo [28], an 

arithmetic FP core generator of synthesizable VHDL. Then, the 

shared-FPUs have been synthesized for TSMC 45nm technology, 

the general purpose process. The front-end flow with multi VTH 

cells has been performed using Synopsys Design Compiler with 

the topographical features, while Synopsys IC Compiler has been 

used for the back-end. The design has been typically optimized 

for timing to meet the signoff frequency of 625MHz at 

(SS/0.81V/125°C).  

Next, we have analyzed the delay variability of the shared-FPUs 

under process and temperature variations. First, to observe the 

effect of static process variation on the eight shared-FPUs, we 

have analyzed how the critical paths of each pipeline are affected 

due to within-die and die-to-die process parameters variation. 

Therefore, the various pipelines within the FPUs experience dif-

ferent variability-induced delay and thus display various error 

rate. During the sign-off stage, we have injected process variation 

in the shared-FPUs using the variation-aware timing analysis en-

gine of Synopsys PrimeTime VX [29]. It utilizes process parame-

ters and distributions of 45nm variation-aware TSMC libraries 

[30] derived from first-level process parameters by principal com-

ponent analysis. Second, to observe the effects of temperature 

variations, we employ voltage-temperature scaling feature of Syn-

opsys PrimeTime to analyze the delay and power variations under 

temperature fluctuations. Finally, the variation-induced delay is 

back-annotated to the post-layout simulation to quantify the error 

rate of individual pipelines. For every back-annotated variation 

scenarios, the FP pipelines are characterized with a representative 

random set of 107 inputs, automatically generated by FloPoCo. 

Finally, these error rate models are integrated to the correspond-

ing modules in the SystemC virtual platform to emulate variabil-

ity.  

Table I. Architectural parameters of shared-FPUs cluster.  

ARM v6 core 16 TCDM banks 16 

I$ size(per core) 16KB  TCDM latency 2 cycles 

I$ line 4 words TCDM size 256 KB 

Latency hit 1 cycle L3 latency ≥ 60 cycles 

Latency miss ≥ 59 cycles L3 size 256MB 

Shared-FPUs 8 FP ADD latency 2 

FP MUL latency 2 FP DIV latency 18 

5.1 Error-tolerant Applications 
In this section we evaluate the effectiveness of the proposed vari-

ability-aware OpenMP environment under the process variability 

for the error-tolerant  image processing applications. For bench-

mark, we consider two widely-used image processing applications 

as the approximate programs: Gaussian smoothing filter 

[14],[23], and Sobel edge detection algorithm [26].  

5.1.1 Execution without Approximation Directives 
For the first experiments, we marked the entire program for accu-

rate computation (#pragma omp accurate), representative 

of what a non-expert programmer would achieve without applica-

tion profiling, tuning, and code annotation. Later, we show how 

these applications can benefit from the approximate code annota-

tion. We have compared the proposed ranking scheduling 

(RANK) with the baseline round-robin scheduling (RR) in terms 

of FP energy and total execution time. The RR algorithm assigns 

the FP operations to the pipelines in the order they become avail-

able, while RANK utilizes the sorted list structure of the FPV. 

Figure 5 shows the shared-FPU energy and total execution time 

for the target applications for RANK normalized to the baseline 

RR algorithm. Each bar (or point) indicates the normalized 

shared-FPUs energy (or the total execution time) for a set of dif-

ferent input sizes.  

0.90

0.92

0.94

0.96

0.98

1.00

1.02

0.80

0.85

0.90

0.95

1.00

1.05

10×10 20×20 30×30 40×40 50×50 60×60

N
o

rm
a
li

z
e
d

 t
o

ta
l 

e
x
e
c
u

ti
o

n
 t

im
e
 

N
o

rm
a
li

z
e
d

 s
h

a
re

d
-F

P
U

s
 
e
n

e
rg

y
 

Input size

Gaussian (energy) Sobel (energy) Gaussian (time) Sobel (time)

 

Figure 5. Energy and execution time of RANK scheduling 

(normalized to RR) for accurate Gaussian and Sobel filters. 

As shown, the RANK algorithm achieves up to 12% lower energy 

for the shared-FPU compared to RR algorithm, while the maxi-

mum timing penalty is less than 1%. This energy saving is 

achieved by leveraging the characterized FPV metadata and the 

sorted list data structure that enable high utilization of those pipe-

lines that display lower error rates. Consequently, it reduces the 

total recovery cycles, and energy. Moreover, the total timing 

overhead of the RANK is minimal, and the overhead for sorting 

and searching among eight shared-FPUs is highly amortized. The-

se low cost features are accomplished through the advantages of 

fast TCDM, carefully placing the key data structures in TCDM, 

and the low-latency logarithmic interconnection.  

5.1.2 Profiling Error-tolerant Applications 
In this section we present the profiling phases for producing use-

ful threshold information to enable approximate computation. We 

analyze the manifestation of a range of error significance and error 

rate on the PSNR of the two image processing applications. We 

have annotated the approximable regions of the application codes 

using the proposed OpenMP custom directives (the code snippet 

for the Gaussian filter is shown in Figure 2). The annotated ap-

proximate regions of both applications are only composed of FP 

addition and multiplication operations. We quantify how much 



error significance can be tolerated in these approximate regions, 

given a maximum error rate. To do so, we have profiled the anno-

tated approximate regions of the programs. In a series of profiling, 

we have monotonically increased the error significance by inject-

ing the timing errors as random multiple-bit toggling up to a cer-

tain bit position of the FP single precision representation. The 

position of multiple-bit toggling is varied from 1 to 28, for a wide 

range of 1% error rate to 100%.  

Figure 6 illustrates results for the error rate of 100%, i.e., every 

addition and multiplication operation in the FP approximate re-

gions has an errant output depending up on the injected error 

significance. Figure 6.a shows the PSNR degradation of output 

image of the Gaussian filter as a function of the error significance. 

As shown, the three channels of RGB color space, experience 

similar PSNR degradations by increasing the error significance. 

Figure 6.b also illustrates the similar trend for the Sobel filter. The 

rightmost part of Figure 6 shows that this degradation of the 

quality is acceptable from the user’s perspective. In summary, the 

output information of these profiling indicates that for a given 

error rate of {100%, 50%, 25%} if the timing error lies within 

the bit position of 0 to {20, 21, 22} of the fraction part, 

these two applications can tolerate the timing error by delivering a 

PSNR of greater than 30dB. This information is essential not only 

during runtime to intentionally ignore the tolerable timing errors, 

but also for efficient hardware FPU synthesis and optimizations, 

detailed in the following section.  

Therefore, for the approximate regions of these applications, we 

have set the error rate threshold to 100%, and the error signifi-

cance threshold to 20 to maintain the acceptable PSNR. By set-

ting the threshold of the error rate to 100%, during the runtime 

execution of the approximate regions all FPUs can be utilized. 

This is important in data-parallelized image applications where 

there is enough parallelism, and especially so when the number of 

FPUs is lower than the number of the cores and any time-

multiplexing might incur performance degradation.   

5.1.3 Execution with Approximation Directives 
Now, let us quantify the benefit of the approximate computation 

using the information of the profiling. Since the RANK schedul-

ing algorithm surpasses the baseline RR algorithm, for the rest of 

results we have used the RANK algorithm. We have repeated the 

experiments in Section 5.1.1, but for two variants of the applica-

tions code. In the first version, the programs are entirely com-

posed of the accurate FP operations, and the in the second version 

the programs utilize the approximate ADD and MUL operations 

in the annotated regions of code.  

Figure 7 shows the total shared-FPUs energy for these two ver-

sions of the programs with different input sizes. The first group of 

bars shows the energy of the shared-FPUs for the accurate pro-

grams, while the second group of bars refers to the approximate 

programs. For example, with an input size of 60×60, the shared-

FPUs consume 3.5μJ (or 4.6μJ) for the accurate Gaussian (or 

Sobel) program, while execution of the approximate version of the 

program reduces the energy to 2.8μJ (or 3.5μJ), achieving 24% 

(or 30%) energy saving. This energy saving is achieved by ignor-

ing the timing error within the bit position of 0 to 20 of the frac-

tion part. The next two bars show the energy of an optimized 

hardware implementation of the shared-FPUs, discussed in the 

following.    

To generate the efficient FPUs suitable for these applications we 

leveraged the hardware FPU synthesis and optimization method-

ology proposed in Section 4.4. Therefore, the application-driven 

timing constraints guide the CAD flow to selectively optimize 

timing of the desired paths. Figure 7 also shows the energy differ-

ences between the non-optimized and optimized FPUs in the two 

operating modes. On average, compared to the non-optimized 

shared-FPUs, the optimized shared-FPUs achieves 25% and 7% 

lower energy for the accurate and approximate modes, respective-

ly. Overall, utilization of the annotated programs with the approx-

imate directives on top of the optimized shared-FPUs achieves an 

average energy saving of 36%.                      

Figure 6: PSNR degradation as a function of error significance: a) for Gaussian filter (top); b) for Sobel filter (bottom). 

0

20

40

60

80

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

P
S

N
R

 (
d

B
)

Error Significance (bit position)

R G B

PSNR=60dB PSNR=30dB

PSNR=101dB PSNR=31dB

0

20

40

60

80

100

120

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

P
S

N
R

 (
d

B
)

Error Significance (bit position)

R G B



5.2 Error-intolerant Applications 
Using the concept of configurable accuracy as discussed earlier, 

we now show that the proposed variability-aware OpenMP envi-

ronment not only facilitates efficient execution of the approximate 

programs, but also reduces the cost of recovery for the error-

intolerant general-purpose applications. We have evaluated the 

effectiveness of our proposed approach in the presence of process 

variability under operating temperature fluctuations for five error-

intolerant applications: three widely used 2-D computational ker-

nels (matrix multiplication, matrix addition with scalar multiplica-

tion, and DCT), Monte Carlo kernel, and image conversion kernel 

(HSV2RGB).  

Figure 8 shows the shared-FPUs energy saving of these applica-

tion compared to the worst-case design. For these experiments, we 

consider 25% voltage overdesigned for the baseline FPUs which 

can guarantee their error-free operations [15]. On average 22% 

(and up to 28%) energy saving is achieved at the operating tem-

perature of 125°C, thanks to allocating the FP operations to the 

appropriate pipelines. As shown, this saving is consistent (20%-

22% on average) across a wide temperature range (∆T=125°C), 

thanks to the online FPV metadata characterization which reflects 

the latest variations, thus enabling the scheduler to react accord-

ingly. The lower temperature leads to a higher delay in the low-

voltage region of nanometer CMOS technologies [31], thus 

the higher error rate and the more energy for recovery. Please 

note that after having the ranked pipelines tables on TCDM, we 

rarely need to re-execute the sorting algorithm unless we sense a 

temperature fluctuation which has a slow timing-constant. 
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Figure 8. Shared-FPUs energy saving for the error-intolerant 

applications compared to the worst-case design. 

5.3 Comparison with Truffle  
We compare our proposed environment with Truffle. Truffle, as a 

single core architecture, duplicates all the functional units in the 

execution stage. Half of them are hardwired to VddHigh (to execute 

the accurate operations), while the other half operate at VddLow (to 

execute the approximate operations). To have an iso-area compar-

ison with Truffle, as it is suggested in their paper, we assume that 

Truffle uses dual-voltage FPUs and changes the voltage depend-

ing on the instruction being executed. This would also save the 

static power. To have a fair comparison, we also assume that Truf-

fle employs a fast Vdd-hopping technique to switch between 

VddHigh and VddLow. Among the Vdd-hopping implementation 

techniques [32]-[34], Beigne et al. propose a Vdd-hopping unit 

with voltage transitions less than 100ns [32]. Kim et al. also pro-

pose fast on-chip voltage regulators with transitions time of 

15ns−20ns [34], thus we consider this transition time and optimis-

tically augment a latency of 10-cycle for switching FPUs between 

the accurate and approximate modes. We apply Truffle limitation 

to our virtual platform cluster to quantify its energy.      

For comparison, we consider two application scenarios: (i) once 

the cluster is executing only one approximate application; (ii) 

simultaneous execution of one approximate application with one 

accurate application. In the former scenario, entire 16 cores of the 

cluster cooperatively execute one of the approximate image appli-

cations, while in the latter scenario, eight cores execute the ap-

proximate Gaussian filter and the other eight core execute the 

accurate matrix multiplication, simultaneously. Figure 9 compares 

the shared-FPUs energy of Truffle with our proposed approach 

when executing the above two scenarios. As shown, our proposed 

approach surpasses Truffle in the both applications scenarios. In 

the former scenario, on average, our approach saves 20% more 

energy compared to Truffle by reducing the conservative voltage 

overdesigned for the accurate part of filters application. For the 

mixed scenario of the applications, our approach saves 36% more 

energy, since Truffle highly faces with the overhead of frequent 

switching between the accurate and approximate modes which is 

imposed by interference of the accurate and approximate opera-

tions resulting from the concurrent execution of Gaussian and 

matrix multiplication applications.  
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Figure 9. Energy comparison with Truffle: (i) only approxi-

mate ; (ii) concurrent approximate and accurate applications.  
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Figure 7: FP energy of accurate and approximate programs for non-optimized and optimized hardware shared-FPUs.   



6. CONCLUSION  
We propose an OpenMP programming environment that is resili-

ent to variability-induced timing errors and suitable for fine-

grained interleaved approximate and accurate computation on 

shared-FPUs processor clusters. This is orchestrated through a 

vertical abstraction of circuit-level variations into a high-level 

parallel software execution. The OpenMP extensions help a pro-

grammer specify accurate and approximate FP parts of a program. 

The underlying architecture features a set of shared-FPUs with 

two sensing and actuation primitives; every FPU dynamically 

senses the timing errors, characterizes its own FPV metadata, and 

can be configured to operate in the approximate or accurate 

modes. The runtime scheduler utilizes the sensed FPV metadata, 

and parsimoniously actuates depending upon the code region 

requirements on the computational accuracy. These three com-

ponents in the proposed environment support a controlled approx-

imation computation through various design-time phases (applica-

tions profiling, and FPU synthesis & optimization) in combination 

with runtime sensing and actuation primitives. Either the envi-

ronment deliberately ignores the otherwise expensive timing error 

correction in a fully controlled manner, or it tries to reduce the 

frequency of timing errors.  

For general-purpose error-intolerant applications, our approach 

reduces energy up to 28%, across a wide temperature range 

(∆T=125°C), compared to the worst-case design. For error-

tolerant image processing applications with the annotated approx-

imate directives, on average, 36% energy saving is achieved while 

maintaining the PSNR > 30dB. In comparison with the state-of-

the-art architecture [15], our approach saves 36% more energy 

when executing finely interleaved mixture of FP operations.  
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