
A Variability-Aware OpenMP Environment for Efficient Execution

of Accuracy-Configurable Computation on Shared-FPU Processor

Clusters
Abbas Rahimi†, Andrea Marongiu‡, Rajesh K. Gupta†, Luca Benini‡

†Department of Computer Science and Engineering, UC San Diego, La Jolla, CA 92093, USA
‡Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione, Università di Bologna, 40136 Bologna, Italy

{abbas, gupta}@cs.ucsd.edu, {a.marongiu, luca.benini}@unibo.it

ABSTRACT

We propose a tightly-coupled, multi-core cluster architecture with

shared, variation-tolerant, and accuracy-reconfigurable floating-

point units (FPUs). The resilient shared-FPUs dynamically char-

acterize FP pipeline vulnerability (FPV) and expose it as metadata

to a software scheduler for reducing the cost of error correction.

To further reduce this cost, our programming and runtime envi-

ronment also supports controlled approximate computation

through a combination of design-time and runtime techniques. We

provide OpenMP extensions (as custom directives) for FP compu-

tations to specify parts of a program that can be executed approx-

imately. We use a profiling technique to identify tolerable error

significance and error rate thresholds in error-tolerant image pro-

cessing applications. This information guides an application-

driven hardware FPU synthesis and optimization design flow to

generate efficient FPUs. At runtime, the scheduler utilizes FPV

metadata and promotes FPUs to accurate mode, or demotes them

to approximate mode depending upon the code region require-

ments. We demonstrate the effectiveness of our approach (in

terms of energy savings) on a 16-core tightly-coupled cluster with

eight shared-FPUs for both error-tolerant and general-purpose

error-intolerant applications.

Categories and Subject Descriptors

B.8.0 [Performance and Reliability]: General

General Terms

Reliability, Design, Performance, Algorithms.

Keywords

PVT variability, timing error, floating-point, resilient, approxima-

tion, OpenMP, multi-core.

1. INTRODUCTION
Variability is a growing challenge in microelectronic designs

[1],[2]. Static process variations manifest themselves as die-to-die

and within-die variations. Die-to-die variations affect all compu-

ting units on a die equally, whereas within-die variations induce

different characteristics for each computing unit. Dynamic varia-

tions are caused by the operating conditions. Examples of these

types of variations include dynamic voltage droop, and on-die hot

spots. These factors are expected to be worse in future technolo-

gies [3]. Variations may prevent a circuit from meeting timing

constraints thus resulting in timing errors. IC designers commonly

use guardbands on the operating frequency or voltage to ensure

error-free operation for the worst-case variations. Given the in-

creasing costs of guardbands, it is important to make a design

inherently resilient to errors and variations. In this paper, we focus

on resiliency to timing errors caused by variations.

Resilient designs typically employ in situ or replica circuit sensors

to detect the variability-induced timing error in both logic and

memory blocks. For logic, error-detection sequential (EDS) [4]

circuit sensors have been employed, while an 8T SRAM arrays

utilized a tunable replica bits [5]. A common strategy is to detect

variability-induced delays using data that arrives shortly after the

relevant clock edge and flagging it as a timing error. On detection,

the timing failures are corrected by replaying the errant operation

with a larger guardband through various adaptation techniques.

For instance, a resilient 45-nm integer-scalar core [6] places EDS

within the critical paths of the pipeline stages. Once a timing error

is detected during instruction execution, the core prevents the

errant instruction from corrupting the architectural state and an

error control unit (ECU) initially flushes the pipeline to resolve

any complex bypass register issues. To ensure error recovery, the

ECU supports two separate techniques: instruction replay at half

frequency, and multiple-issue instruction replay at the same fre-

quency. These techniques impose a latency of up to 28 extra re-

covery cycles per error with an energy overhead of 26nJ for the

resilient 7-stage integer core [6].

The cost of these recovery mechanisms is high in the face of fre-

quent timing errors in aggressive voltage down-scaling and near-

threshold computation [7] in an attempt to save power. This cost

is exacerbated in floating-point (FP) pipelined architectures be-

cause FP pipelines typically have high latency, e.g., up to 32 cy-

cles to execute depending upon the type and precision on an ARM

Cortex-A9 [8], and higher energy-per-instruction costs than their

integer counterparts. Further, deeper pipelines induce higher pipe-

line latency and higher cost of recovery through flushing and

replaying. These energy-hungry high-latency pipelines are prone

to inefficiencies under timing errors because the number of recov-

ery cycles per error is increased at least linearly with the pipeline

length. More importantly, FP pipelines are often shared among

cores due to their large area and power cost. For instance, the

AMD Bulldozer architecture shares a floating-point unit (FPU)

between a dual-clustered integer core, with four pipelines [9].

UltraSPARC T1 also has a shared-FPU between eight cores. This

makes the cost of recovery even more pronounced for a cluster of

tightly-coupled processors utilizing shared resources.

978-1-4799-1417-3/13/$31.00 ©2013 IEEE

1.1 Contributions
Our goal is to reduce the cost of a resilient FP environment which

is dominated by the error correction. Tolerance to error in execu-

tion is often a property of the application: some applications, or

their parts, are tolerant to errors (notably, media processing appli-

cations), while some other parts must be executed exactly as spec-

ified. We either explicitly ignore the timing errors − if possible −

in a fully controlled manner to avoid undefined behavior of pro-

grams; or we try to reduce the frequency of timing errors by as-

signing computations to appropriate pipelines with lower vulnera-

bility. Accordingly, this paper makes three contributions:

1. We propose a set of accuracy-reconfigurable FPUs that are

resistant to variation-induced timing errors and shared among

tightly-coupled processors in a cluster. This resilient shared-FPUs

architecture supports online timing error detection, correction, and

characterization. We introduce the notion of FP pipeline vulnera-

bility (FPV), captured as metadata, to expose variability and its

effects to a software scheduler for reducing the cost of error cor-

rection. A runtime ranking scheduler utilizes the FPV metadata to

identify the most suitable FPUs for the required computation ac-

curacy for the minimum timing error rate.

2. Using the notions of approximate and accurate computations,

we describe a compiler and architecture environment to use ap-

proximate computations in a user- or algorithmically-controlled

fashion. This is achieved via design-time profiling, synthesis, and

optimization in conjunction with runtime characterization tech-

niques. This approach eliminates the cost of error correction for

specific annotated approximate regions of code if and only if the

propagated error significance and error rate meet application-

specific constraints on quality of output. For error-tolerant appli-

cations our OpenMP extensions specify parts of a program that

can be executed approximately, thus providing a new degree of

scheduling flexibility and error resilience. At design-time, code

regions are profiled to identify acceptable error significance and

error rate. This information drives synthesis of an application-

driven hardware FPU. At runtime, as different sequences of

OpenMP directives are dynamically encountered during program

execution, the scheduler promotes FPUs to accurate mode, or

demotes them to approximate mode depending upon the code

region requirements. Section 3 and Section 4 cover these details.

3. Our approach enables efficient execution of finely interleaved

approximate and accurate operations enforced by various compu-

tational accuracy demands within and across applications. We

demonstrate the effectiveness of our approach on a 16-core tight-

ly-coupled cluster in the presence of timing errors. For general-

purpose error-intolerant application, our approach reduces the

recovery cycles that yield an average energy saving of 22% (and

up to 28%), compared to the worst-case design. For error-tolerant

image processing applications with annotated approximate direc-

tives, 36% energy saving is achieved while maintaining accepta-

ble quality degradation. In Section 5, we present experimental

results followed by conclusions in Section 6.

2. RELATED WORK
Characterization and use of variability-affected execution of in-

structions is an active area of research. Rahimi et al. have consid-

ered execution vulnerability at the instruction level [10], across a

sequence of instructions [11] to expose variability and its effects

to the software stack. Another technique is to use procedure-level

vulnerability [12] for guiding a runtime system to mitigate dynam-

ic voltage variations by hopping a procedure (subroutine) from

one core to a favor core within a shared-L1 processor clusters. An

extension to the OpenMP 3.0 tasking programming model is also

proposed to dynamically characterize task-level vulnerability in a

shared memory processor clusters [13]. Here, the runtime system

matches different characteristics of each variability-affected core

to various levels of vulnerability of tasks. A configurable-

accuracy integer adder is proposed in [14], where the error correc-

tion module is power-gated during approximate operations. By

contrast, this paper focuses on energy-hungry FP operations.

To ensure practical use, approximate computation must be con-

trollable at the granularity of instructions [15] given the difficul-

ties in identifying large blocks of ‘error-tolerant’ instructions.

This requires interleaved execution of approximate and precise

computations. Error resilient system architecture (ERSA) [16]

isolates execution of control-intensive tasks (on super reliable

cores) from execution of data-intensive tasks (on relaxed reliabil-

ity cores). ERSA is suited for applications consisting of a set of

coarse-grained isolated tasks that can be expressed entirely with

approximate computation. However, in case of a fine-grain inter-

leaving of accurate and approximate instructions, ERSA migration

costs of over thousand cycles [17] are simply too high to be use-

ful. Further, ERSA does not support any standard parallel pro-

gramming model of execution.

EnerJ [18] is a programming language supporting disciplined

approximation that lets programmers declare which parts of a

program can be computed approximately to save computational

effort (and power). A program is decomposed into two compo-

nents: one that runs precisely, and another that runs approximate-

ly, carrying no guarantees on the output of computation. Green

[19] also trades off quality of service for improvements in energy

consumption, while providing statistical quality of service guaran-

tees. Truffle [15], a dual-voltage microarchitecture design, sup-

ports mapping of disciplined approximate EnerJ programs through

ISA extensions. It applies a high voltage for precise operations

and a low voltage for approximate operations. Truffle relies on the

programming language to provide safety guarantees statically to

the programmer. Truffle does not provide dynamic invariant

checks, and error recovery that yield to an unsafe ISA. Further-

more, EnerJ and Truffle impose excessive guardbands on the pre-

cise conventional computation due to lack of full resiliency sup-

ports. They also target single-core machines. We consider an

OpenMP environment, as the de facto standard for parallel pro-

gramming on shared memory multi-cores systems, to support both

resiliency and configurability for accuracy. Moreover, we guaran-

tee a controlled, thus safe, approximation computation leveraging

both design-time and runtime techniques.

3. CONTROLLED APPROXIMATION
Approximate computation leverages the inherent tolerance of

some (type of) applications within certain error bounds that are

acceptable to the end application. Two metrics have been previ-

ously proposed to quantify tolerance to errors [24]: error rate and

error significance. The error rate is the percentage of cycles in

which the computed value of a FP operation is different from the

correct value. The error significance is the numerical difference

between the correct and the computed results.

Disciplined approximated programming allows programmers to

identify parts of a program for approximate computation [15].

This is commonly found in applications in vision, machine learn-

ing, data analysis, and computer games. Conceptually, such pro-

grams have a vector of ‘elastic outputs’ than a singular correct

answer. Within the range of acceptable outputs, the program can

still appear to execute correctly from the user’s perspective

[15],[16],[18] even if the individual computations are not exact.

Programs with elastic outputs have application-dependent fidelity

metrics, such as peak signal to noise ratio (PSNR), associated

with them to characterize the quality of the computational result.

The degradation of output quality for such applications is ac-

ceptable if the fidelity metrics satisfy a certain threshold. For ex-

ample, in multimedia applications the quality of the output can be

degraded but acceptable within the constraints of PSNR ≥ 30dB

[25].

The timing error must be controllable because it could occur any-

time and anywhere in the circuit. Therefore, three conditions must

be satisfied to ensure that it is safe not to correct a timing error

when approximating the associated computation:

i. The error significance is controllable and below a given

threshold;

ii. The error rate is controllable and below a given error

rate threshold;

iii. There is a region of the program that can produce an ac-

ceptable fidelity metric by tolerating the uncorrected,

thus propagated, errors with the above-mentioned prop-

erties.

These conditions can be satisfied either through a set of profiling

phases, or a set of threshold values specified by a domain expert

via application knowledge. As we will detail in Section 5.1.2, the

output information of our profiling phase is a set of threshold

values that guarantee an acceptable fidelity metric. Any timing

error greater than the set of thresholds triggers the recovery mech-

anism during the approximate operation to avoid unacceptable

accuracy and undefined program behavior (e.g., in case of data-

dependent control-flow), therefore guaranteeing a safe approxi-

mate computation.

In Section 4, we describe how we use these rules in OpenMP

environment to ensure that approximate computations always

deliver the required accuracy, and how they can be used for effi-

cient hardware FPU synthesis and optimizations.

4. VARIABILITY-AWARE OPENMP EN-

VIRONMENT

4.1 Accuracy-Configurable Architecture
We now describe the architectural details of the proposed pro-

cessing cluster with variation-tolerant accuracy-reconfigurable

shared-FPUs, shown in Figure 1. The architecture is inspired by

the tightly-coupled clusters in STMicroelectronics P2012 [20] as

the essential component of a many-core fabric. In our implemen-

tation, each cluster consists of sixteen 32-bit in-order RISC cores,

a L1 software-managed Tightly Coupled Data Memory (TCDM)

and a low-latency logarithmic interconnection [21]. The TCDM is

configured as a shared, multi-ported, multi-banked scratchpad

memory that is directly connected to the logarithmic interconnec-

tion. The number of TCDM ports is equal to the number of banks

(32) to enable concurrent access to different memory locations.

Note that a range of addresses mapped on the TCDM space pro-

vides test-and-set read operations, which we use to implement

basic synchronization primitives (e.g., locks). The logarithmic

interconnection is composed of mesh-of-trees networks to support

single cycle communication between processors and memories

(see the left part of Figure 1). When a read/write request is

brought to the memory interface, the data is available on the nega-

tive edge of the same clock cycle, leading to two clock cycles

latency for a conflict-free TCDM access. The cores have direct

access into the off-cluster L2 memory, also mapped in the global

address space. Transactions to the L2 are routed to a logarithmic

peripheral interconnect through a de-multiplexer stage. From

there, they are conveyed to the L2 via the system interconnection

(based on the AHB bus in this work). Since the TCDM has a

small size (256KB) the software must explicitly orchestrate con-

tinuous data transfers from L2 to L1, to ensure locality of compu-

tations. To allow for performance- and energy- efficient transfers,

the cluster has a DMA engine. This can be controlled via

memory-mapped registers, accessible through the peripheral inter-

connect.

We extend this baseline cluster architecture with our resilient

shared-FPUs. Similar to the DMA, our FPU design is also con-

trolled via memory-mapped registers, accessible through a slave

port on the peripheral interconnect. The designed FPU is based on

32-bit single precision, compatible with the IEEE standard 7541

[22], and supports addition (ADD), subtraction (SUB), multipli-

cation (MUL), division (DIV). As shown in the rightmost part of

Figure 1, the FPU has three pipeline blocks which work in paral-

lel. The first pipeline has two stages and handles ADD and SUB

operations, the second pipeline also has a latency of two cycles for

MUL operation. The third pipeline has 18 stages to manipulate

DIV operation. Each pipeline’s inputs and outputs are retrieved

from a minimal register file (one register file per pipeline to allow

for parallel execution). A common write-only optr register en-

codes the targeted operation, and is used to select the target pipe-

1 In this standard, each 32 bit FP number contains 1 sign bit, 8 bits as

exponent, and 23 bits as fraction. The standard provides special repre-

sentation for exception cases, such as infinity, not a number (NaN), etc.

Figure 1: Variability-aware cluster architecture with shared-FPUs.

line. For each pipeline there is a write-only opmode register that

determines whether the current operation is accurate or approxi-

mate. The next registers are also write-only operand registers

(opnd1 and opnd2) that contain the input operands. The res

register is read-only and stores the output of the pipeline. Finally,

the last register (done) is also read-only and is used for synchro-

nization with the processor, as it holds a signal that notifies pipe-

line execution completion.

Every pipeline block has two dynamically reconfigurable operat-

ing modes: (i) accurate, and (ii) approximate. To ensure 100%

timing correctness in the accurate mode, every pipeline uses the

EDS circuit sensors as well as the ECU to detect and correct any

timing error due to static and dynamic delay variations [6]. Note

that the area overhead of EDS and ECU is negligible (3.8% area

overhead [6]). During accurate operation if a timing error is de-

tected, the EDS circuits prevent pipeline from writing results to

res register and thus avoid corrupting the architectural state. To

recover the errant operation without changing the clock frequen-

cy, the ECU employs a multiple-issue operation replay mecha-

nism. Prior to replaying the errant operation, the ECU initially

flushes the pipeline, and reissues the errant operation multiple (M)

times. The ECU sets the number of replica operations equals the

number of corresponding pipeline stages (M=2 for

ADD/SUB/MUL and M=18 for DIV) to ensure the register inputs

for each pipeline stage are set to the appropriate value, thus guar-

anteeing correct execution of the valid operation (M-th operation).

This recovery technique allows entire components of the cluster

work at same frequency (with memories at a 180° phase shift)

therefore avoiding the cost of inter-clock domain synchronization

that can significantly increase communication latency. However,

this recovery mechanism incurs the energy overhead.

In the approximate mode, the pipeline simply disables the EDS

circuit sensors on the less significant N bits of the fraction where

N is reprogrammable through a memory-mapped register. The

sign and the exponent bits are always protected by EDS. This

allows the pipeline to ignore any timing error below the less sig-

nificant N bits of the fraction and save on the recovery cost. While

other configurable-accuracy integer block implementations [14]

power gate the error correction unit during the approximate opera-

tions, for FP pipelines with complex circuit topology, we only

disable the error detection circuits partially on N bits of the frac-

tion. This enables the FP pipeline for executing the subsequent

accurate or approximate software blocks without any problem in

power retention. Further, this ensures that the error significance

threshold is always met, but limits the use of the recovery mecha-

nism to those cases where the error is present on the most signifi-

cant bits. To keep focus on the FPU architecture, we assume that

the scalar integer cores and the memory components are resilient,

for instance by utilizing the error detection and correction mecha-

nisms [6], and tunable replica bits [5].

4.1.1 Floating-point Pipeline Vulnerability
To characterize vulnerability of every FP pipeline to the variabil-

ity-induced timing error, we propose the notion of FP pipeline

vulnerability (FPV) as a metadata. The FPV metadata is defined as

the percentage of cycles in which a timing error occurs on the

pipeline reported by the EDS sensors. To compute FPV, the ECU

dynamically characterizes this per-pipeline metric over a pro-

grammable sampling period. The characterized FPV of each pipe-

line is visible to the software through memory-mapped registers.

Thus, the runtime software scheduler leverages this characterized

information for better utilization of FP pipelines, for example, it

can assign fewer operations to a pipeline with higher FPV

metadata. The runtime software scheduler can also demote a pipe-

line to the approximate mode.

We leverage this dynamic reconfiguration capability to allow the

runtime scheduler to perform on-line selection of best FP pipeline

candidates. This allows us to match oncoming program requests

for accurate or approximate FP computation. The granularity at

which a FP pipeline is configured for accurate/approximate oper-

ating mode is that of a software block, annotated by the program-

mer through specific language constructs (directives), as we ex-

plain in the following section. We consider eight shared FPUs

integrated in our cluster. Since the number of FPUs is smaller

than the number of processors, we describe our scheduling

scheme in Section 4.3.

4.2 OpenMP Compiler Extension
Recently the programming model has been explored as a means to

enable new opportunities for power savings [18]. The disciplined

approximated programming allows programmers to identify re-

gions of code that may be subjected to approximate computation,

and are consequently tolerant to energy–accuracy trade-offs

[15],[18],[19]. Applied to our architecture, FPUs under device

variability are subject to timing errors, which require energy- and

performance- expensive techniques to be corrected. However, the

correctness of the result could be traded-off for reduced energy if

the programmer took responsibility for indicating which program

parts could tolerate errors as an approximation of the expected

result (e.g., lower than a given error significance threshold). We

provide two custom directives to OpenMP to identify approximate

or accurate computations with an arbitrary granularity determined

by the size of the structured block enclosed by the two custom

directives:

The approximate directive allows the programmer to specify

the tolerated error for the specific computation through an addi-

tional clause:

The error is specified as the least significant N bits of the fraction.

By default, if the programmer does not specify an error signifi-

cance threshold it is assumed zero-tolerance (i.e., the approxi-

mate directive behaves as the accurate). By using this clause

the approximate structured blocks have deterministic fully-

predictive semantics: the maximum error significance for every

FP instruction of the structured block is bound below the less

significant N bits of the fraction. Moreover, any approximate

instruction cannot modify any register other than its own res and

done registers.

To show how the compiler transforms a region of code annotated

with these directives, let us consider the code snippet for Gaussi-

an smoothing filter [14],[23] in Figure 2. Here, the programmer

has indicated the whole parallel block as an accurate compu-

tation, with the exception of the FP multiplication and accumula-

tion of the input data. These two operations are annotated for the

approximate computation with a tolerance threshold of less signif-

error_significance_threshold (<value N>)

#pragma omp accurate

 structured-block

#pragma omp approximate [clause]

 structured-block

#pragma omp parallel

{

 #pragma omp accurate

 #pragma omp for

 for (i=K/2; i <(IMG_M-K/2); ++i) {

 // iterate over image

 for (j=K/2; j <(IMG_N-K/2); ++j) {

 float sum = 0;

 int ii, jj;

 for (ii =-K/2; ii<=K/2; ++ii) {

 // iterate over kernel

 for (jj = -K/2; jj <= K/2; ++jj) {

 float data = in[i+ii][j+jj];

 float coef = coeffs[ii+K/2][jj+K/2];

 float result;

 #pragma omp approximate \

 error_significance_threshold(20)

 {

 result = data * coef;

 sum += result;

 }

 }

 }

 out[i][j]=sum/scale;

 }

 }

}

icant 20 bits of the fraction derived from profiling phases in Sec-

tion 5.1.2. The compiler transforms the approximate block as

follows:

The first instruction generated inside a translated approximate

block is a call to the GOMP_resolve_FP runtime library func-

tion. This API implements the variation-tolerant scheduling algo-

rithm, described in the following section. It takes two integer

parameters as inputs. The first describes the target operating mode

of the FP pipeline, approximate or accurate, and the second one

contains the error significance threshold value, extracted from the

error_significance_threshold clause. As a result, this

function returns a unique identifier number (ID) for the FP pipe-

line block. From this point, the FP pipeline will be associated to

the processor that has invoked this function. The scheduler inter-

nally marks this FP pipeline resource as busy, so that no new up-

coming requests could consider it for execution. Once a link to a

physical FP is set, it is configured for the desired mode. The com-

piler also transforms statements containing a FP operation into a

call to the GOMP_FP runtime library function. Within this func-

tion we actually program the target shared-FPU.

A FPU programming sequence consists of three writes and two

reads (not considering polling) into the memory-mapped FPU

register file (see rightmost part of Figure 1). The first parameter of

GOMP_FP is used to resolve the address of the target register file.

Parameters two and three are the operands of the FP operation,

while parameter four specifies which operation has to be execut-

ed. Parameter five points to the storage (variable) into which the

result from the FPU is read. Before reading this output the proces-

sor polls on the done register to check that FPU has produced the

result.

A similar transformation process is applied to accurate blocks,

with the only difference that the GOMP_resolve_FPU function

will be invoked with GOMP_ACCURATE and “0” as input param-

eters.

4.3 Runtime Support and FPV Utilization
The runtime library is a software layer that lies between the varia-

tion-tolerant shared-FPU architecture and the compiler-

transformed OpenMP application. The goal of our variation-aware

scheduler is to inspect the status of the FPUs and allocate them to

approximate and accurate software blocks in such a way to

reduce the overall cost of timing error correction. This is accom-

plished in a two-fold manner: (i) the variation-aware scheduler

reduces the number of recovery cycles for accurate blocks by

favoring utilization of FPUs with a lower FPV, thus lower error

rate and energy; (ii) the variation-aware scheduler further reduces

the cost of error correction by deliberately propagating the error

toward application, thus excluding the correction cost. The latter

guarantees the quality of service for approximate blocks by

demoting FPUs to the approximate mode for ignoring errors that

match the tolerance expressed via the er-

ror_significance_threshold clause.

To allow for quick selection of best suited devices for the accura-

cy target at hand, our scheduler ranks all the individual pipelines

based on their FPV. For every type of FP operations (ADD, SUB,

MUL, DIV), the scheduler reads the corresponding characterized

FPV, and then sorts all the pipelines by increasing FPV across

FPUs. The sorted list is maintained in the shared TCDM, to make

it visible to all the cores and accessible with low latency. The FPV

for every FPU could be statically pre-determined (e.g., during a

profile run), but in general when the program starts such infor-

mation may not be available. In this case FPUs are simply sched-

uled with a round-robin policy, but our system performs online

characterization in the background to dynamically collect FPV

signatures for every FPU.

Once this information is available in the sorted lists, the scheduler

can optimize FPU allocation for accurate software blocks.

This is implemented in the GOMP_resolve_FP function.

Within this function, once the operating mode has been deter-

mined (the opmode parameter), as a first step the scheduler locks

the sorted list structure, to prevent inconsistencies due to concur-

rently executing accurate or approximate blocks, then it

traverses the list, starting from the head, until it finds an available

pipeline. Once the target FP pipeline has been identified, it is

configured to the desired opmode on-the-fly, and its ID is re-

turned to the application for offloading the consecutive FP in-

struction. This configurability partially enables/disables the error

detection on the less significant N bits of the fraction determined

through the error_significance_threshold clause.

Consequently, the FP pipeline is able to detect and correct any

timing error if it is reconfigured for the accurate mode; on the

other hand, in the approximate mode the FP pipeline ignores any

timing error on the less significant N bits of the fraction. Using

int ID = GOMP_resolve_FP (GOMP_APPROX, 20);

GOMP_FP (ID, data, coeff, GOMP_MUL, &result);

int ID = GOMP_resolve_FP (GOMP_APPROX, 20);

GOMP_FP (ID, sum, result, GOMP_ADD, &sum);

int GOMP_FP (int id, float op1, float op2,

 enum operation, float* dest)

GOMP_resolve_FP (int opmode, int thresh)

Figure 2: Code snippet for Gaussian filter utilizing OpenMP

variability-aware directives.

Source code

Annotated

source code

OpenMP

approximate
directives

ProfilingInput

data

Controlled

approximation
analysiserror rate

error sig.

Fidelity

(PSNR)

Approximate-aware timing

constraint generation

error sig. threshold (N)
error rate

threshold

Design-time hardware FPU

synthesis & optimization

clock

N
relaxed timing

tight timing

Runtime

library
scheduler

these sorted lists, for every type of FP operations the ranking al-

gorithm tries to highly utilize those pipelines with a lower FPV

(and rarely allocate operations to the pipelines at the end of list),

thus the aggregate recovery cycles for execution of FP operations

will be reduced. Figure 3 illustrates the ranking (RANK) algo-

rithm.

When handling requests for approximate FPU resources, the pipe-

line selection phase can have an additional check to assure effi-

ciency of approximate executions. If a FP pipeline displays a high

error rate, i.e., a FPV close to one, it might not be a suitable can-

didate for the approximation execution, mainly because there is a

high probability that a timing error could also happen in the more

significant bits. In this case, the FP pipeline enforces the cost of

recovery which wipes out the benefit of the relaxed approximate

execution. To avoid this situation, the scheduler can selectively

virtualize K number of FP pipelines (with a low FPV) among all

available FP pipelines, for every type of operations. In this reac-

tive technique, two (or more) OpenMP-visible virtual FP instruc-

tions must share a single physical FP. This is implemented by

determining the end point of the sorted list through specifying the

error rate threshold. When the error rate threshold is specified the

scheduler limits its search for the approximate operations until a

certain element of the sorted list, e.g., in Figure 3 until K-th pipe-

line. As soon as the scheduler finds a pipeline which has a higher

FPV than the error rate threshold, it marks it as the virtual end

point of the list for the approximate operations. Therefore, for the

following approximate requests, the scheduler starts from the start

point of the sorted list, and traverses down toward the virtual end

point of the corresponding sorted list for finding a free pipeline.

However, this virtualization technique limits the available paral-

lelism discussed in the Section 5.

Busy

(PR1)?

Busy

(PR2)?

Yes Yes
Busy

(PRK)?

Yes

…
Yes

…
Yes

Yes YesYes

Approximate

Accurate

For every operation type of P, sorted list of P: FLV (PR1) ≤ … ≤ FLV (PRK) ≤ … ≤ FLV (PRN)

FLV (PRK) < error rate threshold for approximate computation

Busy

(PRN)?

Start

point

Virtual

end point

No

Allocate PR1

No

Configure

opmode

Appr. Acc.

No

Allocate PR2

No

Configure

opmode

Appr. Acc.

No

Allocate PRK

No

Configure

opmode

Appr. Acc.

No

Allocate PRN

No

Configure

opmode

Appr. Acc.

Figure 3. RANK scheduling based FPV of FP pipelines.

4.4 Application-Driven Hardware FPU Syn-

thesis and Optimization
In the earlier sections, we describe the three essential components

of our variability-aware OpenMP environment: the language di-

rective extensions, the compiler and runtime support, and the

accuracy-configurable architecture. In this section, we introduce

an optional yet effective methodology to generate efficient hard-

ware FPU. The design flow should be done by choosing a thresh-

old that is acceptable on a wide class of application, and if an

application cannot tolerate this type of inaccuracy, the runtime

system must reconfigure architecture to the accurate mode. We

couple the proposed methodology with the application tolerable

error analysis presented in Section 3. As we have mentioned earli-

er, the output information of the profiling phase is two threshold

values, i.e., the error significance threshold and the error rate

threshold, that guarantee the acceptable fidelity metric (in our

case: PSNR ≥ 30dB). This information is utilized during design-

time flow for synthesis and optimization of hardware FPUs; Fig-

ure 4 illustrates the proposed methodology.

The error significance threshold indicates that any timing error

below the bit position of e.g., N can be ignored since it will not

induce large deviations from the corrected value. This means for

the approximate computation the only important parts are the bit

positions higher than N since any timing error on these bits have

to be corrected to guarantee the acceptable fidelity metric. There-

fore, an efficient FPU for the approximate mode should eliminate

the possibility of any timing error on the high order bits, while

relaxing this constraint on the low order bits. At the same time

they should not be too relaxed, to avoid the generation of many

errors that have to be recovered in the accurate mode. Conse-

quently, a set of tight timing constraints is generated to guide the

hardware synthesis and optimization flow for providing fast paths

connected to the high order bits (thus the lower delay, and the

lower probability of timing errors). The synthesis CAD tool meets

these constraints by utilizing fast leaky standard cells (low-VTH)

for the paths with the tight timing constraint, while utilizing the

regular and slow standard cells (regular-VTH and high-VTH) for

the rest of paths. As a result, the new generated hardware FPU

will experience a lower probability of the timing error on the bit

positions higher than N, at the power expense of higher leaky

cells.

We have applied the proposed methodology to optimize the netlist

of the shared-FPUs. The approximation-aware timing constraints

try to deliver fast paths connected to bit position of 20 up to 32.

As a result, the optimized shared-FPUs experience lower timing

error rate; compared to the non-optimized shared-FPUs, the total

recovery cycles are reduced by 46% and 27% in the accurate and

approximate modes, respectively. On the other hand, the total

power overhead of the optimized shared-FPUs is 16% in compari-

son with the non-optimized shared-FPUs (19% overhead in leak-

age power). However, this power overhead is highly compensated

because the optimized shared-FPUs spend smaller number of

clock cycles to compute the same amount of work. Experimental

results in Section 5.1.3 quantify the energy benefit of this pro-

posed methodology.

Figure 4: Methodology for application-driven hardware FPU

synthesis and optimization.

The proposed optimization methodology is based on either de-

signer knowledge (provided from a domain expert), or static pro-

filing (derived from the fidelity metric and error analysis). We

should note that the static profiling is a common technique for

approximate computation analysis [19],[23]. However, our meth-

odology takes advantage of the maximum allowable error signifi-

cance at design-time, while the error detection and correction

circuits embedded in FPUs are responsible to dynamically handle

any non-maskable timing error.

5. EXPERIMENTAL RESULTS
We demonstrate our approach on an OpenMP-enabled SystemC-

based virtual platform for on-chip multi-core shared-memory

clusters with hardware accelerators [27]. Table I summarizes the

architectural parameters. A cycle-accurate SystemC model of the

shared-FPUs is also integrated to the virtual platform, which ena-

bles the variability-affected emulation. To accurately emulate the

low-level device variability on the virtual platform, we have inte-

grated the variability-induced error models at the level of individ-

ual FP pipelines using the instruction-level vulnerability charac-

terization methodology presented in [10]. The RTL description of

shared-FPUs are generated and optimized by FloPoCo [28], an

arithmetic FP core generator of synthesizable VHDL. Then, the

shared-FPUs have been synthesized for TSMC 45nm technology,

the general purpose process. The front-end flow with multi VTH

cells has been performed using Synopsys Design Compiler with

the topographical features, while Synopsys IC Compiler has been

used for the back-end. The design has been typically optimized

for timing to meet the signoff frequency of 625MHz at

(SS/0.81V/125°C).

Next, we have analyzed the delay variability of the shared-FPUs

under process and temperature variations. First, to observe the

effect of static process variation on the eight shared-FPUs, we

have analyzed how the critical paths of each pipeline are affected

due to within-die and die-to-die process parameters variation.

Therefore, the various pipelines within the FPUs experience dif-

ferent variability-induced delay and thus display various error

rate. During the sign-off stage, we have injected process variation

in the shared-FPUs using the variation-aware timing analysis en-

gine of Synopsys PrimeTime VX [29]. It utilizes process parame-

ters and distributions of 45nm variation-aware TSMC libraries

[30] derived from first-level process parameters by principal com-

ponent analysis. Second, to observe the effects of temperature

variations, we employ voltage-temperature scaling feature of Syn-

opsys PrimeTime to analyze the delay and power variations under

temperature fluctuations. Finally, the variation-induced delay is

back-annotated to the post-layout simulation to quantify the error

rate of individual pipelines. For every back-annotated variation

scenarios, the FP pipelines are characterized with a representative

random set of 107 inputs, automatically generated by FloPoCo.

Finally, these error rate models are integrated to the correspond-

ing modules in the SystemC virtual platform to emulate variabil-

ity.

Table I. Architectural parameters of shared-FPUs cluster.

ARM v6 core 16 TCDM banks 16

I$ size(per core) 16KB TCDM latency 2 cycles

I$ line 4 words TCDM size 256 KB

Latency hit 1 cycle L3 latency ≥ 60 cycles

Latency miss ≥ 59 cycles L3 size 256MB

Shared-FPUs 8 FP ADD latency 2

FP MUL latency 2 FP DIV latency 18

5.1 Error-tolerant Applications
In this section we evaluate the effectiveness of the proposed vari-

ability-aware OpenMP environment under the process variability

for the error-tolerant image processing applications. For bench-

mark, we consider two widely-used image processing applications

as the approximate programs: Gaussian smoothing filter

[14],[23], and Sobel edge detection algorithm [26].

5.1.1 Execution without Approximation Directives
For the first experiments, we marked the entire program for accu-

rate computation (#pragma omp accurate), representative

of what a non-expert programmer would achieve without applica-

tion profiling, tuning, and code annotation. Later, we show how

these applications can benefit from the approximate code annota-

tion. We have compared the proposed ranking scheduling

(RANK) with the baseline round-robin scheduling (RR) in terms

of FP energy and total execution time. The RR algorithm assigns

the FP operations to the pipelines in the order they become avail-

able, while RANK utilizes the sorted list structure of the FPV.

Figure 5 shows the shared-FPU energy and total execution time

for the target applications for RANK normalized to the baseline

RR algorithm. Each bar (or point) indicates the normalized

shared-FPUs energy (or the total execution time) for a set of dif-

ferent input sizes.

0.90

0.92

0.94

0.96

0.98

1.00

1.02

0.80

0.85

0.90

0.95

1.00

1.05

10×10 20×20 30×30 40×40 50×50 60×60

N
o

rm
a
li

z
e
d

 t
o

ta
l

e
x
e
c
u

ti
o

n
 t

im
e

N
o

rm
a
li

z
e
d

 s
h

a
re

d
-F

P
U

s

e
n

e
rg

y

Input size

Gaussian (energy) Sobel (energy) Gaussian (time) Sobel (time)

Figure 5. Energy and execution time of RANK scheduling

(normalized to RR) for accurate Gaussian and Sobel filters.

As shown, the RANK algorithm achieves up to 12% lower energy

for the shared-FPU compared to RR algorithm, while the maxi-

mum timing penalty is less than 1%. This energy saving is

achieved by leveraging the characterized FPV metadata and the

sorted list data structure that enable high utilization of those pipe-

lines that display lower error rates. Consequently, it reduces the

total recovery cycles, and energy. Moreover, the total timing

overhead of the RANK is minimal, and the overhead for sorting

and searching among eight shared-FPUs is highly amortized. The-

se low cost features are accomplished through the advantages of

fast TCDM, carefully placing the key data structures in TCDM,

and the low-latency logarithmic interconnection.

5.1.2 Profiling Error-tolerant Applications
In this section we present the profiling phases for producing use-

ful threshold information to enable approximate computation. We

analyze the manifestation of a range of error significance and error

rate on the PSNR of the two image processing applications. We

have annotated the approximable regions of the application codes

using the proposed OpenMP custom directives (the code snippet

for the Gaussian filter is shown in Figure 2). The annotated ap-

proximate regions of both applications are only composed of FP

addition and multiplication operations. We quantify how much

error significance can be tolerated in these approximate regions,

given a maximum error rate. To do so, we have profiled the anno-

tated approximate regions of the programs. In a series of profiling,

we have monotonically increased the error significance by inject-

ing the timing errors as random multiple-bit toggling up to a cer-

tain bit position of the FP single precision representation. The

position of multiple-bit toggling is varied from 1 to 28, for a wide

range of 1% error rate to 100%.

Figure 6 illustrates results for the error rate of 100%, i.e., every

addition and multiplication operation in the FP approximate re-

gions has an errant output depending up on the injected error

significance. Figure 6.a shows the PSNR degradation of output

image of the Gaussian filter as a function of the error significance.

As shown, the three channels of RGB color space, experience

similar PSNR degradations by increasing the error significance.

Figure 6.b also illustrates the similar trend for the Sobel filter. The

rightmost part of Figure 6 shows that this degradation of the

quality is acceptable from the user’s perspective. In summary, the

output information of these profiling indicates that for a given

error rate of {100%, 50%, 25%} if the timing error lies within

the bit position of 0 to {20, 21, 22} of the fraction part,

these two applications can tolerate the timing error by delivering a

PSNR of greater than 30dB. This information is essential not only

during runtime to intentionally ignore the tolerable timing errors,

but also for efficient hardware FPU synthesis and optimizations,

detailed in the following section.

Therefore, for the approximate regions of these applications, we

have set the error rate threshold to 100%, and the error signifi-

cance threshold to 20 to maintain the acceptable PSNR. By set-

ting the threshold of the error rate to 100%, during the runtime

execution of the approximate regions all FPUs can be utilized.

This is important in data-parallelized image applications where

there is enough parallelism, and especially so when the number of

FPUs is lower than the number of the cores and any time-

multiplexing might incur performance degradation.

5.1.3 Execution with Approximation Directives
Now, let us quantify the benefit of the approximate computation

using the information of the profiling. Since the RANK schedul-

ing algorithm surpasses the baseline RR algorithm, for the rest of

results we have used the RANK algorithm. We have repeated the

experiments in Section 5.1.1, but for two variants of the applica-

tions code. In the first version, the programs are entirely com-

posed of the accurate FP operations, and the in the second version

the programs utilize the approximate ADD and MUL operations

in the annotated regions of code.

Figure 7 shows the total shared-FPUs energy for these two ver-

sions of the programs with different input sizes. The first group of

bars shows the energy of the shared-FPUs for the accurate pro-

grams, while the second group of bars refers to the approximate

programs. For example, with an input size of 60×60, the shared-

FPUs consume 3.5μJ (or 4.6μJ) for the accurate Gaussian (or

Sobel) program, while execution of the approximate version of the

program reduces the energy to 2.8μJ (or 3.5μJ), achieving 24%

(or 30%) energy saving. This energy saving is achieved by ignor-

ing the timing error within the bit position of 0 to 20 of the frac-

tion part. The next two bars show the energy of an optimized

hardware implementation of the shared-FPUs, discussed in the

following.

To generate the efficient FPUs suitable for these applications we

leveraged the hardware FPU synthesis and optimization method-

ology proposed in Section 4.4. Therefore, the application-driven

timing constraints guide the CAD flow to selectively optimize

timing of the desired paths. Figure 7 also shows the energy differ-

ences between the non-optimized and optimized FPUs in the two

operating modes. On average, compared to the non-optimized

shared-FPUs, the optimized shared-FPUs achieves 25% and 7%

lower energy for the accurate and approximate modes, respective-

ly. Overall, utilization of the annotated programs with the approx-

imate directives on top of the optimized shared-FPUs achieves an

average energy saving of 36%.

Figure 6: PSNR degradation as a function of error significance: a) for Gaussian filter (top); b) for Sobel filter (bottom).

0

20

40

60

80

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

P
S

N
R

 (
d

B
)

Error Significance (bit position)

R G B

PSNR=60dB PSNR=30dB

PSNR=101dB PSNR=31dB

0

20

40

60

80

100

120

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

P
S

N
R

 (
d

B
)

Error Significance (bit position)

R G B

5.2 Error-intolerant Applications
Using the concept of configurable accuracy as discussed earlier,

we now show that the proposed variability-aware OpenMP envi-

ronment not only facilitates efficient execution of the approximate

programs, but also reduces the cost of recovery for the error-

intolerant general-purpose applications. We have evaluated the

effectiveness of our proposed approach in the presence of process

variability under operating temperature fluctuations for five error-

intolerant applications: three widely used 2-D computational ker-

nels (matrix multiplication, matrix addition with scalar multiplica-

tion, and DCT), Monte Carlo kernel, and image conversion kernel

(HSV2RGB).

Figure 8 shows the shared-FPUs energy saving of these applica-

tion compared to the worst-case design. For these experiments, we

consider 25% voltage overdesigned for the baseline FPUs which

can guarantee their error-free operations [15]. On average 22%

(and up to 28%) energy saving is achieved at the operating tem-

perature of 125°C, thanks to allocating the FP operations to the

appropriate pipelines. As shown, this saving is consistent (20%-

22% on average) across a wide temperature range (∆T=125°C),

thanks to the online FPV metadata characterization which reflects

the latest variations, thus enabling the scheduler to react accord-

ingly. The lower temperature leads to a higher delay in the low-

voltage region of nanometer CMOS technologies [31], thus

the higher error rate and the more energy for recovery. Please

note that after having the ranked pipelines tables on TCDM, we

rarely need to re-execute the sorting algorithm unless we sense a

temperature fluctuation which has a slow timing-constant.

0

5

10

15

20

25

30

Monte Carlo DCT HSV2RGB Mat_Scal Mat_Mult

S
h

a
re

d
-F

P
U

s
 e

n
e
rg

y
 s

a
v
in

g
 (

%
)

0 C 60 C 125 C

Figure 8. Shared-FPUs energy saving for the error-intolerant

applications compared to the worst-case design.

5.3 Comparison with Truffle
We compare our proposed environment with Truffle. Truffle, as a

single core architecture, duplicates all the functional units in the

execution stage. Half of them are hardwired to VddHigh (to execute

the accurate operations), while the other half operate at VddLow (to

execute the approximate operations). To have an iso-area compar-

ison with Truffle, as it is suggested in their paper, we assume that

Truffle uses dual-voltage FPUs and changes the voltage depend-

ing on the instruction being executed. This would also save the

static power. To have a fair comparison, we also assume that Truf-

fle employs a fast Vdd-hopping technique to switch between

VddHigh and VddLow. Among the Vdd-hopping implementation

techniques [32]-[34], Beigne et al. propose a Vdd-hopping unit

with voltage transitions less than 100ns [32]. Kim et al. also pro-

pose fast on-chip voltage regulators with transitions time of

15ns−20ns [34], thus we consider this transition time and optimis-

tically augment a latency of 10-cycle for switching FPUs between

the accurate and approximate modes. We apply Truffle limitation

to our virtual platform cluster to quantify its energy.

For comparison, we consider two application scenarios: (i) once

the cluster is executing only one approximate application; (ii)

simultaneous execution of one approximate application with one

accurate application. In the former scenario, entire 16 cores of the

cluster cooperatively execute one of the approximate image appli-

cations, while in the latter scenario, eight cores execute the ap-

proximate Gaussian filter and the other eight core execute the

accurate matrix multiplication, simultaneously. Figure 9 compares

the shared-FPUs energy of Truffle with our proposed approach

when executing the above two scenarios. As shown, our proposed

approach surpasses Truffle in the both applications scenarios. In

the former scenario, on average, our approach saves 20% more

energy compared to Truffle by reducing the conservative voltage

overdesigned for the accurate part of filters application. For the

mixed scenario of the applications, our approach saves 36% more

energy, since Truffle highly faces with the overhead of frequent

switching between the accurate and approximate modes which is

imposed by interference of the accurate and approximate opera-

tions resulting from the concurrent execution of Gaussian and

matrix multiplication applications.

0

1,000

2,000

3,000

4,000

5,000

6,000

Sobel
(50 50)

Sobel
(60 60)

Gaussian
(50 50)

Gaussian
(60 60)

Gaussian+
Mat_Mult
(10 10)

Gaussian+
Mat_Mult
(15 15)

S
h

a
re

d
-F

P
U

s
 e

n
e
rg

y
 (

n
J
)

This work Truf f le

Figure 9. Energy comparison with Truffle: (i) only approxi-

mate ; (ii) concurrent approximate and accurate applications.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

30×30 40×40 50×50 60×60

S
h

a
re

d
-F

P
U

s
 e

n
e
rg

y
 (

n
J
)

Input size of Gaussian filter

accurate approximate accurate (optmized) approximate (optmized)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

30×30 40×40 50×50 60×60

S
h

a
re

d
-F

P
U

s
 e

n
e
rg

y
 (

n
J
)

Input size of Sobel filter

accurate approximate accurate (optmized) approximate (optmized)

Figure 7: FP energy of accurate and approximate programs for non-optimized and optimized hardware shared-FPUs.

6. CONCLUSION
We propose an OpenMP programming environment that is resili-

ent to variability-induced timing errors and suitable for fine-

grained interleaved approximate and accurate computation on

shared-FPUs processor clusters. This is orchestrated through a

vertical abstraction of circuit-level variations into a high-level

parallel software execution. The OpenMP extensions help a pro-

grammer specify accurate and approximate FP parts of a program.

The underlying architecture features a set of shared-FPUs with

two sensing and actuation primitives; every FPU dynamically

senses the timing errors, characterizes its own FPV metadata, and

can be configured to operate in the approximate or accurate

modes. The runtime scheduler utilizes the sensed FPV metadata,

and parsimoniously actuates depending upon the code region

requirements on the computational accuracy. These three com-

ponents in the proposed environment support a controlled approx-

imation computation through various design-time phases (applica-

tions profiling, and FPU synthesis & optimization) in combination

with runtime sensing and actuation primitives. Either the envi-

ronment deliberately ignores the otherwise expensive timing error

correction in a fully controlled manner, or it tries to reduce the

frequency of timing errors.

For general-purpose error-intolerant applications, our approach

reduces energy up to 28%, across a wide temperature range

(∆T=125°C), compared to the worst-case design. For error-

tolerant image processing applications with the annotated approx-

imate directives, on average, 36% energy saving is achieved while

maintaining the PSNR > 30dB. In comparison with the state-of-

the-art architecture [15], our approach saves 36% more energy

when executing finely interleaved mixture of FP operations.

7. ACKNOWLEDGMENTS
This work was supported by the National Science Foundation’s

Variability Expedition in Computing under award n. 1029783,

Virtical GA n. 288574, and ERC-AdG MultiTherman GA n.

291125.

8. REFERENCES
[1] P. Gupta, et al., “Underdesigned and Opportunistic Computing in

Presence of Hardware Variability,” IEEE Trans. on CAD of Inte-

grated Circuits and Systems 32(1) (2012), pp. 489-499.

[2] J. Henkel, et al., “Design and architectures for dependable embedded

systems,” Proc. ACM/IEEE CODES+ISSS, 2011, pp. 69-78.

[3] ITRS [Online]. Available: http://public.itrs.net

[4] K.A. Bowman, et al., “Energy-Efficient and Metastability-Immune

Resilient Circuits for Dynamic Variation Tolerance,” IEEE Journal

of Solid-State Circuits 44(1) (2009), pp. 49-63.

[5] A. Raychowdhury, et al., “Tunable Replica Bits for Dynamic Varia-

tion Tolerance in 8T SRAM Arrays,” IEEE Journal of Solid-State

Circuits 46(4) (2011), pp.797-805.

[6] K.A. Bowman, et al., “A 45 nm Resilient Microprocessor Core for

Dynamic Variation Tolerance,” IEEE Journal of Solid-State Cir-

cuits 46(1) (2011), pp. 194-208.

[7] M.R. Kakoee, I. Loi, L. Benini, “Variation-Tolerant Architecture for

Ultra Low Power Shared-L1 Processor Clusters,” IEEE Trans. on

Circuits and Systems II 59(12) (2012), pp.927-931.

[8] Technical Reference Manual, ARM Cortex-A9, rev.: r2p2.

[9] AMD “Bulldozer” Core Technology [online]. Available:

http://www.sgi.com/partners/technology/downloads/ADM_Bulldoze

r_Core_Technology.pdf

[10] A. Rahimi, L. Benini, R. K. Gupta, “Analysis of Instruction-level

Vulnerability to Dynamic Voltage and Temperature Variations,”

Proc. ACM/IEEE DATE, 2012, pp. 1102-1105.

[11] A. Rahimi, L. Benini, R. K. Gupta, “Application-Adaptive

Guardbanding to Mitigate Static and Dynamic Variability,” IEEE

Transactions on Computers, 2013.

[12] A. Rahimi, L. Benini, R. K. Gupta, “Procedure hopping: a low over-

head solution to mitigate variability in shared-L1 processor clus-

ters,” Proc. ACM/IEEE ISLPED, 2012, pp. 415-420.

[13] A. Rahimi, A. Marongiu, P. Burgio, R. K. Gupta, L. Benini, “Varia-

tion-tolerant OpenMP Tasking on Tightly-coupled Processor Clus-

ters,” Proc. ACM/IEEE DATE, 2013, pp. 541-546.

[14] A. B. Kahng, S. Kang, “Accuracy-Configurable Adder for Approxi-

mate Arithmetic Designs,” Proc. ACM/IEEE DAC, 2012, pp. 820-

825.

[15] H. Esmaeilzadeh, A. Sampson, L. Ceze, D. Burger, “Architecture

Support for Disciplined Approximate Programming,” Proc. ACM

ASPLOS, 2012, pp. 301-312.

[16] L. Leem, et al., “ERSA: Error Resilient System Architecture for

probabilistic applications,” Proc. ACM/IEEE DATE, 2010, pp.

1560-1565.

[17] S. Dighe, et al., “Within-Die Variation-Aware Dynamic-Voltage-

Frequency-Scaling With Optimal Core Allocation and Thread Hop-

ping for the 80-Core TeraFLOPS Processor,” IEEE Journal of Solid-

State Circuits 46(1) (2011), pp. 184-193.

[18] A. Sampson, et al., “EnerJ: Approximate data types for safe and

general low-power computation,” Proc. ACM PLDI, 2011, pp. 164-

174.

[19] W. Baek and T. M. Chilimbi, “Green: A framework for supporting

energy-conscious programming using controlled approximation,”

Proc. ACM PLDI, 2010, pp. 198-209.

[20] L. Benini, E. Flamand, D. Fuin, D. Melpignano, “P2012: Building

an ecosystem for a scalable, modular and high-efficiency embedded

computing accelerator,” Proc. ACM/IEEE DATE, 2012, pp. 983-

987.

[21] A. Rahimi, I. Loi, M.R. Kakoee, L. Benini, “A Fully-Synthesizable

Single-Cycle Interconnection Network for Shared- L1 Processor

Clusters,” Proc. ACM/IEEE DATE, 2011, pp. 1-6.

[22] IEEE Computer Society (1985), IEEE Standard for Binary Floating-

Point Arithmetic, IEEE Std 754, 1985.

[23] M. S. Lau, et al. “Energy-Aware Probabilistic Multiplier: Design and

Analysis”, Proc. ACM/IEEE CASES, 2009, pp. 281-290.

[24] M. A. Breuer, “Intelligible Test Techniques to Support Error-

Tolerance”, Proc. Asian Test Symp., 2004, pp. 386-393.

[25] Barni, Mauro, “Document and image compression,” CRC Press,

May 2006, pp. 168-169.

[26] H. Esmaeilzadeh, A. Sampson, L. Ceze, D. Burger, “Neural Acceler-

ation for General-Purpose Approximate Programs,” Proc.

ACM/IEEE MICRO, 2012, pp. 449-460.

[27] P. Burgio, et al., “OpenMP-based synergistic parallelization and HW

acceleration for on-chip multi-core shared-memory clusters,” Proc.

ACM/IEEE DSD, 2012, pp. 751-758.

[28] FloPoCo [Online]. Available: http://flopoco.gforge.inria.fr/

[29] PrimeTime® VX User Guide, June 2011.

[30] TSMC 45nm standard cell library release note, Nov. 2009.

[31] R. Kumar, V. Kursun, “Reversed Temperature-Dependent Propaga-

tion Delay Characteristics in Nanometer CMOS Circuits,” IEEE

Transactions on Circuits and Systems 53(10) (2006), pp.1078-1082.

[32] E. Beigne, et al., “An Asynchronous Power Aware and Adaptive

NoC Based Circuit,” IEEE J. of Solid-State Circuits 44(4) (2009).

[33] A. Rahimi, M. E. Salehi, S. Mohammadi, S. M. Fakhraie, “Low-

energy GALS NoC with FIFO-monitoring dynamic voltage scaling,”

Microelectronics Journal 42(6) (2011), pp. 889-896.

[34] W. Kim, D.M. Brooks, G. Wei, “A fully-integrated 3-level DC/DC

converter for nanosecond-scale DVS with fast shunt regulation,”

Proc. IEEE ISSCC, 2011, pp.268-270.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20130826162057
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryList_V1
 qi2base

