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ABSTRACT 
Negative bias temperature instability (NBTI) adversely affects the 

reliability of a processor by introducing new delay-induced faults. 

However, the effect of these delay variations is not uniformly 

spread across functional units and instructions: some are affected 

more (hence less reliable) than others. This paper proposes a 

NBTI-aware compiler-directed very long instruction word 

(VLIW) assignment scheme that uniformly distributes the stress of 

instructions with the aim of minimizing aging of GPGPU architec-

ture without any performance penalty. The proposed solution is an 

entirely software technique based on static workload characteriza-

tion and online execution with NBTI monitoring that equalizes 

the expected lifetime of each processing element by regenerating 

aging-aware healthy kernels that respond to the specific health 

state of GPGPU. We demonstrate our approach on AMD Ever-

green architecture where iso-throughput executions of the healthy 

kernels reduce NBTI-induced voltage threshold shift up to 49% 

(11%) compared to naïve kernel executions, with (without) archi-

tectural support for power-gating. The kernel adaption flow takes 

average of 13 millisecond on a typical host machine thus making 

it suitable for practical implementation.  

Keywords: NBTI, GPGPU, Aging-aware Compilation, 

VLIW, Adaptive Kernel, Dynamic Binary Optimizer. 

1. INTRODUCTION 
Variability across manufactured parts and aging over time are 

emerging challenges in IC chips ‎[1]. Among various aging mech-

anisms, the generation of interface traps under NBTI in PMOS 

transistors has become a critical reliability issue in determining 

the lifetime of CMOS devices ‎[2]. NBTI effects can be signifi-

cant: its impact on circuit delay is about 15 percent on a 65nm 

technology node ‎[3] and it gets worse in sub-65nm nodes ‎[4]. 

This imposes an excessive guardband over circuit lifetime causing 

performance loss and increased costs. 

When a PMOS transistor is negatively biased (Vgs = −Vdd), the 

dissociation of Si−H bonds along the silicon oxide interface, 

causes the generation of interface traps, while removal of the bias 

(Vgs = 0) causes a reduction in the number of interface traps due to 

annealing ‎[1]−‎[5]. The rate of generation of these traps is acceler-

ated by temperature, and the time of applied stress. The threshold 

voltage (Vth) of the PMOS transistors increases as more traps 

form, reducing the drive current, which in turn slows down the 

rising propagation delay of logic gates over time. Thus, the NBTI-

induced performance degradation strongly depends on the amount 

of time during which a PMOS transistor is stressed, that is, when 

a logic ‘0’ is applied to the gate. The increase in Vth is a logarith-

mic function of the corresponding stress time ‎[6], which is dis-

tributed non-uniformly across a logic circuit, leading to 2−5× 

difference in the degradation rate of Vth ‎[7]. When the stress con-

dition is relaxed, aging can be recovered partially, and the Vth 

decreases toward the nominal value ‎[7], ‎[8]. 

Non-uniform stress caused by non-uniform workload is a major 

concern for general purpose graphical processing units (GPGPUs) 

‎[9] with up to 512 CUDA cores ‎[10], or 320 five-way VLIW pro-

cessors ‎[11]. To ensure necessary observability for non-uniform 

aging degradation, in situ NBTI and oxide degradation sensors 

with digital outputs have been proposed and validated on silicon 

‎[12]. These sensors enable high-volume data collection to guide 

dynamic management schemes and warn of impending device 

failure. Using NBTI sensors, adaptive guardbanding has been 

proposed earlier to reduce the otherwise conservative guardbands 

due to better than worst-case operating conditions ‎[13]. For con-

trollability, power-gating is known as an effective technique to 

mitigate NBTI-induced aging ‎[14], since PMOS stress is removed 

during periods of power-gating. In this context, Paterna et. al. 

‎[15] propose a dynamic workload allocation to mitigate aging-

induced unbalanced cores lifetimes by means of core activity duty 

cycling on a multi-core platform.  

1.1 Contributions 
This paper makes following contributions: 

I. We propose an online adaptive reallocation strategy to mitigate 

NBTI-induced performance degradation in GPGPU machines. 

This is accomplished through a NBTI-aware compiler that uses a 

dynamic binary optimizer. During dynamic recompilation, the 

binary is optimized by customizing the kernel’s code with respect 

to specific health state of GPGPU. This technique leverages a 

compiler-directed scheme that uniformly distributes the stress of 

instructions throughout various VLIW resource slots, results in a 

healthy code generation that keeps the underlying GPGPU hard-

ware healthy. Section 3 and 4 describe NBTI model and GPGPU. 

II. We propose a fully software solution that uses static (offline) 

workload characterization and online availability of NBTI sen-

sors. The dynamic binary optimizer correlates the device stress 

time with instructions distribution, and equalizes the expected 

lifetime of each processing element without any architectural 

modification. Section 5 covers this technique in detail.  

III. In Section 6, we demonstrate our approach on AMD Ever-

green GPGPU architecture and its tool-chain to adapt kernels to 

the health state of GPGPU. The throughput of our healthy kernel 

execution is the same as naïve kernel execution (iso-throughput). 

In comparison with the naïve kernels, our healthy kernels execu-

tion achieves a maximum 49% reduction in NBTI-induced Vth 

shift over five years if GPGPU supports power-gating during idle 

states. Power-gating is intrinsically protective against NBTI by 
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providing sleep states that spare gates from stress that produces 

NBTI effects. In the absence of power-gating, our uniform self-

healing NOP execution technique mitigates the Vth shift by 11%. 

On average, the total execution time of the entire adaptation pro-

cess is 13 millisecond on an Intel i5 CPU 2.67GHz. 

2. RELATED WORK 
Various techniques ‎[15]−‎[17] have been proposed to slow down 

the aging of traditional coarse-grained multi-core architectures. 

These techniques range from selective frequency scaling to man-

age the aging process, dynamic control of the usage of processing 

units through shutdown that together seeks to equalize the level of 

aging seen across the cores. A brief review of important contribu-

tions follows.  

Selective Speed Scaling: Chip-wide voltage scaling has been ap-

plied to switch the processor from a slow-aging mode to a high-

speed mode‎‎[16] selectively over its lifetime. This affects perfor-

mance and to combat the performance loss, Bubblewrap ‎[17] 

supports multiple modes based on ‎[16], for instance, by running 

the slow cores at a higher supply voltage for a shorter service life 

until they entirely wear-out and are discarded. For fine-grain 

many-core architectures, this technique loses effectiveness be-

cause after the early lifetime, the difference between the adaptive 

voltage and the over-designed supply voltage is small ‎[18]. 

Selective Shutdown: To combat the impact of within-die core-to-

core frequency variations on GPGPU throughput, two techniques 

are proposed in ‎[19]: (i) disabling the slowest cores, and (ii) run-

ning each core at its maximum frequency independently. Both of 

these solutions impose a non-negligible performance penalty: the 

first directly diminishes the throughput of a cluster, and the se-

cond imposes extra latency for synchronization of cores with dif-

ferent frequencies. Further, these techniques only consider the 

effects of static process variation, and do not cover aging of 

GPGPUs which is dynamic in nature. 

At a finer architectural granularity, Colt ‎[20] equalizes the duty 

cycle ratio and the usage frequency of the functional units in a 

microprocessor. To mitigate aging effects, it uses a number of 

measures such as complement mode execution, cache set rotation, 

and operand identifier swapping schemes. These measures are 

intrusive and fairly complicated: the complement mode is applied 

to the whole data path, control path, and storage hierarchy. In a 

similar vein, a linear programming scheme is employed to find a 

new instruction to replace the processor’s default NOP instruction 

for minimizing the NBTI effects ‎[21]. This approach also requires 

architectural supports and pipeline modification. Wearout-aware 

compiler-directed register assignment techniques have been pro-

posed in ‎[22] that attempt to distribute the stress-induced wearout 

throughout the register file. Another aging-aware assignment of 

registers has been proposed to balance the duty cycle ratio of the 

internal bits in register files ‎[23]. Even though ‎[22], ‎[23] do not 

impose architectural overheads and modification, their compiler 

strategies are limited to the utilization of the register file. 

NBTI-aware power-gating ‎[14] exploits the sleep state where a 

circuit is intrinsically immune to aging. Caliman et al. ‎[24] pro-

pose static and dynamic strategies to compensate the aging effects 

on the sleep transistors. Here, the benefit of power-gating is 

strongly dependent on the fraction of time that a circuit spends in 

sleep mode. In practice, high power-gating factors are accompa-

nied by significant performance degradation. As an alternative, in 

Section ‎5.3, we show how a VLIW machine can instead arrange 

instructions to utilize the power-gating factor without any perfor-

mance penalty. 

3. DEVICE-LEVEL NBTI MODEL 
We briefly review the dynamic NBTI model for its use in compil-

er optimizations. In NBTI, the PMOS transistor undergoes alter-

nate stress (Vgs = −Vdd) and recovery (Vgs = 0) periods, derived 

from the Reaction-Diffusion theory ‎[7], ‎[8]. When logic input ‘0’ 

is applied to the gate of a PMOS transistor (Vgs = −Vdd), the pres-

ence of holes in the channel causes Si−H bonds to break. The 

resulting H diffuses away, leaving positive traps (Si+) in the inter-

face, which increase voltage threshold by ∆Vth-stress:  

-
22( + Δ )th stress v stress th - t0
nnV K t V                        (1) 

where tstress is the time that PMOS is under stress; Kv has depend-

ence on electrical field, temperature (T), and Vdd; n is the time 

exponent parameter, and for H2 diffusion is 1/6; and ∆Vth-t0 is the 

initial Vth variation of PMOS at time zero due to process variation 

caused by random dopant fluctuations. When logic input ‘1’ is 

applied to the gate (Vgs = 0), the transistor turns off, and hydrogen 

atoms diffuse back, eliminating some of the traps in a recovery 

phase that can recover part of the Vth shift: 
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where trecov is the time under recovery; tox is the oxide thickness; te 

is the effective oxide thickness; t is the total time; C has tempera-

ture dependence; ζ1, ζ2, δ are constants in ‎[7]. Duty cycle (α) is the 

ratio of the time spent in stress to the period of one stress-

recovery cycle. ∆Vth has been shown to be a monotonically in-

creasing function of higher duty cycle (α), t, Vdd, T ‎[25]. The 

NBTI-induced Vth shift is also a function of process-dependent 

parameters, and relatively insensitive to the switching frequency 

(f) when it is above 100Hz ‎[8]. The duty cycle (α) can be directly 

tuned by the software to reduce or eliminate the NBTI-induced 

effects.    

If a transistor has a larger threshold voltage than expected, its 

transconductance is smaller, it has a lower drive current and in-

creased delay during a transition. The transistor switching delay 

can be approximately expressed as the alpha-power law:   
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where μ is the mobility of carriers; α'≈1.3 is the velocity satura-

tion index; and L is the channel length. Hence, the delay variation 

∆τ/τ can be derived as follows:  
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considering only the effect of ∆Vth shift, and neglecting other 

terms, the delay degradation ∆τ is given by  
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where Vth-t0 is the original transistor threshold voltage (at the life 

of time t0), and τ0 is its corresponding delay before degradation.  

There might be several ∆Vth of different PMOSs in a circuit, thus 

we consider the largest one to calculate the worst case delay deg-

radation. In our analysis, we set all the internal node states to a ‘0’ 

during stress mode to determine the worst case circuit degradation 

that limits the lifetime of a chip. Although this is a conservative 

assumption and during runtime there exists no such input vector 

that makes the internal nodes all 0s; this assumption is only used 

to calculate the maximum possible degradation and the potential 

of NBTI mitigation technique. Section ‎5 describes how an online 



calibrator regulates overestimates and underestimates of degrada-

tion due to the complex input patterns and inaccurate estimations.  

4. GPGPU ARCHITECTURE 
We focus on the Evergreen family of AMD GPGPUs (a.k.a. 

Radeon HD 5000 series), designed to target not only graphics 

applications but also general-purpose data-intensive applications. 

The Radeon HD 5870 GPGPU compute device consists of 20 

Compute Units (CUs), a global front-end ultra-thread dispatcher, 

and a crossbar to connect the global memory to the L1-caches 

‎[11]. Every CU has access to a global memory, implemented as a 

hierarchy of private 8KB L1-caches, and 4 shared 512KB L2-

caches. Each CU contains a set of 16 Stream Cores (SCs) that 

have access to a shared 32KB local data storage. Within a CU, a 

shared instruction fetch unit provides the same machine instruc-

tion for all SCs to execute in a SIMD fashion. Finally, each SC 

contains five Processing Elements (PEs), labeled X, Y, Z, W, and 

T constituting an ALU engine to execute Evergreen machine in-

structions in a vector-like fashion. The SC has also a general-

purpose registers file to support private memory. The block dia-

gram of architecture is shown in Figure 1.a. 

Every SC is a five-way VLIW processor capable of issuing up to 

five floating point scalar operations from a single very long in-

struction word consists primarily of five slots (slotX, slotY, slotZ, 

slotW, slotT). Each slot is related to its corresponding PE. Four 

PEs (X, Y, Z, W) can perform up to four single-precision opera-

tions separately and perform two double-precision operations 

together, while the remaining one (T) has a special function unit 

for transcendental operations. In each cycle, VLIW slots supply a 

bundle of data-independent instructions to be assigned to the re-

lated PEs for simultaneous execution. In an N-way VLIW proces-

sor, up to N data-independent instructions, available on N slots, 

can be assigned to the corresponding PEs and be executed simul-

taneously. Typically, this is not done in practice because the com-

piler may fail to find sufficient Instruction-Level Parallelism (ILP) 

to generate compelete VLIW instructions. On average, if M out of 

N slots are filled during an execution, we call the achieved pack-

ing ratio is M/N. The actual performance of a program running on 

a VLIW processor largely depends on the packing ratio. 

4.1 GPGPU Workload Distribution 
In this subsection, we analyze the workload distribution on the 

Radeon HD GPGPUs architecture, where there are many PEs to 

carry out computations. As it is mentioned in Section ‎3, NBTI-

induced degradation strongly depends on the resource utilization, 

which depends on the execution characteristics of the workload. 

Thus, it is essential to analyze how often the PEs are exercised 

during the runtime execution of the workload. To this end, we 

first monitor the utilization of various CUs (inter-CU), and then 

the utilization of PEs within a CU (intra-CU).   

To examine the inter-CU workload variation, the total number of 

executed instructions by each CU is collected during a kernel 

execution as per a methodology described in Section ‎6. Figure 1.b 

shows that the CUs execute almost equal number of instructions, 

and there is a negligible workload variation among them. We have 

configured six compute devices with different number of CUs, {2, 

4,..., 64}, to finely examine the effect of the workload variation on 

a variety of GPGPU architecture (The latest Radeon HD 5000 

series, HD 5970, has 40 CUs featuring 4.3 billion transistors in 

40nm). During DCT kernel execution, the workload variation 

between CUs ranges from 0% to 0.26% depends to the number of 

physical CUs on the computation device. The DCT input kernel 

parameters are fixed for all configured compute devices, thus they 

carry out the same amount of workload− note that the total num-

ber of executed instructions per CU is inversely proportional to 

the number of available CUs on the compute device. Execution of 

all kernels listed in Section ‎6 confirms that the inter-CU workload 

variation is less than 3%, when running on the device with 20 

CUs (HD 5870). This nearly uniform inter-CU workload distribu-

tion is accomplished by load balancing and uniform resource arbi-

tration algorithms of the ultra-thread dispatcher.  

Next, we examine the workload distribution among the PEs. Fig-

ure 1.c shows the percentage of the executed instructions of ALU 

engine by various PEs during execution of different kernels. ALU 

engine in this paper refers to four PEs (PEX, PEY, PEZ, PEW) 

which are identical in their functions ‎[26]; they differ only in the 

vector elements to which they write their result at the end of the 

VLIW. As shown, the instructions are not uniformly distributed 

among PEs. For instance, the PEX executes roughly half of the 

ALU engine instructions (50.7%) during Rdn kernel execution, 

while only about one quarter of the ALU engine instructions 

(27.1%) are executed by PEX during SF kernel execution. Execu-

tion of all kernels listed in Section ‎6 shows that seven kernels 

execute more than 40% of the ALU engine instructions only on 

PEX. This non-uniform workload variation causes non-uniform 

aging among PEs, and exhausts some PEs more than others and 

shortening their lifetime. Unfortunately, this non-uniformity hap-

pens within all CUs since their workload is highly correlated to-

gether, therefore no PE throughout the entire compute device is 

immune from this unbalanced utilization.  

Thus, root cause of non-uniform aging among PEs is the frequent 

and non-uniform execution of VLIW slots. For example, higher 

utilization of PEX implies that slotX of VLIW is occupied more 

frequently than the other slots. This substantiates that the compiler 

does not uniformly assign the independent instructions to various 

VLIW slots, mainly because the compiler only employs optimiza-

tions for increasing the packing ratio through finding more ILP to 

fully pack the VLIW slots. The VLIW processors are designed to 

give the compiler tight control over program execution; however, 
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the flexibility afforded by such compilers, for instance to tune the 

order of instructions packing, is rarely used towards reliability 

improvement.  

5. AGING-AWARE COMPILATION 
The key idea of an aging-aware compilation is to assign inde-

pendent instructions uniformly to all slots: idling a fatigued PE 

and reassigning its instructions to a young PE through swapping 

the corresponding slots during the VLIW bundle code generation. 

This basically exposes the inherent idleness in VLIW slots and 

guides its distribution that does matter for aging. Thus, the job of 

dynamic binary optimizer, for K-independent instructions, is to 

find K-young slots, representing K-young PEs, among all availa-

ble N slots, and then assign instructions to those slots. Therefore, 

the generated code is a “healthy” code that balances workload 

distribution through various slots maximizing the life time of all 

PEs. In this section, we describe how these statistics can be ob-

tained from silicon, and how compiler can predict and thus con-

trol the non-uniform aging. The adaptation flow is illustrated in 

Figure 2 through four steps: 1) reading aging sensors; 2) kernel 

disassembler, static code analysis, and calibration of predictions; 

3) uniform slot assignment; 4) healthy code generation.    

5.1 Observability: Aging Sensors 
The compiler needs to access the current aging data (∆Vth) of PEs 

to be able to adapt the code accordingly. The ∆Vth is caused by the 

temporal degradation due to NBTI and/or the intrinsic process 

variation, thus PEs even during early life of a chip might have 

different aging. Employing the compact per-PE NBTI sensors 

‎[12] which provide ∆Vth measurement with 3σ accuracy of 1.23 

mV for a wide range of temperature, enables large scale data-

collection across all PEs. The performance degradation of every 

PE can be reliably reported by a per-PE NBTI sensor, thanks to 

the small overhead of these sensors. Test chips efficiently consid-

er multiple sensors banks containing up to total 256 NBTI sensors 

(in 45nm), hence the power overhead of laying out thousands of 

sensors would only be a few hundreds of μW at maximum, which 

is a small fraction of power relative to a PE ‎[12]. The sensors 

support digital frequency outputs that are accessed through 

memory-mapped I/O by the dynamic binary optimizer in arbitrary 

epochs of the post-silicon measurement. 

5.2 Prediction: Wearout Estimation Module 
As described, the dynamic binary optimizer accesses to the ∆Vth of 

various PEs, and evaluates their current performance (τ{X,...,W}[t]) 

using Equations (3)−(5). In addition to the current aging data, the 

compiler needs to have an estimate regarding the impact of future 

workload stress on the various PEs. This is accomplished by 

wearout estimation module shown in Figure 2. Since every naïve 

kernel binary can be considered as the future workload, code 

analysis techniques are required to predict the future workload in 

presence of branches. A just-in-time disassembler disassembles 

the desired naïve kernel binary to a device-dependent assembly 

code in which the assignment of instructions to the various slots 

(corresponding PEs) are explicitly defined, and thus observable 

by the dynamic binary optimizer. Then, a static code analysis 

technique is applied that estimates the percentage of instructions 

that will be carried out on every PE in a static sense. It extracts the 

future stress profile, and thus the utilization of various PEs using 

the device-dependent assembly code. Then, the static code analy-

sis technique predicts the future ∆Vth shift of PEs (Pred-

∆Vth−{X,...,W}[t+1]).  

If the predicted ∆Vth of a PE is overestimated or underestimated, 

mainly due to the static analysis of the branch conditions of the 

kernel's assembly code, a linear calibration module fits the pre-

dicted ∆Vth shift to the observed ∆Vth shift, in the next adaptation 

period. For every PE, e.g. PEX, the linear calibration module uses 

the simple linear regression with an explanatory variable (Pred-

∆Vth−X[t+1]), and a dependent variable (∆Vth−X[t+1]). The simple 

linear regression fits a straight line through the set of m points 

(each kernel execution) in such a way that makes the sum of 

squared residuals of the model as small as possible. The model is 

developed during online measurement by observing the actual 

∆Vth shift reported by NBTI sensors (∆Vth−X[t]) after each kernel 

execution. Therefore, the linear calibration for every PE deter-

mines the curve that best describes the relationship between ex-

pected and observed sets of ∆Vth data; it projects the future ∆Vth of 

PEs (∆Vth−{X,...,W}[t+1]) by minimizing the sums of the squares of 

deviation between observed and expected values. Finally, 

∆Vth−{X,...,W}[t+1] is used  to calculated the future NBTI-induced 

performance degradation (∆τ{X,...,W}[t+1]). 
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Figure 2. Aging-aware kernel adaptation flow.     

5.3 Controllability: Uniform Slot Assignment  
Thus far, we have described how the dynamic binary optimizer 

evaluates the current performance degradation (aging) of every PE 

(τ{X,...,W}[t]), and their future performance degradation 

(∆τ{X,...,W}[t+1]) due to the naïve kernel execution. Then, the com-

piler uses that information to perform code transformations with 

the goal of improving reliability, without any penalty in the 

throughput of code execution (maintaining the same ILP). To 

minimize stresses, the compiler sorts the predicted performance 

degradation of the slots increasingly and the aging of the slots 

decreasingly, and then applies a permutation to assign fewer/more 

instructions to higher/lower stressed slots. This algorithm for eve-

ry period of adaptation [t] is shown below: 

1, 2, 3, 4 X,Y, Z,W

1, 2, 3, 4 X,Y, Z,W

i 1 4

i i









[ ] { }

[ ] { }

Degrad = Rank_degradation_increasingly ( [t+1])

Age = Rank_aging_decreasingly ( [t]) 

For  =  to 

     Reallocate (slot (Age[ ])  slot (Degrad[ ]))

 

where slot(Degrad[1]) is the slot that will have the minimum 

number of instructions during the future execution of the kernel, 

and slot(Age[1]) is the slot that its corresponding PE has the 

highest aging. To take into account both initial and temporal deg-



radations, our algorithm considers the highest aging value across 

the same type of PE since the lifetime of the chip is limited by the 

most aged component. Moreover, there is no means in the assem-

bly code to distinguish the same type of PEs spread out among all 

CUs, unless the hardware architectural scheduler provides sup-

port. As a result of the slot reallocation, the minimum/maximum 

number of instructions is assigned to the highest/lowest stressed 

slot for the future kernel execution, thus uniforming the lifetime 

of PEs. 

Execution of all examined kernels shows that the average packing 

ratio is 0.3 which means there is a large fraction of empty slots in 

which PEs can be relaxed during kernels execution. Evergreen 

ISA states that when a slot is empty, i.e. no instruction is specified 

for that slot in a VLIW bundle, the corresponding PE implicitly 

execute a NOP instruction ‎[26]. Overall, our solution slips the 

pre-assigned instructions from high stressed slot, thus they will 

have more NOP instructions to execute instead of the stress-full 

instructions. This reduces their total stress time and effectively 

decreases α and thus ∆Vth. We can assume that during a NOP 

execution the PE is power-gated as it invalidates the written result 

in the corresponding vector elements at the end of NOP execution 

‎[26]. The feasibility of single-cycle power-gating is validated by 

Intel through a fine-grained power-gating for a 45nm SIMD tile 

‎[27]. Nevertheless, even in the absence of power-gating, the NOP 

instruction execution is self-healing that can reduce the stress time 

of the PE adequately. Moreover, the NOP instruction itself can be 

designed to highly minimize the NBTI effect ‎[21]. We compare 

the benefit of a GPGPU architecture with and without power-

gating for our approach in Section ‎6.     

Among the available software knobs to mitigate NBTI, our algo-

rithm aims to equalize the duty cycle (α) across all the slots. An-

other knob is the input pattern which is impractical to predict both 

in the complex workloads and circuits, thus our wearout estima-

tion module relies on the online NBTI-induced measurement 

feedback through the linear calibration module for better adapta-

tion. The proposed compiler-directed reliability approach super-

poses on top of all optimization performed by naïve compiler and 

does not incur any performance penalty, since it only reallocates 

the VLIW slots (slips the scheduled instructions from one slot to 

another) within the same scheduling and order determined by the 

naïve compiler. In other words, this dynamic binary optimizer 

guarantees the iso-throughput execution of the healthy kernel. It 

also runs fully in parallel with GPGPU on a host CPU, thus there 

will be no penalty for GPGPU kernel execution if dynamic compi-

lation of one kernel can be overlapped with the execution of an-

other kernel. 

6. EXPERIMENTAL RESULTS 
Our methodology is based on AMD Accelerated Parallel Pro-

cessing (APP) software ecosystem suitable for stream applications 

written in OpenCL. The stream kernels are compiled into GPGPU 

device-specific binaries using the OpenCL compiler tool-chain 

which uses a standard off-the-shelf compiler front-end (g++), as 

well as the low-level virtual machine framework with extensions 

for OpenCL as the back-end. We have implemented our dynamic 

binary optimizer tool using C++ leveraging AMD Compute Ab-

straction Layer (CAL) APIs. CAL provides a runtime device driv-

er library that supports code generation, kernel loading and execu-

tion, and allows applications to interact with the stream cores at 

the lowest-level. Multi2Sim ‎[28] cycle-accurate simulation 

framework − a CPU-GPU model for heterogeneous computing 

targeting Evergreen ISA − is modified to collect the ALU engines 

statistics. We have also equipped the simulator with the NBTI 

sensors where our tool has access to them; in a GPGPU chip those 

digitally-output memory-mapped sensors can be accessed by the 

device management part of CAL.  

The following naïve binaries of AMD APP SDK 2.5 ‎[29] kernels 

are run on the simulator: Reduction (Rdn), Binary Search (BSe), 

Haar1D (DH1D), Bitonic Sort (BSo), Fast Walsh Transform 

(FWT), Floyd Warshall (FW), Binomial Option (BO), Discrete 

Cosine Transform (DCT), Matrix Transpose/Multiplication 

(MT/M), Sobel Filter (SF), Uniform Random Noise Generator 

(URNG). Before invoking the kernel, our adaptation flow is trig-

gered: the assembly code of the kernel using CAL APIs runtime 

library (aticalrt) in conjunction with NBTI sensors data is passed 

to the wearout estimation module, and a new code is generated 

that adapts the binary to the specific health state of GPGPU. In 

our experiments, to keep track of aging, this flow of adaptation is 

also run periodically in parallel on a host CPU every hour so as to 

impose negligible overhead. 

We consider cycle-by-cycle architectural NBTI analysis ‎[8] in the 

65nm PTM technology with Vgs=1.2V, T=300K, and the stress 

statistics of the kernels execution obtained from the simulator; it 

is common to assume that all PMOS in a circuit degrade by the 

same amount ‎[16], ‎[17], and ‎[18]. Figure 3.a shows the NBTI-

induced Vth degradation when executing a healthy Rdn kernel 

compared to the naïve execution at time zero, and after one year. 

For this experiment, we consider a HD 5870 which is not affected 

by the process variability (initial inter-PE ∆Vth=0mV), and with-

out power-gating support. As shown in Figure 3.a, at time 0, all 

PEs have the equal Vth since there was no stress, but after one year 

execution of naïve Rdn, PEX has a maximum Vth of 435mV, be-

cause of executing 50.7% of the total ALU engine instructions 

(see Figure 1.c). However, the healthy Rdn kernel execution elim-

inates this non-uniformity by adapting itself every hour, and thus 

results in 14mV lower Vth shift after one year (for all PEs, 

Vth=421mV). 

We also evaluate the effectiveness of the proposed approach when 

executing the healthy Rdn kernel on a process variability-affected 

HD 5870 (initial inter-PE ∆Vth=10mV) and without power-gating 

support compared to the naïve execution. Figure 3.b shows the Vth 

shift over time due to the naïve kernel execution, and at the end of 

360hr, there is an 8mV Vth variation among PEs which limits the 

lifetime of PEX (Vth-X=413mV). On the other hand, Figure 3.c 

shows that adapting the kernel periodically leads to a uniform Vth 

shift among all PEs (Vth variation is ~0.6mV), and the maximum 

Vth shift is 406mV at the end of 360hr − with power-gating sup-

port it further reduces to 402mV. 

Indeed, the benefit of our technique is further pronounced for a 

larger time scale. Figure 4 shows the reduction in ∆Vth over five 

years execution of healthy kernels with and without power-gating 

support of GPGPU architecture. In comparison with the naïve 

execution of kernels, GPGPU with power-gating achieves a max-

imum 49% reduction in ∆Vth, while without power-gating the self-

healing NOP execution provides a maximum of 11% reduction in 

∆Vth. Since during power-gating the circuits are in the sleep state 

their aging mechanism are recovered quickly as derived in ‎[14]. In 

average, compared to the naïve kernels, the execution of healthy 

kernels reduces ∆Vth by 34% and 6% in the presence and absence 

of power-gating supports respectively. Furthermore, the impact of 

our technique is higher if we consider the local temperature reduc-

tion due to idleness and power-gating.     



The total execution time of the proposed adaptation flow is meas-

ured. Figure 5 shows the average execution time of the entire 

process, starting from disassembler up to the healthy code genera-

tion. It also shows the fastest and slowest execution we measure, 

as error bars. More than 95% of execution time is spent through 

the kernel disassembly using online CAL APIs, so the assembly 

code can be cached for faster iterations in future adaptation. The 

uniform slot assignment algorithm always runs below 2K cycles 

for all kernels, and the static code analysis is done between 220K-

900K cycles depend to the size of kernel. Overall, the total execu-

tion time is bounded by 35 millisecond, and on average 13 milli-

second on a host machine with an Intel i5 CPU 2.67GHz. 
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Figure 4. Reduction in ∆Vth due to the healthy kernels execu-

tion compared to naïve kernels for 5 years. 
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Figure 5. Total execution time of adaptation process. 

7. CONCLUSION   
Although the workload distribution among Compute Units (CUs) 

of GPGPU is nearly uniform, its Processing Elements (PEs) suffer 

from non-uniform VLIW distribution. To mitigate the impacts on 

lifetime uncertainty and unbalancing among the PEs, an online 

adaptive VLIW reallocation strategy is proposed that leverages a 

compiler-directed scheme to uniformly distribute the stress of 

instructions throughout various VLIW slots. This technique peri-

odically regenerates healthy codes that heal over GPGPU aging. 

Compared to the naïve kernels, the execution of healthy kernels 

not only imposes 0% throughput penalty but also reduces ∆Vth: up 

to 49%(11%) and on average 34%(6%) in presence(absence) of 

architectural power-gating supports. On average, the total execu-

tion time of the adaption process is 13 millisecond.  

Ongoing work is focused on generalizing the proposed approach 

on memory subsystems and variety of architectures. 
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Figure 3. Vth shift for Rdn kernel: (a) NBTI-induced for 1 year; (b) Process variation and NBTI-induced for 360 hours.  


