
Aging-Aware Compiler-Directed VLIW Assignment for

GPGPU Architectures

Abbas Rahimi

CSE, UC San Diego

La Jolla, CA 92093, USA

abbas@cs.ucsd.edu

Luca Benini

DEIS, University of Bologna

40136 Bologna, Italy

luca.benini@unibo.it

Rajesh K. Gupta

CSE, UC San Diego

La Jolla, CA 92093, USA

gupta@cs.ucsd.edu

ABSTRACT
Negative bias temperature instability (NBTI) adversely affects the

reliability of a processor by introducing new delay-induced faults.

However, the effect of these delay variations is not uniformly

spread across functional units and instructions: some are affected

more (hence less reliable) than others. This paper proposes a

NBTI-aware compiler-directed very long instruction word

(VLIW) assignment scheme that uniformly distributes the stress of

instructions with the aim of minimizing aging of GPGPU architec-

ture without any performance penalty. The proposed solution is an

entirely software technique based on static workload characteriza-

tion and online execution with NBTI monitoring that equalizes

the expected lifetime of each processing element by regenerating

aging-aware healthy kernels that respond to the specific health

state of GPGPU. We demonstrate our approach on AMD Ever-

green architecture where iso-throughput executions of the healthy

kernels reduce NBTI-induced voltage threshold shift up to 49%

(11%) compared to naïve kernel executions, with (without) archi-

tectural support for power-gating. The kernel adaption flow takes

average of 13 millisecond on a typical host machine thus making

it suitable for practical implementation.

Keywords: NBTI, GPGPU, Aging-aware Compilation,

VLIW, Adaptive Kernel, Dynamic Binary Optimizer.

1. INTRODUCTION
Variability across manufactured parts and aging over time are

emerging challenges in IC chips ‎[1]. Among various aging mech-

anisms, the generation of interface traps under NBTI in PMOS

transistors has become a critical reliability issue in determining

the lifetime of CMOS devices ‎[2]. NBTI effects can be signifi-

cant: its impact on circuit delay is about 15 percent on a 65nm

technology node ‎[3] and it gets worse in sub-65nm nodes ‎[4].

This imposes an excessive guardband over circuit lifetime causing

performance loss and increased costs.

When a PMOS transistor is negatively biased (Vgs = −Vdd), the

dissociation of Si−H bonds along the silicon oxide interface,

causes the generation of interface traps, while removal of the bias

(Vgs = 0) causes a reduction in the number of interface traps due to

annealing ‎[1]−‎[5]. The rate of generation of these traps is acceler-

ated by temperature, and the time of applied stress. The threshold

voltage (Vth) of the PMOS transistors increases as more traps

form, reducing the drive current, which in turn slows down the

rising propagation delay of logic gates over time. Thus, the NBTI-

induced performance degradation strongly depends on the amount

of time during which a PMOS transistor is stressed, that is, when

a logic ‘0’ is applied to the gate. The increase in Vth is a logarith-

mic function of the corresponding stress time ‎[6], which is dis-

tributed non-uniformly across a logic circuit, leading to 2−5×

difference in the degradation rate of Vth ‎[7]. When the stress con-

dition is relaxed, aging can be recovered partially, and the Vth

decreases toward the nominal value ‎[7], ‎[8].

Non-uniform stress caused by non-uniform workload is a major

concern for general purpose graphical processing units (GPGPUs)

‎[9] with up to 512 CUDA cores ‎[10], or 320 five-way VLIW pro-

cessors ‎[11]. To ensure necessary observability for non-uniform

aging degradation, in situ NBTI and oxide degradation sensors

with digital outputs have been proposed and validated on silicon

‎[12]. These sensors enable high-volume data collection to guide

dynamic management schemes and warn of impending device

failure. Using NBTI sensors, adaptive guardbanding has been

proposed earlier to reduce the otherwise conservative guardbands

due to better than worst-case operating conditions ‎[13]. For con-

trollability, power-gating is known as an effective technique to

mitigate NBTI-induced aging ‎[14], since PMOS stress is removed

during periods of power-gating. In this context, Paterna et. al.

‎[15] propose a dynamic workload allocation to mitigate aging-

induced unbalanced cores lifetimes by means of core activity duty

cycling on a multi-core platform.

1.1 Contributions
This paper makes following contributions:

I. We propose an online adaptive reallocation strategy to mitigate

NBTI-induced performance degradation in GPGPU machines.

This is accomplished through a NBTI-aware compiler that uses a

dynamic binary optimizer. During dynamic recompilation, the

binary is optimized by customizing the kernel’s code with respect

to specific health state of GPGPU. This technique leverages a

compiler-directed scheme that uniformly distributes the stress of

instructions throughout various VLIW resource slots, results in a

healthy code generation that keeps the underlying GPGPU hard-

ware healthy. Section 3 and 4 describe NBTI model and GPGPU.

II. We propose a fully software solution that uses static (offline)

workload characterization and online availability of NBTI sen-

sors. The dynamic binary optimizer correlates the device stress

time with instructions distribution, and equalizes the expected

lifetime of each processing element without any architectural

modification. Section 5 covers this technique in detail.

III. In Section 6, we demonstrate our approach on AMD Ever-

green GPGPU architecture and its tool-chain to adapt kernels to

the health state of GPGPU. The throughput of our healthy kernel

execution is the same as naïve kernel execution (iso-throughput).

In comparison with the naïve kernels, our healthy kernels execu-

tion achieves a maximum 49% reduction in NBTI-induced Vth

shift over five years if GPGPU supports power-gating during idle

states. Power-gating is intrinsically protective against NBTI by

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for com-

ponents of this work owned by others than ACM must be honored. Ab-

stracting with credit is permitted. To copy otherwise, to republish, to post

on servers or to redistribute to lists, requires prior specific permission

and/or a fee.

DAC '13, May 29 - June 07 2013, Austin, TX, USA

Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

providing sleep states that spare gates from stress that produces

NBTI effects. In the absence of power-gating, our uniform self-

healing NOP execution technique mitigates the Vth shift by 11%.

On average, the total execution time of the entire adaptation pro-

cess is 13 millisecond on an Intel i5 CPU 2.67GHz.

2. RELATED WORK
Various techniques ‎[15]−‎[17] have been proposed to slow down

the aging of traditional coarse-grained multi-core architectures.

These techniques range from selective frequency scaling to man-

age the aging process, dynamic control of the usage of processing

units through shutdown that together seeks to equalize the level of

aging seen across the cores. A brief review of important contribu-

tions follows.

Selective Speed Scaling: Chip-wide voltage scaling has been ap-

plied to switch the processor from a slow-aging mode to a high-

speed mode‎‎[16] selectively over its lifetime. This affects perfor-

mance and to combat the performance loss, Bubblewrap ‎[17]

supports multiple modes based on ‎[16], for instance, by running

the slow cores at a higher supply voltage for a shorter service life

until they entirely wear-out and are discarded. For fine-grain

many-core architectures, this technique loses effectiveness be-

cause after the early lifetime, the difference between the adaptive

voltage and the over-designed supply voltage is small ‎[18].

Selective Shutdown: To combat the impact of within-die core-to-

core frequency variations on GPGPU throughput, two techniques

are proposed in ‎[19]: (i) disabling the slowest cores, and (ii) run-

ning each core at its maximum frequency independently. Both of

these solutions impose a non-negligible performance penalty: the

first directly diminishes the throughput of a cluster, and the se-

cond imposes extra latency for synchronization of cores with dif-

ferent frequencies. Further, these techniques only consider the

effects of static process variation, and do not cover aging of

GPGPUs which is dynamic in nature.

At a finer architectural granularity, Colt ‎[20] equalizes the duty

cycle ratio and the usage frequency of the functional units in a

microprocessor. To mitigate aging effects, it uses a number of

measures such as complement mode execution, cache set rotation,

and operand identifier swapping schemes. These measures are

intrusive and fairly complicated: the complement mode is applied

to the whole data path, control path, and storage hierarchy. In a

similar vein, a linear programming scheme is employed to find a

new instruction to replace the processor’s default NOP instruction

for minimizing the NBTI effects ‎[21]. This approach also requires

architectural supports and pipeline modification. Wearout-aware

compiler-directed register assignment techniques have been pro-

posed in ‎[22] that attempt to distribute the stress-induced wearout

throughout the register file. Another aging-aware assignment of

registers has been proposed to balance the duty cycle ratio of the

internal bits in register files ‎[23]. Even though ‎[22], ‎[23] do not

impose architectural overheads and modification, their compiler

strategies are limited to the utilization of the register file.

NBTI-aware power-gating ‎[14] exploits the sleep state where a

circuit is intrinsically immune to aging. Caliman et al. ‎[24] pro-

pose static and dynamic strategies to compensate the aging effects

on the sleep transistors. Here, the benefit of power-gating is

strongly dependent on the fraction of time that a circuit spends in

sleep mode. In practice, high power-gating factors are accompa-

nied by significant performance degradation. As an alternative, in

Section ‎5.3, we show how a VLIW machine can instead arrange

instructions to utilize the power-gating factor without any perfor-

mance penalty.

3. DEVICE-LEVEL NBTI MODEL
We briefly review the dynamic NBTI model for its use in compil-

er optimizations. In NBTI, the PMOS transistor undergoes alter-

nate stress (Vgs = −Vdd) and recovery (Vgs = 0) periods, derived

from the Reaction-Diffusion theory ‎[7], ‎[8]. When logic input ‘0’

is applied to the gate of a PMOS transistor (Vgs = −Vdd), the pres-

ence of holes in the channel causes Si−H bonds to break. The

resulting H diffuses away, leaving positive traps (Si+) in the inter-

face, which increase voltage threshold by ∆Vth-stress:

-
22(+ Δ)th stress v stress th - t0
nnV K t V  (1)

where tstress is the time that PMOS is under stress; Kv has depend-

ence on electrical field, temperature (T), and Vdd; n is the time

exponent parameter, and for H2 diffusion is 1/6; and ∆Vth-t0 is the

initial Vth variation of PMOS at time zero due to process variation

caused by random dopant fluctuations. When logic input ‘1’ is

applied to the gate (Vgs = 0), the transistor turns off, and hydrogen

atoms diffuse back, eliminating some of the traps in a recovery

phase that can recover part of the Vth shift:

1 2

2 +
Δ = Δ (1-)

(1+) + C

e recov
th - recov th - stress

ox

t C t
V V

t t

 


 (2)

where trecov is the time under recovery; tox is the oxide thickness; te

is the effective oxide thickness; t is the total time; C has tempera-

ture dependence; ζ1, ζ2, δ are constants in ‎[7]. Duty cycle (α) is the

ratio of the time spent in stress to the period of one stress-

recovery cycle. ∆Vth has been shown to be a monotonically in-

creasing function of higher duty cycle (α), t, Vdd, T ‎[25]. The

NBTI-induced Vth shift is also a function of process-dependent

parameters, and relatively insensitive to the switching frequency

(f) when it is above 100Hz ‎[8]. The duty cycle (α) can be directly

tuned by the software to reduce or eliminate the NBTI-induced

effects.

If a transistor has a larger threshold voltage than expected, its

transconductance is smaller, it has a lower drive current and in-

creased delay during a transition. The transistor switching delay

can be approximately expressed as the alpha-power law:

()

dd

dd th
'

V L

V V 






 (3)

where μ is the mobility of carriers; α'≈1.3 is the velocity satura-

tion index; and L is the channel length. Hence, the delay variation

∆τ/τ can be derived as follows:

= th
dd th

L '
V

L V V

  

 

  
  


 (4)

considering only the effect of ∆Vth shift, and neglecting other

terms, the delay degradation ∆τ is given by

=
th

0
dd th - t0

' V

V V


 





 (5)

where Vth-t0 is the original transistor threshold voltage (at the life

of time t0), and τ0 is its corresponding delay before degradation.

There might be several ∆Vth of different PMOSs in a circuit, thus

we consider the largest one to calculate the worst case delay deg-

radation. In our analysis, we set all the internal node states to a ‘0’

during stress mode to determine the worst case circuit degradation

that limits the lifetime of a chip. Although this is a conservative

assumption and during runtime there exists no such input vector

that makes the internal nodes all 0s; this assumption is only used

to calculate the maximum possible degradation and the potential

of NBTI mitigation technique. Section ‎5 describes how an online

calibrator regulates overestimates and underestimates of degrada-

tion due to the complex input patterns and inaccurate estimations.

4. GPGPU ARCHITECTURE
We focus on the Evergreen family of AMD GPGPUs (a.k.a.

Radeon HD 5000 series), designed to target not only graphics

applications but also general-purpose data-intensive applications.

The Radeon HD 5870 GPGPU compute device consists of 20

Compute Units (CUs), a global front-end ultra-thread dispatcher,

and a crossbar to connect the global memory to the L1-caches

‎[11]. Every CU has access to a global memory, implemented as a

hierarchy of private 8KB L1-caches, and 4 shared 512KB L2-

caches. Each CU contains a set of 16 Stream Cores (SCs) that

have access to a shared 32KB local data storage. Within a CU, a

shared instruction fetch unit provides the same machine instruc-

tion for all SCs to execute in a SIMD fashion. Finally, each SC

contains five Processing Elements (PEs), labeled X, Y, Z, W, and

T constituting an ALU engine to execute Evergreen machine in-

structions in a vector-like fashion. The SC has also a general-

purpose registers file to support private memory. The block dia-

gram of architecture is shown in Figure 1.a.

Every SC is a five-way VLIW processor capable of issuing up to

five floating point scalar operations from a single very long in-

struction word consists primarily of five slots (slotX, slotY, slotZ,

slotW, slotT). Each slot is related to its corresponding PE. Four

PEs (X, Y, Z, W) can perform up to four single-precision opera-

tions separately and perform two double-precision operations

together, while the remaining one (T) has a special function unit

for transcendental operations. In each cycle, VLIW slots supply a

bundle of data-independent instructions to be assigned to the re-

lated PEs for simultaneous execution. In an N-way VLIW proces-

sor, up to N data-independent instructions, available on N slots,

can be assigned to the corresponding PEs and be executed simul-

taneously. Typically, this is not done in practice because the com-

piler may fail to find sufficient Instruction-Level Parallelism (ILP)

to generate compelete VLIW instructions. On average, if M out of

N slots are filled during an execution, we call the achieved pack-

ing ratio is M/N. The actual performance of a program running on

a VLIW processor largely depends on the packing ratio.

4.1 GPGPU Workload Distribution
In this subsection, we analyze the workload distribution on the

Radeon HD GPGPUs architecture, where there are many PEs to

carry out computations. As it is mentioned in Section ‎3, NBTI-

induced degradation strongly depends on the resource utilization,

which depends on the execution characteristics of the workload.

Thus, it is essential to analyze how often the PEs are exercised

during the runtime execution of the workload. To this end, we

first monitor the utilization of various CUs (inter-CU), and then

the utilization of PEs within a CU (intra-CU).

To examine the inter-CU workload variation, the total number of

executed instructions by each CU is collected during a kernel

execution as per a methodology described in Section ‎6. Figure 1.b

shows that the CUs execute almost equal number of instructions,

and there is a negligible workload variation among them. We have

configured six compute devices with different number of CUs, {2,

4,..., 64}, to finely examine the effect of the workload variation on

a variety of GPGPU architecture (The latest Radeon HD 5000

series, HD 5970, has 40 CUs featuring 4.3 billion transistors in

40nm). During DCT kernel execution, the workload variation

between CUs ranges from 0% to 0.26% depends to the number of

physical CUs on the computation device. The DCT input kernel

parameters are fixed for all configured compute devices, thus they

carry out the same amount of workload− note that the total num-

ber of executed instructions per CU is inversely proportional to

the number of available CUs on the compute device. Execution of

all kernels listed in Section ‎6 confirms that the inter-CU workload

variation is less than 3%, when running on the device with 20

CUs (HD 5870). This nearly uniform inter-CU workload distribu-

tion is accomplished by load balancing and uniform resource arbi-

tration algorithms of the ultra-thread dispatcher.

Next, we examine the workload distribution among the PEs. Fig-

ure 1.c shows the percentage of the executed instructions of ALU

engine by various PEs during execution of different kernels. ALU

engine in this paper refers to four PEs (PEX, PEY, PEZ, PEW)

which are identical in their functions ‎[26]; they differ only in the

vector elements to which they write their result at the end of the

VLIW. As shown, the instructions are not uniformly distributed

among PEs. For instance, the PEX executes roughly half of the

ALU engine instructions (50.7%) during Rdn kernel execution,

while only about one quarter of the ALU engine instructions

(27.1%) are executed by PEX during SF kernel execution. Execu-

tion of all kernels listed in Section ‎6 shows that seven kernels

execute more than 40% of the ALU engine instructions only on

PEX. This non-uniform workload variation causes non-uniform

aging among PEs, and exhausts some PEs more than others and

shortening their lifetime. Unfortunately, this non-uniformity hap-

pens within all CUs since their workload is highly correlated to-

gether, therefore no PE throughout the entire compute device is

immune from this unbalanced utilization.

Thus, root cause of non-uniform aging among PEs is the frequent

and non-uniform execution of VLIW slots. For example, higher

utilization of PEX implies that slotX of VLIW is occupied more

frequently than the other slots. This substantiates that the compiler

does not uniformly assign the independent instructions to various

VLIW slots, mainly because the compiler only employs optimiza-

tions for increasing the packing ratio through finding more ILP to

fully pack the VLIW slots. The VLIW processors are designed to

give the compiler tight control over program execution; however,

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Rdn SF DCT MT

A
L

U
 e

n
g

in
e
 e

x
e
c
u

te
d

 i
n

s
tr

u
c
ti

o
n

s
 (

%
)

X Y Z W

1

10

100

1000

N
u

m
b

e
r

o
f

e
x
e
c
u

te
d

in

s
tr

u
c
ti

o
n

s x
1

0
0

0
0

0

Number of compute units (CUs)

3σ/μ=0%

3σ/μ=0.03

3σ/μ=0.11%

3σ/μ=0.12%

3σ/μ=0.26%

3σ/μ=0.13

2 4 8 16 32 64

(a) (b) (c)
Figure 1.(a) Block diagram of the Radeon HD 5870 architecture. (b) Inter-CU workload variations for six configured compute devices.

(c) Inter-PE ALU instructions distribution for various naïve kernels in the HD 5870 compute device (#CUs = 20).

the flexibility afforded by such compilers, for instance to tune the

order of instructions packing, is rarely used towards reliability

improvement.

5. AGING-AWARE COMPILATION
The key idea of an aging-aware compilation is to assign inde-

pendent instructions uniformly to all slots: idling a fatigued PE

and reassigning its instructions to a young PE through swapping

the corresponding slots during the VLIW bundle code generation.

This basically exposes the inherent idleness in VLIW slots and

guides its distribution that does matter for aging. Thus, the job of

dynamic binary optimizer, for K-independent instructions, is to

find K-young slots, representing K-young PEs, among all availa-

ble N slots, and then assign instructions to those slots. Therefore,

the generated code is a “healthy” code that balances workload

distribution through various slots maximizing the life time of all

PEs. In this section, we describe how these statistics can be ob-

tained from silicon, and how compiler can predict and thus con-

trol the non-uniform aging. The adaptation flow is illustrated in

Figure 2 through four steps: 1) reading aging sensors; 2) kernel

disassembler, static code analysis, and calibration of predictions;

3) uniform slot assignment; 4) healthy code generation.

5.1 Observability: Aging Sensors
The compiler needs to access the current aging data (∆Vth) of PEs

to be able to adapt the code accordingly. The ∆Vth is caused by the

temporal degradation due to NBTI and/or the intrinsic process

variation, thus PEs even during early life of a chip might have

different aging. Employing the compact per-PE NBTI sensors

‎[12] which provide ∆Vth measurement with 3σ accuracy of 1.23

mV for a wide range of temperature, enables large scale data-

collection across all PEs. The performance degradation of every

PE can be reliably reported by a per-PE NBTI sensor, thanks to

the small overhead of these sensors. Test chips efficiently consid-

er multiple sensors banks containing up to total 256 NBTI sensors

(in 45nm), hence the power overhead of laying out thousands of

sensors would only be a few hundreds of μW at maximum, which

is a small fraction of power relative to a PE ‎[12]. The sensors

support digital frequency outputs that are accessed through

memory-mapped I/O by the dynamic binary optimizer in arbitrary

epochs of the post-silicon measurement.

5.2 Prediction: Wearout Estimation Module
As described, the dynamic binary optimizer accesses to the ∆Vth of

various PEs, and evaluates their current performance (τ{X,...,W}[t])

using Equations (3)−(5). In addition to the current aging data, the

compiler needs to have an estimate regarding the impact of future

workload stress on the various PEs. This is accomplished by

wearout estimation module shown in Figure 2. Since every naïve

kernel binary can be considered as the future workload, code

analysis techniques are required to predict the future workload in

presence of branches. A just-in-time disassembler disassembles

the desired naïve kernel binary to a device-dependent assembly

code in which the assignment of instructions to the various slots

(corresponding PEs) are explicitly defined, and thus observable

by the dynamic binary optimizer. Then, a static code analysis

technique is applied that estimates the percentage of instructions

that will be carried out on every PE in a static sense. It extracts the

future stress profile, and thus the utilization of various PEs using

the device-dependent assembly code. Then, the static code analy-

sis technique predicts the future ∆Vth shift of PEs (Pred-

∆Vth−{X,...,W}[t+1]).

If the predicted ∆Vth of a PE is overestimated or underestimated,

mainly due to the static analysis of the branch conditions of the

kernel's assembly code, a linear calibration module fits the pre-

dicted ∆Vth shift to the observed ∆Vth shift, in the next adaptation

period. For every PE, e.g. PEX, the linear calibration module uses

the simple linear regression with an explanatory variable (Pred-

∆Vth−X[t+1]), and a dependent variable (∆Vth−X[t+1]). The simple

linear regression fits a straight line through the set of m points

(each kernel execution) in such a way that makes the sum of

squared residuals of the model as small as possible. The model is

developed during online measurement by observing the actual

∆Vth shift reported by NBTI sensors (∆Vth−X[t]) after each kernel

execution. Therefore, the linear calibration for every PE deter-

mines the curve that best describes the relationship between ex-

pected and observed sets of ∆Vth data; it projects the future ∆Vth of

PEs (∆Vth−{X,...,W}[t+1]) by minimizing the sums of the squares of

deviation between observed and expected values. Finally,

∆Vth−{X,...,W}[t+1] is used to calculated the future NBTI-induced

performance degradation (∆τ{X,...,W}[t+1]).

Aging-aware Slot Assignment

Healthy Code Generation

τ{X,…,W} [t] ∆τ{X,…,W} [t+1]

Just-in-time Disassembler

Static Code Analysis

Device-dependent Assembly Code

∆Vth−{X,…,W} [t+1]

Linear

Calibration

∆Vth−{X,…,W}[t]

NBTI

Sensors Banks
GPGPU Compute Device

Input Output Kernel
Memory Mapped

Sensors

Memory

Naïve Kernel Binary

Healthy Kernel Binary

Host CPU

Rank Vth τ

Age[1] Vth-X [t] τX [t]

Age[2] Vth-Y [t] τY [t]

… … …

Rank ∆Vth ∆τ

Util[1] ∆Vth-Y [t+1] ∆τY [t+1]

Util[2] ∆Vth-Z [t+1] ∆τZ [t+1]

… … …

Wearout
Estimation

Module
Pred-∆Vth−{X,…,W}[t+1]

Performance
Degradation

Measurement

1

2

3

4

Figure 2. Aging-aware kernel adaptation flow.

5.3 Controllability: Uniform Slot Assignment
Thus far, we have described how the dynamic binary optimizer

evaluates the current performance degradation (aging) of every PE

(τ{X,...,W}[t]), and their future performance degradation

(∆τ{X,...,W}[t+1]) due to the naïve kernel execution. Then, the com-

piler uses that information to perform code transformations with

the goal of improving reliability, without any penalty in the

throughput of code execution (maintaining the same ILP). To

minimize stresses, the compiler sorts the predicted performance

degradation of the slots increasingly and the aging of the slots

decreasingly, and then applies a permutation to assign fewer/more

instructions to higher/lower stressed slots. This algorithm for eve-

ry period of adaptation [t] is shown below:

1, 2, 3, 4 X,Y, Z,W

1, 2, 3, 4 X,Y, Z,W

i 1 4

i i









[] { }

[] { }

Degrad = Rank_degradation_increasingly ([t+1])

Age = Rank_aging_decreasingly ([t])

For = to

 Reallocate (slot (Age[]) slot (Degrad[]))

where slot(Degrad[1]) is the slot that will have the minimum

number of instructions during the future execution of the kernel,

and slot(Age[1]) is the slot that its corresponding PE has the

highest aging. To take into account both initial and temporal deg-

radations, our algorithm considers the highest aging value across

the same type of PE since the lifetime of the chip is limited by the

most aged component. Moreover, there is no means in the assem-

bly code to distinguish the same type of PEs spread out among all

CUs, unless the hardware architectural scheduler provides sup-

port. As a result of the slot reallocation, the minimum/maximum

number of instructions is assigned to the highest/lowest stressed

slot for the future kernel execution, thus uniforming the lifetime

of PEs.

Execution of all examined kernels shows that the average packing

ratio is 0.3 which means there is a large fraction of empty slots in

which PEs can be relaxed during kernels execution. Evergreen

ISA states that when a slot is empty, i.e. no instruction is specified

for that slot in a VLIW bundle, the corresponding PE implicitly

execute a NOP instruction ‎[26]. Overall, our solution slips the

pre-assigned instructions from high stressed slot, thus they will

have more NOP instructions to execute instead of the stress-full

instructions. This reduces their total stress time and effectively

decreases α and thus ∆Vth. We can assume that during a NOP

execution the PE is power-gated as it invalidates the written result

in the corresponding vector elements at the end of NOP execution

‎[26]. The feasibility of single-cycle power-gating is validated by

Intel through a fine-grained power-gating for a 45nm SIMD tile

‎[27]. Nevertheless, even in the absence of power-gating, the NOP

instruction execution is self-healing that can reduce the stress time

of the PE adequately. Moreover, the NOP instruction itself can be

designed to highly minimize the NBTI effect ‎[21]. We compare

the benefit of a GPGPU architecture with and without power-

gating for our approach in Section ‎6.

Among the available software knobs to mitigate NBTI, our algo-

rithm aims to equalize the duty cycle (α) across all the slots. An-

other knob is the input pattern which is impractical to predict both

in the complex workloads and circuits, thus our wearout estima-

tion module relies on the online NBTI-induced measurement

feedback through the linear calibration module for better adapta-

tion. The proposed compiler-directed reliability approach super-

poses on top of all optimization performed by naïve compiler and

does not incur any performance penalty, since it only reallocates

the VLIW slots (slips the scheduled instructions from one slot to

another) within the same scheduling and order determined by the

naïve compiler. In other words, this dynamic binary optimizer

guarantees the iso-throughput execution of the healthy kernel. It

also runs fully in parallel with GPGPU on a host CPU, thus there

will be no penalty for GPGPU kernel execution if dynamic compi-

lation of one kernel can be overlapped with the execution of an-

other kernel.

6. EXPERIMENTAL RESULTS
Our methodology is based on AMD Accelerated Parallel Pro-

cessing (APP) software ecosystem suitable for stream applications

written in OpenCL. The stream kernels are compiled into GPGPU

device-specific binaries using the OpenCL compiler tool-chain

which uses a standard off-the-shelf compiler front-end (g++), as

well as the low-level virtual machine framework with extensions

for OpenCL as the back-end. We have implemented our dynamic

binary optimizer tool using C++ leveraging AMD Compute Ab-

straction Layer (CAL) APIs. CAL provides a runtime device driv-

er library that supports code generation, kernel loading and execu-

tion, and allows applications to interact with the stream cores at

the lowest-level. Multi2Sim ‎[28] cycle-accurate simulation

framework − a CPU-GPU model for heterogeneous computing

targeting Evergreen ISA − is modified to collect the ALU engines

statistics. We have also equipped the simulator with the NBTI

sensors where our tool has access to them; in a GPGPU chip those

digitally-output memory-mapped sensors can be accessed by the

device management part of CAL.

The following naïve binaries of AMD APP SDK 2.5 ‎[29] kernels

are run on the simulator: Reduction (Rdn), Binary Search (BSe),

Haar1D (DH1D), Bitonic Sort (BSo), Fast Walsh Transform

(FWT), Floyd Warshall (FW), Binomial Option (BO), Discrete

Cosine Transform (DCT), Matrix Transpose/Multiplication

(MT/M), Sobel Filter (SF), Uniform Random Noise Generator

(URNG). Before invoking the kernel, our adaptation flow is trig-

gered: the assembly code of the kernel using CAL APIs runtime

library (aticalrt) in conjunction with NBTI sensors data is passed

to the wearout estimation module, and a new code is generated

that adapts the binary to the specific health state of GPGPU. In

our experiments, to keep track of aging, this flow of adaptation is

also run periodically in parallel on a host CPU every hour so as to

impose negligible overhead.

We consider cycle-by-cycle architectural NBTI analysis ‎[8] in the

65nm PTM technology with Vgs=1.2V, T=300K, and the stress

statistics of the kernels execution obtained from the simulator; it

is common to assume that all PMOS in a circuit degrade by the

same amount ‎[16], ‎[17], and ‎[18]. Figure 3.a shows the NBTI-

induced Vth degradation when executing a healthy Rdn kernel

compared to the naïve execution at time zero, and after one year.

For this experiment, we consider a HD 5870 which is not affected

by the process variability (initial inter-PE ∆Vth=0mV), and with-

out power-gating support. As shown in Figure 3.a, at time 0, all

PEs have the equal Vth since there was no stress, but after one year

execution of naïve Rdn, PEX has a maximum Vth of 435mV, be-

cause of executing 50.7% of the total ALU engine instructions

(see Figure 1.c). However, the healthy Rdn kernel execution elim-

inates this non-uniformity by adapting itself every hour, and thus

results in 14mV lower Vth shift after one year (for all PEs,

Vth=421mV).

We also evaluate the effectiveness of the proposed approach when

executing the healthy Rdn kernel on a process variability-affected

HD 5870 (initial inter-PE ∆Vth=10mV) and without power-gating

support compared to the naïve execution. Figure 3.b shows the Vth

shift over time due to the naïve kernel execution, and at the end of

360hr, there is an 8mV Vth variation among PEs which limits the

lifetime of PEX (Vth-X=413mV). On the other hand, Figure 3.c

shows that adapting the kernel periodically leads to a uniform Vth

shift among all PEs (Vth variation is ~0.6mV), and the maximum

Vth shift is 406mV at the end of 360hr − with power-gating sup-

port it further reduces to 402mV.

Indeed, the benefit of our technique is further pronounced for a

larger time scale. Figure 4 shows the reduction in ∆Vth over five

years execution of healthy kernels with and without power-gating

support of GPGPU architecture. In comparison with the naïve

execution of kernels, GPGPU with power-gating achieves a max-

imum 49% reduction in ∆Vth, while without power-gating the self-

healing NOP execution provides a maximum of 11% reduction in

∆Vth. Since during power-gating the circuits are in the sleep state

their aging mechanism are recovered quickly as derived in ‎[14]. In

average, compared to the naïve kernels, the execution of healthy

kernels reduces ∆Vth by 34% and 6% in the presence and absence

of power-gating supports respectively. Furthermore, the impact of

our technique is higher if we consider the local temperature reduc-

tion due to idleness and power-gating.

The total execution time of the proposed adaptation flow is meas-

ured. Figure 5 shows the average execution time of the entire

process, starting from disassembler up to the healthy code genera-

tion. It also shows the fastest and slowest execution we measure,

as error bars. More than 95% of execution time is spent through

the kernel disassembly using online CAL APIs, so the assembly

code can be cached for faster iterations in future adaptation. The

uniform slot assignment algorithm always runs below 2K cycles

for all kernels, and the static code analysis is done between 220K-

900K cycles depend to the size of kernel. Overall, the total execu-

tion time is bounded by 35 millisecond, and on average 13 milli-

second on a host machine with an Intel i5 CPU 2.67GHz.

0

10

20

30

40

50

Rdn BSe DH1D BSo FWT FW BO DCT MT MM SF URNG

R
e
d

u
c
ti

o
n

 i
n

 ∆
V

th
(%

) Power-gating Without power-gating

Figure 4. Reduction in ∆Vth due to the healthy kernels execu-

tion compared to naïve kernels for 5 years.

0

10

20

30

40

Rdn MT MM FW DCT URNG SF FWT DH1D BSo BO BSe

T
o

ta
l

o
v
e
rh

e
a
d

 (
m

s
)

Figure 5. Total execution time of adaptation process.

7. CONCLUSION
Although the workload distribution among Compute Units (CUs)

of GPGPU is nearly uniform, its Processing Elements (PEs) suffer

from non-uniform VLIW distribution. To mitigate the impacts on

lifetime uncertainty and unbalancing among the PEs, an online

adaptive VLIW reallocation strategy is proposed that leverages a

compiler-directed scheme to uniformly distribute the stress of

instructions throughout various VLIW slots. This technique peri-

odically regenerates healthy codes that heal over GPGPU aging.

Compared to the naïve kernels, the execution of healthy kernels

not only imposes 0% throughput penalty but also reduces ∆Vth: up

to 49%(11%) and on average 34%(6%) in presence(absence) of

architectural power-gating supports. On average, the total execu-

tion time of the adaption process is 13 millisecond.

Ongoing work is focused on generalizing the proposed approach

on memory subsystems and variety of architectures.

8. ACKNOWLEDGMENTS
This work was supported by the NSF Variability Expedition un-

der award n. 1029783, ERC-AdG MultiTherman GA n. 291125,

and FP7 Virtical GA n. 288574.

9. REFERENCES
[1] P. Gupta, et al., “Underdesigned and Opportunistic Computing in Presence of

Hardware Variability,” IEEE Trans. on CAD of Integrated Circuits and Sys-

tems, pp. 489-499, 2012.

[2] G. Chen, et al., “Dynamic NBTI of p-MOS transistors and its impact on

MOSFET scaling,” IEEE Electron Device Letters, pp. 734–736, Dec. 2002.

[3] K. Bernstein, et al., “High-performance CMOS variability in the 65-nm regime

and beyond,” IBM Journal of Research and Development , pp.433–449, 2006.

[4] G. Chen, et al., "Dynamic NBTI of PMOS transistors and its impact on device

lifetime," Proc. IEEE Reliability Physics Symposium, pp. 196-202, 2003.

[5] S. Chakravarthi, et al., “A Comprehensive Framework for Predictive Modeling

of Negative Bias Temperature Instability,” Proc. IEEE Reliability Physics Sym-

posium, April 2004.

[6] S. V. Kumar, et al., “An analytical model for negative bias temperature instabil-

ity,” Proc. ACM/IEEE ICCAD, pp. 493–496, 2006.

[7] W. Wang, et al., “The Impact of NBTI Effect on Combinational Circuit: Model-

ing, Simulation, and Analysis,” IEEE Trans. on VLSI Systems, Feb. 2010.

[8] S. Bhardwaj, et al., “Predictive modeling of the NBTI effect for reliable de-

sign,” Proc. IEEE CICC, pp. 189–192, 2006.

[9] J.T. Adriaens, et al., “The case for GPGPU spatial multitasking,” Proc. IEEE

HPCA, 2012.

[10] J. Nickolls, et al., “The GPU Computing Era,” IEEE Micro, March-April 2010.

[11] AMD Corporation. ATI Radeon HD 5870 Graphics.

[12] P. Singh, et al., “Dynamic NBTI Management Using a 45 nm Multi Degrada-

tion Sensor” IEEE Trans. on Circuits and Systems, pp.2026-2037, Sept. 2011.

[13] A. Rahimi, et al., “Hierarchically Focused Guardbanding: An Adaptive Ap-

proach to Mitigate PVT Variations and Aging,” Proc. ACM/IEEE DATE, 2013.

[14] A. Calimera, et al., “NBTI-aware power gating for concurrent leakage and

aging optimization,” Proc. ACM/IEEE ISLPED, pp. 127–132, 2009.

[15] F. Paterna, et al., “Adaptive Idleness Distribution for Non-Uniform Aging

Tolerance in MultiProcessor Systems-on-Chip,” Proc. ACM/IEEE DATE, 2009.

[16] A. Tiwari and J. Torrellas, “Facelift: Hiding and slowing down aging in multi-

cores,” Proc. ACM/IEEE MICRO, pp. 129–140, 2008.

[17] U. Karpuzcu, et al., “The bubblewrap many-core: popping cores for sequential

acceleration,” Proc. ACM/IEEE MICRO, pp. 447–458, 2009.

[18] T. Chan, et al., “On the efficacy of NBTI mitigation techniques,” Proc.

ACM/IEEE DATE, 2011.

[19] J. Lee, et al., “Analyzing throughput of GPGPUs exploiting within-die core-to-

core frequency variation,” Proc. IEEE ISPASS, pp.237–246, 2011.

[20] E. Gunadi, et al., “Combating aging with the colt duty cycle equalizer,” Proc.

IEEE/ACM MICRO, pp. 103–114, 2010.

[21] F. Firouzi, et al., “NBTI Mitigation by Optimized NOP Assignment and Inser-

tion,” Proc. IEEE/ACM DATE, pp. 218−223, 2012.

[22] F. Ahmed, et al., “Wearout-aware compiler-directed register assignment for

embedded systems,” Proc. IEEE ISQED, pp.33–40, 2012.

[23] S. Wang, et al., “Low Power Aging-Aware Register File Design by Duty Cycle

Balancing,” Proc. IEEE/ACM DATE, pp. 546−549, 2012.

[24] A. Calimera, et al., “Design Techniques for NBTI-Tolerant Power-Gating

Architectures,” IEEE Transactions on Circuits and Systems II, April 2012.

[25] W. Wang, et al., “An efficient method to identify critical gates under circuit

aging,” Proc. IEEE/ACM ICCAD, pp.735-740, 2007.

[26] AMD Evergreen Family Instruction Set Architecture, 2011.

[27] H. Kaul, et al., “A 300 mV 494GOPS/W Reconfigurable Dual-Supply 4-Way

SIMD Vector Processing Accelerator in 45 nm CMOS,” IEEE Journal of Solid-

State Circuits, Vol.45, No.1, pp.95–102, Jan. 2010.

[28] Multi2Sim [Online]. Available: http://www.multi2sim.org/

[29] AMD APP SDK 2.5 [online]. Available: www.amd.com/stream/

360

370

380

390

400

410

420

430

440

X Y Z W X Y Z W

V
th

 (
m

V
)

Time=0

Time=1Y

healthy kernel

390

395

400

405

410

415

0 60 120 180 240 300 360

V
th

(m
V

)

Time (hour)

X Y

Z W

healthy kernel

390

395

400

405

410

415

0 60 120 180 240 300 360

V
th

(m
V

)

Time (hour)

X Y

Z W

naïve kernelnaïve kernel

(a) (b) (c)

Figure 3. Vth shift for Rdn kernel: (a) NBTI-induced for 1 year; (b) Process variation and NBTI-induced for 360 hours.

