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ABSTRACT
Thousands of deep and wide pipelines working concurrently
make GPGPU high power consuming parts. Energy-efficiency
techniques employ voltage overscaling that increases timing
sensitivity to variations and hence aggravating the energy
use issues. This paper proposes a method to increase spa-
tiotemporal reuse of computational effort by a combination
of compilation and micro-architectural design. An associa-
tive memristive memory (AMM) module is integrated with
the floating point units (FPUs). Together, we enable fine-
grained partitioning of values and find high-frequency sets
of values for the FPUs by searching the space of possible in-
puts, with the help of application-specific profile feedback.
For every kernel execution, the compiler pre-stores these
high-frequent sets of values in AMM modules – represent-
ing partial functionality of the associated FPU– that are
concurrently evaluated over two clock cycles. Our simula-
tion results show high hit rates with 32-entry AMM modules
that enable 36% reduction in average energy use by the ker-
nel codes. Compared to voltage overscaling, this technique
enhances robustness against timing errors with 39% average
energy saving.

Keywords
Energy efficiency, variations, timing errors, memristor, memory-
based computing, compiler, GPGPUs

1. INTRODUCTION
The scaling of physical dimensions in semiconductor cir-

cuits opens the way to an astonishing over 7 billion transis-
tors on a 28nm process which gives a grand total of 2,880
CUDA cores in recent GPGPU chips enforcing energy effi-
ciency as a primary concern [1]. Near-threshold computing
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(NTC) and supply voltage overscaling (VOS) are primary
approaches to build energy-efficient circuits [2]. These tech-
niques achieve energy efficiency at a cost to performance.
To compensate this performance loss, microarchitectural ap-
proach [3] has been proposed to apply these low-power tech-
niques to single instruction multiple data (SIMD) architec-
tures that exploit data-parallelism.

Unfortunately, technology scaling also comes with the side
effect of ever-increasing parametric variations across process,
voltage and temperature (PVT) [4], which are expected to
worsen in future technologies [5]. The most common effect of
variability is delay variation that causes circuit-level timing
errors. Both NTC and VOS exacerbate the effects of timing
errors. Clearly, design methods are needed to make a design
resilient to timing errors. Low-voltage resilient technique
applies to both logic and memory blocks. For logic, Razor
[6] circuit sensors have been employed in the critical paths of
the pipeline stages to reduce voltage guardbanding close to
edge-of-failure. A common strategy is to detect variability-
induced delays by sampling and comparing signals near the
clock edge to detect the timing errors. The timing errors
are then corrected by a recovery mechanism. For instance,
a resilient integer-scalar core [7] retakes the following actions
once a timing error is detected during instruction execution:
1) the core prevents the errant instruction from corrupting
the architectural state; 2) an error control unit (ECU) ini-
tially flushes the pipeline; 3) to ensure scalable error recov-
ery, the ECU replays the errant instruction multiple times,
only the Nth issued error-free instruction is allowed to com-
mit state. This recovery process imposes energy overhead
and latency penalty of up to 28 extra recovery cycles per
error for the 7-stage integer pipeline [7].

In non-volatile memory area, resistive RAM
(ReRAM/memristor) is a promising candidate with fast
write speed and low-power operation [8]. To avoid its read
disturbance challenge, reliable read operation techniques
are proposed [9, 8], including a process-temperature-aware
dynamic bitline bias scheme on a 4-Mb memristor fab-
ricated chip [8]. Li et al. demonstrate a 1-Mb ternary
content addressable memory (TCAM) test chip using
2-transistor/2-resistive-phase-change-storage (2T-2R) cells
[10]. It achieves > 10× smaller cell size than SRAM-based
TCAMs, and ensures reliable low-voltage search operation
in the presence of PVT variations thanks to a clocked
self-referenced sensing scheme [10].

For our GPGPU targets, floating point (FP) pipelines con-



sume higher energy-per-instruction than their integer coun-
terparts and typically have high latency for instance over
100 cycles to execute on a GPGPU [11]. As energy becomes
the dominant design metric, aggressive VOS and NTC in-
crease the rate of timing errors and correspondingly the costs
(in energy, performance) of the recovery mechanisms [2, 3].
This cost is exacerbated in FP SIMD architectures where
there are wide parallel lanes with deep pipelined stages.
This makes the cost of recovery per single error quadrati-
cally more expensive relative to scalar functional units [17].
Effectively, the energy-hungry high-latency FP pipelines are
prone to inefficiencies under the timing errors.

Parallel execution in the GPGPU architectures – de-
scribed in Section 3 – provides an important ability to reuse
computation for reducing energy. This paper exploits this
opportunity to make three main contributions: First, we
propose compiler analysis and resistive memory-based com-
puting microarchitectural design to identify frequent redun-
dant computations, carefully pre-store these key computa-
tions in appropriate associative memory modules, and reuse
them to avoid re-executions. Second, to enable spatiotem-
poral hardware reconfigurability, we tightly integrate an as-
sociative memory module, AMM, using memristive parts
to every FPU in GPGPUs. The AMM is a software pro-
grammable module composed of a TCAM and a crossbar-
based memristive memory block that together represent the
pre-stored computations as partial functionality of the as-
sociated FPU. The framework applies a fine-grained value
partitioning, and finds high-frequent sets of values for FPUs
by searching the space of possible inputs, with the help of
application-specific profile feedback described in Section 4.
For every kernel execution, compiler pre-stores these high-
frequency sets of values in AMM modules that are concur-
rently evaluated over two clock cycles, thus creating a spa-
tiotemporal computing model. Third, we demonstrate the
effectiveness and robustness of our technique on the Ever-
green GPGPUs. Our experimental results in Section 5 show
that the AMM modules with 32-entry exhibit high hit rate
that avoids redundant re-execution by FPUs, therefore re-
sulting in 36% reduction in average energy. Moreover, given
that the AMM modules have ample time margins, upon a hit
event the likelihood of error recovery is reduced that further
improves the energy efficiency. This enhances robustness in
VOS scenario with frequent timing errors.

2. RELATED WORK
Memory-based computing has been shown significant en-

ergy efficiency for emerging non-CMOS memories which are
particularly well-suited for dense non-volatile memory de-
sign [10, 12, 13]. For example, spin-torque transfer RAM
(STTRAM) has been used for reconfigurable frameworks
which partition the entire input application into smaller
representable partitions using lookup tables (LUTs) [12],
or use co-design approach for a better application mapping
[13]. However, these frameworks map entire application to
LUTs, hence limit their applicability to a subset of applica-
tion amenable to full memory-based computing. Kvatinsky
et al. [14] propose a memristor-based multithreading pro-
cessor that enables continuous flow multithreading by insert-
ing a multistate pipeline register using memristor that holds
the microarchitectural state of multiple different threads
within the execution pipeline stages. It eliminates the thread
switch penalty and therefore improve performance and en-
ergy. However, since this architecture puts a great deal of
write stress on the memristors, as high as typical registers,
it suffers from durability of memristors.

Beyond non-volatile memory-based computing, various
techniques have been proposed to increase energy efficiency,
including profiling [15], spatial [16] and temporal [17] mem-
oization, and adaptive management of guardbanding [18].
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Figure 1: Block diagram of the Radeon HD 5870
GPGPU with AMM modules.

Profiling has been used to train a neural network to mimic
a region of application code therefore enabling aggressive
VOS [15]. This techniques is well-suited for approximate
computing with inherent resiliency toward errors. The
memoization-based optimizations reduce the cost of error
recovery by exploiting locality in GPGPUs [16, 17]. The
spatial memoization reuses the error-free result of a strong
lane that enables concurrent error correction across weak
neighbor lanes [16]. The temporal memoization offers better
scalability by recalling the contexts of error-free executions
on a FPU [17]. Nevertheless, it can afford to maintain very
few contexts due to its SRAM-based LUTs. A hierarchically
focused guardbanding [18] adaptively tunes the guardband
for GPGPUs at two levels: fine-grained instruction-level and
coarse-grained kernel-level. This predictive technique can-
not eliminate the entire guardbanding to work efficiently at
the edge of failure.

‘Detect-then-correct’ mechanisms mitigate the timing er-
rors through variability measurements [6, 7, 3]. For instance,
[3] decouples the SIMD lanes through private queues that
prevent error events in any single lane from stalling all other
lanes. Although it enables each lane to recover from er-
rors independently, the decoupling queues cause slip between
lanes which requires additional architectural mechanisms to
ensure correct execution. Further, the decouple queue relies
on the recovery based on the global clock-gating which in-
volves stalling the entire lane. This causes one cycle recovery
penalty over a two-stage execution unit [3]. However, prop-
agating a global stall signal over a deep GPGPU pipeline
[11] is expensive. Thus, the cost of scalable recovery [7]
per single timing error on SIMD is high limiting their util-
ity to low error rate circumstances. Our present work not
only reduces energy in the error-free circumstances but also
enhances the scope of ‘detect-then-correct’ approaches in a
GPGPU context. It is accomplished through an ultra-low
power recovery via memristive-based computing, thus offer-
ing both scalability and low-cost self-resiliency in the face
of high timing error rates. Further, our framework lever-
ages memristor technology in the right angle by limiting the
stress of write to finite number of write operations only at
the start of kernel execution, therefore extending the lifetime
of AMM modules.

3. ENERGY-EFFICIENT GPGPUS
We focus on the Evergreen family of AMD GPGPUs

(a.k.a. Radeon HD 5000 series), that targets general-
purpose data-intensive applications. The Radeon HD 5870
GPGPU consists of 20 compute units, a global front-end
ultra-thread dispatcher, and a crossbar to connect the mem-
ory hierarchy. Each compute unit contains a set of 16 Stream
Cores (SCs), i.e., 16 parallel lanes. Within a compute unit,
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Figure 2: Execution stage of the FPU with AMM
module.

a shared instruction fetch unit provides the same machine
instruction for all SCs to execute in a SIMD fashion. Each
SC contains five Processing Elements (PEs) – labeled X, Y,
Z, W, and T – forming an ALU engine to execute Evergreen
machine instructions in a vector-like fashion. Finally, the
ALU engine has a pool of pipelined integer and FP units.
The block diagram of the architecture is shown in Fig. 1.

The device kernel is written in OpenCL which runs on
a GPGPU device. An instance of the OpenCL kernel is
called a work-item. Each SC is devoted to the execution
of one work-item. In the Radeon HD 5870, a wavefront
is defined as the total number of 64 work-items virtually
executing at the same time on a compute unit. To manage
64 work-items in a wavefront on 16 SCs of the compute unit,
a wavefront is split into subwavefronts at the execute stage,
where each subwavefront contains as many work-items as
available SCs. In other words, SCs execute the instructions
from the wavefront mapped to the SIMD unit in a 4-slot
time-multiplexed manner using the integer units and FPUs.
The time-multiplexing at the cycle granularity relies on the
functional units to be fully pipelined.

Evergreen assembly code uses a clause-based format clas-
sified in three categories: ALU clause, TEX clause, and
control-flow instructions. The control-flow instructions trig-
gering ALU clauses will be placed in the input queue at the
ALU engine. There is only one wavefront associated with
the ALU engine. After fetch and decode stages, the source
operands for each instruction are read that can come from
the register file or local memory. For higher throughput,
buffers are attached to SCs to read the registers ahead of
time. The core stage of a GPGPU is the execute stage,
where arithmetic instructions are carried out in each SC.
When the source operands for all work-items in the wave-
front are ready, the execution stage starts to issue the oper-
ations into the SCs. Finally, the result of the computation
is written back to the destination operands.

3.1 Associative Memristive-based Computing
In this subsection we present microarchitectural design

of an associative memory module, using memristive parts,
that enables partial memory-based computing by leverag-
ing pre-stored high-frequency computations. For every type
of FPU, we accordingly designed an AMM module that is
tightly integrated to the FPU providing fast local data com-
munication. The key idea is to pre-calculate the output
results of a FPU for a partial set of input values and store
them before execution on the corresponding AMM module
connected to the FPU. In this way, during execution when
there is a match between the input values of the FPU and
the pre-calculated values, the AMM module returns the pre-
stored results on behalf of the FPU at extremely lower en-
ergy cost. Therefore the FPU avoids re-execution and saves
energy. The AMM module has a standard interface as it
mimics the partial functionality of the associated FPU: as
the inputs, it accepts the input operands of the FPU, and
as the output it returns the result as well as a hit signal.

The AMM module is composed of two pipelined stages.
In the first stage, a TCAM searches the input operands and
determines whether there is a match (i.e., hit) between the
input operands and the content of TCAM. In the second
stage, a 1T-1R memristive memory is used to return the
pre-stored output result in case of a match. For TCAM de-
sign, we use a memristive 2T-2R cell structure proposed in
[10]. Each line in the TCAM stores one set of the frequent
input operands, and each bit-cell consists of two memristive
element to store the pattern and two access transistors, as
shown in Fig. 2. To program the TCAM, the write voltages
are applied on the match lines (ML), and access-transistors
of select devices are connected via the search line (SL) to
perform the write operation. In order to search the TCAM,
match lines are precharged during the precharge phase while
all the SLs are inactive to disconnect the access transistors.
In the evaluation phase, based on the pattern-under-search,
one of two access transistors in each bit-cell is ON, connect-
ing the corresponding memristor to the ML. In case of a
bit-mismatch, ML will be connected to the ground through
a low-resistance memristive device. Thus even one bit of
mismatch can quickly discharge the ML. In case of a match
for a line, the ML is not connected to the ground because
of the high-resistance memristive devices and stays at the
precharged value for a longer time, providing a clear mar-
gin. A clocked self-referenced sensing scheme as well a 2-bit
encoding is also applied to further increase the noise margin
[10], and provide digital match/mismatch outputs that are
fed to the next stage as the enable lines (EnL) which display
a one-hot encoding; therefore the hit signal is the logical OR
of EnLs.

In case of a match, the hit signal alongside with the
previously-computed result (QAMM ) are propagated toward
the end of the pipeline. TCAM raises the hit signal that
squashes the remaining stages of the FPU to avoid the re-
dundant computation by clock-gating; the clock-gating sig-
nal is forwarded to the rest of FPU stages, cycle by cycle.
Given that the first stage of the FPU is concurrently working
with TCAM, considerable energy is saved by spontaneously
clock-gating the remaining stages. Instead, the pre-stored
result is read from the memristive memory at negligible en-
ergy cost. Fig 2 shows the structure of such 1T-1R memory
that is used to store the output patterns. To program the
memory, write voltage is applied on the bit-lines, while the
enable lines are used to select the target cell. For read op-
eration, the enable lines are derived by the EnL values of
TCAM, thus either none or only one of the enable lines are
active at any given clock cycle, connecting a memristive cell
to the bit-line. The bit-lines that are precharged during a
precharge phase will discharge/remain charged based on the
resistance of the connected memristive cell. The same sense
circuitry as TCAM is utilized to enhance the noise margins
and read the value.The stored value is then propagated to-
ward the end of pipeline for the reuse purpose. The hit signal
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Figure 3: Collaborative compilation framework and
memristive-based computing flow.

selects the propagated output of the memory (QAMM ) as the
output of the pipeline; further, it disables the propagation of
timing error signal (if any) occurred during execution of any
FPU stages to the ECU, thus avoids the recovery penalty.
In case of a TCAM miss, the FPU works normally, and its
result (QFPU ) is selected as the pipeline output.

4. COLLABORATIVE COMPILATION
We briefly describe proposed collaborative compiler anal-

ysis followed by an evaluation of how memristive-based com-
puting can increase the energy efficiency of GPGPUs. Fig. 3
illustrates the collaborative compilation flow. In the profil-
ing stage, we have an OpenCL kernel with a training input
dataset. We focus on the individual FPUs to observe the
dispersion of the input operands at the finest granularity.
To expose high-frequent set of operands for each FP opera-
tion, we individually profile every type of FP operation and
keep the distinct sets of the input operands and the related
result. The kernel is instrumented on the Evergreen func-
tional simulator– this can also be done by proper emission of
instrumentation APIs in the naive kernel code. The output
of this stage for every FP operation is high-frequent compu-
tations: a list of top sets of values, i.e. the operands and the
related result, that are sorted based on their frequency of
occurrence. This profiling stage is a one-off activity whose
cost is amortized across all future usage of the kernel.

In the next step, the compiler generates codes to store a
subset of these high-frequent computations as the content
of AMM modules. To do so, the compiler leverages AMD
compute abstraction layer (CAL) APIs that facilitate pro-
gramming AMM modules that are addressable by software.
CAL provides a runtime device driver library that supports
code generation, kernel loading and execution, and allows
the host program to interact with the stream cores at the
lowest-level. Right before lunching kernel execution, com-
piler inserts codes for programming AMM modules: for every
type of FP operation executed during the kernel, a custom
version of “clCreateBuffer” writes the AMM contents (up to
few hundred bytes) to the AMM modules accordingly. In
this way, we concurrently program all AMM modules inte-
grated to a type of FPU across all PEs in GPGPUs since
their content is equivalent.

4.1 FPU Memristive-based Computing
We evaluate the memristive-based computing at the fine-

grained instruction-level across all types of the FPUs acti-
vated during the execution of two kernels: Sobel filter from
image processing applications and Haar wavelet transform
from signal processing applications – more kernels are eval-
uated in Section 5.2. Fig. 4 shows the train and test images
for Sobel filter. To identify the high-frequent computations,
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Figure 4: Train and test images for Sobel filter.
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Figure 5: AMM (32-line) hit rates for: i) Sobel with
the test images; ii) Haar with various signals.

the compiler profiles Sobel kernel with the train input im-
age. Four types of FP operations, including addition, mul-
tiplication, square root, and multiplication-addition are ac-
tivated during the kernel execution; profiler sorts each type
and stores top-32 sets with highest frequency of occurrence
as AMM contents. Later, for the consecutive kernel execu-
tions, the compiler first programs the AMM modules with
the stored AMM contents, and then starts kernel execution.
Fig. 5 shows the AMM hit rates for the activated FP op-
erations during Sobel execution with the test images. As
shown, the hit rate depends on the FPU operations, but all
AMM modules display a hit rate of greater than 25% with
a tiny TCAM of 32 lines. The AMM modules for MUL and
SQRT exhibit a significant hit rate of up to 49% and 35%,
respectively. Overall, an average hit rate of 25%, 46%, 31%,
and 31% is observed for ADD, MUL, SQRT, and MULADD
respectively. This means significant number of operands are
matched with the stored computation in the AMM modules,
therefore there is no need for re-executing those values.

To evaluate Haar kernel, we use a random signal as the
training input and then six different signals having various
correlations with the trained input signal. Fig. 5 shows that
the AMM modules display a hit rate in range of 7%–11% for
ADD, and 39%–41% for MUL. We also evaluate the trade-
off between the hit rate and energy when the AMMs utiliz-
ing larger TCAM and memory with 64, 128, and 256 lines.
The hit rate of the kernels increases less than 10% when
the number of lines is increased from 32 to 256. On the
other hand, the AMMs with 32-line display higher energy
efficiency (7× higher hit rate per power compared to the
AMMs with 256 lines). Therefore, we have used the AMMs
with 32-line for our proposed framework, and we also mea-
sured its energy efficiency in Section 5.2. Please note that
the AMM content per each kernel occupies few kilobytes,
for instance 32×48=1.5KB for Sobel, and 32×24=0.75KB
for Haar.

5. EXPERIMENTAL RESULTS
Our methodology uses the AMD Evergreen GPGPUs, but

can be applied to other GPGPUs as well. We have se-
lected applications from AMD APP SDK v2.5 [20] a soft-
ware ecosystem suitable for stream applications written in
OpenCL. We have examined three image processing filters:



Table 1: Energy(pJ) comparison of the FPUs with
corresponding AMMs.

ADD MUL SQRT RECIP MADD F2FIX

FPU 5.81 12.76 16.92 30 21.21 3.04
AMM 1.66 1.66 1.30 1.30 1.99 1.30

Sobel, Gaussian, and URNG; as well as one-dimension Haar
wavelet transform, FastWalsh transform, Prefixsum, and
Eigenvalues of a symmetric matrix. Multi2Sim [24], a cycle-
accurate CPU-GPU simulation framework, is used for pro-
filing. The naive binaries of the kernels are run on the sim-
ulator; the input values for the kernels are generated by the
default OpenCL host program. We analyzed the effective-
ness of the proposed technique in the presence of timing
errors and VOS in TSMC 45-nm.

5.1 FPUs with AMM Modules
Since the fetch and decode stages display a low criticality

[25], we focus on the execution stage consisting of six fre-
quently exercised FPUs: ADD, MUL, SQRT, RECIP, MU-
LADD, FP2FIX. On Evergreen, every ALU functional unit
has a latency of four cycles and a throughput of one instruc-
tion per cycle [19]. Therefore, VHDL codes of the FPUs
are generated and optimized using FloPoCo [23] – an arith-
metic synthesizable FP core generator. To achieve a bal-
anced clock frequency across the FP pipelines, the RECIP
has a latency of 16 cycles, while the rest of the FPU have
four cycles latency.

The FPUs are synthesized and mapped using the TSMC
45-nm technology library. The front-end flow has been per-
formed using Synopsys Design Compiler with the topograph-
ical features, while Synopsys IC Compiler has been used for
the back-end. The design has been optimized for a signoff
clock period of 2ns at (SS/0.81V/125◦C), and then opti-
mized for power. The AMM module has different size based
on the type of FPU, its TCAM has: 32×32 for SQRT, RE-
CIP, and FP2FIX; 32×64 for ADD, and MUL; 32×96 for
MULADD. The transistor-level CMOS circuitry is imple-
mented and then SPICE simulations are done using Cadence
Virtuoso. For line resistances and capacitances, the same
model and numbers used in [9] were assumed. The mem-
ristor models are having 250K Ron and 100M Roff, and are
based on the fabricated memristors in [26]. To integrate the
resilient architecture, the AMM modules are integrated into
the FPUs pipelines with the multiple-issue recovery mecha-
nism [7].

Table 1 summarizes the power results of FPUs and AMMs
implementations. As shown, integration of FPUs with
AMMs incurs negligible overhead and it is entirely paid off
by the power saving due to the frequent clock-gating of the
FPUs during the hit events that results into even higher
energy efficiency detailed in the following subsection. We
note that the overhead will be further reduced for deeper
pipelines. The AMM module does not limit the clock fre-
quency as it has a positive slack of 300ps.

5.2 Energy Saving
We measure the overall AMM modules hit rates for the

image processing filters using two datasets: dataset1 which is
a relatively small dataset of ∼400 face images [21]; dataset2
which a large 2,000 Web faces [22]. For profiling, we have
used only 20 random images from dataset1 as the training in-
puts. Fig. 6 shows the worst, the best, and average hit rates
for the two datasets. The best hit rate of 84% is observed
during Sobel execution for one of the images in dataset2. As
shown, for every filter, the average hit rate is almost equal
across the two different datasets: 38% or 36% for URNG,
22% or 24% for Gaussian, and 34% for Sobel. The worst hit
rate is 13% that Gaussian filter experienced in one of the
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Figure 6: Overall AMM hit rates for test datasets:
dataset1 [21], dataset2 [22].

images in the large dataset2, guaranteeing the absence of a
poor locality in real-life datasets. It therefore confirms the
applicability of profiling for the associative memory-based
computing. The proposed optimization framework is based
on either profiling or designer knowledge (provided from a
domain expert). We should note that the profiling is a com-
mon technique used for runtime optimizations [15].

We evaluate the energy saving of our proposed architec-
ture with a baseline architecture that utilizes recent resilient
techniques: Razor error detection [6], and the scalable re-
covery mechanism of the multiple-issue instruction replay
[7] adapted for the FPUs. Our architecture (FPUs+AMMs)
superposes the AMM modules on the baseline architecture.
Fig. 7 illustrates the energy consumption of the two archi-
tectures at different voltage points for each kernel. At the
nominal voltage of 1.0V, where there is no timing errors,
the proposed architecture with AMM modules achieves 36%
better energy efficiency across all the kernels, thanks to the
high hit rates in the AMMs. This is accomplished through
the appropriate coupling of the memristive-based computing
and value prediction that is extended to GPGPU architec-
tures.

We also assess the efficacy of the proposed architecture in
the VOS regime while clocking at constant speed. To do so,
the voltage of FPUs is scaled down in the range of 1.0V–
0.88V. To ensure always correct functionality of the AMM
modules, we maintain their operating voltage at the fixed
nominal 1.0V. We employ voltage scaling feature of Synop-
sys PrimeTime to analyze the delay variations under the
voltage overscaling. Then, the voltage overscaling-induced
delay is back annotated to the post-layout simulation which
is coupled with Multi2Sim simulator to quantify the timing
error rate. The baseline architecture triggers the recovery
mechanism when any voltage overscaling-induced timing er-
ror occurs, while our proposed architecture does it in case
of simultaneous events of the error and the AMM miss.

At the nominal voltage of 1.0V, without any timing error,
the proposed architecture reaches up to 76% energy saving
for FastWalsh. The proposed architecture also exhibits a
great potential of survival in the VOS regime. Scaling down
the voltage below 0.92V for the FPUs causes abrupt increas-
ing of the error rate and therefore these units incur frequent
recovery cycles. Our implementation excludes the fact that
the AMM module may produce an erroneous result, because
the module has a positive slack of 300ps and always works at
the nominal voltage proving sufficient guardband. Therefore
it is unlikely for AMM modules to face any timing errors.
In the voltage range of 0.92V–0.88V, the kernels face 10%–
38% error rate in the baseline architecture which is further
reduced to a range of 3%–24% in the proposed architecture.
The proposed architecture consumes a little bit more energy
till 0.88V because of the errors that are not masked by our
AMM modules; it reaches an average energy saving of 39%
at voltage of 0.88V. This is accomplished through the effi-
cient timing error recovery by associative memristive-based
modules that do not impose any penalty as opposed to the
baseline recovery.
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Figure 7: Total energy consumption of proposed architecture with AMM modules (FPUs+AMMs) in com-
parison with the baseline architecture (FPUs) under VOS.

6. CONCLUSION
This paper proposes static compiler analysis and coordi-

nated microarchitectural design that enable efficient reuse of
computations in GPGPUs. The proposed technique makes
use of emerging associative memristive modules connected
with floating point units that enables spatial and temporal
reuse. Fast and efficient accesses to the pre-stored computa-
tion are guaranteed by carefully placing these key values in
tightly-coupled associative-memory modules. The GPGPU
kernels exhibit a low entropy, that is high contextual infor-
mation, yielding up to 84% hit rate on the 32-entry AMMs
with an average energy saving of 36%. Our proposed frame-
work also enhances robustness and energy saving in the VOS
regime by avoiding conventional timing error recovery costs.
This technique highly surpasses the baseline architecture by
an average energy saving of 39%.
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