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ABSTRACT

Manufacturing and environmental variations cause timing errors
that are typically avoided by conservative design guardbands or
corrected by circuit level error detection and correction. These
measures incur energy and performance penalties. This paper con-
siders methods to reduce this cost by expanding the scope of vari-
ability mitigation through the software stack. In particular, we
propose workload deployment methods that reduce the likelihood
of timing errors in shared memory clusters of processor cores.
This and other methods are incorporated in a runtime layer in the
OpenMP framework that enables parsimonious countermeasures
against timing errors induced by hardware variability. The run-
time system “introspectively” monitors the costs of tasks execution
on various cores and transparently associates descriptive metadata
with the tasks. By utilizing the characterized metadata, we pro-
pose several policies that enhance the cluster choices for schedul-
ing tasks to cores according to measured hardware variability and
system workload. We devise efficient task scheduling strategies for
simultaneous management of variability and workload by exploit-
ing centralized and distributed approaches to workload distribu-
tion. Both schedulers surpass current state-of-the-art approaches;
the distributed (or the centralized) achieves on average 30% (or
17%) energy, and 17% (4%) performance improvement.

1. INTRODUCTION
Hardware variability arises from different physical sources and

includes static and dynamic components. Static process variations
manifest themselves in the fabricated chips as die-to-die (D2D)
and within-die (WID) variations. D2D and WID variations induce
performance and power mismatches between the cores. Dynamic
components include the effect of environment in which a core is
used. Examples of these dynamic variations include supply volt-
age ripples and temperature fluctuations. To mitigate the effect of
these variations, IC designers commonly use conservative guard-
bands for the clock speed or the supply voltage, leading to a loss of
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operational efficiency [1].
The most common effect of the variations is on path delay that

causes delay uncertainty. By reducing the guardband, this delay
uncertainty manifests itself as an intermittent timing error [2, 3].
Timing errors violate the setup or the hold time constraints of the
sequential element connected at the end of a path that may be used
by an instruction. Thus, from a software point of view, a timing er-
ror could cause erroneous instruction execution with wrong output
value being generated or stored.

Circuit level error detection and correction (EDAC) techniques
[2, 3, 4] combat the timing errors through various recovery mech-
anisms. These techniques share a common drawback: increased

cost of computation in the presence of hardware variability. In
other words, the time-variant errors impose different execution
costs across the manufactured parts and overtime. Hence, a nom-
inally homogeneous array of processing cores ultimately behaves
as a heterogeneous system because each core may result in differ-
ent execution time and energy. If these effects are ignored at the
software level, parallel programs written for homogeneous multi-
processing fabrics experience performance and energy overheads.
Recently researchers have focused on methods to reduce the cost of
mitigating variability by exposing its effects to the software stack
[5, 6, 7, 8, 9, 10, 11, 12]. Given that the parallel programming
itself is a difficult task – especially in resource-constrained embed-
ded systems – programmer attention to variation-induced effects
(such as load-balancing due to heterogeneity) is impractical. In-
stead, we seek methods to systematically address variability effects
through run-time via an easy-to-use and widely adopted program-
ming model, where efficient variability-aware workload distribu-
tion policies can be implemented.

This paper makes three contributions to improve both cost and
scalability of variability mitigation in a heterogeneous embedded
system. First, we expose the cost of a task execution from hard-
ware to runtime layer in a task-based programming model based
on OpenMP v3.0 as the de facto standard for programming on
shared memory systems. The runtime layer is enhanced with cost-
effective countermeasures against hardware variability using two
techniques: 1) Concurrent task characterization procedures that in-
trospectively monitor execution of different tasks on every core,
and upon the tasks completion associate descriptive metadata to
capture the cost of task execution; 2) Enhanced scheduling methods
that infer task-to-core assignments from the characterized metadata
for improving energy and performance. Second, we explore sev-
eral task scheduling strategies that use centralized and distributed
dispatching methods to reduce the overall cost of execution. This is



accomplished through efficient implementation of scalable tasking
queues that enables simultaneous variability and workload manage-
ments. Third, we demonstrate the effectiveness of the proposed
runtime layer, for each strategy, in a shared memory cluster with
16 cores in the presence of hardware variations. Our experimental
results show that the proposed tasking strategies significantly re-
duce the cost of error correction compared to a baseline in which
variability-agnostic schedulers [15] blindly rely on an EDAC tech-
nique [3] to combat the variations. On average, the centralized
approach saves 17% energy and executes 4% faster compared to
the baseline. The distributed tasking achieves on average 30% en-
ergy saving and 33% better performance. Both scheduling strate-
gies also surpass other state-of-the-art approaches [11].

In Section 2, we survey prior work in this area. Cluster archi-
tectural details and tasking supports for variability-aware OpenMP
execution are described in Section 3 and Section 4, respectively.
Section 5 presents our centralized and distributed task scheduling
strategies. In Section 6, we explain our methodology and present
experimental results followed by conclusions in Section 7.

2. RELATED WORK
Circuit level EDAC techniques [2, 3, 4] continuously monitor

path delay variations and raise a warning signal when a timing er-
ror occurs; the error is then corrected by a recovery mechanism. For
instance, an Intel resilient scalar core [3] places circuit monitors [4]
in the critical paths of the pipeline stages. Upon error detection, the
core ensures error-free completion of the erroneous instruction us-
ing one of these two techniques [3]: 1) the erroneous instruction
is replayed at half clock frequency; or 2) at the same clock fre-
quency, the erroneous instruction is replayed multiple times in suc-
cession1. Although EDAC mechanisms guarantee functional cor-
rectness, they impose an inevitable cost for error recovery: ∼3×N

cycles latency and energy penalties per error, where N is the num-
ber of pipeline stages [3]. The cost of EDAC is further exacerbated
in a many-core chip where cores operate at near-threshold voltage
[13] to save power. We reduce the cost of error recovery in EDAC
by exposing the manifestation of variability to software for deci-
sions over much larger time scales and scope of operations.

Software level approaches strive to expose the variations instead
of solely relying upon the error recovery mechanisms that guaran-
tee correct program execution eventually. A recent work makes the
observation that some sequence of instructions can have a signif-
icant impact on the error rate, and therefore introduces improved
code transformations [5]. At the next granularity of execution, var-
ious approaches focus on coarse-grained tasks [6], and threads [7].
However, these approaches suffer from some drawbacks: 1) Lim-
ited applicability since they are not tied to a standard parallel pro-
gramming language, or consider only a specific class of programs
amenable to approximate computation; 2) Lack of efficient support
for scheduling and migration incurs high costs. For instance, a large
penalty is imposed in [7] any time a migration is requested due to
transfer of the entire of instruction and data memories in one tile
to another. In the same vein, the proposed technique in [6] incurs
cost of over thousand cycles for any migration, and is well-suited
for coarse-grained isolated tasks that can be executed entirely with
approximation.

Tasking execution model in OpenMP, enables asynchronous and
dynamic creation of fine-grained units of work [14]. It naturally
enables balanced and continued activity among many cores. A dy-

1Correct execution of the last replayed instruction is guaranteed
by equalizing the number of replica instructions to the number of
stages [3].
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Figure 1: Target platform high level view.

namic triple modular redundancy (TMR) technique for OpenMP
tasking is presented in [8]. The programmer needs to manually an-
notate a reliable task through an extended OpenMP task construct.
Therefore, to assure fault tolerance, when a parent task creates a re-
liable child task into the runtime environment, it will dynamically
replicate and submit three redundant children tasks, and finally a
majority voting is applied. Similarly, Bolchini et al. [9] propose an
application-level TMR scheme for P2012 [16], in which the cluster
controller generates three replicas of the main thread. An OS sup-
port for TMR multithreading is also proposed to handle the errors
during the execution of user-level applications [10]. These tech-
niques impose a large penalty up to 1.8× performance degradation
[8].

OpenMP recovery-based approaches for tasking [11] and
broader constructs [12] strive to reduce the recovery cost, incurred
by EDAC techniques through better scheduling. In a variability-
affected cluster of cores, equal workloads do not mean equal exe-
cutions time (and hence energy). Thus, scheduling flexibility can
be used to improve core utilization under variability.

3. VARIATION-TOLERANT SHARED

MEMORY CLUSTER
Fig. 1 shows the block diagram of a modern heterogeneous em-

bedded system. A powerful general-purpose processor (the host),
featuring multi-level coherent-cache memory hierarchy and capa-
ble of running full-fledged operating systems, is coupled to a pro-
grammable many-core accelerator (PMCA) composed of tens of
simple cores, where critical computation kernels of an application
can be offloaded to improve overall performance/watt [16, 17, 18].

In this paper our focus in on the PMCA. More specifically,
a many-core accelerator that leverages a multi-cluster design to
overcome scalability limitations [16, 19, 20]. In a cluster, up to
16 32-bit in-order RISC processors feature private L1 instruction
caches, and share a L1 tightly-coupled data memory (TCDM) – a
scratchpad memory. The TCDM is configured as a shared multi-
banked scratchpad memory that enables concurrent access to dif-
ferent memory locations. The cores in the cluster might display
different error rates due to the process and environmental varia-
tions [7, 11, 6]. To handle these errors each core uses the EDAC
mechanism with the multiple-issue instruction replay as the recov-
ery technique [3]. This enables every core to independently recover
from the timing errors at a penalty cost to performance and energy.

4. VARIABILITY-AWARE OPENMP
OpenMP v3.0 uses a task-centric model of execution [14]. The

new task directive is used to dynamically generate units of parallel
work that can be executed by every thread in a parallel team. In re-
sponse to this directive, a running thread prepares a task descriptor
consisting of the code to be executed, plus a data environment in-



ApplicationX:
#pragma omp parallel {
#pragma omp master {
for (int t = 0; t < Tn; t++)
#pragma omp task 
run_add (t, TASK_SIZE);
#pragma omp taskwait

for (int t = 0; t < Tn; t++)
#pragma omp task 
run_shift (t, TASK_SIZE);
#pragma omp taskwait

for (int t = 0; t < Tn; t++)
#pragma omp task 
run_mul (t, TASK_SIZE);
#pragma omp taskwait

for (int t = 0; t < Tn; t++)
#pragma omp task 
run_div (t, TASK_SIZE);
#pragma omp taskwait

}
}

Metadata Lookup Table for ApplicationX

CORE1 CORE2 ...

Task type 1 Task type 1

Task type 2 Task type 2

Task type 3 Task type 3

Task type 4 Task type 4
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Figure 2: Metadata for OpenMP synthetic workload with 4

task types (1200 dynamic tasks with Tn=300).

herited from the enclosing structured block. All the available (i.e.,
idle) threads in a parallel team can immediately start executing new
tasks, as the specification deals with independent units of work that
can be executed in any order within specific synchronization points.
OpenMP tasking is considered a convenient programming abstrac-
tion for embedded multi- and many-cores [14, 21, 22, 8]. Our
OpenMP implementation is designed to operate on ‘bare metal’,
as it is built directly on top of the hardware abstraction layer that
provides the lowest-level software services. The OpenMP direc-
tives allow the programmer to statically identify several task types

in a program. Every task directive syntactically delimits a unique
workload (a task type). There are as many task types in a pro-
gram as there are #pragma omp task directives in its code. For
instance, code snippet in Fig. 2 has four task types.

4.1 Concurrent Task Characterization
To expose the effects of variability to the software, we need to

characterize the cost of a task execution in terms of performance
and energy. Task execution cost (TEC) is a function of task type
and hardware variability of the underlying core. We define TEC as
metadata to estimate this cost for the timing errors. TEC captures
the variability-induced heterogeneity in the execution time of each
task type (i) per each core (j); it is defined as follows:

T EC(taski,core j) = #I(taski,core j)+#RI(taski,core j) (1)

where #I is the number of error-free executed instructions and #RI

is the number of replayed instructions during execution of taskj on
corei. These statistics are reported by the available counters. For
instance, a resilient LEON-3 [3] supports a counter to account the
replica instructions and once the counter passes a threshold, the
core adaptively changes the clock frequency. Intuitively, if all the
instructions run without any error, TEC is equal to #I as the total
error-free dynamic instruction count. In case of errors, TEC also
accounts for the additional replica instructions which incur higher
performance and energy penalties. It then dynamically character-
izes both vulnerability and execution time of the executed task2.

Whenever a task is scheduled on a core for execution, the TEC
characterization procedure is executed on the core to compute
Equation 1. The characterization procedure reads the required
statistics from the counter, before and after task execution. Upon a
task completion, the procedure associates the computed TEC meta-
data to the task type executed on the selected core. This results in a
two-dimensional lookup table (LUT) across the task types and the

2Note that the characterization is very accurate, as the OpenMP
support for the targeted accelerator runs on top of bare metal (no
OS) and only one application at a time is allowed. This removes
any source of interference.

number of cores. The LUT is physically distributed across the 32
banks of the TCDM, thus it can be quickly accessed from multiple
threads at the same time. The right hand side of Fig. 2 illustrates the
architectural components involved in TEC characterization. The
host processor launches one application on the cores, and every ap-
plication typically has a few tens of task types (K). Since TEC is a
32-bit word, the LUT has a very small footprint of K×4×C Bytes
per application, where C is the number of the cores in the cluster.

The online characterization procedure is distributed among all
the cores in the cluster, thus enabling fully concurrent task-level
monitoring and metadata characterization. Note that in principle
it would be strictly necessary to characterize a couple <tasktype,
coreid> only once. We rather keep the characterization active at
every scheduling event and apply a history-based weighted average
calculation between the new characterized TEC value and the pre-
viously TEC value stored in the LUT. This continued calibration
better reflects the recent effects of the dynamic variations on the
cores. Based on TEC metadata, a task scheduler can optimize the
cluster efficiency by matching the variability-affected cores char-
acteristics to tasks.

5. OPENMP TASK SCHEDULING

STRATEGIES
The task scheduler in OpenMP is typically implemented using

a centralized queue that collects the task descriptors [21, 22, 8,
11]. The central queue design reduces the overhead for task man-
agement which is an important design choice for the resource-
constrained systems. This works well for homogeneous systems,
but places inherent limitations on applying efficient scheduling
policies in the presence of variability-induced heterogeneity across
the computational resources. As an example, a notion of task-
level vulnerability (TLV) for OpenMP tasking is defined in [11].
OpenMP runtime scheduler is modified to prevent task-to-core as-
signments for highly vulnerable tasks. However, the central queue
imposes limitations on the task scheduling decisions due to a rigid
task insertion interface. More specifically, when a task directive
is encountered, the thread that creates the descriptor cannot utilize
the characterized information since there is only a central queue in
the system. This limits deriving an efficient scheduling decision.
Only upon a task extraction from the queue, a core can utilize this
information to decide whether to proceed to the execution of this
task or leave it there for another suitable core. A de-centralized
tasking queue eliminates this limitations and provides capabilities
to enhance scheduling choices. In the following, we describe the
design of OpenMP tasking framework based on a distributed queue
system.

5.1 Distributed Task Queues
We propose distributed task queues consisting of private task

queue for each core implemented as a standard linked list. Every
thread can access a queue using two basic operations: insert and
extract, which are translated into lock-protected operations on a
queue descriptor. The lock-protected operations are based on test-
and-set hardware primitives available in the platform. The queue
descriptors are stored in TCDM for minimal access time. These
descriptors are statically instantiated during the initialization of the
runtime to avoid the timing overheads for dynamic memory man-
agement. Upon each insert operation, a counter for the number of
tasks in the queue descriptor is atomically increased. The insertion
of a task in a queue immediately wakes up the associated core for
the task execution, while the cores with an empty queue are set to
a low-power idle mode. The operating mode of every core (execut-



ing, or sleeping) is annotated to its queue descriptor. The thread that
inserts the task in a remote queue is responsible for inspecting the
operation mode and waking up the destination core to resume exe-
cution of the newly inserted task. In addition, the queue descriptor
holds synchronization locks used for the taskwait directive.

Extracting a task from a queue updates the queue descriptor as
well. To do so we use lock-protected operations, since we allow
all the threads to extract work from any queue. This enables work
stealing policies on top of a variability-aware scheduling. The tasks
are extracted only from the head of the queue, while the task inser-
tion can be done at both head or tail of the queue.

As a baseline, we implement a simple round-robin scheduler
(RRS) [15] which is variation-agnostic. This policy aims at bal-
ancing the number of tasks assigned among all the cores, and intro-
duces a minimal runtime overhead due to a lightweight implemen-
tation. RRS only increments a non-atomic private counter for each
core. To account for tasks with different durations, we enhance
the scheduling policies with a unified task stealing algorithm. The
task stealing algorithm searches the remote queues in a round-robin
fashion for finding tasks to steal. The task stealing occurs from the
head of the remote queue, and then the task is inserted in the target
queue. In the following, we describe two more advanced schedul-
ing policies for task-to-core assignment using the distributed task-
ing queues.

5.2 Centralized Variability- and Load-aware
Scheduler (CVLS)

The first policy is called centralized variability- and load-aware
scheduler (CVLS). This scheduler leverages the characterized TEC
to allocate tasks to cores so as to minimize the number of instruc-
tion replays while maintaining the overall load balance across all
the cores. The main goals of CVLS are: 1) matching assignment
of the tasks to the variability-affected cores in a system where task
failure has critical consequences; 2) avoiding unbalanced situations
by extending its awareness of the load on each queue. CVLS may
not assign a task to the best core, but to the second best core in
such a way to balance the overall workload. Each queue j de-
scriptor is enhanced with a load status register (loadQ j) that esti-
mates the overall weight – in terms of dynamic instruction count
– of all the tasks available in that queue. This is a better met-
ric for workload-awareness than just the total task count, because
different task types present in the queue may have various com-
putational weight. For a given taski, CVLS assigns a core j where
TEC(taski,core j)+loadQ j is minimum across the cluster. CVLS
is a centralized scheduler, executed only by one master thread.

At system startup, when there is no information about TEC,
CVLS operates in round-robin mode. Since OpenMP tasking as-
sumes completely independent tasks, it is allowed to execute the
tasks in any order. We use this property to insert the tasks for which
TEC is not available yet, at the head of the queue. This task insert-
ing at the head of the queue is useful to prioritize the execution
of the non-characterized tasks; hence, we enable out-of-order task
characterization. It gives higher priority to the non-characterized
task types, therefore speeds up the characterization of TEC.

5.2.1 Synthetic Workload

To evaluate the effectiveness, we use a synthetic workload con-
sisting of four consecutive loops, each iteration enclosed within a
task directive as illustrated in Fig. 2. After each loop there is a
taskwait synchronization point. Since there are four task direc-
tives, the compiler statically identifies four task types. Every loop
generates a fixed number (Tn) of tasks. Each task is also composed
of a loop with a parametrizable number (TASK_SIZE) of iterations
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Figure 3: Execution time and energy of CVLS and DVLS nor-

malized to RRS for synthetic workload with a wide range of

task sizes.

that controls the size of task in terms of dynamic instruction count.
Within this loop, each task type iteratively executes a specific arith-
metic operation.

Fig. 3 shows the execution time and energy of CVLS normal-
ized to RRS for the synthetic workload. The execution time and
energy is obtained from a variability-affected cluster – more details
in Section 6.2. The x-axis shows the average dynamic instruction
count for all the executed tasks. As shown, CVLS has 6% lower
energy consumption and 15% slower execution time compared to
RRS when executing tiny tasks with an average dynamic instruc-
tion count of 19. This performance overhead is because of CVLS
execution by the single master thread. Once the master thread en-
counters a new task directive, it consumes more cycles to compute
CVLS and find a suitable core for the task assignment, compared
to a simple counter increment in RRS. Since the size of the tasks
is small, the cost of variation-tolerant scheduling is much higher
than the benefit of executing the tasks in the favored cores where
fewer errors will occur. CVLS approaches RRS as the size of the
task increases. Finally, when executing large tasks, with an average
∼9,500 dynamic instruction count, the overhead of CVLS execu-
tion time diminishes to 1%.

5.3 Distributed Variability- and Load-aware
Scheduler (DVLS)

As shown in Fig. 3, the centralized execution of the variability-
and load-aware scheduler, or CVLS, by a master thread is a bottle-
neck especially so for the tiny tasks. The master thread slows down
upon encountering a task directive to insert the task on the queue
of an appropriate core. Moreover, the inserted task will be executed
immediately by the suitable core, while the master thread is still
computing CVLS for the next task, therefore avoiding full parallel
utilization of all the cores. To account for this performance effects,
CVLS is enhanced with a distributed execution among all the cores
which is called distributed variability- and load-aware scheduler
(DVLS). As shown in Fig. 4, DVLS shares the computational load
of CVLS from one master thread to multiple slave threads, there-
fore it can boost the performance. The master thread simply pushes
the tasks in a decoupled master queue for the task deployment with-
out performing any complex computation. Then each slave thread
will pick up a task from the master queue and execute the scheduler
code of CVLS independently to decide where the task should be
assigned across the distributed queues. This “decoupling" between
the master queue and the distributed queues is highly beneficial as
the master thread proceed fast to push the tasks, while the rest of
threads cooperatively will schedule the tasks among themselves,
hence maintaining the full utilization. Once the master thread fin-
ishes pushing the tasks it itself can join to this cooperating team.

Fig. 3 also shows the normalized execution time and energy of
DVLS compared to RSS. DVLS reaches to a simultaneous energy



Figure 4: Distributed Variability- and Load-aware Scheduler

(DVLS).

Table 1: Architectural parameters of cluster.

ARM v6 core 16 TCDM banks 16

I$ size 16KB per core TCDM latency 2 cycles

I$ line 4 words TCDM size 256KB

Latency hit 1 cycle L3 latency > 60 cycles

Latency miss > 59 cycles L3 size 256MB

saving of 40% and 44% faster execution for the tiny tasks with the
average instruction count of 19. DVLS maintains the gain across a
wide range of the task sizes; even for the largest task size, it spends
less time (4%) and energy (3%) than of RRS. This is accomplished
through simultaneous variability management and load balancing.
DVLS assigns proper task types to the degraded cores while main-
taining the load balancing across all the distributed queues, thanks
to utilization of TEC and the continuous queue monitoring. To
quantify the overheads for TEC characterization and computation
of DVLS, we further assess its effectiveness in a cluster without
any variation, i.e., ideally a perfect hardware. Compared to RSS,
DVLS incurs no performance penalty thanks to its distributed na-
ture that decouples executions across all the cores. Without vari-
ability, DVLS also saves 6% energy for the large tasks.

6. EXPERIMENTAL RESULTS
We demonstrate our approach on a SystemC-based virtual plat-

form [25] modeling the tightly-coupled cluster described in Sec-
tion 3. Table 1 summarizes the main architectural parameters. To
emulate the variations on the virtual platform, we have integrated
variations models at the level of individual instructions using the
characterization methodology presented in [24]. Integration of the
instruction vulnerability models for every core enables online as-
sessment of the presence or absence of the errant instructions at
a given amount of variations. We re-characterized the variability
models of an in-order LEON-3 [23], an open-source RISC core.
First, we synthesized LEON-3 with the 45nm TSMC technology
library. The frontend flow with normal VT H cells has been per-
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Figure 5: Execution time and energy for CVLS and DVLS, nor-

malized to RRS. The 16 cores cluster with different degradation

scenarios: increasing number of degraded cores (1 to 15), and

increasing error rate (10%–50%).

formed using Synopsys DesignCompiler, while Synopsys IC Com-

piler has been used for the back-end where the core is optimized
for performance. We use Synopsys PrimeTime VX to compute en-
ergy models and probability of timing errors for individual cores
detailed in Section 6.2. Finally, we back annotate these mod-
els on the virtual platform [25] where the models are used in an
instruction-by-instruction fashion. This enables simulation of erro-
neous instructions during the program execution based on the avail-
able amount of variations on individual cores.

Our OpenMP implementation is based on [21]. To evaluate the
effectiveness of the proposed variation-tolerant policies, we con-
duct two sets of experiments. First, we use the synthetic workload
to assess our scheduling policies on a generic cluster with a full
range of degradations. Second, we use eight widely adopted com-
putational kernels mainly from the image processing domain on a
variability-affected cluster.

6.1 Generic Degraded Cluster
We consider a generic degraded cluster in which the number of

degraded cores and the error rates are varied. In Fig. 5, the x-axis
indicates an increasing number of the cores that experience a fixed
error rate. The y-axis indicates the timing error rate3 – i.e., the per-
centage of instructions that need to be replayed – for the degraded
cores. We use the tiny tasks in the synthetic workload; the choice
of the tiny tasks is mainly because of this task granularity is repre-
sentative of real embedded workloads where light-weight irregular
parallelism is exploited [22, 21].

We compare the energy consumption (Fig. 5(a)) and the total ex-
ecution time (Fig. 5(b)) for CVLS and DVLS policies with the fast
RRS as the normalized baseline. Focusing on the energy, under all
8×5 degradation scenarios DVLS consumes on average 27% lower
energy compared to RRS. This is because DVLS reduces signifi-
cantly the number of replica instructions, across different degrada-
tion scenarios, that saves energy. DVLS also reaches an average
49% faster execution. However, in comparison with RRS, CVLS
imposes performance cost of 2%–9% slower execution. This is a
consequence of the slow centralized scheduler that lengthens the
overall execution time of the tiny tasks. CVLS is able to save en-
ergy when the cluster faces nine or more 30%–50% degraded cores.

6.2 Variability-affected Cluster
For this experiment we consider a 16-core cluster that is affected

3The degraded cores with error rates of greater than 50% can
effectively guarantee the error-free execution of the erroneous in-
structions by halving the clock frequency [3] without any synchro-
nization penalty across multiple clock domains.
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Figure 6: CVLS, DVLS, and TLV normalized to RRS. Each

benchmark has one task type and 900 dynamic tasks.

by the process variation. To observe the effect of static process vari-
ation on the clock frequency of individual cores within the cluster,
we analyze how critical paths of each core are affected due to WID
and D2D variations, following a methodology in [11]. As a result,
only ten cores out of 16 cores within the cluster can meet the design
time target clock frequency, while the remaining six cores face dif-
ferent error rates based on the instruction types and the operating
condition.

We compare our policies and the TLV technique [11] with the
baseline RRS policy. Fig. 6(a) shows the energy consumption for
different benchmarks. The average tasks size for each benchmark
is illustrated on top of the bars in Fig. 6(a). DVLS has a distributed
focus on allocating tasks among more reliable cores for a given
workload type, as it achieves on average 30% (and up to 44%) bet-
ter energy efficiency than RRS. CVLS also reaches to an average
energy saving of 17% and up to 38% compared to RRS. The TLV
policy does not consider the overall system workload that led to an
imbalanced system which is on average 100% less energy efficient
than RRS.

Fig. 6(b) shows the execution time for the benchmarks. DVLS
achieves up to 47% (33% on average) faster execution than RRS,
thanks to its distributed execution within the cluster that aims to
maintain the load balancing. In the other hand, CVLS exhibits
slower execution for benchmarks with tiny tasks (e.g., Sobel and
ColorTracking) where the centralized dispatcher is a bottleneck and
cannot utilize all the cores. Overall, CVLS reaches up to 29% (4%
on average) faster execution. The TLV policy, with the limited task
insertion interface due to the single queue design, displays on aver-
age 83% slower execution than RRS with the distributed queues.

7. CONCLUSION
Manufacturing and environmental variability makes even ho-

mogenous processing fabrics behave as heterogeneous processing
elements. The variability-induced timing errors have been ad-
dressed as circuit or microarchitectural issues in reliable processor
designs with significant power and performance overheads due to
limited scope of the timing recovery mechanisms. Instead, our ap-

proach consists of an enhanced OpenMP runtime system that uses
tasking scheduling strategies to reduce the increased cost. The run-
time layer enables introspective task monitoring and utilizes char-
acterized metadata to infer a proper task-to-core assignment while
reducing the likelihood of timing errors and overall system work-
load. We have explored centralized and de-centralized schedul-
ing approaches on distributed tasking queues that highly surpass
state-of-the-art approaches in terms of both energy and perfor-
mance. Our proposed DVLS (CVLS) reduces energy on average
30% (17%) compared to RRS. On average, DVLS achieves 33%
better performance than RRS, as opposed to the CVLS’ 4%.
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