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Abstract— This paper proposes a new model of functional units 

for variation-induced timing errors due to PVT variations and 

device Aging (PVTA). The model takes into account PVTA pa-

rameter variations, clock frequency, and the physical details of 

Placed-and-Routed (P&R) functional units in 45nm TSMC anal-

ysis flow. Using this model and PVTA monitoring circuits, we 

propose Hierarchically Focused Guardbanding (HFG) as a meth-

od to adaptively mitigate PVTA variations. We demonstrate the 

effectiveness of HFG on GPU architecture at two granularities of 

observation and adaptation: (i) fine-grained instruction-level; 

and (ii) coarse-grained kernel-level. Using coarse-grained PVTA 

monitors with kernel-level adaptation, the throughput increases 

by 70% on average. By comparison, the instruction-by-

instruction monitoring and adaptation enhances throughput by a 

factor of 1.8×−2.1× depending on the configuration of PVTA 

monitors and the type of instructions executed in the kernels.   

Keywords-adaptive guardbanding; PVT variation; aging; GPU; 

I.  INTRODUCTION  

Variability in microelectronic circuits and systems stems 
from different physical sources: (i) Static intrinsic process pa-
rameter variations (e.g., effective transistor channel length and 
threshold voltage) result from device dimension and doping 
concentration variations that occur during silicon fabrication, 
and are amplified as device dimensions shrink ‎[1]; (ii) Dynam-
ic environmental variations in ambient condition caused by 
temperature fluctuations and supply voltage droops; (iii) Aging 
and temporal degradation in device reliability due to Negative 
Bias Temperature Instability (NBTI), and Hot Carrier Injection 
(HCI). These factors will worsen in future technologies due to 
increased fallibility in the process and increased environmental 
stresses ‎[2]. Designers commonly handle variability issues in 
synchronous circuits by adding safety timing margin as 
guardband, which leads to overly conservative designs. This 
guardband is computed from a corner-based worst-case analy-
sis during the design phase ‎[3]. However, as the relative varia-
tion grows with technology scaling ‎[4], adaptive techniques are 
needed to ensure continued advantages of technology scaling. 

Indeed, several recent efforts have focused on measures to 
mitigate variability through circuit monitors in two broad cate-
gories. First, internal or in situ monitors such as Razor ‎[5], and 
Error-Detection Sequential (EDS) ‎[6] ‎that typically use double 
sampling with shadow latches to detect Process, Voltage, and 
Temperature (PVT) variations. Intel resilient core ‎[7] integrates 
EDS in critical paths to detect late  transitions. Recently, in ‎[8] 
a 45-nm decoupled 10-Lane SIMD (Single Instruction, Multi-
ple Data) processor utilizes Razor error detection in the specific 
context of GPUs. For slower variations, compact in situ aging 
sensors with digital outputs have been proposed to measure 

NBTI and oxide degradation ‎[9]. A second approach relies on 
external or replica monitors that are on the same die, but out-
side of the functional paths. Compared to in situ monitors, rep-
lica circuits are less intrusive on system operation. Bowman et 
al ‎[7] place a Tunable Replica Circuit (TRC) ‎[10] per pipeline 
stage to monitor timing errors. In a similar vein, replica Critical 
Path Monitor (CPM) ‎[11] measures the timing margin available 
to circuits. IBM 8-core POWER7 employs five CPMs per each 
core to capture PVT variations and detect early wearout ‎[12]. 
High-resolution, digital on-chip voltage droop sensors ‎[13] as 
well as thermal sensors ‎[14] are widely used to measure distinct 
dynamic variations.  

Recovery from errors can be cycle-by-cycle or over many 
cycles. Once variation is detected in the current cycle, ‎[5], 
and ‎[6] try to compensate timing error for the activated critical 
paths by dynamically switching to a two-cycle operation. Next, 
instruction-by-instruction clock adjustment technique is pro-
posed to handle dynamic variations in ‎[15] that uses a fast sin-
gle-cycle adaptive frequency circuit ‎[14]; multiple-issue in-
struction replay design can also correct errant instructions 
without requiring clock control ‎[7]. Decoupling SIMD queues 
in ‎[8] prevent error events in any single lane from stalling all 
other lanes, thus enables each lane to tolerate errors inde-
pendently. Lanes are only required to resynchronize when a 
micro-barrier (e.g., load, store instruction) is reached. A bank 
of aging sensors also includes one 20-bit counter and storage 
units that allow quick measurements when a stress cycle is in-
terrupted ‎[9]. Going further up on the hardware-software stack, 
procedure-level ‎[16] as well as task-level ‎[17] techniques are 
proposed to guarantee error-free operation in case of variations. 

A. Contributions 
I. We provide a new high-level model for Timing Error 

Rate (TER) of various integer as well as floating-point func-
tional units that is derived using accurate industrial-strength 
tools and calibration flows validated in real silicon. This model 
yields the TER of microarchitectural functional units as a func-
tion of clock frequency and the amount of PVT variations and 
Aging (PVTA). Section ‎III describes the model that can be 
used both online and offline. Online, it provides a model-based 
rule to derive guardband from the PVTA sensor readings. Of-
fline, it enables design time analysis to identify vulnerable 
functional units at a given amount of PVTA variations. The 
model is publicly available for download at ‎[18]. 

II. We introduce the notion of Hierarchically Focused 
Guardbanding (HFG) in Section IV to adaptively mitigate 
PVTA variations. HFG is guided by online utilization of the 
model, and enables a focused adaptive guardbanding in view of 
monitors, observation granularity, and reaction times.  
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 III. We demonstrate the effectiveness of HFG using the 
proposed model on GPU pipeline at two distinct granularities. 
HFG enhances the throughput of kernels, on average by 70%, 
employing coarse-grained PVTA monitors and applying adap-
tive guardbanding at granularity of kernel-level. The finer 
granularity of instruction-level monitoring and adaptation 
achieves‎ 1.8×−2.1×‎ throughput‎ improvements‎ depending on 
the PVTA monitors configuration and the type of instructions 
executed within the kernels. Section ‎V details the results. 

II. RELATED WORK 

‎[19]−‎[23] propose partial solutions to model and mitigate a 
wide range of variability, including DC component (time-
independent), low-frequency components (slow-varying), and 
high-frequency components (fast-changing). VARIUS ‎[19] 
proposes a microarchitecture-aware model for timing error 
caused by process variation. To address variations at near-
threshold computing, ‎[20] also proposes a microarchitectural 
model of process variations. To mitigate circuit aging, ‎[21] 
presents a framework for optimizing dynamic control of self-
tuning parameters (such as supply voltage, operating clock 
frequency, and dynamic cooling) of a digital system over its 
lifetime. A thermal-aware frequency scaling ‎[22] as well as 
architectural event-guided method ‎[23] are proposed to avoid 
dynamic voltage variation. These techniques either solely con-
sider static process variation or only individual dynamic varia-
tions. Although various sensors and policies are proposed, the 
analysis linking PVTA sensor readings and necessary 
guardband (for a target TER dictated by applications) is prelim-
inary. Further, ‎[22]‎[23] also use‎ “generic” variability models 
on high-level architectural simulators that do not take into ac-
count the effect of physical implementation on variability. 

Razor ‎[5], EDS ‎[6], TRC ‎[10], CMP ‎[11] circuit sensors 
raise a warning signal when a timing error is detected in case of 
PVT variations. Their common strategy is to allow the timing 
errors to happen, and then pay extra cost to compensate errors 
through expanding the window of recoverability or tuning 
CMOS knobs such as the supply voltage, frequency, or body 
bias. Their cost of recovery has shown to be high in SIMD- and 
GPU-specific extensions ‎[24] because an error in any function-
al unit stalls the entire pipeline, in effect multiplying the base-
line error rate by the SIMD width. Although ‎[8] decouples 
SIMD lanes for recovery, frequent micro-barriers exhibit 
throughput penalty. Furthermore, these online detect-then-
recover mechanisms do not tie to any characterized modeling, 
thus suffer from lack of correlation between the occurred errors 
and the sources of variations. This limits their usage for predic-
tion of the timing errors and their root causes at the upper lay-
ers for better decision and appropriate adjustment. Thus, im-
prove modeling is needed to connect timing errors with sources 
of variability for better prediction. The model should be cou-
pled with adaptive resource management to proactively prevent 
timing error by applying a focused guardbanding. 

III. TIMING ERROR MODEL FOR PVTA 

A. Analysis Flow for Timing Error Extraction 

To build a parametric model for timing errors, we rely upon 
design time analysis that yields the TER of individual Func-
tional Units (FUs) as a function of clock period (tclk) and the 
amount of PVTA variations. We have analyzed a wide range of 
FUs, listed in ‎[18], that are being used in a rich GPU pipeline, 

including 10 32-bit integer FUs as well as 15 single precision 
floating-point FUs fully compatible with the IEEE 754 float-
ing-point standard. The floating-point FUs also cover the tran-
scendental operations, thus act as the special FUs in the GPU 
pipeline to support sin, cosine, reciprocal, and square root in-
structions. FUs are selected from Synopsys DesignWare, a li-
brary of functions for computational circuits in high end 
ASICs. The speed optimized architectures have been selected 
for FUs in conjunction with tight synthesis and physical opti-
mizations for timing closure. FUs have been synthesized for 
TSMC 45nm target, the general purpose process. The front-end 
flow with normal Vth cells uses Synopsys DesignCompiler with 
the topographical features enabled and Synopsys IC Compiler 
for the backend as shown in Figure 1 & Table I.   

 
Figure 1.  Timing error rate analysis flow for model extraction. 

TABLE I. ANALYSIS FLOW: TOOLS AND PARAMETERS 

Stage Tools/Libs Version/Details 

Front-end Design Compiler E-2010.12-SP5 

Back-end IC Compiler E-2010.12-ICC-SP5 

Sign-off PrimeTime VX F-2011.06-SP3 

Libraries 45nm GS TSMC Variation Aware (v. 110d) 

Linear Classifier MATLAB Discriminant Analysis (v. R2011b) 

For each FUi working with tclk and a given PVTA varia-
tions, Timing Error Rate (TER) is defined in (1): 

i clk

i clk

i

CriticalPaths (FU ,t ,V,T,P,A)
TER (FU ,t ,V,T,P,A) 100

Paths (FU )
 



(1) 

where CriticalPaths are those paths with a negative slack that 
cannot meet the setup-time of flip-flops with the clock period 
of tclk under certain PVTA variations,‎and‎Σ‎Paths‎ is‎ the‎ total‎
number of paths in FUi. After the back-end optimizations, dur-
ing the sign-off, we calculate TER by analysis of FU PVTA 
parameter variations as follows: 

Dynamic variations: The full industrial temperature range 
of 0°C−120°C, and voltage range of 0.88V−1.1V are consid-
ered by utilizing six 45nm TSMC characterized sign-off cor-
ners by changing these parameters at the resolution of 10°C 
and 0.01V respectively. To do this, we use the voltage-
temperature scaling features of Synopsys PrimeTime for the 
composite current source approach of modeling cell behavior. 
Then, at each pair of the voltage and temperature, we use Static 
Timing Analysis (STA) to analyze the critical paths. 

Process variation: The device parameters are varied from 
die-to-die (D2D) as well as within-die (WID), and then Statisti-
cal STA (SSTA) is used to report delay variation of each path. 



To perform an accurate design time SSTA, we employ the var-
iation-aware timing analysis engine of Synopsys PrimeTime 
VX ‎[25], using process parameters of 45nm variation-aware 
TSMC libraries ‎[26] derived from first-level process parame-
ters by Principal Component Analysis (PCA). PCA is a math-
ematical procedure that simplifies a data set by transforming a 
number of correlated parameters into a smaller number of un-
correlated parameters. Based on ‎[27], the process parameters 
are varied as normal distributions with zero mean and standard 
deviations‎ of‎ σD2D=5% and σWID∈[0%, 9.6%]. Therefore, we 
change the process variation components and examine its in-
duced delay variation with a given set of accurate variability 
models from commercial libraries. These are more accurate and 
realistic than‎commonly‎used‎‘in-house models’‎extracted‎from‎
predictive technology models.  

Aging: Two major mechanisms that induce progressive 
slowdown are NBTI and HCI, these effects manifest as voltage 
threshold (Vth) shift and gradually slower the critical paths. The 
delay of critical paths under various dynamic and process pa-
rameter variations is reposted by STA and SSTA. To analyze 
the effect of aging on those paths, their Vth is increased, and 
then their aging-induced delay variation is calculated using the 
alpha-power law. The Vth is increased with steps of 25mV and 
up to 100mV which can occur over years of stress ‎[9].  

Considering the full permutation of PVTA parameters vari-
ations, the effects of variability on the delay of a FU is finely 
captured for its entire lifetime. To observe how this variability 
can be compensated by adaptive clocking, the tclk is changed 
from 0.2ns to 5.0ns. Then, TER Analysis module (Figure 1) 
calculates TER based on tclk and the amount of PVTA varia-
tions using Equation (1). Consequently, the calculated TER 
function of the five variables (summarized in Table II) is input 
to a parametric linear classifier for model generation.      

TABLE II. PVTA AND CLOCK PARAMETERS. 

 

Start Point End Point Step # of Points 

Voltage 0.88V 1.10V 0.01V 23 

Temperature 0°C 120°C 10°C 13 

Process (σWID) 0% 9.6% 3.2% 4 

Aging (∆Vth) 0mV 100mV 25mV 5 

tclk 0.2ns 5.0ns 0.2ns 25 

B. Parametric Model Fitting  

We present a parametric model at the level of FU that re-
lates PVTA parameters variation and tclk to TER, thus enables 
higher level simulation and adaptiveness. To quantify the im-
pact of timing error on the quality of service at the application-
level, we define four classes based on the magnitude of TER 
shown in Table III. A higher TER implies higher number of 
violated critical paths, thus lower application-level quality of 
service. If a TER is classified as C0, it means that all paths of 
FU meet the timing requirement; on the contrary, more than 
66% of the paths (and up to 100%) are failed if a TER is classi-
fied as CH. Hence, this classification covers various applica-
tion-specific requirements on computational accuracy: C0 for 
error-intolerant applications (e.g., general purpose applica-
tions), and CL, CM, CH for error-tolerant applications (e.g., 
probabilistic applications ‎[28]) where the acceptance threshold 
of TER is specified according to the target quality of service of 
applications.   

TABLE III. CLASSES OF TER. 

TER=0% 33%>= TER >0% 66%>= TER >33% 100%>= TER >66% 

Class0 (C0) ClassLow (CL) ClassMedium (CM) ClassHigh (CH) 

We define X as a matrix of numeric predictor values  
[tclk V T P A]. Each column of X represents one variable, and 
each row represents one observation. Y is defined as a numeric 
vector, and each row of Y represents the classification of the 
corresponding row of X. A linear parametric classifier, called 
discriminant analysis ‎[29], is used to create a discriminant clas-
sification based on the input variables (predictors) X and output 
(response) Y. Thus, the model enables mapping of the five in-
put variables to one of the four defined classes. The discrimi-
nant analysis assumes X has a Gaussian mixture distribution. 
To train the classifier, the fitting function estimates the parame-
ters of a multivariate Gaussian normal distribution for each 
class. After training, the classifier produces the following:  

 Mμ is a matrix of class means of size K-by-P, where K is 
the number of classes, and P is the number of predictors. 
Each row of Mμ represents the mean of the multivariate 
normal distribution of the corresponding class. 

 Mσ is a P-by-P matrix, the between-class covariance, 
where P is the number of predictors. 

 Mp represents the prior probabilities for each class. Mp is a 
numeric positive vector of size 1-by-K representing the 
frequency with which each element occurs.  

For each FU, the matrix of numeric predictor values, X, has 
a size of 149,500 (25×23×13×4×5)-by-5, as each row repre-
sents one permutation of the parameters summarized in Table 
II. Every row of Y depicts the characterized class of the corre-
sponding row of X, determined by the TER Analysis module. 
The space of X values divides into regions where a classifica-
tion Y is a particular value. The regions are separated by 
straight lines for the linear discriminant analysis. Feeding X 
and Y to the classifier Mμ, Mσ, and Mp

 
are generated. The ma-

trices for the floating-point adder (FP_add) are shown below:  

μ

1.15E+00 9.97E-01 5.85E+01 4.67E+00 3.48E+01

8.38E-01 9.84E-01 6.49E+01 5.04E+00 4.09E+01
M

8.36E-01 9.71E-01 6.15E+01 4.85E+00 3.89E+01

4.65E-01 9.83E-01 6.13E+01 4.92E+00 4.00E+01

 
 
 
 
  
 

 

 4.31E-02 -2.37E-03 4.83E-01   4.37E-02   8.81E-01

-2.37E-03 4.35E-03 1.03E-02    9.07E-04  1.83E-02

M  4.83E-01 1.03E-02 1.60E+03  -1.91E-01 -3.80E-00

 4.37E-02 9.07E-04 -1.91E-01   1.28E+01 -3.37E-01

 8.81E-01 1

 

.83E-02  -3.80E+00   -3.37E-01  7.75E+02

 
 
 
 
 
 
 
 

 

 pM 4.80E-01   8.10E-03   5.27E-03   5.07E-01  

Providing these parametric matrices, a prediction method 
discussed in the next section can accurately classify a given set 
of variations and a  tclk  value to the corresponding class of tim-
ing error rate. The parametric models for the rest of FUs are 
detailed in ‎[18] due to the lack space; the prefix ‘FP_’ stands 
for floating-point FUs and ‘INT_’ stands for integer FUs.   

C. TER Classification    

A classification algorithm seeks to minimize the expected 
classification cost: 

K

1,...,K 1

ˆ ( | ) ( | )arg min
y k

y P k x C y k
 

              (2) 

ŷ is the predicted classification; K is the number of classes; 
Ṕ(k|x) is the posterior probability of class k for observation x; 
C(y|k) is the cost of classifying an observation as y when its 



true class is k. By default, C(y|k) =1 if y~=k, and C(y|k)=0 if 
y=k: the cost is 0 for correct classification, else it is 1.  

The posterior probability that a point x belongs to class k is 
the product of the prior probability and the multivariate normal 
density. The density function of the multivariate normal with 
mean‎μk (k-th row of Mμ) and covariance Mσ at a point x is 

1
σ

0.5
σ

1 1
( )( | ) exp( M ( ))

2(2 M )

T
xP x k xk k

 


            (3) 

where |Mσ| is the determinant of Mσ, and Mσ
-1

 is the inverse 
matrix. Let P(k) represent the prior probability of class k (k-th 
element of Mp vector). Then the posterior probability that an 
observation x is of class k is 

( | ) ( )
( | )

( )

P k x P k
P k x

P x
               (4) 

where P(x) is a normalization constant, the sum over k of 
P(x|k)P(k). Therefore, we can quantify the expected misclassifi-
cation cost per observation. Suppose we have an observation, 
x=[tclk′ V′ T′ P′ A′], to classify with the trained discriminant 
analysis classifier. The expected (average) cost of classifying 
the observation into class k of K classes is 

K

1

cost( ) ( | ) ( | )
i

k P i x C k i


             (5) 

Ṕ(i|x) is the posterior probability defined in Equation (4); and 
C(k|i) is the cost of classification as described in Equation (2). 
Therefore, x belongs to the class k that has the lowest cost (k).  

D. Robustness of Classification 

To ensure the robustness of our method, we calculate 
resubstitution error as the difference between the response 
training data and the predictions the classifier makes of the 
response based on the input training data. If the resubstitution 
error is high, we cannot expect the predictions of the classifier 
to be good. The resubstitution error is 0.02 (the fraction of the 
training data X that classifier misclassifies) for the FP_add. On 
average, for all FUs the resubstitution error is 0.036 which is 
very low, meaning the models classify nearly all data correctly.  

The sampling data for prediction is almost always a subset 
of the training data set, since the resolution of the training data, 
depicted in Table II, is much finer than the resolution of sam-
pling sensors. In case of any out-of-sample data, for instance a 
temperature sensor with resolution of 1°C, the data can be con-
servatively matched to a surrounding point. However, we have 
obtained a full range of extra characterization points for tem-
perature which are not used for training the model, and use 
these points to check if the model makes reasonable estimates 
for out-of-sample data. For extra characterization points with 
temperature‎ range‎of‎1°C−120°C‎(steps‎of‎1°C)‎and‎with‎ two‎
distinct operating voltages (1.0V, 1.1V), the model makes cor-
rect estimates for 97% of out-of-sample data. The remaining 
3% is misclassified to the high-error rate class (thus will have 
safe guardband). Note that we cannot go beyond the min/max 
range of the characterized points in the provided libraries ‎[25]. 

IV. RUNTIME HIERARCHICALLY FOCUSED GUARDBANDING  

We now describe how this model for TER can guide a control 
system for runtime variation-aware resource management. At 
design time, to ensure numerical correctness for the computed 
result, we need to take the worst-case variations that could dis-

play for any combination of values of PVTA parameters. Thus, 
TER can be conservatively computed with significant uncer-
tainty over the big cloud of possible post-silicon results. With 
the support of variability measurements at post-silicon fabrica-
tion, the PVTA parameters can be continuously monitored dur-
ing the lifetime of the device, and consequently eliminate the 
conservativeness. For instance, the table in Figure 2 shows that 
during design time the delay of the FP_add has a large uncer-
tainty of [0.73ns,1.32ns], since the actual values of PVTA pa-
rameters are unknown. But, immediately after fabrication this 
delay uncertainty is reduced to [0.73ns,1.25ns] if a process 
sensor reports that the adder is fabricated in a part of die with 
negligible WID variations. Even more, if the adder is moni-
tored by an aging sensor, the delay uncertainty is further re-
duced to [0.73ns,1.07ns] when‎the‎device‎is‎fresh‎(∆Vth=0mV). 
Having set the tclk=0.8ns, each curve in Figure 2 shows how 
TER can change when voltage and temperature are varying at 
minimum/maximum process and aging conditions.  

Thus, Hierarchically Focused Guardbanding (HFG) adaptive-
ly eliminates the conservative guardband due to PVTA varia-
tions during lifetime of device. It finely focuses on a FU and 
reduces its timing guardband depending upon the availability of 
distinct observers, in a hierarchical manner, started immediate-
ly after post-silicon fabrication (to compensate P), to during 
runtime execution (to compensate VT), and finally the entire of 
lifetime (to compensate A). This model-based use of PVTA 
readings provides a systematic way to reduce guardbands.   

 
Figure 2.  Delay variation and TER across extreme corners of PVTA. 

A. Observability 

The sensor instrumentation is required as delay variation 
changes across extreme corners of PVTA parameters. The 
question is that mix of monitors that would be useful? External 
non-intrusive monitors reside on the same die can measure 
distinct parameters like voltage droop ‎[13], and temperature 
fluctuation ‎[14]. In a similar vein, CPM ‎[11] and TRC ‎[10] 
monitors whole PVT variations. On the other hand, internal in 
situ monitors like EDS ‎[6], Razor ‎[5], and NBTI sensors ‎[9] 
can measure the actual delay variation of device due to PVT 



and aging. Figure 3 shows the minimum affordable tclk (i.e., 
1/FrequencyMax) in presence/absence of various sensors for 
three FUs with a TER target of 0%. The sensors are sorted 
based on the time constant of the measured parameter, PATV: 
from DC component to high-frequency components. For in-
stance, tclk of FP_add can be reduced from 1.32ns to 1.26ns (a 
0.06ns guardband reduction) depends to the actual value of 
WID process variation reported by a process monitor 
(P_sensor). It can be further reduced to 1.08ns if FP_add is 
equipped with the aging as well as the process sensor 
(PA_sensors). Adding thermal sensor enables even 0.06ns 
more reduction to 1.02ns (PAT_sensors). Finally, considering 
the full set of sensors enables decreasing tclk from 1.32ns to 
0.74ns (a great guardband reduction of 0.58ns) based on the 
measured values of variations reported by PATV_sensors. The 
more sensors we provide for a FU, the better conservative 
guardband reduction for that FU: the guardband can be reduced 
up to 8%, 24%, 28%, 44%, if we equip FP_add only with 
P_sensor, PA_sensors, PAT_sensors, and PATV_sensors, re-
spectively. 
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Figure 3.  Hierarchical sensors for reducing guardband on tclk. 

As shown, this benefit is consistent across different FUs – 
with a shift in the worst-case guardband – even with better re-
duction for FP FUs (e.g., up to 47% for FP_exp with 
PATV_sensor case) due to the higher complexity of the circuit 
topology. Internal PVT sensors impose 1−3% area over-
head ‎[6], whereas five replica PVT sensors increase area of 
each POWER7 core by 0.2% ‎[11],‎[12]. The banks of 96 NBTI 
aging sensors occupy less than 0.01% of the core's area ‎[9].      

B. Controllability 

Employing any combination of PATV sensors provides on-
line measurement of the actual parameters variations, and thus 
a control system can adaptively apply an appropriate 
guardbanding utilizing the characterized models for FUs. 
Among available control knobs, adaptive clock scaling using 
Phase-Locked Loop (PLL) is widely utilized in resilient im-
plementations ‎[7]‎[12],‎[14]. Therefore, the control system tunes 
the clock frequency through an online model-based rule. To 
support fast controller's computation, the parametric model (as 
the outcome of the analysis flow in Figure 1) generates distinct 
LookUp Tables (LUTs) for every FUs. LUTs are generated 
during design time for specific configuration of sensors, their 
resolution, and the desire target TER for FUs (target_TER). 
Figure 4 shows a full configuration of PATV_sensors with  
resolutions of (3.2%, 25mV, 20°C, 0.04V) that support the 
range of variations summarized in Table I. Therefore, in total 
980 (4×5×7×7) rows are required within a LUT. The paramet-
ric model fills every row of a LUT  for FUi with the minimum 
tclk such that TER (FUi, tclk, Vrow, Trow, Prow, Arow) < tar-

get_TER. Every LUT is stored in a dedicated 1KB SRAM to 
enable fast return of the 5-bit tclk for the corresponding values 
of PATV_sensors. The clock control changes the frequency 
based on the returned tclk, thus reduces the guardbanding. Note 
that, since TER characterization in Equation (1) considers the 
static critical paths (which might not be activated during execu-
tion of certain dynamic inputs), the model always returns an 
upper bound of the actual TER, thus returned tclk of LUTs 
guarantees the target_TER.   

The next question to address is what type of monitoring ob-
servation granularity and what type of reacting time we need, 
e.g., cycle-by-cycle or tens of cycles or hundred of cycles? To 
analyze the effect of this choice of granularity, we apply HFG 
to GPU architecture at two granularities:  

I. Fine-grained granularity of instruction-by-instruction 
monitoring and adaptation that signals of PATV sensors come 
from individual FUs that reside in the execution stage of GPU. 
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Figure 4.  Online utilization of models through HFG. 

The LUTs return the minimum tclk depending on the actual 
value of PATV sensors and the chain of FUs that will be acti-
vated by the fetched instruction. To support single-cycle adap-
tation, a fast adaptive clocking circuit ‎[14] consisting of three 
PLLs is use. Each PLL is running at independent frequencies, 
and a multiplexer quickly switches between them in a single-
cycle. Therefore, the clock controller selects the highest tclk 
(safe across all activated FUs) and reduces guardband that is 
compatible with PATV parameters and the demands of instruc-
tions, as shown in the following algorithm:  

clk

clk 1 clk 1 clk N

fetchedinstruction

N = #of activated FUsbyinstruction

for =1 to N 

t =LUTs(FU , V, T, P, A) 

set_clock max{t ,t ,..., t }

k

k

i i

i



  



 

II. Coarse-grained granularity of kernel-level monitoring uses a 
representative PATV sensors for the entire execution stage of 
GPU pipeline. The clock adaptation is applied periodically 
before kernel execution. The controller selects tclk based on 
current value of PATV sensors of the execution units and the 
chain of FUs that potentially will be activated during kernel 
execution (in a static sense). Since the adaptation of clock dur-
ing kernel execution is prohibited, the controller considers a 
5% extra margin on the reported voltage and temperature val-
ues to recover intra-kernel dynamic variations.   

V. A CASE STUDY OF HFG ON GPU 

We examine the effectiveness HFG on GPU architecture 
with the fine-grained instruction-by-instruction as well as the 
coarse-grained kernel-level monitoring and adaptation. We 
demonstrate our approach in an Evergreen-like GPU pipeline 
where our FUs reside in the execution stages of a Processing 



Element (PE) and benefit from the adaptive clock scaling de-
cided by the controller of HFG. The rest of pipeline stages are 
assumed to support resilient circuit techniques, as both resilient 
processor ‎[7] and relaxed-reliability cores ‎[28] consider suffi-
cient guardband in the register stage, the memory management 
unit, L1 instruction cache, and the interconnect. We note that 
the instruction fetch and decode stages are not strongly vulner-
able to variations ‎[15], thus low-cost to protect.  

For GPU kernel benchmarks, we use AMD APP SDK 
2.5 ‎[30] kernels suitable for stream applications written in 
OpenCL. Their device-specific assembly code is extracted by 
AMD APP KernelAnalyzer tool for applying the instruction-
by-instruction and kernel-level HFG. Figure 5 (right) shows the 
maximum throughput (GIPS for a PE) of each kernel, when 
applying the coarse-grained kernel-level monitoring and adap-
tation with support of the four scenarios of PATV sensors. The 
results highlight two points: (a) more sensors in a PE result in a 
greater reduction in the guardband, and thus higher throughput 
for all kernels. On average, the throughput increases from 1.04 
GIPS to 1.77 GIPS (70%), when the PE moves from only 
P_sensor to PATV_sensors scenario; (b) the throughput of ker-
nel-level adaptation is limited by the slowest FU activated dur-
ing the execution of the kernel. For instance, the throughput of 
MatrixMult, DCT, and EigenValue kernels is limited to 1.2 
GIPS (with PATV_sensors), since those kernels activate 
FP_mac as the slowest FU.  
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Figure 5.  Maximum throughput benefit of HFG: (i) at instruction-level 
monitoring, the left figure; (i) at kernel-level monitoring, the right figure;   

Figure 5 (left) shows the maximum throughput improve-
ment in the instruction-by-instruction method. This method not 
only benefits from more sensors (60% in average), but also 
exploits the within-kernel opportunities for further reduction of 
inter-FU guardband. For example in PA_sensor case, the 
throughput of AESEncr kernel is increased up to 3.4 GIPS 
(93% higher than MatrixMult), thanks to all its integer instruc-
tions that only activate fast INT FUs. In comparison with the 
kernel-level method, the instruction-by-instruction monitoring 
and adaptation improves the throughput by a factor of 
1.8×−2.1× depends to the PATV sensors configuration and 
kernel's instructions. Of course, this fine-grained instrumenta-
tion and adaptation has a higher cost in the area. 

VI. CONCLUSION 

This paper presents a model and its usage for runtime varia-
tion-aware resource management as well as design time analy-
sis of vulnerable functional units. The model takes into account 
process parameters, temperature and voltage operating condi-
tions, aging, and the physical details of P&R functional units 
using an accurate 45nm TSMC design and analysis flow. The 
model is used in a guardbanding scheme as an adaptive re-
source management technique to proactively prevent timing 

error by applying a focused guardbanding. HFG enhances the 
throughput of GPU kernels by 70% employing coarse-grained 
PVTA monitors and by applying adaptive guardbands at ker-
nel-level. The finer granularity of instruction-by-instruction 
monitoring and adaptation‎achieves‎1.8×−2.1×‎throughput‎im-
provements depends to the PVTA monitors configuration and 
the type of instructions executed within the kernels.   
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