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ABSTRACT 

We present a variation-tolerant tasking technique for tightly-

coupled shared memory processor clusters that relies upon model-

ing advance across the hardware/software interface. This is im-

plemented as an extension to the OpenMP 3.0 tasking program-

ming model. Using the notion of Task-Level Vulnerability (TLV) 

proposed here, we capture dynamic variations caused by circuit-

level variability as a high-level software knowledge. This is ac-

complished through a variation-aware hardware/software codesign 

where: (i) Hardware features variability monitors in conjunction 

with online per-core characterization of TLV metadata; (ii) Soft-

ware supports a Task-level Errant Instruction Management 

(TEIM) technique to utilize TLV metadata in the runtime  

OpenMP task scheduler. This method greatly reduces the number 

of recovery cycles compared to the baseline scheduler of OpenMP 

‎[22], consequently instruction per cycle (IPC) of a 16-core pro-

cessor cluster is increased up to 1.51× (1.17× on average). We 

evaluate the effectiveness of our approach with various number of 

cores (4,8,12,16), and across a wide temperature range(∆T=90°C).          

1. INTRODUCTION 
While shrinking CMOS minimum feature sizes and higher transis-

tor density open the way to many-core processor chips ‎[1], they 

also come with the side effects of increased variability ‎[2]. The 

emerging billion-transistor dies with multiple parametric 

variabilities poses serious static and dynamic variability challeng-

es [3]. Static process variations manifest themselves as die-to-die 

(D2D) and within-die (WID) variations. D2D variations affect all 

cores on a die equally, whereas WID variations induce different 

characteristics for each computing core (differ core-to-core char-

acteristics). Other variations that impact cores are dynamic in 

nature and depend on the environment in which a core is used. 

Examples of these types of variations include dynamic voltage 

droop, and on-die hot spots. These factors are expected to be 

worse in future technologies ‎[4], and are exacerbated in large-area 

many-core systems where advanced variability management is 

already employed ‎[3]. Hence a significant timing error and per-

formance loss takes place if variability is not properly addressed. 

Resilient circuit techniques, including Error-Detection Sequential 

(EDS) ‎[5], and Bubble Razor ‎[6], focus on measures to combat 

variability at the circuit level. A common strategy is to detect 

timing errors, then use architectural instruction replay, time bor-

rowing and/or tuning CMOS knobs to correct errors. Detection 

circuits typically utilize double sampling using shadow latches. In 

an ARM Cortex-M3 core if an instruction arrives late in the pipe-

line, Bubble Razor flags an error that causes a latch to skip its 

next transparent clock phase, giving it an additional cycle for 

correct instruction to arrive. Recent 45nm Intel resilient core ‎[7] 

places EDS within the critical paths of the pipeline stages for 

detecting dynamic variations. Once a timing error is detected, the 

core prevents the errant instruction from corrupting the architec-

tural state and initially flushes the pipeline to resolve any complex 

bypass register issues. To ensure error recovery, the core supports 

two separate techniques: (I) instruction replay at half frequency, 

and (II) multiple-issue, e.g. N, instruction replay at the same fre-

quency; the first N-1 issues are replica instructions, while the N-th 

issue is a valid instruction. The former technique imposes 28 extra 

Recovery Cycles Per Error (RCPE), while the latter pays 21 

RCPE as the cost of compensation with N=8 ‎[7]. 

At higher levels, where instructions come into focus as the most 

fine-grained abstraction of the processor’s functionality, several 

efforts have tried to characterize and use variability related infor-

mation. Rahimi et al. introduce a notion of Instruction-Level Vul-

nerability (ILV) ‎[8] to expose dynamic variations and its effects to 

the software stack. Another technique, operating at the level of 

sequence, is proposed by Gupta et al. ‎[9] to determine sequences 

of instructions that have a significant impact on timing error rate. 

Therefore, code transformations have been introduced for improv-

ing their timing speculation. Raising further the level of abstrac-

tion, Rahimi et al. also define a notion of Procedure-Level Vul-

nerability (PLV) ‎[10] for guiding a runtime system to mitigate 

dynamic voltage variations by hopping a procedure (subroutine) 

from one core to a favor core within a shared-L1 processor clus-

ters. Dighe et al. propose a thread hopping scheme in conjunction 

with DVFS to mitigate the within-die variation across 80-core 

‎[11]. F. Paterna et al. ‎[12] also propose a run time variability-

aware workload distribution technique for enhancing predictabil-

ity and energy efficiency of parallel multiprocessor arrays.  

This paper makes three contributions. First, we propose a notion 

of Task-Level Vulnerability (TLV) as metadata to characterize 

dynamic variations in Section ‎3. In fact, TLV is a vertical abstrac-

tion: TLV reflects manifestation of circuit-level hardware variabil-

ity in specific software context for parallel execution model. Se-

cond, we devise a variation-aware synergetic hardware/software 

approach. Our cluster is equipped with the circuit sensors for 

online measurement of variability and per-core introspective char-

acterization of TLV metadata. Fast access to the TLV metadata 

for each type of task is guaranteed by carefully placing these key 

data structures in tightly-coupled shared-L1 memory. Section ‎4 

covers these details. The OpenMP runtime scheduler utilizes TLV 

metadata to support a Task-level Errant Instruction Management 

(TEIM) technique for reducing the cost of recovery, described in 

Section ‎5. Both TLV metadata characterization and TEIM operate 

at the level of task, where tasks are abstractly expressed by the 

programmer through code annotations. Third, we demonstrate the 

effectiveness of our approach on a variability-affected tightly-

coupled processor cluster with accurate ILV models in 45-nm 

TSMC technology. Our experimental results in Section ‎6 indicate 

that the IPC of the cluster is increased to up to 1.51× (on average 

1.17×). The technique exhibits a consistent and robust behavior 

for a wide range of temperature fluctuation (∆T=90°C) and when 

the number of cores in the cluster is varied to 4, 8, 12, 16. 

2. RELATED WORK 
Circuit-level techniques like EDS ‎[5], and Bubble Razor ‎[6] raise 

a warning signal when a timing error is detected in case of any 
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variations. Then, recovery mechanisms compensate the error 

while incurring extra RCPE cost. Their cost of recovery is shown 

to be high in face of frequent timing errors, especially so in ag-

gressive voltage over-scaling and near-threshold computation 

‎[13]. Moreover, these per-core detection-correction mechanisms 

that seek to act for every instance of timing error may be ineffi-

cient in the system-level that feature a cluster of tightly-coupled 

processors. ‘Higher level’ techniques are needed not only to sup-

port individual per-core recovery mechanisms, but also to reduce 

the cost of RCPE across a cluster  and thus improve overall IPC.     

Some higher-level approaches have been proposed to mitigate 

timing errors on individual instructions ‎[8] as well as sequence of 

instructions ‎[9]. Such fine granularities are expensive to control 

due to the need of fast hardware support. Moving up to a coarser 

granularity, techniques have been proposed to address a dynamic 

series of instructions, in various levels: procedure ‎[10], thread 

‎[11], task ‎[14], and workload ‎[12]. The main drawbacks of these 

techniques are the following. (I) ‎[10]‎[14] do not support online 

characterization. (II) ‎[14] applies task mapping only during appli-

cation initialization, and does not support any dynamic scheduling 

and management after mapping. ‎[10] defines a generic notion of 

dynamic procedure hopping which does not tie to a standard par-

allel execution model, and thus imposes intrusive changes through 

runtime support. (III) ‎[11]‎[12] target coarse-grained many-core 

systems that incur a high penalty any time that a migration is re-

quired; e.g., ‎[11] needs to transfer the entire contents of instruc-

tion and data memory in one tile to another over a packet-

switched router. ‎[12] also needs a dedicated host processor to 

dispatch workload and take decisions about the allocation.  

Programmers need a simple way to identify independent units of 

work and not concern themselves with scheduling these work 

units. A tasking model, such as one in OpenMP 3.0 ‎[15], makes it 

possible to do so by expressing irregular and unstructured paral-

lelism in a simple way. A dynamic Triple Modular Redundancy 

(TMR) technique for OpenMP tasking is presented in ‎[16]. Pro-

grammer needs to manually define a reliable task through extend-

ed OpenMP task construct with a reliable clause (“#pragma 

omp task reliable”). Therefore, to assure fault tolerance, when a 

parent task creates a reliable child task into the runtime environ-

ment, it will dynamically replicate and submit three redundant 

children tasks, and finally a majority voting is applied. Similarly, 

‎[17] proposes a loosely coupled application-level TMR schema 

for P2012 ‎[3], in which the cluster controller generates three rep-

licas of the main thread. However, these technique target a generic 

fault model, and impose a large penalty due TMR, e.g., up to 1.8× 

slow down ‎[16]. 

3. TASK-LEVEL VULNERABILITY (TLV) 

AND OPENMP TASKS 
The OpenMP specification version 3.0 introduces a task-centric 

model of execution. The new task directive is used to dynami-

cally generate units of parallel work that can be executed by every 

thread in a parallel team. When an executing thread encounters 

the task construct, it prepares a task descriptor consisting of the 

code to be executed, plus a data environment inherited from the 

enclosing structured block. The tasking programming model is 

considered as a convenient abstraction for application develop-

ment in shared memory multi-cores ‎[18]. Thus we integrate TLV 

metadata as an extension to the OpenMP tasks. A task directive 

outlines an execution unit which runs a sequence of instructions. 

The OpenMP directives allow the programmer to statically identi-

fy several task types in the program. Every task directive syntac-

tically delimits a unique stream of instructions. While at runtime 

the same stream may be dynamically instantiated several times 

(e.g., a task directive nested within a loop), from the point of 

view of our characterization it uniquely identifies a single task 

type. As a direct consequence, there are as many types of tasks in 

a program as there are task directives in its code.  

In a variability-affected core, ILV ‎[8] is not uniform across the 

instruction set. In fact, ILV data partitions instructions into three 

classes: (i) logical/arithmetic class, (ii) memory class, and (iii) 

multiply/divide class. ILV indicates that the classes of instructions 

have different levels of vulnerability to variations depending on 

the way they exercise the non-uniform critical paths across the 

various pipeline stages. For instance, in an in-order RISC core the 

execution and memory stages are highly vulnerable to dynamic 

variations, and the memory class has a higher vulnerability in 

comparison to the logical/arithmetic class ‎[8]. We note that com-

plex high-performance cores such as IBM POWER6 also confirm 

that vulnerability is not uniform across the instructions set ‎[19]. 

We extend the notion of ILV to a more coarse-grained task-level 

metric, TLV. The vulnerability of a task type varies based on the 

class of instructions that it will execute. TLV is also a per-core 

metric since the amount of variation affecting different classes of 

instructions changes from one core to another. Therefore, each 

dynamic task (dynamic instance of a task type), can potentially 

face a different density of the errant instructions imposed by both 

software context and hardware variations.  

While the identification of task types can be done statically (i.e., 

at compile time), their characterization has to be done online due 

to two reasons. First, dynamic instances of the same task type may 

exercise the processor pipeline in a non-identical manner due to 

data-dependent control flow that executes different classes of 

instructions. Second, the characterization must reflect the variabil-

ity-affected characteristic of every core (not known a priori) on 

every task type. Therefore, we define the notion of TLV as a met-

ric to characterize vulnerability of each task type per each core, in 

the following:   

( , )
Σ EI

TLV  , core  , task
L

i j i j           (1) 

where ∑EI is the number of Errant Instructions during execution 

of taskj on corei, that are reported by the circuit sensors and need 

to be replayed for correct execution; L is the total number of exe-

cuted instructions. Intuitively, if all the instructions run without 

any timing error, TLV is 0; on the other hand, TLV is 1 if every 

instruction causes at least one timing error. The lower TLV, the 

lower the number of errant instructions, the lower the cost of re-

covery, and thus the higher the IPC. 

3.1 TLV Across Various Types of Tasks 
We examine intra-corner TLV for a corei that runs a synthetic 

benchmark consisting of six distinct types of tasks. Each task is 

composed of a loop with a parametrizable number of iterations 

(10 to 100). Within the loop, each task executes a different class 

of instructions illustrated in Figure 1. The corei works in the typi-

cal operating condition, i.e., room temperature of 25°C and volt-

age supply of 1.1V. This operating corner is fixed, thus there will 

be no environmental variation during task execution. The TLV 

characterization for each task type is shown in Figure 1. As 

shown, TLV of each type of tasks is different even within the 

fixed operating condition in the corei. For instance, TLV of task 

type1 (TLV(i,1)) is 9× higher than the TLV(i,6) indicating a consid-

erable variation across the type of tasks. Furthermore, within same 

type of task, TLV can also be affected by the data-dependent con-

trol-flow that can cause execution of different classes of instruc-

tions. For example, task type1 consists of mix classes of instruc-



tions that will be executed conditionally upon the current iteration 

of the loop. As a result, TLV(i,1) is changed from 0.033 to 0.041 

when the number of iterations changes from 10 to 100. This TLV 

variation across task types indicates the need of online monitoring 

for every task types. 
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Figure 1. Intra-corner TLV for six distinct task types. 

3.2 Inter-corner TLV to Dynamic Variations 
We examine the TLV across different operating conditions. Spe-

cifically, we analyze the effects of a full range of dynamic varia-

tions, a temperature range of 20°C−140°C, and a voltage range of 

0.88V−1.1V. As shown in Figure 2, the average TLV of the six 

types of tasks is an increasing function of temperature. With a 

fixed voltage of 1.1V, by increasing the temperature the delay of 

critical paths is increased, thus more instructions will face the 

timing error which causes TLV to increase up to 0.096 at 140°C. 

In contrast, decreasing the voltage from the nominal point of 1.1V 

increases TLV. In lower voltages, the delay of critical paths high-

ly increases, thus imposing a high rate of the errant instructions. 

For example, a dynamic voltage variation of 0.2V (∆V=1.1V-

0.9V) causes a TLV of 0.507, which implies that more than half 

of the total executed instructions within tasks failed due to the 

timing errors of the voltage variation. Figure 1 illustrates TLV 

values across different types of task in the typical operating corner 

and Figure 2 highlights that TLV of tasks is further magnified 

across various corners of operating conditions, thus TLV should 

be characterized for every different operating condition.       
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Figure 2. TLV to dynamic voltage and temperature variations. 

4. VARIATION-TOLERANT CLUSTER 
In this section, we describe the architectural details of the pro-

posed variation-tolerant processing cluster shown in Figure 3. The 

cluster is inspired by tightly-coupled clusters in STMicroelectron-

ics P2012 ‎[3] as the essential component of a many-core fabric. In 

our implementation, each cluster consists of sixteen 32-bit in-

order RISC cores, a L1 software-managed Tightly Coupled Data 

Memory (TCDM) and a low-latency logarithmic interconnection 

‎[20]. The TCDM is configured as a shared, multi-ported, multi-

banked scratchpad memory that is directly connected to the loga-

rithmic interconnection. The number of TCDM ports is equal to 

the number of banks to enable concurrent access to different 

memory locations. Note that one bank of the TCDM provides test-

and-set read operations, which we use to implement basic syn-

chronization primitives (e.g., locks). The logarithmic interconnec-

tion is composed of mesh-of-trees networks to support single 

cycle communication between processors and memories. When a 

read/write request is brought to the memory interface, the data is 

available on the negative edge of the same clock cycle, leading to 

two clock cycles latency for a conflict-free TCDM access.  
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Figure 3. Variation-tolerant tightly-coupled processor cluster. 

The cluster is equipped with two core-level resiliency techniques. 

First, each core relies on the circuit sensors to detect any timing 

error due to dynamic delay variation. To recover the errant in-

struction without changing the clock frequency, the core employs 

the multiple-issue instruction replay mechanism ‎[7] in its recov-

ery unit; seven replica instructions followed by a valid instruction, 

thus RCPE=21. Second, the cluster supports a per-core VDD-

hopping technique ‎[21] for tuning the voltage of each core indi-

vidually to compensate the impact of static process variation. The 

core-level VDD-hopping is employed in a variability-affected 

tightly-coupled cluster ‎[10]. The VDD-hopping improves the clock 

speed of the slow cores, thus enabling all components of the vari-

ability-affected cluster to work at same frequency (with memories 

at a 180° phase shift). This technique avoids the inter-core syn-

chronization that would significantly increase L1 TCDM latency. 

To observe the effect of static process variation on the frequency 

of individual cores within the cluster, ‎[10] analyzed how critical 

paths of each core are affected due to WID and D2D process pa-

rameters variation. The maximum frequency distribution of every 

core is shown in Figure 4 (left), in which each core’s maximum 

frequency varies significantly due to the process variation. As a 

result, six cores (C0, C2, C4, C10, C13, C14) cannot meet the design 

time target frequency of 850 MHz. To compensate this core-to-

core frequency variation, the VDD-hopping technique measures the 

delay variation of each core and then applies the appropriate volt-

age accordingly (higher voltage for slow cores). The technique 

utilizes three discrete voltage modes (VDD-high, VDD-medium, 

VDD-low), consequently, the cluster mitigates the core-to-core 

variations, and all cores can work with the design time target fre-

quency. More details of VDD-hopping and process variation analy-

sis on the cluster is provided in ‎[10]. 
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Number of errant instructions during synthetic bench (right).    

In VDD-hopping, cores in various voltage islands display different 

characteristics. Figure 4 (right) shows that the number of errant 

instructions significantly varies across cores cooperating together 

within a single cluster for executing available tasks. For instance, 



C0 faces 7.3K errant instructions, whereas C1 has more than 428K 

errant instructions during the synthetic benchmark execution. As 

shown in Figure 2, a core with lower voltage has higher TLV 

(higher ∑EI), and will impose higher extra cycles to correct those 

errant instructions. Thus a task scheduler that is aware of the indi-

vidual  core characteristics and tasks is better able to match them 

to reduce the overall penalty for correcting the errant instructions.  

4.1 Decentralized TLV Characterization  
To reduce the cost of recovery, TLV metadata guides the runtime 

scheduler. Since TLV depends on the type of task, we consider 

individual TLV characterization for every task type. As we al-

ready explained, TLV metadata is defined for a given core be-

cause different cores can display different variability characteris-

tics. Therefore, each core needs to be characterized during online 

execution of a task. This results in TLV as a two-dimensional 

lookup table across tasks and cores. This lookup table is physical-

ly distributed across all the 32 banks of TCDM, thus it can be 

written/read with a two-cycle latency in case of conflict-free 

communication. Since TLV metadata is 32-bit, and every applica-

tion will have a bounded number of N supported task types1, the 

cluster needs to allocate a maximum of N×4×C Bytes for the 

lookup table, where C is the number of cores in the cluster. 

 
Figure 5. Pseudo-code to perform TLV characterization. 

The online characterization mechanism is distributed among all 

the cores in the cluster, thus enables fully parallel task-level moni-

toring and characterization. The cluster employs the circuit sen-

sors and the error recovery unit of every core to perform charac-

terization. To quantify TLV, the core collects the statistics of ∑EI 

and L for Equation (1) through available counters. For instance, 

‎[7] includes a counter for the errant instructions (∑EI) to change 

the frequency when the number of errors is above a certain 

threshold. Two function calls for profiling TLV of current task are 

inserted in the runtime library, right before and after actual execu-

tion (see Figure 5), and then the lookup table is updated with the 

new value. The former (tlv_reset_task_metadata) restarts the 

counters, and the latter two (tlv_read_task_metadata and 

tlv_table_write) transfers the characterized TLV metadata at the 

end of task execution to the lookup table for future inspection. 

Thus, the cluster pays 15−20 cycles latency per each task charac-

terization thanks to the shared TCDM and fast interconnection. 

5. TLV-AWARE OPENMP TASKING 

5.1 Centralized Variation-tolerant Scheduler 

The lookup table for the characterized TLV metadata acts as a 

software-accessible monitor that provides information to the 

runtime systems to guide task scheduling. We propose a reactive 

variation-tolerant scheduler that we call Task-level Errant Instruc-

tion Management (TEIM). The OpenMP implementation that we 

consider ‎[22] leverages a centralized task queue, where all the 

threads involved in parallel computation actively push and pop 

job descriptors. Typically, to avoid redundant computation, only a 

single thread from a parallel team executes the code within the 

task directive (pushing its task descriptor in the queue). The rest 

of the threads remain idle in wait for work to do. Whenever a 

thread is idle it tries to extract a task from the queue, thus tasks 

are scheduled to threads on a first-come, first-served basis.  

Our TEIM technique enhances the above baseline scheduler with 

additional conditional checks. It utilizes TLV metadata to deter-

mine whether the querying thread is well suited to run the task on 

the head of the queue. The overall goal is a guided scheduling of 

tasks to cores, which reduces the number of errant instructions so 

that the replay logic is exercised less frequently. In other words, 

the scheduler tries to match the variability-affected characteristics 

of the cores with the level of vulnerability of tasks, thus reducing 

unnecessary recovery cycles. At each scheduling point, an idle 

corei runs the scheduler. Then, the scheduler checks two condi-

tions to decide whether the core should execute a taskj in the head 

of queue, or should skip it and lets other favoured cores execute it 

later. First, the scheduler reads the TLV metadata entry corre-

sponding to the combination of taskj and corei. If TLV(i,j) is great-

er than a predefined target threshold (TLV_THR), there is no 

match between the characteristics of  corei and taskj (execution of 

taskj on corei may cause at least TLV_THR×L errant instructions, 

see Equation (1)), so the scheduling attempt fails. Taskj remains in 

the queue, ready to be reconsidered for scheduling at the next 

attempt (thus, the rest of cores can potentially execute it). Second, 

to avoid starvation, each core can skip tasks for a maximum  

number of ESCAPE_THR times. Beyond this threshold the core 

has to execute at least one task, independent of its TLV value. The 

TEIM algorithm is shown in the following:  

 
Figure 6. TEIM algorithm in the variation-tolerant scheduler. 

Thus far, we assumed that TLV characterization information is 

available for the scheduler to take decisions. When the program 

starts there is no such information for any task type. If no infor-

mation is available in the lookup table for mapping of a particular 

task type on a particular core, a TLV of 0 will be returned, so the 

scheduler simply assigns the task to the requesting core, and ena-

bles online characterization. Once a task type is characterized, this 

information could be used for all the successive instances of the 

same type and thus the online characterization could be stopped. 

However, we rather keep the characterization active at every 

scheduling event and average the new characterized TLV value 

with the already TLV metadata available in the lookup table. This 

results in a better characterization for tasks that exhibit data-

dependent control flow. Moreover, it also incorporates recent 

effects of dynamic variations on cores, including temperature 

fluctuation. Therefore, the scheduler uses the latest metadata gen-

erated from monitoring recent changes in both hardware and 

software. For each task scheduling point, the scheduler overhead 

for such decision-making is highly amortized over task execution 

as discussed in the next section.  

5.2 Effectiveness Analysis of TEIM    
We analyze the effectiveness of TEIM technique with utilization 

of TLV metadata. The technique reduces the total Recovery Cy-

cles Per Cluster (RCPC) for every taskj. The total RCPC is the 

summation of recovery cycles of all 16 cores in the cluster. Equa-

tion (2) defines the desired ∆RCPC saving that can be achieved 

void handle_tasks () { 

   while (HAVE_TASKS) {  // Task scheduling loop 

     task_desc_t *t = EXTRACT_TASK (); 

     if (t) { 

      float old_mdata = 

        tlv_read_task_metadata (core_id); 

      /* Reset counter for this core */ 

      tlv_reset_task_metadata (core_id); 

      /* EXEC! */ 

      t->task_fn (t->task_data); 

      /* We executed. Fetch TLV ...*/ 

      float mdata = tlv_read_task_metadata (core_id); 

  // Update MDATA by averaging the new and old values  

       tlv_table_write (t->task_type_id, 

                        core_id,(mdata+old_mdata)/2); 

     }   }   } 

 

TLV(i,j) = read_TLV_LUT (corei, taskj); 

if (TLV(i,j)> TLV_THR && corei_escape_cnt <ESCAPE_THR){   

      corei_escape_cnt ++; 

      escape (taskj);} 

else { assign_to_corei (taskj); 

      corei_escape_cnt = 0;} 

1 The number of task types corresponds to the number of task 

directives in the code, thus it is likely to be limited to a few tens. 



by using TEIM technique instead of the baseline scheduler (with 

the naive algorithm described in Section ‎5.1): 
15

( ) base TEIM

0

RCPC = L×RCPE TLV (n n ) 0 , task,j i j i i j

i

 



      (2) 

Where L is the average number of clock cycles to execute a varia-

tion-free instance of taskj; RCPE is the penalty for recovering an 

error (described in Section ‎4) and has a constant value of 21 cy-

cles, TLV(i,j) is TLV of taskj when executing on corei; and ni−base 

(ni−TEIM) is the total number of instances of taskj executed on corei 

using baseline (TEIM) scheduler. Among the available parameters 

to increase ∆RCPC, TEIM can only control ni−TEIM, since L is 

determined by the task, RCPE is imposed by the hardware recov-

ery unit, and TLV is a function of core and task characteristics. 

With a positive ∆RCPC, the cluster spends fewer recovery cycles 

during execution of taskj (higher throughput) in comparison with 

the baseline scheduler. However, there is an extra cost for running 

TEIM algorithm. Equation (3) defines TEIM Cycles Per Cluster 

(TCPC), the total number of clock cycles that the cluster con-

sumes for all executions of TEIM during taskj: 

S ( , )TCPC (L , m , RCPE,TEIM-V )j i j iF         (3) 

Where LS is the number of clock cycles for one variation-free 

execution of TEIM; m(i,j) is the total number of times that corei 

runs TEIM for taskj (each core contributes for executing TEIM); 

TEIM-Vi is the TEIM Vulnerability to variations on corei. Since 

execution of TEIM's instructions is not variation-immune, it may 

incur recovery cycles depending of both characteristics of TEIM's 

instructions and the core that will run it. To achieve throughput 

benefit for taskj, TEIM must guarantee that ∆RCPC is always 

greater than the total number of cycles that cluster spends for 

running TEIM scheduler (TCPC). In other words, the Decreased 

Cycles Per Cluster (DCPC) has to be positive: 

DCPC RCPC TCPC 0j j j            (4) 

To satisfy this constraint, the threshold parameters of TEIM (see 

Figure 6) are tuned accordingly, based on the following parame-

ters. (i) LS=250, L>3000, since TEIM takes 250 cycles to execute 

in the worst-case, whereas the tasks in our benchmarks take above 

3000 cycles. (ii) RCPE=21. (iii) TEIM-Vi < TLV(i,j), since TEIM 

is composed of few instructions, its vulnerability is lower than any 

task. Thus, to satisfy (4) for every taskj, we need to restrict m(i,j) 

that determines how many times a corei can run TEIM scheduler 

to amortize TCPCj over the benefit of a desired task scheduling. 

The desired task scheduling is achieved by setting TLV_THR to 

0.2 which avoids the cores with voltages lower than 0.97V from 

executing a high vulnerable task (see Figure 2). Thus, tasks with a 

TLV range of [0.6,0.2] will be executed on the favoured cores 

(with voltage higher than 0.97V) where they will display a lower 

TLV range of [0,0.2). In average, by the desired scheduling, a task 

reduces its TLV from 0.4 to 0.1, which based on (2) will save 

6.3L recovery cycles compared to the baseline. Substituting this 

value and (i)−(iii) in (4) restricts m(i,j) < 6. This means corei dur-

ing execution of taskj can skip up to 6 tasks (ESCAPE_THR=6), 

but to prevent starvation and achieve positive DCPC, it has to 

execute at least one task every 6 skipped tasks. 

The synthetic benchmark with the six types of tasks was run on 

the variability-affected cluster described in Section ‎4. Figure 7 

shows the average values of ∆RCPC, TCPC, and DCPC for each 

dynamic task. As shown, TEIM with the tuned thresholds 

achieves positive DCPC values for all types of tasks − satisfies 

(4). For instance, for each dynamic task of type1: (i) TEIM highly 

reduces the recovery cycles per cluster compared to the baseline 

scheduler −∆RCPC=7K; (ii) TEIM amortizes the cost of the varia-

tion-tolerant scheduling−TCPC=1.5K; (iii) TEIM finally decreas-

es the total cycles per cluster−DCPC=5.5K. For all types of tasks, 

TEIM achieves an average ∆RCPC (DCPC) of 4.1K (2.8K) per-

dynamic task, in which the cost of TEIM execution is deliberately 

amortized (TCPC has an average value of 1.3K per-dynamic task). 
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Figure 7. Average ∆RCPC, TCPC, and DCPC per-task. 

6. EXPERIMENTAL RESULT  
We demonstrate our approach on a SystemC-based virtual plat-

form [24] modeling the tightly-coupled cluster described in Sec-

tion ‎4. Table I summarizes its parameters. 

Table I. Architectural parameters of cluster.  
ARM v6 core 16 TCDM banks 16 

I$ size 16KB per core TCDM latency 2 cycles 

I$ line 4 words TCDM size 256 KB 

Latency hit 1 cycle L3 latency ≥ 60 cycles 

Latency miss ≥ 59 cycles L3 size 256MB 

To emulate variations on the virtual platform, we have integrated 

variations models at the level of individual instructions using the 

ILV characterization methodology presented in ‎[8]. Integration of 

ILV models for every core enables online assessment of presence 

or absence of errant instructions at the certain amount of dynamic 

voltage and temperature variations. We re-characterized ILV 

models of an in-order RISC LEON-3 ‎[23] core for 45-nm. This 

choice is because of availability of an advanced open-source 

RISC core that provides full back-end details for variation analy-

sis. First, we synthesized the VHDL code of LEON-3 with the 45-

nm TSMC technology library, general-purpose process. The front-

end flow with normal VTH cells has been performed using Synop-

sys DesignCompiler, while Synopsys IC Compiler has been used 

for the back-end where the core is optimized for performance.  

To observe the effects of a full range of dynamic voltage and tem-

perature variations, we analyze the delay variability on the indi-

vidual instructions, leveraging voltage-temperature scaling fea-

tures of Synopsys PrimeTime for the composite current source 

approach of modeling cell behavior. Finally, delay variability is 

annotated to the gate-level simulations for creating ILV models. 

To utilize ILV models on the virtual platform, each core maps 

ARM v6 instructions to the corresponding ILV models in an in-

struction-by-instruction fashion during execution of tasks. There-

fore, every core will face the errant instructions during tasks exe-

cution on the variability-affected cluster described in Section ‎4. 

Our OpenMP implementation for the target cluster is based on 

[25]. To evaluate the effectiveness of the variation-tolerant tech-

nique, seven widely used computational kernel from the image 

processing domain are parallelized using OpenMP tasking. To 

quantify improvement of our technique, we have used normalized 

IPC of the cluster as a metric which divides the IPC of the cluster 

when using TEIM scheduler by the IPC of the cluster when using 

the baseline scheduler. First, we have quantified the overhead of 

TEIM technique on a variation-immune cluster (none of cores is 

affected by variations). Figure 8 shows the normalized IPC of the 

variation-immune cluster for the benchmarks. On average, the 

normalized IPC of the cluster (the effective instructions) is slight-

ly decreased by 0.998×. This tiny overhead is imposed by reading 

the TLV lookup table, and checking the conditions mentioned in 



Figure 6. During executions, the TLV lookup table only occupies 

104−448 Bytes depending upon the number of task types. The 

number of dynamic tasks for each benchmark is illustrated on top 

of the bars in Figure 8.       
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Figure 8. Overhead of the variation-tolerant scheduler. 

The variation-tolerant scheduler imposes negligible IPC degrada-

tion in the variation-immune cluster, while it outperforms the 

baseline scheduler in the variability-affected clusters and effec-

tively amortizes the cost of TCPC. Figure 9 shows the normalized 

IPC improvement of the variability-affected cluster (shown in 

Figure 4). As shown, the normalized IPC is increased for all 

benchmarks, e.g., at 10°C, IPC of bsort is increased by a factor of 

1.51× (1.17× on average for all benchmarks). TEIM technique 

decreases the number of cycles per cluster for each type of tasks, 

because cores incur fewer errant instructions and spend lower 

cycles for recovery. Thus, the effective IPC is increased (com-

pared to the baseline scheduler, the cluster spends fewer cycles for 

the same amount of work). Moreover, this saving is consistent 

across a wide range of temperature variations with a slight de-

crease due to the slower critical paths. At temperature of 100°C 

(∆T=90°C), TEIM achieves 1.15× IPC improvement, on average, 

thanks to the online TLV metadata characterization which reflects 

the latest variations, thus enables the scheduler to react according-

ly. Figure 9 also shows the average number of times that TEIM 

postponing the execution of the task in the head of queue (M). On 

average2, each task is escaped 2.1 times because of no matching 

core. Overall, it shows that the tasks are postponed for a short 

latency in the queue, thus the performance penalty is avoided in 

the synchronization of tasks on a barrier.          
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Figure 9. Normalized IPC improvement of the variability-

affected cluster using TEIM across a wide temperature range. 

Figure 10 shows the normalized IPC improvement of the cluster, 

when dedicating different number of cores for execution of tasks. 

On average, at 10°C, TEIM achieves 1.17×, 1.11×, 1.11×, and 

1.07× IPC improvement when using only 16, 12, 8, and 4 cores, 

respectively. It shows effectiveness of TEIM in presence of vari-

ous hardware resources, and variation scenario. TEIM achieves 

higher normalized IPC across higher number of cores (where 

there are higher variations and more voltage islands − see Figure 

4). TEIM is also effective with a 4-core scenario (C0−C3) in which 

the available two voltage islands are proactively utilized.  
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Figure 10. Cluster IPC improvement using TEIM. 

7. CONCLUSION 
We propose a method for vertical abstraction of circuit-level vari-

ations into a high-level parallel software execution (OpenMP 3.0 

tasking). Our method characterizes and mitigates variations at the 

level of tasks, identified by the programmer through annotations. 

The vulnerability of tasks is characterized by TLV metadata dur-

ing introspective execution on individual cores. A variation-

tolerant runtime scheduler (TEIM) is proposed to utilize charac-

terized TLV metadata. TEIM matches different characteristics of 

each variability-affected core to various levels of vulnerability of 

tasks. Therefore, it enhances normalized IPC (compared to the 

baseline scheduler ‎[22]) of a 16-core variability-affected cluster 

up to 1.51×. On average, it achieves 1.15×−1.17× normalized IPC 

improvement for a wide range of temperature fluctuation. 
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