
Variation-tolerant OpenMP Tasking on Tightly-coupled

Processor Clusters

Abbas Rahimi†, Andrea Marongiu‡, Paolo Burgio‡, Rajesh K. Gupta†, Luca Benini‡
†Department of Computer Science and Engineering, UC San Diego, La Jolla, CA 92093, USA

‡Dipartimento di Elettronica, Informatica e Sistemistica, Università di Bologna, 40136 Bologna, Italy
{abbas, gupta}@cs.ucsd.edu, {a.marongiu, paolo.burgio, luca.benini}@unibo.it

ABSTRACT

We present a variation-tolerant tasking technique for tightly-

coupled shared memory processor clusters that relies upon model-

ing advance across the hardware/software interface. This is im-

plemented as an extension to the OpenMP 3.0 tasking program-

ming model. Using the notion of Task-Level Vulnerability (TLV)

proposed here, we capture dynamic variations caused by circuit-

level variability as a high-level software knowledge. This is ac-

complished through a variation-aware hardware/software codesign

where: (i) Hardware features variability monitors in conjunction

with online per-core characterization of TLV metadata; (ii) Soft-

ware supports a Task-level Errant Instruction Management

(TEIM) technique to utilize TLV metadata in the runtime

OpenMP task scheduler. This method greatly reduces the number

of recovery cycles compared to the baseline scheduler of OpenMP

‎[22], consequently instruction per cycle (IPC) of a 16-core pro-

cessor cluster is increased up to 1.51× (1.17× on average). We

evaluate the effectiveness of our approach with various number of

cores (4,8,12,16), and across a wide temperature range(∆T=90°C).

1. INTRODUCTION
While shrinking CMOS minimum feature sizes and higher transis-

tor density open the way to many-core processor chips ‎[1], they

also come with the side effects of increased variability ‎[2]. The

emerging billion-transistor dies with multiple parametric

variabilities poses serious static and dynamic variability challeng-

es [3]. Static process variations manifest themselves as die-to-die

(D2D) and within-die (WID) variations. D2D variations affect all

cores on a die equally, whereas WID variations induce different

characteristics for each computing core (differ core-to-core char-

acteristics). Other variations that impact cores are dynamic in

nature and depend on the environment in which a core is used.

Examples of these types of variations include dynamic voltage

droop, and on-die hot spots. These factors are expected to be

worse in future technologies ‎[4], and are exacerbated in large-area

many-core systems where advanced variability management is

already employed ‎[3]. Hence a significant timing error and per-

formance loss takes place if variability is not properly addressed.

Resilient circuit techniques, including Error-Detection Sequential

(EDS) ‎[5], and Bubble Razor ‎[6], focus on measures to combat

variability at the circuit level. A common strategy is to detect

timing errors, then use architectural instruction replay, time bor-

rowing and/or tuning CMOS knobs to correct errors. Detection

circuits typically utilize double sampling using shadow latches. In

an ARM Cortex-M3 core if an instruction arrives late in the pipe-

line, Bubble Razor flags an error that causes a latch to skip its

next transparent clock phase, giving it an additional cycle for

correct instruction to arrive. Recent 45nm Intel resilient core ‎[7]

places EDS within the critical paths of the pipeline stages for

detecting dynamic variations. Once a timing error is detected, the

core prevents the errant instruction from corrupting the architec-

tural state and initially flushes the pipeline to resolve any complex

bypass register issues. To ensure error recovery, the core supports

two separate techniques: (I) instruction replay at half frequency,

and (II) multiple-issue, e.g. N, instruction replay at the same fre-

quency; the first N-1 issues are replica instructions, while the N-th

issue is a valid instruction. The former technique imposes 28 extra

Recovery Cycles Per Error (RCPE), while the latter pays 21

RCPE as the cost of compensation with N=8 ‎[7].

At higher levels, where instructions come into focus as the most

fine-grained abstraction of the processor’s functionality, several

efforts have tried to characterize and use variability related infor-

mation. Rahimi et al. introduce a notion of Instruction-Level Vul-

nerability (ILV) ‎[8] to expose dynamic variations and its effects to

the software stack. Another technique, operating at the level of

sequence, is proposed by Gupta et al. ‎[9] to determine sequences

of instructions that have a significant impact on timing error rate.

Therefore, code transformations have been introduced for improv-

ing their timing speculation. Raising further the level of abstrac-

tion, Rahimi et al. also define a notion of Procedure-Level Vul-

nerability (PLV) ‎[10] for guiding a runtime system to mitigate

dynamic voltage variations by hopping a procedure (subroutine)

from one core to a favor core within a shared-L1 processor clus-

ters. Dighe et al. propose a thread hopping scheme in conjunction

with DVFS to mitigate the within-die variation across 80-core

‎[11]. F. Paterna et al. ‎[12] also propose a run time variability-

aware workload distribution technique for enhancing predictabil-

ity and energy efficiency of parallel multiprocessor arrays.

This paper makes three contributions. First, we propose a notion

of Task-Level Vulnerability (TLV) as metadata to characterize

dynamic variations in Section ‎3. In fact, TLV is a vertical abstrac-

tion: TLV reflects manifestation of circuit-level hardware variabil-

ity in specific software context for parallel execution model. Se-

cond, we devise a variation-aware synergetic hardware/software

approach. Our cluster is equipped with the circuit sensors for

online measurement of variability and per-core introspective char-

acterization of TLV metadata. Fast access to the TLV metadata

for each type of task is guaranteed by carefully placing these key

data structures in tightly-coupled shared-L1 memory. Section ‎4

covers these details. The OpenMP runtime scheduler utilizes TLV

metadata to support a Task-level Errant Instruction Management

(TEIM) technique for reducing the cost of recovery, described in

Section ‎5. Both TLV metadata characterization and TEIM operate

at the level of task, where tasks are abstractly expressed by the

programmer through code annotations. Third, we demonstrate the

effectiveness of our approach on a variability-affected tightly-

coupled processor cluster with accurate ILV models in 45-nm

TSMC technology. Our experimental results in Section ‎6 indicate

that the IPC of the cluster is increased to up to 1.51× (on average

1.17×). The technique exhibits a consistent and robust behavior

for a wide range of temperature fluctuation (∆T=90°C) and when

the number of cores in the cluster is varied to 4, 8, 12, 16.

2. RELATED WORK
Circuit-level techniques like EDS ‎[5], and Bubble Razor ‎[6] raise

a warning signal when a timing error is detected in case of any

978-3-9815370-0-0/DATE13/©2013 EDAA

variations. Then, recovery mechanisms compensate the error

while incurring extra RCPE cost. Their cost of recovery is shown

to be high in face of frequent timing errors, especially so in ag-

gressive voltage over-scaling and near-threshold computation

‎[13]. Moreover, these per-core detection-correction mechanisms

that seek to act for every instance of timing error may be ineffi-

cient in the system-level that feature a cluster of tightly-coupled

processors. ‘Higher level’ techniques are needed not only to sup-

port individual per-core recovery mechanisms, but also to reduce

the cost of RCPE across a cluster and thus improve overall IPC.

Some higher-level approaches have been proposed to mitigate

timing errors on individual instructions ‎[8] as well as sequence of

instructions ‎[9]. Such fine granularities are expensive to control

due to the need of fast hardware support. Moving up to a coarser

granularity, techniques have been proposed to address a dynamic

series of instructions, in various levels: procedure ‎[10], thread

‎[11], task ‎[14], and workload ‎[12]. The main drawbacks of these

techniques are the following. (I) ‎[10]‎[14] do not support online

characterization. (II) ‎[14] applies task mapping only during appli-

cation initialization, and does not support any dynamic scheduling

and management after mapping. ‎[10] defines a generic notion of

dynamic procedure hopping which does not tie to a standard par-

allel execution model, and thus imposes intrusive changes through

runtime support. (III) ‎[11]‎[12] target coarse-grained many-core

systems that incur a high penalty any time that a migration is re-

quired; e.g., ‎[11] needs to transfer the entire contents of instruc-

tion and data memory in one tile to another over a packet-

switched router. ‎[12] also needs a dedicated host processor to

dispatch workload and take decisions about the allocation.

Programmers need a simple way to identify independent units of

work and not concern themselves with scheduling these work

units. A tasking model, such as one in OpenMP 3.0 ‎[15], makes it

possible to do so by expressing irregular and unstructured paral-

lelism in a simple way. A dynamic Triple Modular Redundancy

(TMR) technique for OpenMP tasking is presented in ‎[16]. Pro-

grammer needs to manually define a reliable task through extend-

ed OpenMP task construct with a reliable clause (“#pragma

omp task reliable”). Therefore, to assure fault tolerance, when a

parent task creates a reliable child task into the runtime environ-

ment, it will dynamically replicate and submit three redundant

children tasks, and finally a majority voting is applied. Similarly,

‎[17] proposes a loosely coupled application-level TMR schema

for P2012 ‎[3], in which the cluster controller generates three rep-

licas of the main thread. However, these technique target a generic

fault model, and impose a large penalty due TMR, e.g., up to 1.8×

slow down ‎[16].

3. TASK-LEVEL VULNERABILITY (TLV)

AND OPENMP TASKS
The OpenMP specification version 3.0 introduces a task-centric

model of execution. The new task directive is used to dynami-

cally generate units of parallel work that can be executed by every

thread in a parallel team. When an executing thread encounters

the task construct, it prepares a task descriptor consisting of the

code to be executed, plus a data environment inherited from the

enclosing structured block. The tasking programming model is

considered as a convenient abstraction for application develop-

ment in shared memory multi-cores ‎[18]. Thus we integrate TLV

metadata as an extension to the OpenMP tasks. A task directive

outlines an execution unit which runs a sequence of instructions.

The OpenMP directives allow the programmer to statically identi-

fy several task types in the program. Every task directive syntac-

tically delimits a unique stream of instructions. While at runtime

the same stream may be dynamically instantiated several times

(e.g., a task directive nested within a loop), from the point of

view of our characterization it uniquely identifies a single task

type. As a direct consequence, there are as many types of tasks in

a program as there are task directives in its code.

In a variability-affected core, ILV ‎[8] is not uniform across the

instruction set. In fact, ILV data partitions instructions into three

classes: (i) logical/arithmetic class, (ii) memory class, and (iii)

multiply/divide class. ILV indicates that the classes of instructions

have different levels of vulnerability to variations depending on

the way they exercise the non-uniform critical paths across the

various pipeline stages. For instance, in an in-order RISC core the

execution and memory stages are highly vulnerable to dynamic

variations, and the memory class has a higher vulnerability in

comparison to the logical/arithmetic class ‎[8]. We note that com-

plex high-performance cores such as IBM POWER6 also confirm

that vulnerability is not uniform across the instructions set ‎[19].

We extend the notion of ILV to a more coarse-grained task-level

metric, TLV. The vulnerability of a task type varies based on the

class of instructions that it will execute. TLV is also a per-core

metric since the amount of variation affecting different classes of

instructions changes from one core to another. Therefore, each

dynamic task (dynamic instance of a task type), can potentially

face a different density of the errant instructions imposed by both

software context and hardware variations.

While the identification of task types can be done statically (i.e.,

at compile time), their characterization has to be done online due

to two reasons. First, dynamic instances of the same task type may

exercise the processor pipeline in a non-identical manner due to

data-dependent control flow that executes different classes of

instructions. Second, the characterization must reflect the variabil-

ity-affected characteristic of every core (not known a priori) on

every task type. Therefore, we define the notion of TLV as a met-

ric to characterize vulnerability of each task type per each core, in

the following:

(,)
Σ EI

TLV , core , task
L

i j i j   (1)

where ∑EI is the number of Errant Instructions during execution

of taskj on corei, that are reported by the circuit sensors and need

to be replayed for correct execution; L is the total number of exe-

cuted instructions. Intuitively, if all the instructions run without

any timing error, TLV is 0; on the other hand, TLV is 1 if every

instruction causes at least one timing error. The lower TLV, the

lower the number of errant instructions, the lower the cost of re-

covery, and thus the higher the IPC.

3.1 TLV Across Various Types of Tasks
We examine intra-corner TLV for a corei that runs a synthetic

benchmark consisting of six distinct types of tasks. Each task is

composed of a loop with a parametrizable number of iterations

(10 to 100). Within the loop, each task executes a different class

of instructions illustrated in Figure 1. The corei works in the typi-

cal operating condition, i.e., room temperature of 25°C and volt-

age supply of 1.1V. This operating corner is fixed, thus there will

be no environmental variation during task execution. The TLV

characterization for each task type is shown in Figure 1. As

shown, TLV of each type of tasks is different even within the

fixed operating condition in the corei. For instance, TLV of task

type1 (TLV(i,1)) is 9× higher than the TLV(i,6) indicating a consid-

erable variation across the type of tasks. Furthermore, within same

type of task, TLV can also be affected by the data-dependent con-

trol-flow that can cause execution of different classes of instruc-

tions. For example, task type1 consists of mix classes of instruc-

tions that will be executed conditionally upon the current iteration

of the loop. As a result, TLV(i,1) is changed from 0.033 to 0.041

when the number of iterations changes from 10 to 100. This TLV

variation across task types indicates the need of online monitoring

for every task types.

0.00 0.01 0.02 0.03 0.04 0.05

1

2

3

4

5

6

TLV

T
y
p
e
s

o
f

ta
s
k
s # of iterations = 100

of iterations = 10add/sub instructions

arith. shift instructions

log. shift instructions

logical instructions

multiply instructions

mix inst.

Figure 1. Intra-corner TLV for six distinct task types.

3.2 Inter-corner TLV to Dynamic Variations
We examine the TLV across different operating conditions. Spe-

cifically, we analyze the effects of a full range of dynamic varia-

tions, a temperature range of 20°C−140°C, and a voltage range of

0.88V−1.1V. As shown in Figure 2, the average TLV of the six

types of tasks is an increasing function of temperature. With a

fixed voltage of 1.1V, by increasing the temperature the delay of

critical paths is increased, thus more instructions will face the

timing error which causes TLV to increase up to 0.096 at 140°C.

In contrast, decreasing the voltage from the nominal point of 1.1V

increases TLV. In lower voltages, the delay of critical paths high-

ly increases, thus imposing a high rate of the errant instructions.

For example, a dynamic voltage variation of 0.2V (∆V=1.1V-

0.9V) causes a TLV of 0.507, which implies that more than half

of the total executed instructions within tasks failed due to the

timing errors of the voltage variation. Figure 1 illustrates TLV

values across different types of task in the typical operating corner

and Figure 2 highlights that TLV of tasks is further magnified

across various corners of operating conditions, thus TLV should

be characterized for every different operating condition.

20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Temperature (°C)

T
L

V

Temperature variation

0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Voltage (V)

T
L

V

Voltage variation

Figure 2. TLV to dynamic voltage and temperature variations.

4. VARIATION-TOLERANT CLUSTER
In this section, we describe the architectural details of the pro-

posed variation-tolerant processing cluster shown in Figure 3. The

cluster is inspired by tightly-coupled clusters in STMicroelectron-

ics P2012 ‎[3] as the essential component of a many-core fabric. In

our implementation, each cluster consists of sixteen 32-bit in-

order RISC cores, a L1 software-managed Tightly Coupled Data

Memory (TCDM) and a low-latency logarithmic interconnection

‎[20]. The TCDM is configured as a shared, multi-ported, multi-

banked scratchpad memory that is directly connected to the loga-

rithmic interconnection. The number of TCDM ports is equal to

the number of banks to enable concurrent access to different

memory locations. Note that one bank of the TCDM provides test-

and-set read operations, which we use to implement basic syn-

chronization primitives (e.g., locks). The logarithmic interconnec-

tion is composed of mesh-of-trees networks to support single

cycle communication between processors and memories. When a

read/write request is brought to the memory interface, the data is

available on the negative edge of the same clock cycle, leading to

two clock cycles latency for a conflict-free TCDM access.

I$

SHARED L1 TCDM

CORE 0

B
A

N
K

 0

SLAVE
PORT

LOW-LATENCY LOGARITHMIC INTERCONNECT

MASTER
PORT

B
A

N
K

 1

SLAVE
PORT

B
A

N
K

 N

SLAVE
PORT

te
st-a

n
d

-se
t

se
m

a
p

h
o

re
s

SLAVE
PORT

L2/L3
BRIDGE

I$

V
a

r.

se
n

so
r

VDD-hopping

R
e

p
la

y CORE M

V
a

r.

se
n

so
r

VDD-hopping

R
e

p
la

y

I$

MASTER
PORT

Figure 3. Variation-tolerant tightly-coupled processor cluster.

The cluster is equipped with two core-level resiliency techniques.

First, each core relies on the circuit sensors to detect any timing

error due to dynamic delay variation. To recover the errant in-

struction without changing the clock frequency, the core employs

the multiple-issue instruction replay mechanism ‎[7] in its recov-

ery unit; seven replica instructions followed by a valid instruction,

thus RCPE=21. Second, the cluster supports a per-core VDD-

hopping technique ‎[21] for tuning the voltage of each core indi-

vidually to compensate the impact of static process variation. The

core-level VDD-hopping is employed in a variability-affected

tightly-coupled cluster ‎[10]. The VDD-hopping improves the clock

speed of the slow cores, thus enabling all components of the vari-

ability-affected cluster to work at same frequency (with memories

at a 180° phase shift). This technique avoids the inter-core syn-

chronization that would significantly increase L1 TCDM latency.

To observe the effect of static process variation on the frequency

of individual cores within the cluster, ‎[10] analyzed how critical

paths of each core are affected due to WID and D2D process pa-

rameters variation. The maximum frequency distribution of every

core is shown in Figure 4 (left), in which each core’s maximum

frequency varies significantly due to the process variation. As a

result, six cores (C0, C2, C4, C10, C13, C14) cannot meet the design

time target frequency of 850 MHz. To compensate this core-to-

core frequency variation, the VDD-hopping technique measures the

delay variation of each core and then applies the appropriate volt-

age accordingly (higher voltage for slow cores). The technique

utilizes three discrete voltage modes (VDD-high, VDD-medium,

VDD-low), consequently, the cluster mitigates the core-to-core

variations, and all cores can work with the design time target fre-

quency. More details of VDD-hopping and process variation analy-

sis on the cluster is provided in ‎[10].

C0

847

C4

847

C8

909

C12

901

C1

893

C5

909

C9

855

C13

820

C2

847

C6

877

C10

826

C14

826

C3

901

C7

870

C11

917

C15

862
0 200 400 600 800 1000

C0
C1
C2
C3
C4
C5
C6
C7
C8
C9

C10
C11
C12
C13
C14
C15

∑ EI ThousandsVDD={ 1.1V, 0.97V, 0.81V}
Figure 4. VDD-Hopping in the variability-affected cluster (left);

Number of errant instructions during synthetic bench (right).

In VDD-hopping, cores in various voltage islands display different

characteristics. Figure 4 (right) shows that the number of errant

instructions significantly varies across cores cooperating together

within a single cluster for executing available tasks. For instance,

C0 faces 7.3K errant instructions, whereas C1 has more than 428K

errant instructions during the synthetic benchmark execution. As

shown in Figure 2, a core with lower voltage has higher TLV

(higher ∑EI), and will impose higher extra cycles to correct those

errant instructions. Thus a task scheduler that is aware of the indi-

vidual core characteristics and tasks is better able to match them

to reduce the overall penalty for correcting the errant instructions.

4.1 Decentralized TLV Characterization
To reduce the cost of recovery, TLV metadata guides the runtime

scheduler. Since TLV depends on the type of task, we consider

individual TLV characterization for every task type. As we al-

ready explained, TLV metadata is defined for a given core be-

cause different cores can display different variability characteris-

tics. Therefore, each core needs to be characterized during online

execution of a task. This results in TLV as a two-dimensional

lookup table across tasks and cores. This lookup table is physical-

ly distributed across all the 32 banks of TCDM, thus it can be

written/read with a two-cycle latency in case of conflict-free

communication. Since TLV metadata is 32-bit, and every applica-

tion will have a bounded number of N supported task types1, the

cluster needs to allocate a maximum of N×4×C Bytes for the

lookup table, where C is the number of cores in the cluster.

Figure 5. Pseudo-code to perform TLV characterization.

The online characterization mechanism is distributed among all

the cores in the cluster, thus enables fully parallel task-level moni-

toring and characterization. The cluster employs the circuit sen-

sors and the error recovery unit of every core to perform charac-

terization. To quantify TLV, the core collects the statistics of ∑EI

and L for Equation (1) through available counters. For instance,

‎[7] includes a counter for the errant instructions (∑EI) to change

the frequency when the number of errors is above a certain

threshold. Two function calls for profiling TLV of current task are

inserted in the runtime library, right before and after actual execu-

tion (see Figure 5), and then the lookup table is updated with the

new value. The former (tlv_reset_task_metadata) restarts the

counters, and the latter two (tlv_read_task_metadata and

tlv_table_write) transfers the characterized TLV metadata at the

end of task execution to the lookup table for future inspection.

Thus, the cluster pays 15−20 cycles latency per each task charac-

terization thanks to the shared TCDM and fast interconnection.

5. TLV-AWARE OPENMP TASKING

5.1 Centralized Variation-tolerant Scheduler

The lookup table for the characterized TLV metadata acts as a

software-accessible monitor that provides information to the

runtime systems to guide task scheduling. We propose a reactive

variation-tolerant scheduler that we call Task-level Errant Instruc-

tion Management (TEIM). The OpenMP implementation that we

consider ‎[22] leverages a centralized task queue, where all the

threads involved in parallel computation actively push and pop

job descriptors. Typically, to avoid redundant computation, only a

single thread from a parallel team executes the code within the

task directive (pushing its task descriptor in the queue). The rest

of the threads remain idle in wait for work to do. Whenever a

thread is idle it tries to extract a task from the queue, thus tasks

are scheduled to threads on a first-come, first-served basis.

Our TEIM technique enhances the above baseline scheduler with

additional conditional checks. It utilizes TLV metadata to deter-

mine whether the querying thread is well suited to run the task on

the head of the queue. The overall goal is a guided scheduling of

tasks to cores, which reduces the number of errant instructions so

that the replay logic is exercised less frequently. In other words,

the scheduler tries to match the variability-affected characteristics

of the cores with the level of vulnerability of tasks, thus reducing

unnecessary recovery cycles. At each scheduling point, an idle

corei runs the scheduler. Then, the scheduler checks two condi-

tions to decide whether the core should execute a taskj in the head

of queue, or should skip it and lets other favoured cores execute it

later. First, the scheduler reads the TLV metadata entry corre-

sponding to the combination of taskj and corei. If TLV(i,j) is great-

er than a predefined target threshold (TLV_THR), there is no

match between the characteristics of corei and taskj (execution of

taskj on corei may cause at least TLV_THR×L errant instructions,

see Equation (1)), so the scheduling attempt fails. Taskj remains in

the queue, ready to be reconsidered for scheduling at the next

attempt (thus, the rest of cores can potentially execute it). Second,

to avoid starvation, each core can skip tasks for a maximum

number of ESCAPE_THR times. Beyond this threshold the core

has to execute at least one task, independent of its TLV value. The

TEIM algorithm is shown in the following:

Figure 6. TEIM algorithm in the variation-tolerant scheduler.

Thus far, we assumed that TLV characterization information is

available for the scheduler to take decisions. When the program

starts there is no such information for any task type. If no infor-

mation is available in the lookup table for mapping of a particular

task type on a particular core, a TLV of 0 will be returned, so the

scheduler simply assigns the task to the requesting core, and ena-

bles online characterization. Once a task type is characterized, this

information could be used for all the successive instances of the

same type and thus the online characterization could be stopped.

However, we rather keep the characterization active at every

scheduling event and average the new characterized TLV value

with the already TLV metadata available in the lookup table. This

results in a better characterization for tasks that exhibit data-

dependent control flow. Moreover, it also incorporates recent

effects of dynamic variations on cores, including temperature

fluctuation. Therefore, the scheduler uses the latest metadata gen-

erated from monitoring recent changes in both hardware and

software. For each task scheduling point, the scheduler overhead

for such decision-making is highly amortized over task execution

as discussed in the next section.

5.2 Effectiveness Analysis of TEIM
We analyze the effectiveness of TEIM technique with utilization

of TLV metadata. The technique reduces the total Recovery Cy-

cles Per Cluster (RCPC) for every taskj. The total RCPC is the

summation of recovery cycles of all 16 cores in the cluster. Equa-

tion (2) defines the desired ∆RCPC saving that can be achieved

void handle_tasks () {

 while (HAVE_TASKS) { // Task scheduling loop

 task_desc_t *t = EXTRACT_TASK ();

 if (t) {

 float old_mdata =

 tlv_read_task_metadata (core_id);

 /* Reset counter for this core */

 tlv_reset_task_metadata (core_id);

 /* EXEC! */

 t->task_fn (t->task_data);

 /* We executed. Fetch TLV ...*/

 float mdata = tlv_read_task_metadata (core_id);

 // Update MDATA by averaging the new and old values

 tlv_table_write (t->task_type_id,

 core_id,(mdata+old_mdata)/2);

 } } }

TLV(i,j) = read_TLV_LUT (corei, taskj);

if (TLV(i,j)> TLV_THR && corei_escape_cnt <ESCAPE_THR){

 corei_escape_cnt ++;

 escape (taskj);}

else { assign_to_corei (taskj);

 corei_escape_cnt = 0;}

1 The number of task types corresponds to the number of task

directives in the code, thus it is likely to be limited to a few tens.

by using TEIM technique instead of the baseline scheduler (with

the naive algorithm described in Section ‎5.1):
15

() base TEIM

0

RCPC = L×RCPE TLV (n n) 0 , task,j i j i i j

i

 



     (2)

Where L is the average number of clock cycles to execute a varia-

tion-free instance of taskj; RCPE is the penalty for recovering an

error (described in Section ‎4) and has a constant value of 21 cy-

cles, TLV(i,j) is TLV of taskj when executing on corei; and ni−base

(ni−TEIM) is the total number of instances of taskj executed on corei

using baseline (TEIM) scheduler. Among the available parameters

to increase ∆RCPC, TEIM can only control ni−TEIM, since L is

determined by the task, RCPE is imposed by the hardware recov-

ery unit, and TLV is a function of core and task characteristics.

With a positive ∆RCPC, the cluster spends fewer recovery cycles

during execution of taskj (higher throughput) in comparison with

the baseline scheduler. However, there is an extra cost for running

TEIM algorithm. Equation (3) defines TEIM Cycles Per Cluster

(TCPC), the total number of clock cycles that the cluster con-

sumes for all executions of TEIM during taskj:

S (,)TCPC (L , m , RCPE,TEIM-V)j i j iF (3)

Where LS is the number of clock cycles for one variation-free

execution of TEIM; m(i,j) is the total number of times that corei

runs TEIM for taskj (each core contributes for executing TEIM);

TEIM-Vi is the TEIM Vulnerability to variations on corei. Since

execution of TEIM's instructions is not variation-immune, it may

incur recovery cycles depending of both characteristics of TEIM's

instructions and the core that will run it. To achieve throughput

benefit for taskj, TEIM must guarantee that ∆RCPC is always

greater than the total number of cycles that cluster spends for

running TEIM scheduler (TCPC). In other words, the Decreased

Cycles Per Cluster (DCPC) has to be positive:

DCPC RCPC TCPC 0j j j    (4)

To satisfy this constraint, the threshold parameters of TEIM (see

Figure 6) are tuned accordingly, based on the following parame-

ters. (i) LS=250, L>3000, since TEIM takes 250 cycles to execute

in the worst-case, whereas the tasks in our benchmarks take above

3000 cycles. (ii) RCPE=21. (iii) TEIM-Vi < TLV(i,j), since TEIM

is composed of few instructions, its vulnerability is lower than any

task. Thus, to satisfy (4) for every taskj, we need to restrict m(i,j)

that determines how many times a corei can run TEIM scheduler

to amortize TCPCj over the benefit of a desired task scheduling.

The desired task scheduling is achieved by setting TLV_THR to

0.2 which avoids the cores with voltages lower than 0.97V from

executing a high vulnerable task (see Figure 2). Thus, tasks with a

TLV range of [0.6,0.2] will be executed on the favoured cores

(with voltage higher than 0.97V) where they will display a lower

TLV range of [0,0.2). In average, by the desired scheduling, a task

reduces its TLV from 0.4 to 0.1, which based on (2) will save

6.3L recovery cycles compared to the baseline. Substituting this

value and (i)−(iii) in (4) restricts m(i,j) < 6. This means corei dur-

ing execution of taskj can skip up to 6 tasks (ESCAPE_THR=6),

but to prevent starvation and achieve positive DCPC, it has to

execute at least one task every 6 skipped tasks.

The synthetic benchmark with the six types of tasks was run on

the variability-affected cluster described in Section ‎4. Figure 7

shows the average values of ∆RCPC, TCPC, and DCPC for each

dynamic task. As shown, TEIM with the tuned thresholds

achieves positive DCPC values for all types of tasks − satisfies

(4). For instance, for each dynamic task of type1: (i) TEIM highly

reduces the recovery cycles per cluster compared to the baseline

scheduler −∆RCPC=7K; (ii) TEIM amortizes the cost of the varia-

tion-tolerant scheduling−TCPC=1.5K; (iii) TEIM finally decreas-

es the total cycles per cluster−DCPC=5.5K. For all types of tasks,

TEIM achieves an average ∆RCPC (DCPC) of 4.1K (2.8K) per-

dynamic task, in which the cost of TEIM execution is deliberately

amortized (TCPC has an average value of 1.3K per-dynamic task).

0

2000

4000

6000

8000

1 2 3 4 5 6

A
v
g

.
c
y
c
le

s
 p

e
r-

ta
s
k

six distinct task types

∆RCPC

TCPC

DCPC

Figure 7. Average ∆RCPC, TCPC, and DCPC per-task.

6. EXPERIMENTAL RESULT
We demonstrate our approach on a SystemC-based virtual plat-

form [24] modeling the tightly-coupled cluster described in Sec-

tion ‎4. Table I summarizes its parameters.

Table I. Architectural parameters of cluster.
ARM v6 core 16 TCDM banks 16

I$ size 16KB per core TCDM latency 2 cycles

I$ line 4 words TCDM size 256 KB

Latency hit 1 cycle L3 latency ≥ 60 cycles

Latency miss ≥ 59 cycles L3 size 256MB

To emulate variations on the virtual platform, we have integrated

variations models at the level of individual instructions using the

ILV characterization methodology presented in ‎[8]. Integration of

ILV models for every core enables online assessment of presence

or absence of errant instructions at the certain amount of dynamic

voltage and temperature variations. We re-characterized ILV

models of an in-order RISC LEON-3 ‎[23] core for 45-nm. This

choice is because of availability of an advanced open-source

RISC core that provides full back-end details for variation analy-

sis. First, we synthesized the VHDL code of LEON-3 with the 45-

nm TSMC technology library, general-purpose process. The front-

end flow with normal VTH cells has been performed using Synop-

sys DesignCompiler, while Synopsys IC Compiler has been used

for the back-end where the core is optimized for performance.

To observe the effects of a full range of dynamic voltage and tem-

perature variations, we analyze the delay variability on the indi-

vidual instructions, leveraging voltage-temperature scaling fea-

tures of Synopsys PrimeTime for the composite current source

approach of modeling cell behavior. Finally, delay variability is

annotated to the gate-level simulations for creating ILV models.

To utilize ILV models on the virtual platform, each core maps

ARM v6 instructions to the corresponding ILV models in an in-

struction-by-instruction fashion during execution of tasks. There-

fore, every core will face the errant instructions during tasks exe-

cution on the variability-affected cluster described in Section ‎4.

Our OpenMP implementation for the target cluster is based on

[25]. To evaluate the effectiveness of the variation-tolerant tech-

nique, seven widely used computational kernel from the image

processing domain are parallelized using OpenMP tasking. To

quantify improvement of our technique, we have used normalized

IPC of the cluster as a metric which divides the IPC of the cluster

when using TEIM scheduler by the IPC of the cluster when using

the baseline scheduler. First, we have quantified the overhead of

TEIM technique on a variation-immune cluster (none of cores is

affected by variations). Figure 8 shows the normalized IPC of the

variation-immune cluster for the benchmarks. On average, the

normalized IPC of the cluster (the effective instructions) is slight-

ly decreased by 0.998×. This tiny overhead is imposed by reading

the TLV lookup table, and checking the conditions mentioned in

Figure 6. During executions, the TLV lookup table only occupies

104−448 Bytes depending upon the number of task types. The

number of dynamic tasks for each benchmark is illustrated on top

of the bars in Figure 8.

720 256 256
750

256

256 225 225

0.97

0.98

0.99

1.00

1.01

N
o

rm
a
li

z
e
d

 I
P

C
 (

)

#
 o

f
d

y
n

.
ta

s
k
s

Figure 8. Overhead of the variation-tolerant scheduler.

The variation-tolerant scheduler imposes negligible IPC degrada-

tion in the variation-immune cluster, while it outperforms the

baseline scheduler in the variability-affected clusters and effec-

tively amortizes the cost of TCPC. Figure 9 shows the normalized

IPC improvement of the variability-affected cluster (shown in

Figure 4). As shown, the normalized IPC is increased for all

benchmarks, e.g., at 10°C, IPC of bsort is increased by a factor of

1.51× (1.17× on average for all benchmarks). TEIM technique

decreases the number of cycles per cluster for each type of tasks,

because cores incur fewer errant instructions and spend lower

cycles for recovery. Thus, the effective IPC is increased (com-

pared to the baseline scheduler, the cluster spends fewer cycles for

the same amount of work). Moreover, this saving is consistent

across a wide range of temperature variations with a slight de-

crease due to the slower critical paths. At temperature of 100°C

(∆T=90°C), TEIM achieves 1.15× IPC improvement, on average,

thanks to the online TLV metadata characterization which reflects

the latest variations, thus enables the scheduler to react according-

ly. Figure 9 also shows the average number of times that TEIM

postponing the execution of the task in the head of queue (M). On

average2, each task is escaped 2.1 times because of no matching

core. Overall, it shows that the tasks are postponed for a short

latency in the queue, thus the performance penalty is avoided in

the synchronization of tasks on a barrier.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

M
 =
 (
∑
∑
m

(i
,j

))
 /

 #
 o

f
d

y
n

.
ta

s
k
s

N
o

rm
a
li

z
e
d

 I
P

C
 (

)

10°C 40°C 70°C 100°C M

Figure 9. Normalized IPC improvement of the variability-

affected cluster using TEIM across a wide temperature range.

Figure 10 shows the normalized IPC improvement of the cluster,

when dedicating different number of cores for execution of tasks.

On average, at 10°C, TEIM achieves 1.17×, 1.11×, 1.11×, and

1.07× IPC improvement when using only 16, 12, 8, and 4 cores,

respectively. It shows effectiveness of TEIM in presence of vari-

ous hardware resources, and variation scenario. TEIM achieves

higher normalized IPC across higher number of cores (where

there are higher variations and more voltage islands − see Figure

4). TEIM is also effective with a 4-core scenario (C0−C3) in which

the available two voltage islands are proactively utilized.

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

N
o

rm
a
li

z
e
d

 I
P

C
 (

)

16

12

8

4

Figure 10. Cluster IPC improvement using TEIM.

7. CONCLUSION
We propose a method for vertical abstraction of circuit-level vari-

ations into a high-level parallel software execution (OpenMP 3.0

tasking). Our method characterizes and mitigates variations at the

level of tasks, identified by the programmer through annotations.

The vulnerability of tasks is characterized by TLV metadata dur-

ing introspective execution on individual cores. A variation-

tolerant runtime scheduler (TEIM) is proposed to utilize charac-

terized TLV metadata. TEIM matches different characteristics of

each variability-affected core to various levels of vulnerability of

tasks. Therefore, it enhances normalized IPC (compared to the

baseline scheduler ‎[22]) of a 16-core variability-affected cluster

up to 1.51×. On average, it achieves 1.15×−1.17× normalized IPC

improvement for a wide range of temperature fluctuation.

8. ACKNOWLEDGMENTS
This work was supported by the NSF under award n. 1029783,

ERC-AdG MultiTherman (291125), and FP7 Virtical (288574).

9. REFERENCES
[1] S. Borkar, “Thousand core chips−A technology perspective,” Proc. DAC, 2007.

[2] S. Borkar, et al., “Parameter variations and impact on circuits and microarchitecture,” Proc.

DAC, pp. 338-342, 2003.

[3] L. Benini, et al., “P2012: Building an ecosystem for a scalable, modular and high-efficiency

embedded computing accelerator,” Proc. DATE, pp. 983-987, 2012.

[4] ITRS [Online]. Available: http://public.itrs.net

[5] K.A. Bowman, et al., “Energy-efficient and metastability-immune resilient circuits for

dynamic variation tolerance,” IEEE Journal of Solid-State Circuits, 44(1): 49-63, 2009.

[6] M. Fojtik, et al., “Bubble Razor: An architecture independent approach to timing error

detection and correction,” Proc. ISSCC, pp. 488-490, 2012.

[7] K.A. Bowman, et al., “A 45 nm resilient microprocessor core for dynamic variation toler-

ance,” IEEE Journal of Solid-State Circuits, 46(1): 194-208, Jan. 2011.

[8] A. Rahimi, L. Benini, R.K. Gupta, “Analysis of instruction-level vulnerability to dynamic

voltage and temperature variations,” Proc. DATE, pp. 1102-1105, 2012.

[9] M.S. Gupta, V.J. Reddi, G. Holloway, G. Wei, D.M. Brooks, “An event-guided approach to

reducing voltage noise in processors,” Proc. DATE, pp.160-165, 2009.

[10] A. Rahimi, L. Benini, R.K. Gupta, “Procedure hopping: A low overhead solution to mitigate

variability in shared-L1 processor clusters,” Proc. ISLPED, pp. 415-420, 2012.

[11] S. Dighe, et al., “Within-die variation-aware dynamic-voltage-frequency-scaling with optimal

core allocation and thread hopping for the 80-core teraflops processor,” IEEE J. of Solid-

State Circuits, 46(1): 184-193, Jan. 2011.

[12] F. Paterna, et al., “Variability-aware task allocation for energy-efficient quality of service

provisioning in embedded streaming multimedia applications,” IEEE Transactions on Com-

puters, 61(7): 939-953, 2011.

[13] R. Pawlowski, et al., “A 530mV 10-lane SIMD processor with variation resiliency in 45nm

SOI,” Proc. ISSCC, pp. 492-494, 2012.

[14] F. Chaix, G. Bizot, M. Nicolaidis, N.-E. Zergainoh, “Variability-aware task mapping strate-

gies for many-cores processor chips,” Proc. IOLTS, pp.55-60, 2011.

[15] OpenMP API v.3.1 [online]. Avail.: http://www.openmp.org/mp documents/OpenMP3.1.pdf

[16] O. Tahan, M. Shawky, “Using dynamic task level redundancy for OpenMP fault tolerance,”

Proc. ARCS, pp. 25-36, 2012.

[17] C. Bolchini, A. Miele, D. Sciuto, “An adaptive approach for online fault management in

many-core architectures,” Proc. DATE, pp.1429-1432, 2012.

[18] E. Ayguadè, et al., “The Design of OpenMP Tasks,” IEEE Trans. Par. Distrib. Sys., 2009.

[19] P. N. Sanda, et al., “Soft-error resilience of the IBM POWER6 processor,” IBM Journal of

Research and Development , 52(3): 275-284, May 2008.

[20] A. Rahimi, I. Loi, M.R. Kakoee, L. Benini, “A fully-synthesizable single-cycle interconnec-

tion network for shared- l1 processor clusters,” Proc. DATE, pp.1-6, 2011.

[21] A. Rahimi, et al., “History-based dynamic voltage scaling with few number of voltage modes

for GALS NoC,” Proc. FutureTech, 2010.

[22] FSF - The GNU Project. GOMP - An OpenMP implementation for GCC [online]. Available:

http://gcc.gnu.org/projects/gomp

[23] LEON3 [Online]. Available: http://www.gaisler.com/cms/

[24] D. Bortolotti et al., “Exploring instruction caching strategies for tightly-coupled shared-

memory clusters,” Proc. Intern.Symposium on System on Chip (SoC), pp.34-41, 2011.

[25] A. Marongiu et al., “Fast and lightweight support for nested parallelism on cluster-based

embedded many-cores, ” Proc. DATE, pp.105-110, 2012.
2 at maximum 3.2 times which is less than ESCAPE_THR

http://www.gaisler.com/cms/

