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Abstract—Multimedia applications running on thousands of
deep and wide pipelines working concurrently in GPUs have
been an important target for power minimization both at the
architectural and algorithmic levels. At the hardware level,
energy-efficiency techniques that employ voltage overscaling face
a barrier so-called “path walls”: reducing operating voltage
beyond a certain point generates massive number of timing
errors that are impractical to tolerate. We propose an architec-
tural innovation, called A2M2 module (approximate associative
memristive memory) that exhibits few tolerable timing errors
suitable for GPU applications under voltage overscaling. A2M2

is integrated with every floating point unit (FPU), and performs
partial functionality of the associated FPU by pre-storing high
frequency patterns for computational reuse that avoids overhead
due to re-execution. Voltage overscaled A2M2 is designed to match
an input search pattern with any of the stored patterns within a
Hamming distance range of 0–2. This matching behavior under
voltage overscaling leads to a controllable approximate computing
for multimedia applications. Our experimental results for the
AMD Southern Islands GPU show that four image processing
kernels tolerate the mismatches during pattern matching resulting
in a PSNR ≥ 30dB. The A2M2 module with 8-row enables 28%
voltage overscaling in 45nm technology resulting in 32% average
energy saving for the kernels, while delivering an acceptable
quality of service.

I. INTRODUCTION

There is an ever-increasing demand for multimedia in-
formation processing. A graphical processing unit or GPU
provides a programmable fabric that orchestrates over 2,000
stream cores to meet the required performance demanded by
multimedia applications. Given a limited thermal envelope,
powering up over 4 billion transistors makes energy efficiency
a primary concern for GPUs. Earlier work has pointed to sup-
ply voltage overscaling (VOS) [1], [2] and computational reuse
[3] as promising approaches to reduce energy consumption.
For a core, there is a voltage and clock frequency operating
point at which the core is efficiently functional, but reducing
the operating voltage beyond a critical point leads to so-
called “path walls” [4], [5]. The path walls effect is highly
pronounced in well-optimized circuits [4]. Hitting the path
walls results either in a complete core failure, or massive
number of timing errors that are very expensive to correct,
and wipe out the energy benefits of VOS.

Multimedia applications provide ability to exploit the vary-
ing degrees of tolerance to error that an application has due
to its programming or inherent application needs [6]. To use
this flexibility, “approximate programs”, programs that produce
results that may be an approximation to the specified results,
have an application-dependent fidelity metric to characterize
the quality of the output result. For instance, peak signal to
noise ratio (PSNR) of greater than 30dB is generally consid-

ered acceptable from users perspective in image processing
applications. Therefore if program execution is not 100%
numerically correct due to few errors during computations,
the program can still “appear” to execute correctly. However,
recent experiment on an ARM Cortex-M0 core shows that VOS
after the critical operating point increases the number of timing
errors dramatically [7]. In a similar vein, SRAM-based cache
counterpart displays useless behaviour under VOS: operating
at the nominal voltage is error-free; reducing the voltage down
by ∼25% generates few errors in data array; below that point
there is a massive number of errors in every row and column
[8]. This massive number of errors is beyond the capability
of the approximate applications to tolerate. Efforts have been
done to enable VOS in traditional CMOS-based synthesis by
generating approximate hardware blocks for coarse-grained
meta-function [9].

In contrast, non-volatile memories such as resistive RAM
(ReRAM/memristor) offers low energy operation with 270mV–
1.0V [10]. Their downside is limited durability beyond billion
write operations that limits their lifetime [11]. Li et al. [12]
demonstrate a 1-Mb ternary content addressable memory
(TCAM) test chip using 2-transistor/2-resistive-phase-change-
storage (2T-2R) cell that achieves > 10× smaller cell size
than SRAM-based TCAMs, and ensures reliable low voltage
search operation. To build energy-efficient GPUs using the
CMOS-compatible memristor parts, Rahimi et al. [13] recently
integrate the TCAMs with the floating point units (FPUs)
for computation reuse. These FPUs consume higher energy-
per-instruction than their integer counterparts, and the overall
arithmetic operations contribute to more than 70% of the total
GPU power consumption in compute-intensive kernels [14].

Parallel execution in the GPU architectures provides an
important ability to combine computational reuse and ap-
proximation for reducing energy. This paper exploits this
opportunity to make three main contributions. I) We propose
approximate associative memristive memory (A2M2) microar-
chitectural design to enable simultaneous VOS and computa-
tional reuse. A2M2 is a programmable module accessible by
software to store computations that appear frequently, and is
tightly integrated to every FPU in the GPU. A2M2 is com-
posed of a TCAM and a crossbar-based memristor memory
block that together represent the pre-stored computations as
partial functionality of the associated FPU. Under VOS, A2M2

exhibits a controllable error behaviour: when we reduce the
voltage from 1.0V down to 725mV, A2M2 still matches an
input search pattern with any of the stored computations
within a Hamming distance of 0, 1, or 2. II) We present a
framework, compatible with OpenCL as an industry-standard
programming for heterogeneous computing, to profile GPU
kernels to identify frequent redundant computations. It applies



a fine-grained value partitioning for every FP operation, and
extracts a set of values that are occurred frequently through
searching the space of possible inputs provided by training
samples. The framework carefully pre-stores these key com-
putations in appropriate A2M2 modules for reusing them to
avoid re-executions. III) We demonstrate the effectiveness of
our approach on the Southern Islands GPUs with four image
processing kernels adopted from AMD APP SDK v2.5 [15].
We use 10% of Caltech 101 computer vision dataset [16]
for the training, and the full dataset for the testing. Our
experimental results show that the image processing kernels
for all the test images: 1) tolerate the Hamming distance
mismatches during pattern matching by displaying a PSNR
≥ 30dB; 2) save on average 32% energy on A2M2 modules of
size 8 made possible by approximate reuse under 28% VOS.

The rest of the paper is organized as follows. Section II
surveys prior work in this specific topic area. Section III
describes design of A2M2 for energy-efficient GPU archi-
tectures. A framework and kernel execution flow to support
A2M2 is presented in Section IV. In Section V, we explain
our methodology and present experimental results followed by
conclusions in Section VI

II. RELATED WORK

Memory-based computing has been shown significant en-
ergy efficiency using emerging non-CMOS memories which
are particularly well-suited for dense non-volatile memory
design [12], [17], [18], [19]. For example, spin-torque transfer
RAM (STTRAM) has been used for reconfigurable frame-
works which partition the entire input application into smaller
representable partitions using lookup tables [17], or use co-
design approach for a better application mapping [18]. Com-
piler support further optimizes the lookup table resource al-
location among functions within a program [19]. However,
these frameworks map the entire application [17], [18] or
hot functions [19] to the non-volatile memory, hence limit
their applicability to a subset of applications amenable to full
memory-based computing. Beyond non-volatile memory-based
computing, profiling driven techniques increase energy effi-
ciency by computation reuse that avoids redundant executions
[3].

Moving to parallel architectures, a memristor-based multi-
threading processor is proposed that enables continuous flow
multi-threading by inserting a multi-state pipeline register
using memristor [20]. This register is capable of holding micro-
architectural state of different active threads, therefore elimi-
nating the thread switch penalty that improves performance and
energy. However, this architecture imposes a great deal of write
stress on the memristors, as high as typical registers, hence
suffers from durability of the memristors. In GPUs, a temporal
memoization technique reduces the energy overhead of timing
error recovery by exploiting locality [21]. The technique recalls
recent contexts of error-free executions on a FPU and utilize
them to correct the timing errors [21]. Zhang et al. [14]
propose to use imprecise FPUs in GPUs for approximate
computing. However, SRAM-based lookup tables [21] and
imprecise hardware blocks [14] share the common drawback
in VOS. Another memoization-based technique utilizes the
memristors to increase computational reuse in GPUs [13]. This
technique cannot fully exploit the capability of approximate
programs running in GPUs leaving an untapped energy-saving
potential. We design A2M2 module that enables simultaneous
approximate computational reuse and operation under VOS,
while delivering required accuracy. Further, our framework
leverages the memristor technology in the right angle by
limiting the stress of write to finite number of write operations
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Fig. 1. Execution stage of FPU with A2M2 module.

only at the start of kernel execution, therefore extending the
lifetime of A2M2 modules.

III. ENERGY-EFFICIENT GPU ARCHITECTURE

A. Southern Islands Architecture

We focus on one of the most recent GPUs from the AMD,
the Southern Islands family (Radeon HD 7000-series). The
Southern Islands is based on AMD’s Graphics Core Next
which is a RISC single instruction, multiple data (SIMD)
architecture; it replaces the elder VLIW SIMD architecture
from the Evergreen. We target Radeon HD 7970 device which
has 32 compute units. Every compute unit contains a scheduler
and a set of four SIMD execution units, aka vector units. Each
SIMD execution unit has 16 stream cores, or parallel lanes,
constituting a total number of 64 stream cores per compute
unit.

An OpenCL application is formed of a host program and
one or more device kernels that can be run on a GPU device.
An instance of the OpenCL kernel is called a work-item. Each
stream core is devoted to the execution of one work-item
using the integer or FP units. Most arithmetic operations on a
GPU are performed by vector instructions. A vector instruction
is fetched once and executed in a SIMD fashion by all its
comprising work-items. After the fetch and decode stages,
the source operands for each instruction are read from vector
registers or local memory. The core stage of a GPU is the
execute stage, where arithmetic instructions are carried out in
each stream core. When the source operands are ready in the
vector unit, the execution stage starts to issue the operations
into the integer units or FPUs. The execution stage of every
FPU has a latency of six cycles and a throughput of one
instruction per cycle [22]. Finally, the result of the computation
is written back to the destination operands.

B. Approximate Associative Memristive Memory Module

In order to fully exploit the energy saving potentials of
both partial memory-based computing and approximate com-
puting, in this section we propose an approximate associative
memristive memory (A2M2) which is tightly integrated to



each FPU. The proposed A2M2 microarchitecture demonstrates
controllable approximate computing capabilities under VOS.

For each type of FPU, we first identify the sets of frequent
input operands and store them along with their corresponding
pre-calculated outputs in an A2M2 module. Section IV-A
describes this flow in details. During the execution, in case
of a match between the input values of the FPU and the input
patterns stored in A2M2, the pre-stored results are provided by
A2M2, and FPU re-execution is avoided for frequent operands.
A2M2 module performs the match operation and returns the
output at extremely lower energy costs compared to the FPU,
thanks to the ultra-low power characteristics of memristive
memories. This energy cost is further reduced by VOS that
relaxes the matching criterion, from the exact to approximate,
described in the following.

A2M2 module consists of two pipelined stages as shown
in Fig. 1: (I) a memristive TCAM which stores and searches
for the high frequent sets of input operands, and (II) a 1T-1R
memristive memory which maintains the pre-calculated FPU
output results for each set of such frequent operands. For each
operation, in the first stage, the TCAM searches to determine
whether there is a match between the input operands and the
stored operand patterns. In case of a match, the result of the
operation is read in the second stage from the corresponding
line in the 1T-1R memory.

Each TCAM row stores one set of highly-frequent input
operands. We use a 2T-2R cell structure for the TCAM design
[12]. In this structure each bit of data is stored in a cell
that consists of two memristive elements to store the pattern
and two access transistors that decouple the memristors from
a corresponding match line (ML), as shown in Fig. 1. To
program the TCAM, the write voltages are applied on the
match lines (ML), and access-transistors of select devices
are connected via the search line (SL) to perform the write
operation.

A memristive TCAM operation is based on the fact that
a low-resistance path to the ground discharges a precharged
line faster than a high-resistance path. Each row in the TCAM
has a match line which is precharged during a precharge phase:
SLs are deactivated to disconnect the access transistors. During
the evaluation phase, one of the access transistors in each bit-
cell is ON and connects the ML to the ground via a high-
(or low-) resistance path if the pattern-under-search matches
(mismatches) the stored pattern. In case of an exact match,
i.e. bit-by-bit, the ML stays charged for an extended period of
time due to the high-resistance of the memristive device that
connects the ML to the ground. If the pattern-under-search
and the stored pattern mismatch by even a single bit, the
ML will be discharged quickly because of the existence of
low-resistive path(s) between the ML and ground, providing a
clear margin between an exact match and mismatches. As the
number of bit-mismatches increases, the ML will be discharged
even faster. A clocked self-referenced sensing circuitry and a
2-bit data encoding scheme is applied [12] to further increase
the noise margin and provide a digital match/mismatch output
signal. Fig. 2 illustrates the evolution of the digital “match”
signal during the evaluation phase for different number of
bit-mismatches based on SPICE simulation results. As it is
expected, this signal drops faster when a larger number of bit-
mismatches exist. The digital match signals are sampled (i.e.
latched) at the end of the evaluation phase. A logic ‘1’ means
that the line is not discharged yet, indicating a match. The
latched match signals are then fed to the 1T-1R memory stage
as enable lines (EnL), to read the previously-computed results
that are stored in the 1T-1R memory. The logical OR of the

EnLs represents a “hit signal” which indicates that the result
is provided by A2M2 module.

In case of a match, the pre-computed result (QA2M2 ) is
read from the memristive memory at negligible energy cost
and is propagated toward the end of the FPU pipeline along
with the hit signal. The propagated hit signal is used as a
clock-gating signal for the remaining stages of the FPU to
avoid the redundant computation. Given that only the first stage
of the FPU is concurrently working with TCAM, other FPU
stages are clock-gated in case of a match which results in
considerable amount of energy saving. In case of a TCAM
miss, the FPU works normally, and its result (QFPU ) is selected
as the pipeline output. The hit signal selects whether the QFPU
or QA2M2 should be reported as the output.

Fig 1 shows the structure of such 1T-1R memory that is
used to store the output patterns. To program the memory, a
write voltage is applied on the bit-lines, while the enable lines
are used to select the target cell. For read operation, the enable
lines are derived by the EnL values of TCAM. Assuming an
exact matching, either none or only one of EnLs are active at
any given clock cycle, connecting the bit-line to the ground
through a high-/low-resistance memristive cell, depending on
the stored data. The read circuitry works as a voltage divider
and is consisted of a sense resistor RSense and a NOT gate. If the
memristor is in the high-resistance state, which represents logic
‘0’, RMemristor >> RSense and thus the voltage drop on RSense is
negligible and the output of the NOT gate will be a logic ‘0’.
In case of a low-resistance memristor, RSense >> RMemristor,
thus most of the voltage is dropped on RSense and the output
of the read circuitry is a logic ‘1’. It can be observed in
Fig. 2 that for few bit-mismatches (e.g. 1 or 2), the drop
time of the match signals differ with clear margins. Hence,
by shortening the evaluation period (i.e. faster sampling), or
similarly reducing the supply voltage while preserving the
same evaluation period, a “controllable” approximate matching
can be realized in which a pattern with a Hamming distance of
1 or 2 (i.e., the number of bit-mismatches) is considered as a
“match”. Operating at the nominal voltage of 1V guarantees an
exact matching with 0 number of bit-mismatch. If we reduce
the voltage to 775mV, TCAM also matches the input pattern
with any of the stored patterns if there is a Hamming distance
of 1 between them (1-HD approximate matching). VOS down
to 720mV matches the input patterns with 2 bit-mismatches
(2-HD approximate matching). Further lowering the supply
voltages results in an abrupt increase in the number of bit-
mismatches.

However, the approximate matching has two downsides: (I)
possibility of a false match, and reporting a wrong output as
the result of the computation, and (II) having several matches,
which would enable several word-lines in the 1T-1R memory,
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resulting in the logical OR of the corresponding outputs being
reported as the output of A2M2 module (QA2M2 ). Possibility
of several matches can be avoided if the stored patterns in the
TCAM have a minimum Hamming distance (e.g. 3 for 1-HD
approximate matching respectively); this is practical given the
typical TCAM word-size (i.e., 32, 64, or 96), and the small
number of TCAM rows. As for the case of a false match,
its likelihood is reduced by a proper sizing of A2M2 module
described in Section V-B. We limit the match set such that
it decreases the likelihood of a false matching and of the
introduced error at the same time. In Section V-B, we show the
application of this approximate matching for different image
processing kernels that can tolerate the introduced errors and
display a high PSNR while benefiting from the lower energy
consumptions. Moreover, A2M2 module could be designed in
a hybrid fashion to always exclude the error in a few critical
bits (e.g., the sign and exponent bits); for instance, by applying
a high voltage to those bits to perform a robust and exact
matching, lowering the significance effect of such error.

IV. FRAMEWORK TO SUPPORT A2M2

In this section, we briefly describe our approach to pro-
gramming A2M2 and evaluation of A2M2 effectiveness in
improving energy efficiency of GPUs.

A. Execution Flow

Execution flow using A2M2 has two main stages: (I) design
time profiling, and (II) runtime computational reuse. Fig. 3
illustrates this execution flow. The goal of profiling stage is
to identify redundant computations with a high frequency of
occurrence. In the profiling stage, we have an OpenCL kernel,
a host code with a training input dataset. We focus on the
individual FPUs to observe the dispersion of the input operands
at the finest granularity. To expose highly frequent set of
operands for each FP operation, we individually profile every
type of FP operation and keep the distinct sets of the input
operands with the related output result. The output of this
stage for every FP operation is highly frequent computations
(HFC): a sorted list of sets of values, each set has the input
operand(s) and the related result, and the sets are sorted based
on their frequency of occurrence. After extracting HFC, we
need to determine how much approximation can be tolerated
during the reuse of these key computations. To do so, we
leverage the Southern Islands functional simulator to apply
different matching constraints for determining the degree of
approximation applicable to each A2M2 module. The simulator
starts with the exact matching and then increases the degree
of approximation step-by-step by applying 1-HD and 2-HD
approximate matching. For every step, the output image is

compared with a golden output image to measure PSNR.
Finally, the maximum degree of approximation is determined
for each A2M2 module such that the introduced errors result
in a PSNR higher than the desired PSNR (e.g., 30dB). This
profiling stage is a one-off activity whose cost is amortized
across all future usage of the kernel.

In the next step, the framework transfers the output of
the profiling stage to A2M2 modules for runtime reuse. The
AMD compute abstraction layer (CAL) provides a runtime
device driver library that supports code generation, kernel
loading, and allows the host program to interact with the stream
cores at the lowest-level. A2M2 module are designed to be
addressable by software therefore the host code can program
them using CAL. Right before launching the kernel execution,
the host code programs A2M2 modules: for every type of FP
operation activated during the kernel, a subset of HFC (up
to few hundred bytes depending up on the size of A2M2) in
conjunction with the degree of applicable approximation is set
for the corresponding A2M2 modules accordingly. In this way,
the framework concurrently programs all the A2M2 modules
integrated to a type of FPU across all the available compute
units in the GPU, since their content is equivalent.

B. Design Space for A2M2

Here, we explain the design space for utilizing A2M2

modules as a case study for Roberts filter, one of our edge
detection kernels. We evaluate the trade-off between the size
of A2M2 module, i.e., the number of rows that store different
patterns, with its hit rate. A higher hit rate means higher
number of operands are matched with the stored computations
in A2M2 module, therefore there is no need for re-executing the
results for those values, leading to higher energy saving. We
quantify the hit rate of A2M2 module for multiply-accumulator
(MAC) FPU for 100 test input images. Fig 4 summarises the
minimum, the maximum, and the average (shown in bars)
hit rates of A2M2 module with a wider range of sizes. The
experiment is repeated for the three matching constraints.

Fig 4(a) shows the hit rates for the exact matching. A2M2

module with 4-row displays the hit rates in the range of
25%–83%. Increasing the size of A2M2 from 4-row to 8-
row, and to 16-row improves the average hit rate from 40%
to 42%, and to 50%. Overall, the average hit rates increases
less than 12% when the number of rows is increased from 16
to 512. A similar trend of the hit rates versus A2M2 sizes is
observed for the approximate matching, as shown in Fig 4(b)-
(c). Once the number of rows is increased from 16 to 512,
the average hit rates improves less than 19% and 18% for
1-HD and 2-HD approximate matching, respectively. Fig 4
also illustrates that an A2M2 with a fixed size experiences
higher hit rates by switching from the exact matching to any of
the approximate matching. For instance, the hit rate of A2M2

with 4-row increases 12% on average (from 40% to 52%)
by using 2-HD approximate matching instead of the exact
matching. This increased hit rate is because A2M2 relaxes the
matching constraint therefore more number of input patterns
are approximately matched with one of the stored patterns.

In a nutshell, choosing large A2M2 size has two disadvan-
tage. I) It diminishes the gain of energy saving, because after
a certain size the average hit rates almost saturates, while the
energy consumption of the A2M2 increases for larger sizes. For
example, increasing A2M2 size from 8-row by 64× only brings
25% higher hit rates with 2-HD approximate matching. This
significantly lowers the hit rate per unit of power consumed by
A2M2. In Section V-B, we show that enlarging A2M2 beyond
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Fig. 4. Hit rate versus size of A2M2 for MAC during Roberts filter executions.

a certain size will not bring any energy saving. II) It increases
the likelihood of false matches that might quickly drop PSNR
below the desired threshold. Our profiling results indicate that
Roberts filter is able to tolerate the errors in computations (an
average PSNR of 34dB) with A2M2 modules of maximum 512-
row using 2-HD approximate matching. Increasing A2M2 size
after 512-row drops the PSNR below 30dB. Visual depiction
and the corresponding PSNR of different matchings for one of
the test images are shown in Fig 5.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We focus on the AMD Southern Islands GPU, Radeon HD
7970 device, but our method can be applied to other GPUs
as well. We have adopted image processing applications from
AMD APP SDK v2.5 [15] a software ecosystem suitable for
stream applications written in OpenCL. We have examined
four image processing filters: Roberts, Sobel, Sharpen, and
Shift. Multi2Sim [22], a cycle-accurate CPU-GPU simulation
framework, is used for profiling and simulations. These ker-
nels typically apply a 2D convolution; we extract frequently
activated FPUs during the kernel executions: adder (ADD),
multiply (MUL), multiply-accumulator (MAC), and SQRT.
Accordingly, the 6-stage balanced FPUs are generated and
optimized using FloPoCo [23]. These FPUs are synthesized
and mapped using a 45-nm ASIC flow. The front-end flow
has been performed using Synopsys Design Compiler, while
Synopsys IC Compiler has been used for the back-end. The
FPUs have been optimized for power and a signoff clock
period of 1.5ns. Finally, Synopsys PrimeTime is used to report
power at the nominal operating voltage of 1.0V. The second
column of Table I shows the energy per operation for each
FPU.

Considering the single precision FPUs, we design A2M2

module with different word-sizes based on the type of FPU.
TCAM has a word-size of 32-bit for SQRT, 64-bit for ADD,
MUL, and 96-bit for MAC; while the crossbar-based memory
has a fixed word-size of 32-bit for any FPU to maintain
the outputs. To estimate power and delay of A2M2 module,
transistor-level SPICE simulations are done using Cadence
Virtuoso. For the memristor parts, we integrate 50K Ron and
50M Ro f f models based on the measurements of fabricated
memristors [24]. For the line resistances and capacitances, we
use the same model and numbers reported in [25]. Energy
operation of A2M2 modules is shown in Table I. Given the
clock period of 1.5ns, A2M2 modules can reliably work under
the designated VOS points (see Section III-B). FPUs face
massive errors, in this range of VOS, which is simply too high
to be useful. We integrate a functional model of A2M2 module
into Multi2Sim that computes the Hamming distance for every
FP operation to quantify the hit rates and PSNR drops.

B. Energy Saving with Corresponding PSNR

Table I summarizes the energy consumption per operation
for individual FPUs, and different sizes of A2M2 modules in
the cases of exact matching, 1-HD, and 2-HD approximate
matching. The energy numbers show the potential of A2M2

modules to reduce the energy consumption per operation. For
example for SQRT operation, an exact-matcher A2M2 module
with 8 rows provides ≈8× higher energy efficiency compared
to FPU counterpart. Although both A2M2 (exact) and FPU
work at the nominal voltage of 1.0V, this energy saving is
accomplished through the ultra-low power memristive-based
computing. The energy saving is further improved by allow-
ing the approximate matching, which improves the energy
efficiency by factors of 16× and 22×, for 1-HD and 2-
HD approximate matching respectively. Such saving trend is
consistent for different types of FPUs, and different sizes of
A2M2 modules.

Table I also demonstrates that increasing the size of the
A2M2 beyond a limit sacrifices the energy efficiency. For
instance in case of ADD operation, an exact-matcher A2M2

module with 64-row roughly consumes as much energy as FPU
itself. Any larger A2M2 module can incur energy penalty rather
than improving the energy consumption; since the aggregate
energy of integrating FPU with A2M2 module cannot be paid
off by the power saving offered by even an ideal hit rate. In
the following, we present energy saving of the kernels using
A2M2 modules with different sizes.

For the four image processing kernels, our framework
uses 10% of Caltech 101 computer vision dataset [16] for
the training to extract HFC as explained in Section IV-A.
Depending on the size of A2M2 modules, the framework loads
4, 8, 16, 32, and 64 top pairs of HFC to A2M2 modules
before the kernel execution. We quantify the average energy
saving and the corresponding average PSNR degradation over
the full dataset [16] as the test cases. Fig. 6 shows the
normalized energy compared to FPUs for each kernel. For
all the kernels, the exact-matcher A2M2 modules with 64-row
exhibit poor energy efficiency, for instance Sobel (or Sharpen)
faces 20% (17%) higher energy consumption compared to
using the normal FPUs. A2M2 modules with sizes smaller than
64-row provide a significant range of energy saving (16%–

Exact matching

No noise

1-HD approximate matching

PSNR=61dB

2-HD approximate matching 

PSNR=42dB

Fig. 5. Visual depiction of the output quality degradation with exact, 1-HD,
2-HD approximate matching for Roberts filter.



TABLE I. ENERGY CONSUMPTION (FJ) PER OPERATION IN 45NM TECHNOLOGY FOR FPUS AND A2M2 .

Module FPU (1.0V) A2M2 (Exact Matching) A2M2 (1-HD Approximate Matching) A2M2 (2-HD Approximate Matching)
4-row 8-row 16-row 32-row 64-row 4-row 8-row 16-row 32-row 64-row 4-row 8-row 16-row 32-row 64-row

ADD 4742 1176 1403 1858 2740 4568 644 732 906 1262 1953 505 555 709 999 1479
MUL 9891 1176 1403 1858 2740 4568 644 732 906 1262 1953 505 555 709 999 1479
SQRT 9983 934 1137 1528 2322 3901 514 594 756 1084 1738 397 441 593 864 1332
MAC 12051 1410 1653 2122 3096 5071 774 867 1052 1422 2151 612 667 832 1124 1627
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0

10

20

30

40

50

60

70

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

4 8 16 32 64

P
S

N
R

 (
d

B
)

N
o

rm
a

li
z
e

d
 e

n
e

rg
y
 (

F
P

U
=

1
)

Number of rows

(a) Shift

0

10

20

30

40

50

60

70

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

4 8 16 32 64

P
S

N
R

 (
d

B
)

N
o

rm
a
li

z
e

d
 e

n
e
rg

y
 (

F
P

U
=

1
)

Number of rows

(b) Sobel

0

10

20

30

40

50

60

70

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

4 8 16 32 64

P
S

N
R

 (
d

B
)

N
o

rm
a
li
z
e
d

 e
n

e
rg

y
 (

F
P

U
=

1
)

Number of rows

(c) Sharpen

0

10

20

30

40

50

60

70

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

4 8 16 32 64

P
S

N
R

 (
d

B
)

N
o

rm
a
li
z
e

d
 e

n
e
rg

y
 (

F
P

U
=

1
)

Number of rows

(d) Roberts

Fig. 6. A2M2 normalized energy and PSNR: for different sizes, matching criteria, and kernels – values are averaged over the full dataset [16].

45%) depending on the size and the degree of approximation.
As shown in Fig. 6(b), A2M2 modules with 4-row reduce the
average energy of Sobel by 20% using 1-HD approximate
matching. Increasing the size to 8-row leads to a higher average
energy saving of 28% because of the higher hit rate. However,
increasing the size beyond 8-row is not optimum because the
amount of energy saving offered by the extra hit events is less
than the energy overhead due to the increased A2M2 sizes. We
should note that once we reduce the voltage of FPUs down
to 775mV, they face massive number of errors making them
impractical to use for low power computations.

Sobel and Shift kernels cannot tolerate the errors using 2-
HD approximate matching, as opposed to Sharpen and Roberts
filters. For all the kernels, PSNR is degraded with larger A2M2

sizes. Increasing the number of stored patterns beyond 32
(or 8) for Sobel (or Shift) abruptly increases the likelihood
of a false match that introduces more computational errors
resulting in a dropped PSNR of 30dB or lower. Considering
the acceptable PSNR of 30dB or higher, A2M2 modules with
8-row provide the best average energy saving for Sobel (28%),
Sharpen (23%), and Shift (34%); Robert exhibits the best
energy saving of 45% with A2M2 modules of size 16-row.
Choosing 8-row as the size of A2M2 modules brings an
average energy saving of 32% across all four kernels, while
guaranteeing the acceptable PSNR.

VI. CONCLUSION

We propose A2M2 as an associative memory module
that mixes emerging memristor technology benefits with the
application needs to deliver higher energy efficiency. A2M2

modules are tightly integrated to every FPU to save energy
by: I) recalling the frequent computations therefore avoiding
re-executions, and II) operating at VOS by accepting the
approximate matches. Using the memristor parts in designing
A2M2 enables 28% VOS while incurring up to 2 bits mismatch
during the operand matching. We observe that this introduced
error into the computations is tolerable by the image processing
kernels delivering an acceptable PSNR. Experimental results
on the Southern Islands GPU show the integrated A2M2

modules with 8-row reduce the average kernel energy by 32%.
Our continuing work will explore methods to integrate A2M2

in a programming environment that enables accuracy- and
reliability-aware optimizations of approximate kernels.
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