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Abstract—Relaxing the traditional abstraction of “near-
perfect” accuracy in hardware design can lead to significant
gains in energy efficiency, area, and performance. To exploit
this opportunity, there is a need for design abstractions that can
systematically incorporate approximation in hardware design. We
introduce Axilog, a set of language annotations, that provides the
necessary syntax and semantics for approximate hardware design
and reuse in Verilog. Axilog enables the designer to relax the accu-
racy requirements in certain parts of the design, while keeping the
critical parts strictly precise. Axilog is coupled with a Relaxability
Inference Analysis that automatically infers the relaxable gates
and connections from the designer’s annotations. The analysis
provides formal safety guarantees that approximation will only
affect the parts that the designer intended to approximate,
referred to as relaxable elements. Finally, the paper describes
a synthesis flow that approximates only the relaxable elements.
Axilog enables applying approximation in the synthesis process
while abstracting away the details of approximate synthesis from
the designer. We evaluate Axilog, its analysis, and the synthesis
flow using a diverse set of benchmark designs. The results show
that the intuitive nature of the language extensions coupled with
the automated analysis enables safe approximation of designs
even with thousands of lines of code. Applying our approximate
synthesis flow to these designs yields, on average, 54% energy
savings and 1.9× area reduction with 10% output quality loss.

I. INTRODUCTION

Emerging applications such as data analytics, machine
learning, multimedia, search, and cyber physical systems are
inherently approximate and can tolerate imprecision in many
parts of their computation. The prevalence of these applications
has coincided with diminishing performance and energy re-
turns from traditional CMOS scaling [1,2]. Several pioneering
works have shown significant benefits with approximation at
the circuit level [2–17]. Most of these techniques focus on
optimization of individual functional units and approximate
synthesis algorithms, opening avenues for utilizing approxima-
tion at the circuit level. However, there is a lack of abstractions
that enable designers to methodically control which parts of
the circuit can be synthesized approximately while keeping
critical elements, such as the control logic, precise. Thus, there
is a need for approximate hardware description languages for
systematic approximate hardware design.

In this work, we introduce Axilog–a set of concise, intu-
itive, and high-level annotations–that provides the necessary
syntax and semantics for approximate hardware design and
reuse in Verilog. Axilog enables designers to reason about
and delineate which parts of a hardware system or circuit
design are critical and cannot be approximated. A key factor
in our language formalism is to abstract away the details of
approximation while maintaining the designer’s oversight in
deciding which circuit elements are synthesized approximately.
Axilog is also devised with modular reusability as a first order
consideration. In general, hardware systems implementation
relies on modular design practices where the engineers build
libraries of modules and reuse them to build more complex

TABLE I: Summary of Axilog’s language syntax.
Phase Annotation Arg Description

relax Declare an argument as relaxable. Any design element that exclusively 
affects the argument is safe to approximate.

relax_local Similar to relax but the approximation does not cross module boundaries.

restrict Any design element that affects the argument is made precise unless 
explicitly relaxed with another annotation.

restrict_global All the design elements affecting the argument are precise. 

approximate output, 
inout Indicates the output carries relaxed sematics.

critical input Indicates the input is critical and  approximate elements cannot drive it. 

bridge wire, reg Allow connecting an approximate element to a critical input.

Design

Reuse

wire, 
reg, 

output, 
inout

hardware systems. Axilog provides a specific set of annotations
to support reusability. Section II elaborates on the Axilog
annotations for approximate hardware design and reuse.

There are a number of approximate software program-
ming languages including EnerJ [18] and Rely [19]. We do
not extend EnerJ or Rely’s language constructs to Verilog
because they require a large number of manual annotations.
Instead, we introduce a new set of annotations and couple
them with a Relaxability Inference Analysis that automatically
infers which circuit elements are relaxable with respect to the
designer’s annotations. The Relaxability Inference Analysis
formally guarantees that approximation will only affect the
circuit elements that the designer intended to approximate.
Section III details this analysis. In Section IV, we describe
an approximate synthesis flow that leverages a commercial
synthesis tool (Synopsys Design Compiler) to apply approx-
imation to the parts of the design that are deemed safe to
approximate by the analysis.

Section V evaluates Axilog, its analysis, and the synthesis
flow using a set of benchmark designs from domains including
arithmetic units, signal processing, robotics, machine learning,
and image processing. The evaluations use TSMC 45-nm
multi-Vt libraries at the slowest PVT corner and show that
by setting the quality loss to 5%, our framework achieves,
on average, 45% energy savings and 1.8× area reduction.
Allowing a quality loss of 10% results in 54% average energy
savings and 1.9× area reduction. Further, we evaluate the
robustness of our approach across a wide range of temper-
ature variations (∆T=125◦C). Axilog yields these significant
benefits while only requiring between 2 and 12 annotations
even with complex designs containing up to 22,407 lines of
code. These results confirm the effectiveness of Axilog in
incorporating approximation in the hardware design cycle.

II. APPROXIMATE HARDWARE DESIGN WITH AXILOG

Our principle objectives for approximate hardware design
in Axilog are (1) to carefully craft a small number of Verilog
annotations which provide the designer with complete over-
sight and governance over the approximation; (2) to minimize
the number of manual annotations while relying on the Relax-
ability Inference Analysis to automatically infer the designer’s
intent for approximation; (3) to relieve the designer from the
details of the approximate synthesis process by providing an
intuitive separation between approximate design and synthesis



and (4) to support the reuse of Axilog modules across different
designs without the need for reimplementation. Furthermore,
Axilog is a backward-compatible extension of Verilog. That
is, an Axilog code with no annotations is a normal Verilog
code and the design carries the traditional semantics of strict
accuracy. To this end, Axilog provides two sets of language
extensions, one set for the design (Section II-A) and the
other for the reuse and interfacing of hardware modules (Sec-
tion II-B). Table I summarizes the syntax for the design and
reuse annotations. The annotations for design dictate which
operations and connections are relaxable (safe to approximate)
in the module. Henceforth, for brevity, we refer to operations
and connections as design elements. The annotations for reuse
enable designers to use the annotated approximate modules
across various designs without the need for reimplementation.
The back-end flow then uses these annotations to determine
where in the design to use less costly hardware resources that
allow relaxed accuracy (see section III). We provide detailed
examples to illustrate how designers are able to appropriately
relax or restrict the approximation in hardware modules. Using
these examples, we elucidate the interplay between annotations
and language constructs for hardware design, such as instan-
tiation, concurrent assignment, and vector declaration. In the
examples, we use background shading to highlight the relaxable
elements inferred by the analysis.

A. Design Annotations
Axilog allows each design element to be precise or ap-

proximate. The designer’s annotations provide the guidelines
to identify the design elements that are safe to approximate.
Relaxing Accuracy Requirements By default, all design el-
ements (operations and connections) are precise. The designer
can use the relax(arg) statement to implicitly approximate a
subset of these elements. The variable arg is either a wire, reg,
output, or inout. Design elements that exclusively affect signals
designated by the relax annotation are safe to approximate. The
use of relax is illustrated using the following example.
module full_adder(a, b, c_in, c_out, s);

input a, b, c_in; output c_out;
approximate output s;
a s s i g n s = a ˆ b ˆ c_in;
a s s i g n c_out = a & b + b & c_in + a & c_in;
r e l a x(s);

endmodule

In this full adder module, s is the sum of the three inputs,
a, b, and c in. The relax(s) statement shows the designer’s
intent to relax the accuracy requirement of the design elements
that exclusively affect s, while keeping the unannotated c out
(carry out) signal precise. The relax(s) statement implies that
the analysis can automatically approximate the XOR opera-
tions. Adhering to the designer’s intent, the unannotated c out
signal and the logic generating it will not be approximated.
Furthermore, since s will carry relaxed semantics, its corre-
sponding output is marked with the approximate annotation.
In general any output port that carries approximate semantics
needs to be marked with the approximate annotation. The
approximate annotation is necessary for reusing modules and
will be discussed in Section II-B. With these annotations
and the automated analysis, the designer does not need to
individually declare the inputs (a, b, c in) or any of the XOR (ˆ)
operations as approximate. Thus, while designing approximate
hardware modules, this abstraction significantly reduces the
burden on the designer to understand and analyze complex
data flows within the circuit.

Scope of approximation. Scope of the relax annotation crosses
the boundaries of instantiated modules. The code on the left
side of the following example illustrates this characteristic.
The relax(x) annotation in the nand gate module implies that
the AND (&) operation in the and gate module is relaxable. In
some cases, the designer might not prefer the approximation to
cross the scope of the instantiated modules. For example, the
designer might not want the approximation to affect a third-
party IP core. Axilog provides the relax local annotation to
limit the scope of approximation and its effects on the logic
within the same module in which the annotation is declared.

module and_gate(n,a,b);
input a, b; output n;
a s s i g n n = a & b;

endmodule
module nand_gate(x, a, b);

input a, b;
approximate output x;
wire w0;
and_gate a1(w0, a, b);
a s s i g n x = ˜ w0;
r e l a x(x);

endmodule

module and_gate(n,a,b);
input a,b; output n;
a s s i g n n = a & b;

endmodule
module nand_gate(x, a, b);

input a, b;
approximate output x;
wire w0;
and_gate a1(w0, a, b);
a s s i g n x = ˜ w0;
r e l a x l o c a l(x);

endmodule

The code on the right side shows that the relax local annotation
does not affect the semantics of the instantiated and gate
module, a1. In this case, the AND(&) operation in the and gate
module is not relaxable. However the NOT(˜) operation which
shares the scope of the relax local annotation is relaxable.
The scope of approximation for both relax and relax local
is the module in which they are declared. Relax penetrates
the boundary of the module instantiations but relax local does
not. The relax local and relax annotations can also be applied
selectively to certain bits of a vector.
Restricting approximation. In some cases, the designer might
want to explicitly restrict approximation in certain parts of the
design. Axilog provides the restrict(arg) annotation that ensures
that any design element that affects the annotated argument
(arg) is precise, unless a preceding relax or relax local anno-
tation has made the driving elements relaxable.

module and_gate(n, a, b);
input a,b; output n;
a s s i g n n = a & b;

endmodule
module nand_gate(x, a, b);

input a, b;
approximate output x;
wire w0;
and_gate a1(w0, a, b);
a s s i g n x = ˜ w0;
r e l a x(w0)
r e s t r i c t (x);

endmodule

module and_gate(n, a, b);
input a,b; output n;
a s s i g n n = a & b;

endmodule
module nand_gate(x, a, b);

input a, b;
approximate output x;
wire w0;
and_gate a1(w0, a, b);
a s s i g n x = ˜ w0;
r e s t r i c t (w0)
r e l a x(x);

endmodule

The above examples show the interplay between the relax and
restrict annotations. On the left side, the designer intends to
relax the accuracy of the elements that affect w0 while keeping
the ones that affect x precise; hence relax(w0) and restrict(x).
With these two declarations, the NOT(˜) operation is not
approximated but the AND(&) operation will be approximated.
Conversely, in the example on the right, the designer relaxes
the accuracy of the elements that affect x excluding that which
affects w0. The pair of restrict(w0) and relax(x) imply that
the NOT operation is approximated while the and gate and
its AND(&) operation remains precise. The restrict annotation
crosses the boundary of instantiated modules. In both exam-
ples, the output x carries approximate semantics and needs to
be annotated with approximate.



Restricting approximation globally. The restrict annotation
does not have precedence over relax. However, there might be
cases where the designer intends to override preceding relax
annotations. For instance, the designer might intend to reuse
a third-party approximate IP core in a precise setting. Certain
approximate outputs of the IP core might be used to drive
critical signals such as the ones that feed to the controller state
machine, write enable of registers, address lines of a memory
module, or even clock and reset. These signals are generally
critical to the functionality of the circuit and the designers
would want to avoid approximating them. To ensure the
precision of these signals Axilog provides the restrict global
annotation that has precedence over relax and relax local.
The restrict global(arg) implies that any design element that
affects arg shall not be subject to any approximation. Note that
restrict global penetrates through the boundaries of instantiated
modules. The following code snippet illustrates the semantics
of the restrict global annotation.

module and_gate(n,a,b); module nand_gate(x, a, b);
input a,b; input a, b; output x; wire w0;
approximate output n; and_gate a1(w0, a, b);
a s s i g n n = a & b; a s s i g n x = ˜w0;
r e l a x(n); r e s t r i c t _global(x);

endmodule endmodule

In the code, restrict global(x) precedes the relax(n) in the
and gate module. The restrict global annotation does not
allow any form of relaxation to affect the logic that drives x and
therefore it is not declared approximate. The rest of this section
discusses language annotations, similar to the approximate
annotation, that enable reusability in Axilog.

B. Reuse Annotations
This section describes the abstractions that are necessary

for reusing approximate modules. Our principle idea for these
language abstractions is maximizing the reusability of the
approximate modules across designs that may have different
accuracy requirements. Axilog’s reuse annotations concisely
modify the module interface. These annotations declares which
outputs carry approximate semantics and which inputs cannot
be driven by relaxed wires without explicit annotations.
Outputs carrying approximate semantics. As mentioned, the
designers can use annotations to selectively approximate the
design elements in a module. These design elements might
have a direct or indirect effect on the accuracy of some of
the output ports. An approximate module could be given to a
different vendor as an IP core. In this case the reusing designer
needs to be aware of the accuracy semantics of the input/output
ports without delving into the details of the module. To
enable the reusing designer to view the port semantics, Axilog
requires that all output ports that might be influenced by
approximation to be marked as approximate. Below, the code
snippets illustrate the necessity of the approximate annotation.

module and_gate(n,a,b);
input a,b;
approximate output n;
a s s i g n n = a & b;
r e l a x(n);

endmodule
module nand_gate(x, a, b);

input a, b;
approximate output x;
wire w0;
and_gate a1(w0, a, b);
a s s i g n x = ˜ w0;

endmodule

module and_gate(n,a,b);
input a, b;
output n;
a s s i g n n = a & b;

endmodule
module nand_gate(x, a, b);

input a, b;
approximate output x;
wire w0;
and_gate a1(w0, a, b);
a s s i g n x = ˜ w0;
r e l a x(x);

endmodule

On the left side, output n carries relaxed semantics due to the
relax annotation and is therefore declared as an approximate
output. Consequently, the a1 instance in the nand gate module
will cause its x output to be relaxed. Therefore, the x marked
as an approximate output. On the right side, the x output is
explicitly relaxed and x is marked as an approximate output.
Relaxing x also implies that the AND operation is relaxable
in the a1 instance. However, the and gate module here does
not carry approximate semantics by default. Therefore, the
output of the and gate is not marked as approximate and the
approximation is only specific to the a1 instance.
Critical inputs. At design time, the designer of a module may
have no knowledge of the circumstances in which the module
will be used. The designer may want to prevent approximation
to affect certain inputs, which are critical to the functionality of
the circuit. To mark these input ports, Axilog provides critical
annotation. Wires that carry approximate semantics cannot
drive the critical inputs without designer’s explicit permission
at the time of reuse.
module multiplexer(select, x0, x1, z);

c r i t i c a l input select;
input x0, x1; output z;
a s s i g n z = (s == 1) ? x1 : x0;

endmodule

In this example, the select input of the multiplexer is declared
as critical to prevent approximation to affect it.
Bridging approximate modules to critical inputs. As of yet,
Axilog does not allow any wire that is affected by approxi-
mation to drive a critical input. However, we recognize that
there may be cases when the reusing designer entrusts critical
input with an approximate driver. For such situations, Axilog
provides an annotation called bridge, which shows designer’s
explicit intent to drive a critical input by an approximate signal
and certifies this connectivity. The example below shows the
use of the bridge annotation.
module top(x0, x1, z);

input x0, x1;
approximate output z; wire s;
and a1(s, x0, x1);
r e l a x(s); br idge(s);
multiplexer m1(s, x0, x1, z);

endmodule

In this code, the designer annotation relaxes the logic driving
s that is connected to a critical input select of multiplexer.
This connectivity therefore requires designer’s consent. The
bridge(s) annotation certifies the connectivity of approximated
signal s to the select critical input of the m1 instance of the
multiplexer module.

In summary, the semantics of the relax and restrict annota-
tions provides abstractions for designing approximate hardware
modules while enabling Axilog to provide formal guarantees
of safety that the approximation will only be restricted to the
design elements that are specifically selected by the designer.
Moreover, the approximate output, critical input, and bridge
annotations enable reusability of the modules across different
designs. In addition to the modularity, the design and reuse
annotations altogether enable approximation polymorphism in
hardware design. That is, with Axilog, the modules with
approximate semantics can be used in a precise manner
without reimplementation and conversely precise modules can
be instantiated with approximate semantics. These abstractions
provide a natural extension to the current practices of hard-
ware design and enable the designer to apply approximation



with full control without adding substantial overhead to the
conventional hardware design and verification cycle.

III. RELAXABILITY INFERENCE ANALYSIS

After the designer provides annotations, the compiler needs
to perform a static analysis to find the approximate and precise
design elements in accordance with these annotations. This
section presents the Relaxability Inference Analysis, a static
analysis that identifies these relaxable gates and connections.
To simplify the implementation, we first translate the RTL Ver-
ilog design to primitive gates, while maintaining the module
boundaries. We then apply the Relaxability Inference Analysis
at the gate level. The Relaxability Inference Analysis is a
backward slicing algorithm that starts from the annotated wires
and iteratively traverses the circuit to identify which wires must
carry precise semantics. Subtracting the set of precise wires
from all the wires in the circuit yields the relaxable set of
wires. The gates that immediately drive these relaxable wires
are the ones that the synthesis can potentially approximate.
Algorithm 1 illustrates the procedure that identifies the precise
wires.
Inputs: K: Circuit-under analysis M: Set of all the modules within the circuit

R: Set of all the globally restricted wires
Output: P: Set of precise wires

Initialize P ← ∅
for each mi ∈ M do

I: Set of all the inputs ports in mi A: Set of all the relaxed wires in mi

LA: Set of all the locally relaxed wires in mi

Sink: Set of all the restricted wires in mi ∪ Set of unannotated output ports
UW : Set of wires driven by modules that are instantiated within mi

//Phase1: This loop identifies the mi module’s local precise wires (wi)
Initialize N ← ∅
while (Sink 6= ∅) do

wi ← dequeue(Sink)
if (wi /∈ I and wi /∈ (A ∪ LA)) then

if (wi ∈ UW ) then
N .append(wi)

else
P.append(wi)

end if
enqueue(Sink, for all the input wires of the gate that wi in mi)

end if
end while
//Phase2: This loop identifies the relaxed wires (wj ) that are driven by the
mj submodules; the mj submodules are the instantiated modules in mi

for (wj ∈ UW ) do
if (wj /∈ N and wj drives wire ∈ A) then

mj = module driving the wire wj

mj .A.append(wj )
end if

end for
end for
//Phase3: This loop identifies the precise wires (wk) that are globally restricted
while (R 6= ∅) do

wk ← dequeue(R)
P.append(wk)
R.append(Set of all the input wires of the gate that is driving wk)

end while
Algorithm 1: Backward flow analysis for finding precise wires.

This procedure is a backward-flow analysis that operates in
three phases: (1) The first phase starts by identifying a set of
sink wires. The sink wires are either unannotated outputs or
wires that are explicitly annotated with restrict. The procedure
identifies the gates that are driving the sink wires and adds
their input wires to the precise set if they are not explicitly
annotated as relaxed. The algorithm repeats this step for the
newly added wires until it reaches an input or an explicitly
relaxed wire. However, this phase is only limited to the scope
of the module-under-analysis; (2) In the second phase, the
algorithm identifies the relaxed outputs of the instantiated
submodules. Due to the semantic differences between relax
and relax local, the output of a submodule will be considered

relaxed if the following two conditions are satisfied. (a) The
output drives another explicitly relaxed wire, which is not
inferred due to a relax local annotation; and (b) the output is
not driving a wire already identified as precise. The algorithm
automatically annotates these qualifying outputs as relaxed.
The analysis repeats these two phases for all the instantiated
submodules. For correct functionality of this analysis, all the
module instantiations are distinct entities in the set M and are
ordered hierarchically; (3) In the final phase, the algorithm
marks any wire that affects a globally restricted wire as precise.
This final phase allows the restrict global to override any other
annotations in the design.

Finally, the Relaxability Inference Analysis–part of which
is presented in Algorithm 1–identifies the safe-to-approximate
subset of the gates and wires with regards to the designer
annotations. An approximation-aware synthesis tool can then
generate an optimized netlist, with the approximation applied
to only the safe-to-approximate circuit elements.

Axilog’s language semantics and the Relaxability Inference
Analysis are independent of the approximate synthesis. That is,
Axilog abstracts away the details of the approximate synthesis
and relieves the designer from its specifics. Axilog can be used
with virtually any approximate synthesis tool.

IV. APPROXIMATE SYNTHESIS

In our framework, the synthesis tool first takes in the
annotated Verilog source code and produces a gate-level netlist
without employing any approximate optimizations. However,
the synthesis tool preserves the approximate annotations.
Then, the Relaxability Inference Analysis identifies the safe-
to-approximate subset of the gates and wires with regards
to the designer annotations. In the next step, the synthesis
tool applies approximate synthesis and optimization techniques
only to the safe-to-approximate circuit elements. The tool has
the liberty to apply any approximate optimization technique
including gate substitution, gate elimination, logic restructur-
ing, voltage over-scaling, and timing speculation as it deems
prudent. The objective is to minimize a combination of error,
delay, energy, and area considering final quality requirements.
Figure 1 shows one such approximate synthesis technique.
Our synthesis technique uses commercial tools to selectively
relax timing requirements on safe-to-approximate paths of the
circuit. As shown in Figure 1a, we first use Synopsys Design
Compiler to synthesize the design with no approximation. We
perform a multi-objective optimization targeting the highest
frequency while minimizing power and area. We will refer to
the resulting netlist as the baseline netlist and its frequency
as the baseline frequency. We account for variability by using
Synopsys PrimeTimeVX which, given timing constraints, pro-
vides the probability of timing violations due to variations. In
case of violation, the synthesis process is repeated by adjusting
timing constraints until PrimeTimeVX confirms no violations.

Second, as shown in Figure 1b, we selectively relax the
timing constraints and provide more slack on the safe-to-
approximate paths. For the precise paths, the timing constraints
are set to the most strict level (the baseline frequency). We then
extract the post-synthesis gate delay information in Standard
Delay Format (SDF) and perform gate-level timing simulations
with a set of input datasets. We use the baseline frequency
for the timing simulations even though some of the safe-to-
approximate paths are synthesized with more timing slack. The
timing simulations yield a set of output values that may incur
quality loss since the approximated paths in the circuit may
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Fig. 1: Synthesis flow for (a) baseline and (b) approximate circuits.

not generate the correct output at the baseline frequency. We
then measure the quality loss and if the quality loss is more
than designer’s requirements, we tighten the timing constraints
on the safe-to-approximate paths. We repeat this step until the
designer quality requirements are satisfied. This methodology
has a potential to reduce energy and area by utilizing slower
and smaller gates in the safe to approximate paths in which
we use relaxed timing constraints.

V. EVALUATION

To evaluate the effectiveness of Axilog, we annotate sev-
eral benchmark designs and apply our Relaxability Inference
Analysis and synthesis flow.
Benchmarks and Code Annotation. Table II lists the de-
sign benchmarks implemented in Verilog. We use Axilog
annotations to judiciously relax some of the circuit elements.
The benchmarks span a wide range of domains including
arithmetic units, signal processing, robotics, machine learn-
ing, and image processing. Table II also includes the input
datasets, application-specific quality metrics, number of lines,
and number of Axilog annotations for design and reuse.
Axilog annotations. We annotated the benchmarks with the
Axilog extensions. The designs were either downloaded from
open-source IP providers or developed without any initial an-
notations. After development, we analyzed the source Verilog
codes to identify relaxable parts. The last two columns of
Table II show the number of design and reuse annotations for
each benchmark. The number of annotations range from 2 for
Brent-Kung with 352 lines to 12 for InverseK with 22,407 lines.
The Axilog annotation coupled with the Relaxability Inference
Analysis has enabled us to only use a handful of annotations
to effectively approximate designs that are implemented with
thousands of lines of Verilog.

The relaxable parts are more common in datapath of
the benchmarks designs rather than their control logic. For
example, K-means involves a significant number of multiplies
and additions before the calculated result can be written in a
memory module. We used the relax annotations to declare these
arithmetic operations approximable; however, we used restrict
to ensure the precision of all the control signals. For smaller
benchmarks, such as Brent-Kung, Kogge-Stone and Wallace Tree,
only a subset of the least significant output bits were annotated
to limit the quality loss. To be able to reuse some of the design,
we also annotated the benchmarks with reuse annotations. The
number of this type of annotation are listed in the last column
of Table II. For example, the add sub signal that selects the
addition and subtraction operation for an ALU is annotated
with the critical reuse annotation. Overall, one graduate student
was able to annotate all the benchmarks within two days
without being involved in their design. The intuitive nature
of the Axilog extensions makes annotating straightforward.
Application-specific quality metrics. Table II shows the
application-specific error metrics to evaluate the quality loss

TABLE II: Benchmarks, input datasets, and error metrics.

Benchmark Name Domain Input Data Set Quality 
Metric # Lines

Brent-Kung (32-bit adder) Arithmetic 
Computation

1,000,000 32-bit 
integers 

Avg Relative 
Error 352 1 1

FIR (8-bit FIR filter) Signal 
Processing

1,000,000 8-bit 
integers 

Avg Relative 
Error 113 6 5

ForwardK (forward 
kinematics for 2-joint arm) Robotics 1,000,000 32-bit 

fixed-point values
Avg Relative 
Error 18,282 5 4

InverseK (inverse kinematics 
for 2-joint arm) Robotics 1,000,000 32-bit 

fixed-point values
Avg Relative 
Error 22,407 8 4

K-means (K-means 
clustering)

Machine 
Learning

1024x1024-pixel 
color image Image Diff 10,985 7 3

Kogge-Stone (32-bit adder) Arithmetic 
Computation

1,000,000 32-bit 
integers 

Avg Relative 
Error 353 1 1

Wallace Tree (32-bit 
Multiplier)

Arithmetic 
Computation

1,000,000 32-bit 
integers 

Avg Relative 
Error 13,928 5 3

Neural Network (feedforward 
neural network)

Machine 
Learning

1024x1024-pixel 
color image Image Diff 21,053 4 3

Sobel (sobel edge dectector) Image 
Processing

1024x1024-pixel 
color image Image Diff 143 6 3
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Fig. 2: Reductions in (a) energy and (b) area when the quality degradation
limit is set to 5% and 10% in the synthesis flow.

due to approximation. Using application-specific quality met-
rics is commensurate with prior work on approximate comput-
ing and language design [18,19]. In all cases, we compare the
output of the original baseline application to the output of the
approximated design. For the benchmarks which generate nu-
meric outputs, including brent-kung adder, FIR filter, forward
kinematics, inverse kinematics, kogge-stone adder, and wallace
tree multiplier, we measure the average relative error. For the
neural network, kmeans clustering, and sobel edge detection
applications, which produce images, we use the average root-
mean-square image difference.
Tools and experimental setup. We use Synopsys Design
Compiler (G-2012.06-SP5) and Synopsys PrimeTime (F-
2011.06-SP3-2) for synthesis and energy analysis, respectively.
We use Cadence NC-Verilog (11.10-s062) for timing sim-
ulation with SDF back annotations extracted from various
operating corners. We use the TSMC 45-nm multi-Vt standard
cells libraries and the primary results are reported for the
slowest PVT corner (SS, 0.81V, 0◦C).
Experimental results. Figure 2 illustrates the energy savings
(2a) and area reduction (2b) when the quality loss limit is
set to 5% and 10% in our synthesis flow. The baseline is
synthesis with no approximation. With the 5% limit, our
framework achieves, on average, 45% energy and 1.8× area
reduction, respectively. When the quality loss limit is set
to 10%, the average gains grow to 54% energy reduction
and 1.9× area reduction. The Axilog annotations force the
control logic in these benchmarks to be precise. Therefore,
the benchmarks such as InverseK, Wallace Tree, Neural Network,
and Sobel–that have a larger datapath–provide a larger scope
for approximation and are usually the ones that see larger
benefits. The structure of the circuit also affects the poten-
tial benefits. For instance, Brent-Kung and Kogge-Stone adders
benefit differently from approximation due to the structural
differences in their logic trees. The FIR benchmark shows the
smallest energy savings since it is a relatively small design
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Fig. 3: Visual depiction of the output quality degradation with approximate
synthesis for the Sobel application.

TABLE III: The energy reduction when the quality degradation limit is set to
10% for two different PVT corners. Here, we consider temperature variations.

PVT Corners Brent-
Kung FIR ForwardK InverseK K-means Kogge-

Stone
Wallace 

Tree
Neural 

Network Sobel Geomean

(SS, 0.81V, 0°C) 34% 11% 78% 87% 69% 24% 65% 83% 57% 54%
(SS, 0.81V, 125°C) 32% 7% 72% 79% 65% 21% 63% 72% 41% 48%

which does not provide many opportunities for approximation.
Nevertheless, FIR still achieves 11% energy savings and 7%
area reduction with 10% quality loss. This result suggests
that even designs with limited opportunities for approximation
can benefit significantly from the precisely targeted relaxation
that Axilog provides. We evaluate the effectiveness of our
technique in the presence of temperature variations for a full
industrial range of 0◦C to 125◦C. We measured the impact of
temperature fluctuations on the energy benefits for the same
relaxed designs. Table III compares the energy benefits at the
lower and higher temperatures (the quality loss limit is set
to 10%). In this range of temperature variations, the average
energy benefits ranges from 54% (at 0◦C) to 48% (at 125◦C).
These results confirm the robustness of our framework that
yields significant benefits even when temperature varies.

We visually examine the output of the Sobel applica-
tion,which generates an image. Figure 3 displays the output
with 0% (no approximation), 5%, and 10% quality degradation.
Interestingly, even 10% quality loss is nearly indiscernible to
the eye. Nevertheless, for the 10% error level approximate syn-
thesis provides 57% energy saving and 1.82× area reduction.

These results suggest that Axilog can achieve significant
savings while preserving the application functionality. This
tradeoff is attainable because the high-level language anno-
tations and design abstractions allow the designer to target ap-
proximation where it is most effective without compromising
the critical parts of the computation. Furthermore, the synthesis
tunes the approximate parts of the circuit within the quality
constraints specified by the designer. Axilog thereby achieves a
balance between quality and efficiency which is advantageous
for the specific application.

VI. RELATED WORK

A growing body of research shows the applicability and
significant benefits of approximation [2–16]. However, prior
research has not explored extending hardware description
languages for systematic and reusable approximate hardware
design. Below, we discuss the most related works.
Approximate programming languages. EnerJ [18] provides
a set of type qualifier to manually annotate all the approximate
variables in the program. If we had extended EnerJ’s model to
Verilog, the designer would have had to manually annotate all
approximate wires/regs. Rely [19] asks for manually marking
both approximate variables and operations, which requires
more annotations. The work in [20] proposes language ex-
tension to the OpenMP software programming language that
allows programmers to manually specify approximable regions
of code. With our abstractions, the designer marks a few

wires/regs and then the analysis automatically infers which
other connections and gates are safe to approximate.
Approximate circuit design and synthesis. Prior work pro-
poses imprecise implementations of custom instructions [17]
and specific hardware blocks [4, 5, 7–10]. The work in [6,
11–16] propose algorithms for approximate synthesis that
leverages gate pruning, timing speculation, or voltage over-
scaling. While all these synthesis techniques provide signifi-
cant improvements, they do not focus on providing hardware
description language semantics for methodical approximate
hardware design and reuse. In fact, our framework can benefit
and leverage all these synthesis techniques.

VII. CONCLUSION

Axilog provides a less arduous framework compared to a
mere extension of existing approximate programming models
for hardware design. Axilog’s automated analysis enables the
designers to approximate hardware without delving deeper into
the intricacies of synthesis and optimization. Furthermore, all
the abstractions presented in this paper are concrete extensions
to the mainstream Verilog HDL providing designers with
backward compatibility. We evaluated Axilog, its automated
Relaxability Inference Analysis, and the presented approximate
synthesis and demonstrate 54% average energy savings and
1.9× area reduction with merely 2 to 12 annotations per
benchmark. These results confirm that Axilog is a methodical
step toward practical approximate hardware design and reuse.
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