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Abstract—Approximate computing provides an opportunity
for exploiting application characteristics to trade the accuracy
for gains in energy efficiency. However, such opportunity must
be able to bound the error that the system designer provides to the
application developer. Space-efficient probabilistic data structure
such as Bloom filter can provide one such means. Bloom filter
supports approximate set membership queries with a tunable rate
of false positives (i.e., errors) and no false negatives. We propose
a resistive Bloom filter (ReBF) to approximate a function by
tightly integrating it to a functional unit (FU) implementing the
function. ReBF approximately mimics partial functionality of the
FU by recalling its frequent input patterns for computational
reuse. The accuracy of the target FU is guaranteed by bounding
the ReBF error behavior at the design time. We further lower
energy consumption of a FU by designing its ReBF using low-
power memristor arrays. The experimental results show that
function approximation using ReBF for five image processing
kernels running on the AMD Southern Islands GPU yields on
average 24.1% energy saving in 45 nm technology compared to
the exact computation.

I. INTRODUCTION

The scaling of physical dimensions in semiconductor cir-
cuits opens the way to an astonishing over 7 billion transistors
on massively parallel integrated architectures enforcing energy
efficiency as a primary concern [1]. Emerging applications
including graphics, multimedia, recognition, and data min-
ing offer significant degrees of tolerance to the precision
in computing results, thus enabling the emerging vision of
“approximate computing”. Approximate computing provides
higher energy efficiency by accepting errors for a specific
application. As an example, approximate adders are introduced
by reducing circuit complexity [2], [3]. These techniques
typically consider a specific set of input patterns to design
approximate hardware/circuit, hence they cannot guarantee
error bounds for all data set.

Another emerging, and unrelated, development is growing
use and capability of non-volatile memory (NVM) in systems.
NVM today offers high density and near zero leakage power
that enables energy-efficient computation on memory-centric
architectures. Resistive RAM (ReRAM), in particular, offers
low-write energy, fast read access time and low read volt-
age [4]. A 1-Mb ternary content addressable memory (TCAM)
test chip is proposed as an energy-efficient memory-centric
architecture providing > 10× smaller cell size compared to
SRAM-based TCAMs [5]. Such properties determine memris-
tors are a promising replacement for traditional SRAM-based
memories in low-power and high capacity designs.

Value locality and similarity inside various applications

[6] especially in data-level parallel applications provide op-
portunity to reuse frequent computations [7], [8], thereby, im-
proving energy-efficiency by avoiding redunadant processing.
In computational reuse, memories play an important role in
maintaining pre-calculated computations. In this context, a
Bloom Filter (BF) provides a data structure with the ability
to provide probabilistic response to membership queries. A
BF stores a set of elements (i.e., patterns) using multiple hash
functions performed on them. The size of the memory required
for a BF scales linearly with the number of stored elements in
the filter [9]. BF data structure is extensively used to keep track
of incoming data and states of flows in network applications
[10], [11].

Thus, our working thesis is that a combination of approx-
imation in computing with enhanced reuse methods enabled
by NVM can yield high energy efficiency. In this paper, we
explore this possibility for programmable parallel architec-
tures. In particular, this work aims to increase computational
reuse for approximate computing with bounded errors by
designing BFs using non-volatile memory elements. We make
the following contributions: I) We design BFs to generate an
approximate function with a guaranteed error bound. Hence, a
set of BFs is tightly-coupled to individual FU to approximately
represent highly frequent computations of the associated FU.
Each BF reports no false negatives (i.e., recall rate of 100%),
and has a tunable parameter to control false positives. II) To
further lower energy consumption and enable scalability, we
utilize low-power memristor array in designing resistive Bloom
filter (ReBF). III) We integrate ReBF into the Southern Islands
GPU that yields on average 24.1% energy saving for five image
processing kernels. Caltech 101 computer vision data set [12]
is used for profiling and finding the error bounds.

The rest of the paper is organized as follows. Section II ex-
plains our proposed methodology to use BF in approximating
a function with the bounded error rate. The proposed scalable
BF to demonstrate additional functionality is presented in Sec-
tion III. The experimental results are discussed in Section IV.
Finally, Section V concludes the paper.

II. APPROXIMATE COMPUTING WITH BLOOM FILTERS

A. Bloom Filters (BFs)
BFs provide a compact representation of a set of elements.

A BF consists of an m-bit vector which is programmed using
k random hash functions. For a given element, k bits of the
Bloom vector (BV), selected by the k hash functions, are set in
the programming stage. For a look up process, the same hash
functions are computed on an input pattern. If the k bits in the



vector determined by k hash values are all set, the input pattern
is said to be present in the BF. Since those k values may also
be obtained by any of actual members, the presence of an input
in the BF may be confirmed erroneously. On the other hand,
if at least one of the k bits is not set, the input is certainly not
the member of the BF. This explains that a BF has a recall
rate of 100% and there is no false negative; however, it allows
tunable false positives (FP), the rate of which is formulated
as:

f p = (1− e−
nk
m )k (1)

where, n is the number of patterns saved in the BF, m is the
length of BV, and k is the number of hash functions.

The hardware implementation of the BF is represented in
Figure 1. The BV is shown as an m-bit array. For a look
up operation, BF, at first, computes k hash functions (HF)
concurrently. The input data is also split into the number of
bytes to parallelize the computations of each hash function.
Each HFB module inside the HF performs computation on
one byte of the data. Each HFB is made of XOR gates, and
a number of coefficients, each has log2(m) bits. Coefficients
are XORed if the corresponding bit of the input is one. The
last XOR gate in each HF produces the final address. If all of
the k bits of the BV are one, hit occurs and the EnL signal
becomes one.
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Fig. 1: The hardware architecture of Bloom filter.

B. Utilizing Bloom Filters for Function Approximation
In this section, we describe our proposed method that

exploits BF to expand the probabilistic membership query to
function approximation.

To avoid redundant computation overhead due to re-
execution of an operation for the same inputs, we identified
highly frequent output values in the function co-domain and
stored their corresponding input patterns in a set of BFs. To
perform a function for a given input, at first, the membership
of the input is queried in the BFs associated to the function. If
a hit event occurs, the corresponding output value is returned
as the final output of the function, and all pipeline stages in the
implementation of the functional unit (FU) are clock-gated to
save energy. As described in Section II-A, positive responses
of the BF to the membership queries are not always correct due
to the FP. The source of error in our computation, is a FP event
where the BF wrongly reports the output value as the function
output. Here, the rate of the error corresponds to the FP rate,
and can be controlled by tuning the parameters affecting the
FP (i.e., n, m, k). In case of a miss, the FU continues the
exact computation for the mismatched input patterns. Based

on the aforementioned details, a set of BFs can be exploited
to approximate partial outputs of a function with the bounded
errors that provide guaranteed quality. The output quality, here,
is maintained by adjusting the FP rate of BFs.

C. Bounding Bloom Filter Errors at Design Time
In our method, we are able to limit the error rate (i.e., the

degree of approximation) to meet the acceptable output quality
by limiting the FP rate of associated BFs at the design time.

TABLE I: Maximum Acceptable Error Rate and Output PSNR

App ADD MUL MAC SQRT PSNR (min, max, avg) (dB)

Sobel Filter 0.001 0.0001 0.001 0.001 (26.4,32.9,28.0)

Sharpen − 0.01 0.01 0.01 (24.7, 36.8, 28.12)

Roberts − 0.001 0.001 0.001 (25.4, 32.5, 27.9)

Prewitt − 0.01 0.001 0.01 (25.2, 33.3, 27.1)

Scharr − 0.001 0.0001 0.001 (26.1, 31.1, 27.2)

We focus on multimedia applications that are amenable
to approximation. The multimedia applications offer the well-
known notion of output quality with peak signal-to-noise ratio
(PSNR). With approximate computing, an application with
PSNR of equal or greater than 25 dB can still appear to execute
correctly from the user’s perspective [13]. FUs in the GPU
architecture are targeted for integrating BFs. To ensure that
the output quality will never go below the desired threshold,
we need to configure BFs. We require, at first, to identify the
maximum tolerable error rate for each FU in a given kernel.
We set the error magnitude conservatively to its maximum
value for each FP event during the design time analysis. Then,
the parameters of BF should be set to yield the FP rate less
than or equal to the error rate. To do that, we need to specify
the number of inputs to store in the BF through profiling. For
the sake of clarity, we describe the process of configuring BFs
in more detail, given the fact that four types of operations
are identified in GPU architecture: adder (ADD), multiplier
(MUL), multiply-accumulator (MAC) and SQRT.
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Fig. 2: Energy consumption comparison of the proposed architecture
using CMOS BFs and conventional FU.

Maximum Tolerable Error Rates. To find maximum tol-
erable error rates of the FUs used in a kernel, we use the
following algorithm, and simulate the kernel for 30 different
images using Multi2Sim [14]. The desired output quality, here,
is assumed to be equal or greater than 25 dB. However, the
algorithm has the ability to find the maximum error rate for
any given PSNR threshold.

The first step is to find the maximum tolerable error rate
for each individual operation. To achieve this, each time, one
operation is selected and random error with different rates is
injected into it. We start from error rate of 0.1 and decrease
it until the average PSNR of final output images becomes
acceptable. The next step aims to inject errors to all FUs



to see their combined effect on the output quality. Here,
we inject errors simultaneously into all operations with the
corresponding error rate obtained in the previous step. In case
of unacceptable output quality, in the third step, we identify
the top frequent operation using the assembly code of the
kernel generated by Multi2Sim, and decrease its error rate by
ten times. The process is repeated for the next frequent FU
until the acceptable PSNR is achieved. Table I summarizes
the maximum tolerable error rate obtained for each FU of five
image processing applications, and the corresponding PSNR.
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Fig. 3: 1T-1R implementation of ReBF.

The Number of Input Patterns Saved in BF. To specify
the frequent outputs and their corresponding input patterns,
we performed profiling for every FU in the kernel using 10%
of the training samples. If we want to save all inputs of each
frequent output value, large size of BF is needed. To overcome
this problem, we save a few number of input patterns for an
output which constitutes most fraction of the hit rate achieved
by that output (e.g., one (329) input(s) for the most frequent
output value of MAC in Sobel leads to hit rate 6.2% (7.3%)).

BF Configuration. After specifying the FP rate of BFs and
the number of elements to save (i.e., n) in the profiling stage,
we change the value of m, and k to meet the pre-determined
error rates and design a BF for each operation to investigate
its energy overhead.

III. REBF: RESISTIVE BLOOM FILTER

Before introducing architecture of a ReBF, let us examine
energy efficacy of CMOS implementation of BFs. We imple-
ment BFs configured for five image processing applications
using Verilog, and synthesized them with 45 nm standard
CMOS library. Each individual output value is stored in a 32-
bit register, connected to the corresponding BF. Figure 2 illus-
trates the energy of the proposed architecture using CMOS BFs
compared to the conventional one. As shown, computational
reuse with the aid of CMOS BFs offers negligible or no benefit
(i.e., on overage the overhead is 4.4%). This energy overhead
is mainly due to the implementations of m-bit BVs (i.e., about
70% of the power). To improve the energy efficiency of our
proposed architecture, we use 1-transistor/1-resistive (1T-1R)
cells, to implement the m-bit BV.

A. ReBF Architecture
The architecture of ReBF is shown in Figure 3. Each bit

of the resistive Bloom vector is implemented by a 1T-1R cell.
The cells are connected to each other through a match line
(ML). The stored value in each cell is represented by the

value of the resistor element. High value of the resistor is
considered as digital one, and low value as digital zero. The
transistor in the cell is controlled by a select line (SL). During
the programming stage, k hash values for each member are
obtained using the combinational CMOS circuit, and, then,
the resistor of the corresponding cell in ReBF is set to the
high value.

TABLE II: Energy Consumption of Bloom vector

Size (bits) 2048 1024 512 256 128 64
Vdd (V) 1.0 0.71 0.6 0.54 0.51 0.47

RBV (fJ) 19.3 17.12 8.04 5.10 3.77 1.62

CMOS BV (fJ) 12188.4 6662.4 3992.4 2603.1 1837.35 1649.55

For the look up/search process, the ML is, at first, pre-
charged to Vdd via the pre-charge circuit. Then, the same k
hash functions generate k addresses which will be decoded
in parallel through k CMOS decoders. The select lines of
the corresponding k cells turn on the NMOS transistor in the
cell. If the stored value in any of the k cells is zero (i.e., the
resistor value is low), a path between Vdd and ground will be
established and the ML will be discharged. The voltage drop
on the ML will be amplified by the sense circuit; therefore,
a full swing will be observed on the EnL signal. This means
that the incoming input is not saved in the ReBF. In this case,
EnL prevents the output register to be read. The delay of the
circuit is determined by the time it takes to pre-charge ML to
Vdd, and the time it takes to discharge the line and observe
the full swing on EnL. The worst-case delay happens when
only one of the cells is not matched, and tries to discharge the
ML. If more than one cell are not matched, the ML will be
discharged rapidly, thereby, the delay is lower than the previous
case. However, if all k cells are set to one, the resistor values
are all high, and prevent the ML from discharging. This means
that hit occurs and EnL signal becomes high, which leads to
returning pre-calculated value stored in a CMOS register as
the final output of the FU that uses the ReBF.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup
To assess the efficiency of the function approximation using

ReBF, we choose five image processing applications adopted
from AMD APP SDK v2.5 [15]: Sobel, Robert, Prewitt, Scharr
and Sharpen. The openCL code of these applications are
simulated by Multi2Sim [14] to perform profiling and finding
the error rate bound on four FUs. We generates the VHDL code
of these FUs as the six-stage pipeline unit, commensurate with
the AMD Southern Islands GPUs [14], using FloPoCo [16].
The hardware realization of different size of BFs with different
number of hash functions are implemented using Verilog. To
calculate the energy consumption, the implemented FUs and
BFs are synthesized using Synopsys Design Compiler, with
45 nm standard CMOS library. The operating voltage is set to
1.0V and the clock period is 1.5 ns. To estimate the power and
delay of ReBF, transistor-level design of the Bloom vector of
different sizes is performed using HSPICE. We consider RON
as 10K Ω and ROFF as 1M Ω and set the other parameters of
the cell based on the one presented in [17].

B. Energy Saving
Energy consumption of an individual resistive Bloom vec-

tor (RBV) and CMOS Bloom vector of different length of



TABLE III: Optimum ReBF configuration for different applications

FU Sobel Roberts Sharpen Prewitt Scharr

#Out #In HR% BV #Fn #Out #In HR% BV #Fn #Out #In HR% BV #Fn #Out #In HR% BV #Fn #Out #In HR% BV #Fn

ADD 2 12 29.46 256 4 - - - - - - - - - - - - - - - - - - - -
MUL 2 16 29.61 1024 3 6 26 41.61 512 4 6 15 42.18 256 2 8 30 59.4 512 2 4 12 27.7 256 4
MAC 4 12 25.44 256 4 10 12 29.5 256 4 6 15 30.2 256 2 6 15 32.6 1024 2 8 18 37 512 4
SQRT 16 16 20.8 512 3 10 10 29.5 256 4 - - - - - 14 14 82 256 2 18 18 10 512 3

2048, 1024, 512, 256, 128, and 64 bits are summarized in
Table II. The delay of the RBV of different size is fixed at
1.4 ns by adaptively adjusting the operating voltage. As we
can see, implementing Bloom vector using memristor cells
presents extremely low energy consumption even if the larger
vector is used. This presents the scalability of RBV and
its benefit in representing more functionality. To assess the
efficiency of our approach, we profile five image processing
kernels using 10% of Caltech 101 computer vision dataset [12],
and find the maximum tolerable error rate for each FUs in
the kernels as described in Section II-C using 30% of the
dataset. For each kernels, we select various hit rates obtained
from profiling stage. Then, we configure BFs based on the
number of elements that depends on the hit rate (HR), and the
maximum error rate obtained for each FU. We evaluate energy
consumption of our approach for each configuration to find the
maximum energy improvement compared to the conventional
FU without ReBF. For each application, we summarize the
optimum configuration of the Bloom filters (e.g., the length of
Bloom vector (BV) , and the number of hash functions (Fn))
integrated to each FU in Table III.

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

Sobel Sharpen Roberts Prewitt Scharr GeoMean 

N
or

m
al

iz
ed

 E
ne

rg
y 

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

Sobel Filter Sharpen Roberts Prewitt Scharr GeoMean 

En
er

gy
 (f

J)
 

ReBF+FU 

FU 

Fig. 4: Energy comparison of the proposed architecture using ReBFs
and conventional FUs.

Figure 4 illustrates the total energy of using ReBF (includ-
ing resistive and CMOS parts) along with FUs and energy of
conventional FUs without ReBF. ReBf demonstrates 21.7%,
25.2%, 25.3%, 31.4%, and 16.8% energy improvement for
Sobel filter, Sharpen, Roberts, Prewitt, and Scharr, respec-
tively. As an example, for Sharpen, maximum improvement
is achieved by using ReBFs for MUL and MAC, to store
15 patterns for each module. To meet the maximum error
rates, we employ Bloom vector of size 256 bits, and two
hash functions for each operation. The provided hit rates are
42.18% and 30.2% for MUL and MAC, respectively. Here,
high energy consumption of CMOS modules inhibits us from
further computational reuse and energy saving.

V. CONCLUSION

Modern multimedia applications offer massive parallelism
and significant degrees of tolerance to approximate computing.
This paper aims to address the following challenge: how to in-

crease approximate computational reuse through non-volatile
resistive storages in GPUs with bounded errors? Combining
computational reuse and approximate computing, we propose
a resistive Bloom filter (ReBF) that provides an approximate
representation of a function by integrating Bloom filters to
the hardware functional units. BeBFs are used to store highly
frequent patterns to avoid re-executions. This methodology has
the ability to control the degree of function approximation
by adjusting the false positive rate of the ReBFs. To reduce
energy consumption of the proposed architecture, low-power
memristive arrays are exploited to perform search operations
at extremely low energy. Experimental results show that our
approach represents on average 38.42% of the functionality
of FUs in five different kernels running on GPUs, while
guaranteeing the acceptable outputs with PSNR of greater
than 27 dB. This leads to on average 24.1% energy reduction
compared to conventional architectures without ReBF.
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