
Resistive Configurable Associative Memory for
Approximate Computing

Mohsen Imani
CSE, UC San Diego

La Jolla, CA 92093, USA
moimani@ucsd.edu

Abbas Rahimi
EECS, UC Berkeley

Berkeley, CA 94720, USA
abbas@eecs.berkeley.edu

Tajana S. Rosing
CSE, UC San Diego

La Jolla, CA 92093, USA
tajana@ucsd.edu

Abstract—Modern computing machines are increasingly char-
acterized by large scale parallelism in hardware (such as GP-
GPUs) and advent of large scale and innovative memory blocks.
Parallelism enables expanded performance tradeoffs whereas
memories enable reuse of computational work. To be effective,
however, one needs to ensure energy efficiency with minimal
reuse overheads. In this paper, we describe a resistive con-
figurable associative memory (ReCAM) that enables selective
approximation and asymmetric voltage overscaling to manage
delivered efficiency. The ReCAM structure matches an input
pattern with pre-stored ones by applying an approximate search
on selected bit indices (bitline-configurable) or selective pre-stored
patterns (row-configurable). To further reduce energy, we explore
proper ReCAM sizing, various configurable search operations
with low overhead voltage overscaling, and different ReCAM
update policies. Experimental result on the AMD Southern
Islands GPUs for eight applications shows bitline-configurable
and row-configurable ReCAM achieve on average to 43.6% and
44.5% energy savings with an acceptable quality loss of 10%.

I. INTRODUCTION

L-CSC emerged as one of the energy-efficient supercom-
puter in the world which is powered by GPU accelerators,
namely the AMD FirePro, to surpass 5 GFlops/Watt [1].
Recent advances in massively parallel integrated architectures
offer over thousands processing elements in GP-GPUs, hence
enforcing energy efficiency as a primary concern [2]. Associa-
tive memory, as a form of computing-with-memory, reduces
energy of the processing elements by eliminating redundant
computations [5], [12], [16], [17], [21], [28], [3]. An associa-
tive memory can quickly recall responses of a function for a
subset of input patterns to save energy by avoiding the actual
function execution on the processing element. An associative
memory is typically composed of a ternary content-addressable
memory (TCAM) to store input patterns and an output memory
to return the pre-stored output. The operation of a TCAM
goes beyond retrieving logic “0” and “1” and it has capability
to store and search wildcard [4]. This feature opens the
application of the TCAMs for approximate computing domain,
and a wide range of applications in query processing [5], text
processing [6], search engine [8], image processing [7], pattern
recognition and classification [9].

Although high power consumption of the CMOS-based
TCAMs limits their usage [12], non-volatile memory (NVM)
opens new opportunities for realizing energy-efficient asso-
ciative memories [10] [11] [13]. NVMs such as spin-transfer
torque random access memory (STT-RAM) and resistive RAM
(ReRAM) consume lower energy consumption compared to
SRAM. STT-RAMs and ReRAMs store value based on
ON/OFF resistance of the magnetic tunelling junction (MTJ)
and memristor devices. Li et al. [10] design a 1Mb 2-transistor,
2-resistive (2T-2R) TCAM which is 10× smaller than SRAM-
based TCAM. Another TCAM with 3T-1R structure is able
to search in 64-row TCAM array less than 1ns with 0.51fJ
energy/bit/search operation [14]. Hanyu et al. [15] introduce
5T-4MTJ and 6T-2MTJ efficient TCAMs based on STT-RAM
device. To further decrease TCAM search energy the idea of

associative memory with accepting mismatches suitable for
approximate computing has been introduced [16].

We propose a resistive configurable associative memory
(ReCAM) suitable for approximate computing. ReCAM per-
forms approximate search by accepting up to 2-bit mismatches
on selective bit indices (bitline-configurable), or selective rows
(row-configurable) of the TCAM at very low energy cost.
ReCAM applies selective voltage overscaling (VOS) from
the TCAM least significant bits with granularity of 8-bit and
continues the depth of approximation based on application
requirements for quality. ReCAM also applies asymmetric
VOS on selective rows with lower frequency of hit events,
hence increasing energy saving with lower quality of loss
(QoL). ReCAM architecture is described in Section III. We
explore design space of ReCAM by varying the TCAM size,
configuration of the search operations, and update policies for
the TCAM contents in Section IV. We observe that TCAMs
sizes of 256-rows and higher can closely follow hit rates
of TCAMs using update policy with an Oracle knowledge.
Our experimental result, in Section V, on the AMD Southern
Islands GPUs shows bitline-configurable and row-configurable
ReCAM achieve on average to 43.6% and 44.5% energy
savings with an acceptable QoL of 10%.

II. RELATED WORK

Associative memory in the form of look-up table exploits
patterns similarity to eliminate redundant computations. Asso-
ciative memories can be implemented on both software and
hardware. Software solutions are based on hashing where a
frequent data can be stored and retrieved from hash function
by keys [17], [18]. In hardware, the associative memory
is being implemented by TCAMs [3], [5], [12], [16], [21].
Conventional TCAM with two SRAM cells suffers from high
power dissipation and low density [19]. The cost per-bit of
CMOS-based TCAM is 8× more than SRAM [21]. These limit
the application of TCAMs to network applications and classi-
fication [22]. Low leakage power of STT-RAM and ReRAM
cells make them appropriate as a replacement for CMOS-
based TCAMs [23] [10]. Although MTJ-based TCAMs show
higher endurance (> 1015) than ReRAM (106 −107), however
ReRAM-based TCAMs have better search speed and area
efficiency [25]. Our ReCAM addresses ReRAM endurance
issue by limiting the write stress only at the start of kernel
execution.

Zhang, et al. [27] use imprecise floating-point units (FPUs)
for approximate computing in GPUs. However, CMOS-based
imprecise blocks can suffer from massive number of errors
under VOS [24] [27] [28]. The usage of memristor to increase
computational reuse in GP-GPUs has been proposed in [3].
However this technique does not exploit applicable potential
of energy saving through approximation. Rahimi et al. [16]
propose approximate associative memristive memory based
on VOS to decrease the search energy consumption of the
associative memories. This technique accepts mismatch within
hamming distance of 0–2 bits on entire TCAM bitline. How-

E
nL

s

Sense Amplifiers

Bit Lines

Rsense

Bit-line

VDD

QReCAM

QReCAM

1 Bit

Buffer

Se
ns

e
A

m
pl

ifi
er

s

ML

Clk

Clk

Clk

Sense circuitry

EnL

MLs

E
nL

s
Search Lines

OP1 OP2

DLn

DLp

SLn
DLN

SLp

ShortStopShortStopShortStopShortStop

V1-HD
V2-HD
VDirty 1T-1R MemoryConfigurable TCAM
VHigh

ShortStop
ShortStop

ShortStop
ShortStop

R
ow

D
ri

ve
r

Fig. 1. ReCAM module architecture: 3T-1R TCAM plus 1T-1R memory.

ever, its scope is limited to image processing applications with
tiny associative memory.

We design ReCAM as a configurable approximate as-
sociative memory module which applies asymmetric voltage
relaxation on selective TCAM bit indices or rows. ReCAM
balances the depth of approximation and QoL by starting volt-
age relaxation from least significant bits and lowest frequent
TCAM rows at very low cost.

III. RECAM ARCHITECTURE

Our proposed ReCAM consists of a TCAM and a memory.
For each processing element based on profiling, the frequent
input patterns and their corresponding outputs are pre-stored
on the TCAM and memory respectively. Fig. 1 shows our
proposed ReCAM structure. During runtime, the input pattern
are compared with TCAM pre-stored patterns in single cycle.
TCAM works concurrently with the fist stage of the processing
element. In a case of a hit event, the TCAM EnL signal halts
the rest of stages of the processing element by the clock-gating
technique. In this condition, the processing element consumes
a small leakage power, and ReCAM returns the output value
by reading it from the memory at a very low power cost instead
of performing full computation through the rest of stages in
the processing element.

3T-1R TCAM: NVM-based TCAM cells save the value
based on the state of NVM resistance on each cell. The small
NVM resistance ratio between ON and OFF modes degrades
the cell stability by reducing the margin between match and
mismatch currents. The small current ratio along with large
match line (ML) capacitance increases both search energy
and delay. To have an efficient and reliable search in TCAM,
there should be a significant difference between match and
mismatch currents. The worst case condition is when all cells
are matched (no discharge) and when solely one of the cells
is not matched (ΔVMismatch = ΔVMatch −ΔV1b−Miss). The best
condition is to have high and distinct ΔVMiss −ΔVMatch value.
Indeed, we expect to have a zero match current which means
having a very high (infinite) ReRAM resistance (ΔVMatch ≈ 0).
We use 3T-1R TCAM structure [14] which uses ReRAM with
high resistance ratio and multiple-level cell capability. This
cell has some advantages over the previous TCAM cells [10]
[29]. In 3T-1R TCAM, cell is connected to ML with only
one junction to decrease the effective load/capacitance of
ML which results in higher search speed and lower energy
consumption. In addition, in the cell structure the value of
resistance has indirect effect on MLs ON/OFF current. This
significantly improves the cell stability and makes the cell
more robust against resistors variations. In addition, lower ML
load (capacitance) of 3T-1R cell allows TCAM to have more
cells per TCAM row.

1T-1R memory: As Fig. 1 shows, memory cell consists
of a memristor and an access transistor. The data is saved on
memristor based on its high or low resistance. In a case of a
TCAM hit, the EnL signal activates the corresponding row of
1T-1R memory to select the result of the computation for the
output.

To decrease the energy consumption of ReCAM on ap-
proximate mode, we apply VOS on 1T-1R memory and par-
tially on TCAM. The illustrated robustness of TCAM allows
us to decrease the nominal supply voltage from 1V to 0.85V
for exact matching with acceptable stability and 1.5ns delay
at 64-row, 96-bits TCAM (the worst-case TCAM delay with
64-rows). This supply voltage reduction improves the power
efficiency of ReCAM more than 1.9× respect to a baseline
with supply voltage of 1V. In approximate search mode,
TCAM VOS to 0.73V/0.67V matches the input pattern with
any of the stored pattern on TCAM with one/two Hamming
distance (i.e., 1-HD/2-HD). We limit the scope of applying
VOS to designated parts of ReCAM since all bit indices and
TCAM rows do not have the same impact on the result of
computation. Hence, our proposed ReCAM implements VOS
on the selective TCAM bitline and rows to decreases the
energy consumption with an acceptable QoL.

A. ReCAM with Bitline Configurable

In approximate TCAM, any mismatches in the most sig-
nificant bits (MSBs) has high impact on QoL while com-
putation is more robust to mismatches on least significant
bits. In several applications, implementing 1-HD and 2-HD
approximation on entire word size of associative memory
causes large QoL at the output beyond the acceptable range.
This fact motivates us to implement VOS on the selective
bit indices to achieve better energy efficiency with acceptable
QoL. We design a configurable approximate TCAM which is
able to adaptively relax different TCAM bitlines based on
application requirement. We consider the approximation on
different TCAM bitline segmentation with 8-bit granularity. To
design a configurable approximate TCAM, we need to have a
mechanism that can implement relaxation on selective TCAM
bit indices. The change in the relaxed bit indices should be
done adaptively based on application type. For this purpose,
we use an efficient Shortstop technique [31]. Shortstop is a fast
boosting supply voltage technique with very low supply drop.
This techniques uses a boost capacitor and a dirty supply rail
to rapidly boost the voltage without changing the clean supply.
The technique isolates the supply voltage of boost part from
other supplies to avoid supply drop in clean part. Implementing
this technique adds an extra energy overhead which depends on
the number of relaxed bits and the VOS levels (1-HD or 2-HD).
To reduce the energy overhead, we implement this technique
on 8-bit granularity of TCAM. Therefore, ReCAM implements
Shortstop on first 8, 16, 24 or 32 bits.

B. ReCAM with Row Configurable

As another method of approximation, we apply VOS on
selective TCAM rows storing different patterns. In TCAM, all
rows do not have equal probability of hit, hence our technique
connects supply voltage of a row with low frequency of a
hit event to Vdd related to 1-HD or 2-HD approximation. In
such row-configurable ReCAM, the number of approximate
rows can dynamically change based on running applications.
We use the ShortStop technique for fast and efficient changes
of Vdd of the TCAM rows. This VOS is implemented on 4-
row granularity to decrease the overhead of voltage boosting.
This configurable TCAM has more impact on energy saving
than bitline segmentation. Let us consider a TCAM that half of
the TCAM bitline are in 1-HD approximate mode. In this case,
all TCAM rows accept one Hamming distance on selected bits

resulting in huge QoL. On the other hand, if we implement
approximation on 50% of TCAM rows, the TCAM accept 1-
HD on only 50% of the low frequent TCAM rows and the rest
of the TCAM rows are in the exact matching. This reduction on
the number of approximate rows: (i) allows us to use TCAM
with higher number of rows since row-configurable ReCAM
deceases the number of wrong matches; (ii) for the same
error-rate, row-configurable ReCAM increases the number of
cells in the approximate mode and hence improves energy
efficiency.

IV. RECAM INTEGRATION WITH GP-GPUS

A. GP-GPUs Architecture

We focus on the AMD Southern Islands GPUs which is a
RISC single instruction, multiple data (SIMD) architecture. We
target Radeon HD 7970 device which has 32 compute units.
Every compute unit contains a scheduler and a set of four
SIMD execution units, aka vector units. Each SIMD execution
unit has 16 stream cores, or parallel lanes, constituting a total
number of 64 stream cores per compute unit.

An OpenCL application is formed of a host program and
one or more device kernels that can be run on a GPU device.
An instance of the OpenCL kernel is called a work-item. Each
stream core is devoted to the execution of one work-item using
the integer or FP units. Most arithmetic operations on a GP-
GPU are performed by vector instructions. A vector instruction
is fetched once and executed in a SIMD fashion by all its
comprising work-items. After the fetch and decode stages,
the source operands for each instruction are read from vector
registers or local memory. The core stage of a GP-GPU is the
execute stage, where arithmetic instructions are carried out in
each stream core. When the source operands are ready in the
vector unit, the execution stage starts to issue the operations
into the integer units or FPUs. The execution stage of every
FPU has a latency of six cycles and a throughput of one
instruction per cycle [32]. Finally, the result of the computation
is written back to the destination operands. In the following,
we briefly describe our approach to programming ReCAM
and design space exploration for ReCAM in improving energy
efficiency of GP-GPUs.

B. ReCAM Execution Flow

Execution flow using ReCAM has two main stages: (i)
profiling, and (ii) runtime computational reuse. The goal of
profiling stage is to identify redundant computations with a
high frequency of occurrence. This profiling stage is a one-
off activity whose cost is amortized across all future usage
of the kernel. In profiling, we pre-store the frequent patterns
corresponding the each application and then write them on
TCAM and 1T-1R memory on the runtime. This update can
be done very fast, since the write operation on both TCAM and
1T-1R memory can be done on less than 5ns. In the profiling
stage, we have an OpenCL kernel, a host code with a training
input dataset. We focus on the individual FPUs to observe the
dispersion of the input operands at the finest granularity. To
expose highly frequent set of operands for each FP operation,
we individually profile every type of FP operation and keep
the distinct sets of the input operands with the related output
result. The output of this stage for every FP operation is
highly frequent computations (HFC): a sorted list of sets
of values, each set has the input operand(s) and the related
result, and the sets are sorted based on their frequency of
occurrence. After extracting HFC, we need to determine how
much approximation can be tolerated during the reuse of these
key computations. To do so, we leverage the Southern Islands
functional simulator to determine the degree of approximation
applicable to each ReCAM module. In bitline-configurable
ReCAM, each TCAM bitline is partitioned to four segments

Exact Matching

QoL<10%

Add Segment/Row to
Approximation

Compare Golden &
Approximate Output

Yes

Save Segment/Row
Number

No

Fig. 2. Flow of ReCAM to determine approximate segments/rows.

with 8-bit. The voltage relaxation can be implemented on
each segment separately. Row-configurable ReCAM relaxes
the TCAM rows in 4-row and 8-row granularity. The flow of
finding the number of approximate TCAM segments/rows for
each application is illustrated on Fig. 2.

The algorithm starts selecting all TCAM bitline (rows) in
the exact matching mode to find a golden error-free output.
Then, it gradually applies 1-HD and 2-HD approximations
on the first TCAM segment (or low-frequent TCAM rows) of
each TCAM. The output result is compared with the golden
output to measure the QoL. If the QoL is less than 10%,
our algorithm selects more number of segments (rows) for
the approximation mode. We set the QoL to a maximum of
10% which is commensurate with other work on quality trade-
offs [20]. Finally, the maximum degree of approximation is
determined for each ReCAM module such that the QoL is
lower than the desired value (e.g., 10% [20]).

C. Design Space Exploration for ReCAM

1) TCAM Sizing: Fig. 3 compares energy consumption
of FPU, ReCAM, and integrated (FPU+ReCAM) for four
different studied applications. For ReCAM, we increase the
size of TCAM that imposes larger delay; we accordingly
measure the energy of FPU for each corresponding delay point.
All energy values are normalized to the FPU energy with
typical delay of a 96-bit TCAM. For ReCAM, the TCAM
search energy is always an available term on total energy
consumption, independent of TCAM hit rate. However, in
integrated FPU+ReCAM, when an input pattern hits in the
TCAM, a hit signal clock-gates the FPU computation and
limits FPU energy consumption to only leakage energy. The hit
rate improvement is not linear with the number of TCAM rows.
For instance, moving from 4-row to 8-row TCAM has more
impact on TCAM hit rate improvement compared to moving
from 64-row to 128-row TCAM.

In most of the studied applications using 32-row or 64-
row TCAM, covers most highly frequent patterns and TCAM
with high number of rows, only adds a few low frequent
patterns to TCAM which do not have major impact on hit rate
improvement. This results in a tradeoff between ReCAM and
FPU energy on total computational energy. TCAM in small
ReCAM consumes very low search energy, so doubling the
number of TCAM rows reduces the FPU energy consumption
by improving TCAM hit rate. While in large ReCAM size,
TCAM search energy is a dominant term of total energy con-
sumption and doubling TCAM size does not have significant
impact on hit rate improvement. Thus, the minimum energy
point occurs on TCAM size with 8-row or 16-row where
energy is balanced between ReCAM and FPU energy.

2) TCAM Content Update Policy: One possible way to
improve energy efficiency of computation using associative
memory is to have run-time profiling. Profiling in run-time is
able to fill the TCAM with more realtime data representative
of local values of the current application. The goal of this
section is to answer the following question: How much is the
ReCAM energy efficiency using run-time profiling?. This can
be a guideline to observe the feasibility of using associative
memory with realtime profiling capability.

−4 0 4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of rows

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

−4 0 4 8 12 16 20 24

TCAM delay (ns)

1 2 4 8 16 32 12864

0.7 0.75 1.1 1.2 1.5 2.9 3.20.9

(a) Sobel

−4 0 4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of rows

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

TCAM delay (ns)
−4 0 4 8 12 16 20 24

2 128

0.7 0.75 1.2 1.5 3.2

4 8 16 32

1.1 2.90.9

64 1

(b) Robert

−4 0 4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of rows

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

TCAM delay (ns)
−4 0 4 8 12 16 20 240.90.750.7 1.1 1.2 1.5 2.9 3.2

12832168421 64

(c) HwtHaar1D

−4 0 4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of rows

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

TCAM delay (ns)
−4 0 4 8 12 16 20 242.91.51.21.10.90.750.7 3.2

16 32 64 1288421

(d) MatrixMul

Fig. 3. FPU, ReCAM, and FPU+ReCAM energy consumption with different TCAM sizes (or corresponding delay) in the exact matching mode.

1 2 4 8 16 32 64 128
0

20

40

60

80

100

Number of rows

H
it

ra
te

 (%
)

Oracle
Train−test

(a) Sobel

1 2 4 8 16 32 64 128
0

20

40

60

80

100

Number of rows

H
it

ra
te

 (%
)

(b) Robert

1 2 4 8 16 32 64 128
0

20

40

60

80

100

Number of rows

H
it

ra
te

 (%
)

(c) HwtHaar1D

1 2 4 8 16 32 64 128
0

20

40

60

80

100

Number of rows

H
it

ra
te

 (%
)

(d) MatrixMul

Fig. 4. Applications hit rate (min, max, and average) for various TCAM sizes using Oracle and train-test policies.

To answer this question, at first we should calculate the
maximum hit rate improvement that can be achieved using
such profiling; then, we can evaluate the possible potential
energy saving on run-time profiling. We use an Oracle as the
best-case estimation of the run-time profiling where the system
can see all possible input patterns. To implement Oracle in
our design, we train and test on 100% of the input samples.
For each application, the train and test are done separately for
100 different inputs. In this paper we compare Oracle with a
simple training (train-test) technique where the train and test
are done on 10% and 100% of the input dataset respectively.
For train-test profiling, we use the same size dataset containing
100 different inputs. For image processing applications we use
Caltech 101 [34] as dataset, while for other applications we
generate the dataset using random stream data. In this training,
we rank all input patterns and then choose the top frequent
ones for each FPU and finally fill those top patterns on the
corresponding ReCAM based on its available size. Fig. 4
shows the hit rate using Oracle and train-test update policies
for TCAM with different sizes.

The results show that Oracle can achieve up to 18% higher
hit rate with respect to the traintest. As Fig. 4 shows, TCAM
with low number of rows (1-row or 2-rows) has very low
hit rate. Doubling TCAM rows from 1-row at first increases
the TCAM hit rate severely but then the trend of the hit rate
improvement saturates. The change of hit rate depending on
application type can be fast or slow in different TCAM sizes.
In the train-test, this hit rate improvement saturates in larger
TCAM size since train-test consists more variety of input
patterns and needs larger TCAM to cover all high frequent
ones. But in the case of Oracle, a TCAM with a few number

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

Number of rows

H
it

(O
ra

cl
e)

 −
 H

it
(T

ra
in

&
te

st
)

Sobel
Robert
Sharpen
BlackScholes
QuasiRandom
DwtHaar
BinomialOption
MatrixMul
Average

110 2 102464321684 256 512 2048128

Fig. 5. Oracle and train-test hit rate difference for different applications type.

Sobel Robert Sharpen Black Quasi DWHaar Binom Matrix Average
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

Oracle Train−test

Fig. 6. The best GP-GPU minimum energy points using ReCAM in Oracle
and train-test.

of rows can cover the major frequent patterns.

We define ΔHitrate as the hit rate difference of Oracle
and train-test profiling. As Fig. 5 shows, ΔHitrate is low in
small TCAM size because the absolute hit rate values of both
profiling techniques are small. In middle size TCAMs (8-row
and 16-row), ΔHitrate is maximized because of filling the
TCAM spaces with more frequent patterns by Oracle with
respect to the train-test technique. In very large TCAM sizes
(>256 rows), the ΔHitrate drops again (ΔHitrate <0.1%)
because the train-test hit rate is high while Oracle hit rate is
saturated. This fact is also shown in Fig. 4 in which, an Oracle
TCAM with 64-rows and 128-rows has very close hit rate,
meaning that larger TCAMs will not have positive impact on
the overall energy efficiency. Fig. 6 shows the minimum energy
point considering the best TCAM size (from 1-row to 128-row)
with Oracle and train-test. These values are potential energy
saving since they are achievable using different TCAM sizes.
Our evaluations show Oracle improves the GP-GPU energy
efficiency just by 15.7% compared to the train-test technique.
However, implementing such run-time profiling may cause
significant energy overhead to keep track and rank of the
incoming patterns.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We implement our proposed ReCAM on the AMD South-
ern Island GPU, Radeon HD 7970 device, which is one of the
most recent GP-GPU architectures. We use Multi2sim [32], a
cycle accurate CPU-GPU simulator and modified the code to
do profiling and run-time simulation. Eight GP-GPU applica-
tions Sobel, Roberts, HwtHaar1D, MatrixMul, BlackScholes,

Sharpen, QuasiRandom and BinomialOption from AMD APP
SDK v2.5 [30] are used to set the efficiency of the pro-
posed ReCAM. We extracted the frequent patterns for various
FPUs including adder (ADD), multiplier (MUL), multiply-
accumulator (MAC) and SQRT Operations. The FPUs are
balanced for 6-stage using FloPoCo [33] and are synthesized
by Synopsys Design Compiler in 45-nm ASIC flow. FPUs are
optimized for power based on different TCAM delays.

FPUs accept different number of input operands. The ADD
and MUL accept two 32-bit, SQRT a 32-bit and MAC three
32-bit input operands. Therefore, their related TCAMs need
to have 64-bit, 32-bit and 96-bit word-size respectively. The
circuit level simulation of TCAM design has been done on
HSPICE simulator with 45-nm technology. For 3T-1R TCAM
design we extract parameters (sizing, resistors and capacitors,
etc.) used in [14]

B. Energy Saving and QoL

Based on our explanations in section IV, implementing
approximation on entire TCAM bitline significantly degrades
the computation accuracy. Having mismatch on LSBs and
MSBs of input pattern does not have the same effect on
the computation accuracy. In addition, all TCAM rows do
not have the same impact on the result of computation such
that any mismatches in the first TCAM rows, with high
probability of hit, degrades the QoL more than other rows. Our
bitline-configurable and row-configurable ReCAM keep the
non-sensitive segments/rows of TCAM in the approximation
mode at 8-bit and 8-row (and also 4-row) granularity. We
consider the energy overhead of Shortstop technique during
approximation of different TCAM segments/rows. We use
extensive simulations on Multi2Sim to calculate the QoL for
each application. This constraint is to have less than 10% QoL,
commensurate with [20], on the output data for all inputs.
Our results show that each application satisfies the QoL with
different bit indices for 1-HD and 2-HD approximation.

Fig. 8 shows the normalized energy consumption and QoL,
implementing voltage relaxation on different TCAM segments.
The overall energy efficiency depends on two parameters. (i)
Approximate TCAM consumes lower search energy depending
on the depth of approximation (1-HD or 2-HD) and number
of segments on approximate mode. (ii) Higher TCAM hit rate
increases the average time that FPU is clock-gated and saves
energy. Thus, increasing the coverage of approximation from
0-bit toward 32-bit reduces the GP-GPU energy consumption.
However, approximation on the more than half of the TCAM
bitline (>16-bits) degrades the accuracy of results severely
which indicates the sensitivity of computation to the place
of mismatches. Fig. 8 indicates that moving from 24-bits (3-
segment) approximation to 32-bit approximation (4-segment)
degrades computational accuracy without major impact on
GP-GPU energy efficiency (due to high ShortStop energy
overhead). Implementing 1-HD (2-HD) approximation on the
first 8-bits of TCAM results on average 35.3% (38.8%) en-
ergy savings among all applications with the acceptable QoL
(<10%). Dynamically changing the approximate bit index
for each application improves 1-HD (2-HD) energy saving to
39.1% (43.6%) with the same QoL.

Fig. 7 shows normalized GP-GPU computation energy and
QoL using row-configurable ReCAM running eight applica-
tions. Row-configurable ReCAM implements voltage relax-
ation on entire bitline of the selective TCAM rows. We start
row approximation from the last TCAM rows with the lowest
probability of hit. As the number of rows in approximate mode
increases, GP-GPU energy efficiency improves proportionally
at the expense of computational inaccuracy. The comparison
of Fig. 8 and Fig. 7 in 8-bit and 8-row approximate granu-
larity shows in same percentage of approximation, GP-GPU

with bitline-configurable ReCAM achieves lower energy con-
sumption and higher QoL compared to the row-configurable
ReCAM. This is due to the fact that bitline-configurable
ReCAM selects all TCAM rows on approximate matching
while the row-configurable ReCAM limits the number of
approximate rows to a few selective ones. For example in 25%
approximation, the bitline-configurable and row-configurable
ReCAM put respectively 100% and 25% of the TCAM
rows on approximation. This feature improves the computa-
tional accuracy of the row-configurable ReCAM on partial
approximation with respect to bitline-configurable ReCAM.
However, higher hit rate of the bitline-configurable ReCAM in
partial approximation improves the GP-GPU energy efficiency
as compared to row-configurable one. On the other hand,
implementing approximation on a high portion of ReCAM
(>24-row & >24-bit), results in same energy savings and
QoL in both row and bitline-configurable ReCAM because of
their similar approximate rows. The results show that GP-GPU
using row-configurable ReCAM can meet QoL with enabling
75% and 53% of TCAM cells in 1-HD and 2-HD approximate
mode which results in 44.5% and 42.9% energy savings. The
number of relaxed cells in 1-HD and 2-HD bitline-configurable
ReCAM is about 65% and 46% respectively.

Low QoL of row-configurable TCAM in partial approxima-
tion motivates us to implement it in lower granularity. Table I
shows the maximum number of relaxed rows, normalized GP-
GPU computational energy and QoL using row-configurable
ReCAM with 4-row granularity and acceptable quality of loss.
In this row-configurable ReCAM, GP-GPU can achieve 44.7%
and 48.6% energy savings on average implementing 1-HD and
2-HD approximation.

Our evaluation shows that the bitline-configurable ReCAM
achieves high energy efficiency for applications with low
sensitivity to QoL while row-configurable ReCAM is more
appropriate architecture for highly sensitive applications to
QoL such as Sobel, BlackScholes and BinomialOption.

VI. CONCLUSION

We propose a resistive configurable associative memory
which implements approximation on selective TCAM bitline
and rows to balance the depth of approximation based on run-
ning applications. The proposed ReCAM is based on emerging
NVMs: (i) it decreases the QoL by applying voltage relaxation
on selective bits and TCAM rows with lower sensitivity. (ii) It
has capability to adaptively change the depth of approximation
based on running application to guarantee the desired accuracy.
The experimental results on the AMD Southern Islands GPUs
show that bitline-configurable and row-configurable ReCAM
reduce the GP-GPU energy computation by 43.6% and 44.5%
on average with delivering the acceptable QoL.

VII. ACKNOWLEDGMENTS

This work was supported by NSF grant#1527034.

REFERENCES

[1] “Green5000. Available:http://www.green500.org/”

[2] S. Huang, et al., “On the energy efficiency of graphics processing units for
scientific computing,” IEEE IPDPS, 2009.

[3] A. Rahimi, et al., “Energy-efficient gpgpu architectures via collaborative compi-
lation and memristive memory-based computing,” IEEE DAC, pp. 1–6, 2014.

[4] Q. Guo, et al., “AC-DIMM: associative computing with STT-MRAM,” ACM
SIGARCH, Vol. 41. No. 3, 2013.

[5] N. Bandi, et al., “Fast data stream algorithms using associative memories,” ACM
SIGMOD, 2007.

[6] C. Ranger, et al., “Evaluating mapreduce for multi-core and multiprocessor
systems,” IEEE HPCA, 2007.

[7] R. Agrawal, et al., “Fast algorithms for mining association rules,” IEEE VLDB,
Vol. 1215. 1994.

Number of relaxed bits

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

0−bit 8−bit 16−bit 24−bit 32−bit
0

0.25

0.5

0.75

11
 1−HD ShortStop Overhead 2−HD data4

0

10

20

30

40

Q
oL

 (%
)

1−HD QoL 2−HD QoL

(a) Sobel

Number of relaxed bits

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

0−bit 8−bit 16−bit 24−bit 32−bit
0

0.25

0.5

0.75

1

0

10

20

30

40

Q
oL

 (%
)

(b) Robert

Number of relaxed bits

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

0−bit 8−bit 16−bit 24−bit 32−bit
0

0.25

0.5

0.75

1

0

10

20

30

40

Q
oL

 (%
)

(c) DwtHaar1D

Number of relaxed bits

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

0−bit 8−bit 16−bit 24−bit 32−bit
0

0.25

0.5

0.75

1

0

10

20

30

40

Q
oL

 (%
)

(d) MatrixMul

Number of relaxed bits

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

0−bit 8−bit 16−bit 24−bit 32−bit
0

0.25

0.5

0.75

1

0

10

20

30

40

Q
oL

 (%
)

(e) BlackScholes

Number of relaxed bits

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

0−bit 8−bit 16−bit 24−bit 32−bit
0

0.25

0.5

0.75

1

0

10

20

30

40

Q
oL

 (%
)

(f) Sharpen

Number of relaxed bits

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

0−bit 8−bit 16−bit 24−bit 32−bit
0

0.25

0.5

0.75

1

0

10

20

30

40

Q
oL

 (%
)

(g) QuasiRandom

Number of relaxed bits

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

0−bit 8−bit 16−bit 24−bit 32−bit
0

0.25

0.5

0.75

1

0

10

20

30

40

Q
oL

 (%
)

(h) BinomialOption

Fig. 7. Normalized GP-GPU energy consumption and QoL of bitline-configurable ReCAM.

Number of relaxed rows

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

0−row 8−row 16−row 24−row 32−row
0

0.25

0.5

0.75

1
 1−HD ShortStop Overhead 2−HD data4

0

10

20

30

40

Q
oL

 (%
)

 1−HD QoL 2−HD QoL

(a) Sobel

Number of relaxed rows

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

0−row 8−row 16−row 24−row 32−row
0

0.25

0.5

0.75

1

0

10

20

30

40

Q
oL

 (%
)

(b) Robert

Number of relaxed rows

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

0−row 8−row 16−row 24−row 32−row
0

0.25

0.5

0.75

1

0

10

20

30

40

Q
oL

 (%
)

(c) DwtHaar1D

Number of relaxed rows

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

0−row 8−row 16−row 24−row 32−row
0

0.25

0.5

0.75

1

0

10

20

30

40

Q
oL

 (%
)

(d) MatrixMul

Number of relaxed rows

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

0−row 8−row 16−row 24−row 32−row
0

0.25

0.5

0.75

1

0

10

20

30

40

Q
oL

 (%
)

(e) BlackScholes

Number of relaxed rows

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

0−row 8−row 16−row 24−row 32−row
0

0.25

0.5

0.75

1

0

10

20

30

40

Q
oL

 (%
)

(f) Sharpen

Number of relaxed rows

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

0−row 8−row 16−row 24−row 32−row
0

0.25

0.5

0.75

1

0

10

20

30

40

Q
oL

 (%
)

(g) QuasiRandom

Number of relaxed rows

N
or

m
al

iz
ed

 E
ne

rg
y

(F
PU

=1
)

0−row 8−row 16−row 24−row 32−row
0

0.25

0.5

0.75

1

0

10

20

30

40

Q
oL

 (%
)

(h) BinomialOption

Fig. 8. Normalized GP-GPU energy consumption and QoL of row-configurable ReCAM.

TABLE I. BEST GP-GPU ENERGY POINT WITH 4-ROW GRANULARITY ROW-CONFIGURABLE RECAM.

GP-GPU Sobel Robert DwtHaar1D MatixMul BlackScholes Sharpen QuasiRandom BinomialOption
1-HD 2-HD 1-HD 2-HD 1-HD 2-HD 1-HD 2-HD 1-HD 2-HD 1-HD 2-HD 1-HD 2-HD 1-HD 2-HD

Relaxed rows 28 20 32 24 24 20 24 16 20 16 32 28 20 16 16 12
Norm. Energy 0.45 0.41 0.47 0.45 0.53 0.52 0.59 0.57 0.64 0.50 0.44 0.41 0.47 0.46 0.83 0.79

QoL (%) 8.7 7.4 7.5 8.4 7.4 9.2 7.9 6.8 9.3 8.6 9.5 9.7 9.1 8.2 9.2 7.4

[8] R. Ubal, et al., “Multi2Sim: a simulation framework for CPU-GPU computing,”
ACM PACT, 2012.

[9] T. Kohonen, “Content-addressable memories,” Springer Science and Business
Media, Vol. 1, 2012.

[10] J. Li, et al., “1 mb 0.41 μm2 2t-2r cell nonvolatile tcam with two-bit encoding
and clocked self-referenced sensing,” IEEE JSSC, pp. 896–907, April 2014.

[11] S. Paul, et al., “Nanoscale reconfigurable computing using non-volatile 2-d sttram
array,” IEEE Nanotechnology, pp. 880–883, July 2009.

[12] K. Lakshminarayanan, et al., “Algorithms for advanced packet classification with
ternary CAMs,” ACM IGCOMM, Vol. 35. No. 4, 2005.

[13] J. Cong, et al., “Energy-efficient computing using adaptive table lookup based on
nonvolatile memories,” IEEE ISLPED, pp. 280–285, Sept 2013.

[14] M. -F. Chang, et al., “A 3T1R Nonvolatile TCAM Using MLC ReRAM with
Sub-1ns Search Time,” IEEE ISSCC, Vol. 58, 2015.

[15] T. Hanyu, et al., “Spintronics-based nonvolatile logic-in-memory architecture
towards an ultra-low-power and highly reliable VLSI computing paradigm,” IEEE
DATE, 2015.

[16] A. Rahimi, et al., “Approximate associative memristive memory for energy-
efficient GPUs,” IEEE DATE, 2015.

[17] T. Kohonen, “Associative memory: A system-theoretical approach,” Springer
Science & Business Media, 2012.

[18] W. Eatherton, et al., “Tree bitmap: hardware/software IP lookups with incremental
updates,” ACM SIGCOMM, pp. 97–122, 2004.

[19] T. Kohonen, “Low-leakage storage cells for ternary content addressable memo-
ries,” IEEE TVLSI, Vol. 17, pp. 604-612, 2009.

[20] H. Esmaeilzadeh, et al., “Neural acceleration for general-purpose approximate
programs,” IEEE Micro, 2012.

[21] A. Goel, et al., “Small subset queries and bloom filters using ternary associative
memories, with applications,” ACM SIGMETRICS, Vol. 38. No. 1, 2010.

[22] K. Lakshminarayanan, et al., “Algorithms for advanced packet classification with
ternary CAMs,” ACM SIGCOMM, Vol. 35. No. 4, 2005.

[23] B. Yan, et al., “A High-Speed Robust NVM-TCAM Design Using Body Bias
Feedback,” ACM GLSVLSI, 2015.

[24] W. Xu, et al., “Design of spin-torque transfer magnetoresistive RAM and
CAM/TCAM with high sensing and search speed,” IEEE TVLSI, Vol. 18, pp.
66-74, 2010).

[25] Y. Kim, et al., “CAUSE: Critical application usage-aware memory system using
non-volatile memory for mobile devices,” ACM ICCAD, pp. 690-696, 2015.

[26] A. Rahimi, et al., “Temporal memoization for energy-efficient timing error
recovery in gpgpus,” IEEE DATE, pp. 1–6, March 2014.

[27] H. Zhang, et al., “Low power gpgpu computation with imprecise hardware,” IEEE
DAC, pp. 1–6, 2014.

[28] D. Mohapatra, et al., “Design of voltage-scalable meta-functions for approximate
computing,” IEEE DATE, pp. 1–6, March 2011.

[29] L-Y. Huang, et al., “ReRAM-based 4T2R nonvolatile TCAM with 7x NVM-stress
reduction, and 4x improvement in speed-wordlength-capacity for normally-off
instant-on filter-based search engines used in big-data processing,” IEEE VLSIC,
June 2014.

[30] “AMD APP SDK v2.5 [online]. Available: http://www.amd.com/stream”

[31] N. Pinckney, et al. “Shortstop: An on-chip fast supply boosting technique,” IEEE
VLSIC, 2013.

[32] “Multi2sim [online]. Available: https://www.multi2sim.org/”

[33] “Flopoco [online]. Available:http://flopoco.gforge.inria.fr/”

[34] “Caltech 101 [online]. http://www.vision.caltech.edu/Image Datasets/Caltech101/”

