
Efficient Neural Network Acceleration on GPGPU
using Content Addressable Memory

Mohsen Imani‡, Daniel Peroni‡, Yeseong Kim‡, Abbas Rahimi∗, and Tajana Rosing‡

‡CSE, UC San Diego, La Jolla, CA 92093, USA
∗EECS, UC Berkeley, Berkeley, CA 94720, USA

{moimani, dperoni, yek048, tajana}@ucsd.edu; abbas@eecs.berkeley.edu

Abstract—Recently, neural networks have been demonstrated
to be effective models for image processing, video segmentation,
speech recognition, computer vision and gaming. However, high
energy computation and low performance are the primary
bottlenecks of running the neural networks. In this paper, we
propose an energy/performance-efficient network acceleration
technique on General Purpose GPU (GPGPU) architecture which
utilizes specialized resistive nearest content addressable memory
blocks, called NNCAM, by exploiting computation locality of
the learning algorithms. NNCAM stores highly frequent patterns
corresponding to neural network operations and searches for
the most similar patterns to reuse the computation results.
To improve NNCAM computation efficiency and accuracy, we
proposed layer-based associative update and selective approxima-
tion techniques. The layer-based update improves data locality
of NNCAM blocks by filling NNCAM values based on the
frequent computation patterns of each neural network layer.
To guarantee the appropriate level of computation accuracy
while providing maximum energy saving, our design adaptively
allocates the neural network operations to either NNCAM or
GPGPU floating point units (FPUs). The selective approximation
relaxes computation on neural network layers by considering
the impact on accuracy. In evaluation, we integrate NNCAM
blocks with the modern AMD southern Island GPU architecture.
Our experimental evaluation shows that the enhanced GPGPU
can result in 68% energy savings and 40% speedup running
on four popular convolutional neural networks (CNN), ensuring
acceptable < 2% quality loss.

I. INTRODUCTION

The growing Internet of Things (IoT) significantly increases
the size of applications’ datasets and the total amount of
computation to be processed. By 2020, the rate of data
generation is expected to surpass the capability current
computing systems can process [1]. Such large generated data
must be classified and learned to serve meaningful results for
applications [2], [3]. Neural networks such as convolutional
neural networks (CNNs) and deep neural networks (DNNs)
are a category of machine learning algorithms inspired by the
human brain. In particular, CNNs have been demonstrated to
be an effective class of models for image processing, video
segmentation, detection and retrieval, speech recognition,
computer vision and gaming [4], [5], [6]. CNNs have a
capability to exploit learned knowledge to deal with data
which they have not encountered. For example, CNNs have
been used to identify the nature of images such as stationary of
statistics and locality of pixels, and utilize them to recognize
the contents in new images. Many CNN algorithms are
implemented to run on high-performance computing systems

such as GPUs which have highly optimized architecture for
parallel processing. However, with the emergence of the
large-scaled data of the IoT input domain, running neural
networks on the general purpose processors is still slow,
energy hungry, and prohibitively expensive [8].
Recent research has focused on a great potential to improve
energy efficiency of the parallel processors using associative
memories [18], [13], [9]. Associative memory, in a form
of a look-up table, stores frequent processor operations
and exploits them for future computations, thus reducing
redundant computation costs. For example, ternary content
addressable memories (TCAMs) are considered the building
block of associative memories. However, feasible energy
saving would be compromised due to the limited number of
storable operations and large energy cost for searches. In
order to further improve the energy efficiency, earlier efforts
introduced the idea of approximation techniques such as
voltage overscaling of the associate memory which accepts
a small difference in Hamming distances of computations
[18], [13]. However, the quality of application outputs for
these techniques is fundamentally sensitive to the error of
the Hamming distance, and thus may not provide sufficient
energy × quality loss per hit rate (Energy×QLoss/HitRate).
In addition, these designs cannot improve the performance of
GPGPU computation, since the operations of the associative
memory need to be synchronized to the floating point pipeline
stages even though the computation results can be retrieved
instead of using the actual GPGPUs.
In this work, we propose a novel neural network acceleration
technique for GPGPU using resistive content addressable
memory blocks, called NNCAM, which is specialized for
the neural network computation. Instead of performing
energy intensive precise computations, NNCAM stores highly
frequent patterns and approximately searches for a row with
the closest Hamming distance to the input data. To fully
exploit computation locality in each neural network layer,
we propose a layer-based associative update technique that
fills the NNCAM with highly frequent computation patterns
corresponding to each neural network layer. We also propose
a selective approximation technique which puts each neural
network layers on different approximate levels, depending on
their accuracy sensitivity. The proposed NNCAM memory
architecture is designed to efficiently support the two
techniques while addressing the aforementioned issues of
the existing GPU-based approximation. Our NNCAM design

can configure the computation efficiency and the quality of
outputs at runtime by adaptively assigning input data to either
NNCAM or GPU floating point units according to the required
accuracy. We show the efficiency of integrating NNCAM on
modern AMD southern Island GPUs. Our evaluation on four
CNN designs shows that the enhanced-GPGPU can result in
an average energy savings of 68% and 40% speed up, while
providing acceptable quality loss below 2%.

II. RELATED WORK

Modern neural network algorithms are executed on di-
verse types of processors such as CPU, GPGPU, FPGAs and
ASIC chips [14], [15], [16], [17]. Running neural network
on traditional computers results in a large computation cost.
This has motivated attempts to fully utilize current computing
systems to run the algorithms in an efficient manner [7]. For
example, for neural networks performing image classification
applications, GPU-based approaches show up to two orders
of magnitude improvement over CPU implementations. In
addition, CNN and DNN designed for GPU allow faster
training time [15][16].
Ternary content addressable memories (TCAMs) can be ap-
plied to several domains including database engines, data com-
pression and recently as computational reuse for approximate
computing [19], [18], [21]. In CMOS technology, TCAMs
can be designed using SRAM cells, but they consume high
energy for each search operation [20]. In contrast, the high
density, CMOS compatibility, and nearly zero energy con-
sumption of non-volatile memories (NVMs) make them viable
for emerging memory or memory-based computing units. in
diverse application domains. In particular, the spin transfer
torque RAMs (STT-RAMs) have been diversely explored to
replace with caches [10], [11], [24], [25]. From other side,
resistive and ferro-electric non-volatile memories have shown
great opportunities to be used as computing units, beside their
memory functionality [22], [23], [12].
For example, in the GPU architecture, associative memory
allows for computational reuse [18] and memoization for error
free execution [26]. However, as mentioned before, the low
hit rates and large search energy limit associative memories
potential for computational reuse. Several techniques were
proposed to improve the energy efficiency and hit rate of
associative memories [18], [13], [27]. These designs exploit
circuit- and architecture-level techniques to reduce the switch-
ing activity [13] and increase inexact hit rate by voltage
overscaling of TCAMs [18], [27]. Voltage overscaled TCAMs
improves both energy and hit rates by searching to find data
while accepting a small difference in modifiable Hamming
distances, thus allowing for inexact matching. However, the
Hamming distance is not an appropriate metric in finding
similarity for floating-point binary representations, as it incurs
high possibility of multiple matches, creating an additional
decision issue to choose a single final solution, potentially
degrading the computation accuracy. The other issue of the
existing techniques is their inability to accelerate the GPU
computation, as the execution time of the GPUs enhanced with
the associative memory is still limited by the pipeline stage of
the floating point units (FPUs).

Convolutions Subsampling Convolutions Subsampling
Fully

connected
Fully

connected

Fig. 1. An illustraion of k-layer convolutional neural network

To address these issues and enable the approximate computing
for the neural network, we use a resistive content addressable
memory (CAM) with the capability of performing all neural
network computations inside the memory. We model the basic
computation of each neural network layer so that the NNCAM
can search for the memory row whose value difference from
the neural network operations is smallest. To enable accurate
approximate computing, our design selectively assigns a part
of operations to the GPUs at runtime if the expected com-
putation accuracy is not acceptable. In addition, our design
significantly accelerates the GPU computation by assigning
a majority of computations to fast and efficient CAMs for
memory-internal processing.

III. NEURAL NETWORK ACCELERATION ON GPU

A. Overview of Proposed Architecture

Convolutional neural networks (CNN) consist of
convolutional layers (subsampling step) and fully connected
layers as multilayer neural networks as shown in Fig. 1. This
structure is adequate to process 2-dimensional input signals,
e.g. image, speech, and video sequences. Each layer receives
a set of floating point numbers as the input from the previous
layer and delivers another set of numbers as the output to the
next layer. Thus, once the output of a layer is fully computed,
the next layer is ready to compute sequentially using the
output of the previous layer. The computation of each layer
is processed by a group of basic computing units, called
neurons, using learned weight values, thus connectivity of
the neurons of adjacent layers increases correlation of spatial
locality of CNN computations.
CNNs are usually processed on multicore processors such

as GPUs. In GPU architectures, a larget portion of energy is
consumed by floating point units (FPUs) in streaming cores.
For instance, in the AMD southern Island GPU architecture,
adder (ADD), multiplier (MUL), and multiply-accumulator
(MAC) are the main energy-intensive FPU components. In
order to reduce the energy consumption of the FPUs, our
proposed architecture exploits CAM blocks, called NNCAM
(Sec. III-D), beside each FPU. Figure 2 illustrates the overview
of the proposed architecture which integrates the associative
memories, which include the NNCAM blocks, into each FPU
of the GPU streaming cores. Once a FPU operation is issued
with input operands, the proposed architecture approximately
checks whether similar input operands are stored in the
associative memory block, while the pipeline stages of the
FPU are processed in parallel. The associative memory stores
a set of frequent patterns and their corresponding outputs on
a TCAM and a memory block respectively. When a hit occurs
in associative memory (i.e., if the similar input operands exist

TCAM

hit

In
p

u
t

O
p

e
ra

n
d

s

QAM

Memory
hit

W
r
it

e
 S

ta
g
e

M
U

X

Pipelined FPU

Execution

...

S
ta

g
e
 2

S
ta

g
e
 3

S
ta

g
e
 k

FPUs in GPGPU streaming cores

Associative Memory

QFPU

S
ta

g
e
 1

S
ta

g
e
 4

Clock Gating

Fig. 2. Integration of the associative memory beside each floating point unit
in a GPGPU streaming core

in the TCAM block), the processor computation is clock-
gated, and instead the FPU can retrieve the preprocessed
computation result from the memory. Because neural network
algorithms are processed fundamentally based on add and
multiplication operations with the learned weights, a large
amount of repeated computations happens necessarily. Thus,
looking up these highly frequent patterns approximately in
the small-size associative memory can provide significant
computation reduction and energy saving.

B. Layer-Based Associative Update
During the approximate searches in the TCAM blocks,

stored patterns have a high impact on hit rates and computation
accuracy. For example, a naive approach to fill the TCAM
blocks is to consider global patterns of the entire neural
network execution. However, this may degrade the hit rates,
missing potential energy saving, since each layer has data and
computation locality due to the specific abstraction of the input
data. For example, in the case of image processing, the neurons
of each layer are responsible to handle different information of
the input image, e.g., edge, background, etc. This motivates us
to update the TCAM adaptively according to the layer which
is currently processing. We implement the neural network
software usually called as GPU kernel so that it creates a
notification to the GPU to update associative memories with
most frequent operand patterns for the running layer.
Fig. 3 shows the energy saving and the hit rates of associative
memories in a 7-layer convolutional neural network on the
AMD GPU architecture. In order to show the impact of the
layer-based update on the hit rates, we compare it to the global
updates which store the input operands frequently observed
through the entire CNN computations. The result shows the
layer-based update provides higher average hit rates than the
global update strategy. The hit rates of the layer based updates
approach saturates for larger CAM sizes, as the CAM already
sufficiently stores frequent patterns. However, for the global
updates, the CAM needs to be larger to store the highly
frequent patterns for all layers. The bars in Fig. 3 show the
normalized energy consumption of the GPGPU which exploits
associative memory blocks. Since a large-size CAM consumes
higher search energy, the advantage of high-level hit rates is
compromised. Thus, the maximum energy saving is observed
with 64 rows and 32 rows for the layer-based and global update
cases respectively. For these configurations, the layer-based
associative update technique achieves more energy savings by

8 rows 16 rows 32 rows 64 rows 128 rows 256 rows 512 rows
0

0.2

0.4

0.6

0.8

1

1.2

TCAM Size

N
o

rm
a
li
z
e
d

 E
n

e
rg

y
 (

F
P

U
=

1
)

Global update (Energy)

Layer−based update (Energy)

Global update (Hit rate)

Layer−based update (Hit rate)

0

20

40

60

80

100

120

A
v
e
ra

g
e
 H

it
 R

a
te

 (
%

)

Fig. 3. Average hit rate of associative memory and normalized GPU energy
saving using uniform and layer-based associative update.

1 bit 2 bits 3 bits 4 bits 5 bits
0

1

2

3

4

5

6

7

8

9

10

Hamming Distance

A
v
e
ra

g
e
 Q

u
a
li
ty

 o
f

L
o

s
s
 (

%
)

First NN Layer

Middle NN Layer

Last NN Layer

Fig. 4. Sensitivity of different CNN layers to inexact matching of 16 rows
CAM in different Hamming distances.

26% compared to the global update policy.

C. Selective Approximation
The proposed architecture allows to configure the level of

approximation in processing the neural network. A design
issue related to this functionality is how to determine the depth
of approximation to ensure enough accuracy of the results. For
example, if high energy efficiency is required, it may set a high
level of approximation at the expense of the quality loss. To
ensure enough accuracy with high energy saving, we consider
the sensitivity of different layers based on the observation that
each layer has different levels of sensitivity for approximation.
Fig. 4 shows the error increase of a neural network, which
recognizes digits from images, when the layer computations
are approximated by accepting inexact input operands. In
this experiment, utilizing an associative memory beside each
floating point unit (i.e., ADD, MUL and MAC), we accept a
small number of bit differences in the Hamming distance when
searching for the input operands of each individual layer. The
result shows the first and last layer of the neural network have
higher sensitivity to approximation due to their direct impacts
on input and output signals. In contrast, the middle layer is
less sensitive for the approximation. Based on this observation,
our design allows to apply different levels of approximation
for each layer, so that it maximizes energy saving by better
trading with accuracy.

D. Resistive NNCAM Design
In this section, we describe the details of the proposed

NNCAM block which approximately performs the neural
network computation by looking up the closest stored patterns

TCAM Row 1

TCAM Row 2

TCAM Row 3

TCAM Row N

...

Buffer

S
e
n

se
 A

m
p

lifier

R
o

w
 D

riv
er

[0..N/m]

...

EnL1_N

EnL1_3

EnL1_2

EnL1_1

...Block 1

Clk

TCAM Row 1

TCAM Row 2

TCAM Row 3

TCAM Row N

...

Buffer

S
e
n

se
 A

m
p

lifier

R
o

w
 D

riv
er

[N/M..2*N/m]

...

EnL2_N

EnL2_3

EnL2_2

EnL2_1

Block 2

Clk

TCAM Row 1

TCAM Row 2

TCAM Row 3

TCAM Row N

...

Buffer

S
e
n

se
 A

m
p

lifier

R
o

w
 D

riv
er

...

EnLm_N

EnLm_3

EnLm_2

EnLm_1

Block m

MEM Row 1

MEM Row 2

MEM Row 3

MEM Row N

...

Bitline Driver

L
a

tc
h

MEM Sense Amp

...

Clk

Resistive MEM

Nearest Distance Search

Key [0..N]
[(M-1)N/M..N]

Fig. 5. Details of NNCAM structure in m pipeline stages.

to input operands. Fig. 5 shows the structure of the proposed
NNCAM consisting of m pipeline stages.

Assume that we have l input operands to be computed, say
I1, I2, · · · , Il . The bit representation of an input operand of N
bits, Ii, is divided into m blocks of N/m bits, and the search
operation starts from the most significant block, i.e., the first
block. If the search operation for the first block of I1 is hit, the
rows of the next CAM stages are selectively activated. Then, in
the next cycle, the second stage performs the search operation
for the second block of I1. At the same cycle, the search for
the first block of I2 is issued in the first CAM. Similarly, in
the third cycle, the first block of I3, the second block of I2,
and the third block of I1 are processed individually in each
CAM through the pipeline stages. The search continues until
it finds a single active row at the final CAM stage. Finally, the
hit on the last stage activates a row of the resistive memory
which stores the preprocessed computation results updated by
the layer-based associative update technique (Sec. III-B). This
selective row activation of the pipeline stages reduces the
number of active TCAM rows, thus significantly saving the
energy consumption of the NNCAM blocks. In addition, since
multiple input operands can be processed in the pipeline by
up to m instructions, it also improves the search performance.

We used a CAM proposed in [21] to search for the nearest
Hamming distance value to the input operands of each neural
network computation. In particular, neural networks typically
exploit floating point values as input operands, and the inaccu-
racy of the binary representation may significantly reduce the
quality of the neural network computations. For example, the
exponent part of the floating point values has more sensitivity
than the fraction part. In addition, for each part which is
represented as an unsigned integer value, the most significant
bits have higher impact on computation than other bits. Thus,
our first design goal is to find the row which has the smallest
difference from the given operands of each neuron. The second
design challenge is that, although we could always find the
nearest Hamming distance value, the approximate computation
sometimes needs to stop to avoid high error, with consideration
of the sensitivity of each layer. For example, in an extreme
case, we can compute all operations approximately without
using the FPUs. However, it may significantly degrade the
accuracy of the application. The accuracy mainly depends on
the size of the TCAM which stores the frequent patterns. For
example, increasing the NNCAM size improves computation
accuracy, but an NNCAM with many rows consumes more

energy and slows down the search operation due to the delay
of the input buffers and interconnections. In order to guarantee
enough accuracy with a reasonable TCAM size, our design
selectively assigns operations to the precise FPUs by disabling
the clock gating when the given operands are far from all
patterns stored in NNCAM. Our design enable tuning accuracy
by allowing the hits which are close enough in the first
NNCAM stage. In case of the hit within a threshold distance,
the input operands are processed on NNCAM. Otherwise, the
search operation stops in the next NNCAM stages and it is
processed by the FPUs [21].

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We integrated the proposed NNCAM with the floating
point units of an AMD Southern Island GPU which has been
commercially used, e.g., Radeon HD 7970 device. Our design
can be also implemented in other general GPU architectures.
We run neural network implementations using OpenCL to
evaluate the efficiency of NNCAM. We simulate the proposed
GPGPU architecture based on Multi2sim, a cycle accurate
CPU-GPU simulator [28]. We also implemented the kernel
code of the neural network implementation which works
with NNCAM by supporting the runtime layer-based updates
and selective approximation. The NNCAM block has been
integrated beside each FPU in NNCAM on four pipeline
stages. We extracted the most frequent patterns for ADD,
MUL, and MAC FPUs for each neural network layer. ADD
and MUL have 2 input operands while MAC accepts three
inputs. Therefore, their corresponding NNCAM blocks handle
64 bits and 96 bits respectively. We evaluated energy of FPUs
using Synopsys Design Compiler and optimized for power
using Synopsys Prime Time for 1 ns delay in 45-nm ASIC
flow [30]. The circuit level simulation of the CAM design has
been performed on HSPICE simulator in 45-nm technology.

B. Benchmark and Framework

We evaluate the efficiency of the proposed design for a CNN
implementation, LeNet-5 [31], where each layer has trainable
weights. We use MNIST dataset [29] as input data which
are 32x32 pixel images of hand-written digit characters. We
trained LeNet-5 with 60K training images, and it recognizes
the digits with about 95% accuracy for 10K tested image
samples. The execution flow of NNCAM has two main steps:

8 16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

NNCAM Size (Number of rows)

N
o

rm
a
li
z
e
d

 E
n

e
rg

y

(F

P
U

=
1
)

Uniform Approximation

Selective Approximation

8 16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

NNCAM Size (Number of rows)

N
o

rm
.
E

x
e
c
u

ti
o

n
 T

im
e
 (

F
P

U
=

1
)

8 16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

NNCAM Size (Numebr of rows)

N
o

rm
a
li
z
e
d

 E
D

P
 (

F
P

U
=

1
)

Fig. 6. Normalized energy consumption, execution time and energy-delay product of partially running CNN on FPU and NNCAM.

design time profiling and runtime reuse. We first execute an
OpenCL kernel and the C++ based host code with trained
network coefficients to profile the input operands and their
corresponding results for NNCAM based on the input dataset.
We used 10% random images from the MNIST dataset. Then,
the host code saves and ranks the input patterns for each FPU
based on their occurrences. To evaluate the accuracy of the
proposed design, we compare with the results exactly com-
puted on the original GPU. The accuracy of neural network
algorithms depends on the ratio of running application on
NNCAM and FPUs, which is tunable by the ST threshold
values used for each layer. In our evaluation, we determined
the threshold values based on the sensitivity analysis discussed
in Sec. III-C, so that the neural network is accelerated with
less than 2% loss in quality, i.e., the degraded percent in the
number of recognized images, for all evaluated configurations.

C. Evaluation of GPU acceleration
We first evaluate the energy and performance efficiency

of the proposed design. Fig. 6 compares the energy
consumption, execution time and energy-delay product. In
order to understand the impact of the selective approximation
discussed in Sec. III-C, we compare to the uniform
approximation, which applies the same level of approximation
for all layers, by using the same ST signals with the given
quality loss of 2%. For small TCAM sizes from 8 rows to
32 rows, increasing the size saves more energy and improves
performance of the enhanced GPGPU architecture. This is
because larger sizes can increase the hit rates in the CAMs,
thus assigning more instructions to the NNCAM. Table I
shows the ratio of the instructions which run on NNCAM
instead of using FPUs, on average for the three FPUs. For
example, the selective approximation of the 32-row case can
assign more instructions by 23% compared to the 8-row case.
However, from 64 rows, the energy and the performance starts
degrading because the highly frequent patterns are already
stored. One way to determine the best NNCAM size is to use
energy-delay product (EDP). In this criteria, using 32 rows
results in 6× better EDP improvement compared to traditional
GPU. In this NNCAM size, the proposed GPU design can
show 70% energy savings and 44% speedup. In addition,
our evaluation also shows that, with the same level of the
CNN accuracy, the selective approximation achieves higher
energy saving and speedup than the uniform approximation.
For example, for the same level quality of loss of 2%, the

TABLE I
THE RATIO OF RUNNING CNN ON NNCAM IN DIFFERENT SIZES,

ENSURING LESS THAN 2% QUALITY LOSS.

Approximation
8

rows
16

rows
32

rows
64

rows
128

rows
256

rows
512

rows

Uniform 68% 58% 48% 41% 32% 25% 17%

Selective 46% 31% 22% 16% 10% 6% 4%

TABLE II
ENERGY SAVING AND PERFORMANCE IMPROVEMENT OF ENHANCED

GPGPU IN DIFFERENT NEURAL NETWORKS

.

CNN
Energy
Saving

Performance
Improv.

EDP
Improv.

Convolutional LeNet-5 70% 44% 5.9×
Convolutional net Boosted LeNet-4 73% 39% 6.0×

Conv4x4-pool-380-40-10 67% 42% 5.2×
Conv7x10-pool-1210-120-10 62% 33% 3.9×

selective approximation technique, which differently relaxes
the level of approximations for each neural network layer,
achieves higher energy and performance efficiency by 1.8×
and 1.3× respectively, compared to the maximum case of the
uniform approximation.

Table II summarizes energy savings, performance, and EDP
improvement of four other CNN implementations running
on the proposed GPGPU. We use LeNet-4, LeNet-5 and two
other listed CNN designs [31] with the MNIST database. For
each CNN, we apply the layer-based update and selective
approximation techniques to ensure the same amount of
quality loss by 2%. Our evaluation shows running these
four neural networks on the proposed hardware can achieve
68% of energy savings, 40% of speed up and 5.3× of EDP
improvement compared to the traditional GPGPU on average.

D. Pure NNCAM Computation
One feasibility for the proposed NNCAM is that we may

accelerate the entire computation of the neural network with-
out using any processing cores on GPU. For example, we
may place NNCAM close to main memory in order to locally
process data without data movement between GPU cores

8 16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

NNCAM Size (Number of rows)

N
o

rm
.
E

n
e
rg

y
 &

 E
x
e
c
u

ti
o

n
 T

im
e

Quality Loss

Energy

Execution Time

0

10

20

30

40

50

Q
u

a
li
ty

 L
o

s
s
 (

%
)

Fig. 7. Normalized energy consumption and execution time of NNCAM
computing in different sizes.

and memory. The data movement cost is one main concern
for emerging BigData applications such as IoT streaming
applications [1], [2]. Fig. 7 shows the energy and execution
time of the proposed design running the CNN for different
row sizes. For each size, both energy and execution time
are normalized to the original GPU which does not use
any associative memory. The result shows that increasing
the NNCAM size improves computation accuracy by storing
more patterns. However, NNCAM, which uses many rows,
degrades the energy and latency, because the large NNCAM
consumes higher energy and has longer execution time due to
the large buffer size needed to distribute input data among all
rows simultaneously. Therefore, the size of NNCAM shows
a trade-off relationship for the energy/performance and the
accuracy. To ensure the quality loss below 2%, our design
requires more than 512 rows, decreasing energy by 3% and
reducing execution time by 10%, compared to the original
GPU. However, although the improvement is less than the
proposed GPU-based acceleration for this configuration, the
pure NNCAM acceleration may have several application do-
mains. For example, if the application can allow less accurate
results, e.g., around 5%, our design requires an NNCAM block
with 128 rows, and it can save energy by 60%. Thus, some
application domains which may accept less accurate results
can exploit the pure NNCAM acceleration, e.g., IoT embedded
systems which energy efficiency is more crucial.

V. CONCLUSION

In this paper, we propose a neural network acceleration tech-
nique on GPU using a resistive CAM accelerator, NNCAM,
which has the capability of performing memory-based compu-
tation. NNCAM approximately models the basic computations
of neural networks, stores frequent patterns and searches for
the closest similarity to reuse the results. Our design selec-
tively assigns a block of computations to FPUs to guarantee
the accuracy of the computed results. To further improve the
efficiency of the proposed design in running neural networks,
we propose layer-based updates and selective approximation
techniques. The layer-based updates improve computation
locality by filling the NNCAM adaptively for each neural
network layer, thus increasing the hit rate in CAMs. The
selective approximation technique relaxes computations by

considering the sensitivity of each layer. Our evaluation shows
that the proposed design integrated with the AMD Southern
Island GPU can achieve 68% of energy savings and 40%
of speed up, while providing less than 2% accuracy loss for
four CNN implementations. The application of the proposed
NNCAM is not limited to the neural network applications. For
other applications, which are executed with multiple phases,
our platform can be co-designed with the GPU software to
dynamically update the frequent patterns and select the proper
approximation of search layer to find the optimal trade-off of
energy and performance with accuracy.

VI. ACKNOWLEDGMENT

This work was supported by NSF grant #1527034 and
Jacobs School of Engineering UCSD Powell Fellowship.

REFERENCES

[1] L. Atzori, et al., “The internet of things: A survey.” Elsevier Computer networks,
Vol. 54, no. 15, pp. 2787-2805, 2010.

[2] M-D. Assuno, et al., “Big data computing and clouds: Trends and future direc-
tions,” Elsevier Journal of Parallel and Distributed Computing, pp. 3-15, 2015.

[3] M. Imani, et al., “Maximum-Likelihood Adaptive Filter for Partially Observed
Boolean Dynamical Systems,” IEEE Transactions on Signal Processing, vol. 65,
no. 2, pp. 359, 2017.

[4] M. Oquab, et al., “Learning and transferring mid-level image representations using
convolutional neural networks,” IEEE CVPR, pp. 1717-1724, 2014.

[5] Y. LeCun, et al., “Convolutional networks and applications in vision,” IEEE ISCAS,
pp. 253-256, 2010.

[6] S. Ji, et al., “3D convolutional neural networks for human action recognition,”
IEEE TPAMI, pp. 221-231, 2013.

[7] B. Rouhani, et al., “DeLight: Adding Energy Dimension To Deep Neural Net-
works,” ACM ISLPED, pp. 112–117, 2016.

[8] A. Krizhevsky, et al., “Imagenet classification with deep convolutional neural
networks,” NIPS Proceedings, pp. 10971105, 2014.

[9] M. Imani, et al., “Exploring Hyperdimensional Associative Memory,” IEEE HPCA,
2017.

[10] N. Khoshavi, et al., “Read-Tuned STT-RAM and eDRAM Cache Hierarchies for
Throughput and Energy Enhancement,” arXiv:1607.08086, 2016.

[11] N. Khoshavi, et al., “Bit-Upset Vulnerability Factor for eDRAM Last Level Cache
Immunity Analysis,” IEEE ISQED, 2016.

[12] N. Mozaffari, et al., “More Efficient Testing of Metal-oxide Memristor-based
Memory,” IEEE TCAD, 2016.

[13] M. Imani, et al., “MASC: Ultra-low energy multiple-access single-charge TCAM
for approximate computing,” IEEE/ACM DATE, pp. 373-378, 2016.

[14] M-A. Bhuiyan, et al., “Acceleration of spiking neural networks in emerging multi-
core and gpu architectures,” IEEE IPDPSW, pp. 1-8, 2010.

[15] D-C. Ciresan, et al., “Flexible, high performance convolutional neural networks
for image classification,” IJCAI, vol. 22, no. 1, 2011.

[16] J. Schmidhuber, et al., “Multi-column deep neural networks for image classifica-
tion,” IEEE CVPR, pp. 3642-3649, 2012.

[17] R. Andri, et al., “YodaNN: An Ultra-Low Power Convolutional Neural Network
Accelerator Based on Binary Weights,” arXiv:1606.05487, 2016.

[18] M. Imani, et al., “Resistive configurable associative memory for approximate
computing,” IEEE DATE, pp. 1327-1332, 2016.

[19] T. Kohonen, et al., “Content-addressable memories,” Springer Science & Business
Media, vol. 1, 2012.

[20] A. Goel, et al., “Small subset queries and bloom filters using ternary associa-
tive memories, with applications,” ACM SIGMETRICS Performance Evaluation
Review, vol. 38, no. 1, pp. 143154, 2010.

[21] M. imani, et al., “Resistive CAM Acceleration for Tunable Approximate Comput-
ing,” IEEE TETC, 2016.

[22] X. Yin, et al., “Exploiting ferroelectric FETs for low-power non-volatile logic-in-
memory circuits,” IEEE/ACM ICCAD, 2016.

[23] X. Yin, et al., “Design of latches and flip-flops using emerging tunneling devices,”
IEEE DATE, pp. 367–372, 2016.

[24] M. Valad Beigi, et al., “Tapas: Temperature-aware adaptive placement for 3d
stacked hybrid caches,” ACM MEMSYS, 2016.

[25] M. Valad Beigi, et al., “TESLA: Using Microfluidics to Thermally Stabilize 3D
Stacked STT-RAM Caches,” IEEE ICCD, 2016.

[26] J-M. Arnau, et al., “Eliminating redundant fragment shader executions on a mobile
GPU via hardware memoization,” ACM/IEEE ISCA, pp. 529-540, 2014.

[27] M. Imani, et al., “Approximate Computing using Multiple-Access Single-Charge
Associative Memory,” IEEE TETC, 2016.

[28] R. Ubal, et al., “Multi2Sim: a simulation framework for CPU-GPU computing,”
ACM PACT, 2012.

[29] Y. LeCun, et al., “MNIST handwritten digit database,” Available:
http://yann.lecun.com/exdb/mnist, 2010.

[30] Synopsys User Guide, See: ”http://www.synopsys.com”.
[31] Y. LeCun, et al., “Gradient-based learning applied to document recognition,”

Proceedings of the IEEE, vol. 86, no. 11, pp. 22782324, 1998.

