
Laelaps: An Energy-Efficient Seizure Detection
Algorithm from Long-term Human iEEG Recordings

without False Alarms
Alessio Burrello∗, Lukas Cavigelli∗, Kaspar Schindler†, Luca Benini∗, Abbas Rahimi∗

∗Integrated Systems Laboratory, ETH Zurich, Switzerland †Sleep-Wake-Epilepsy-Center, Inselspital Bern, Switzerland
Emails: bualessi@student.ethz.ch, kaspar.schindler@insel.ch, {cavigelli, benini, abbas}@iis.ee.ethz.ch

Abstract—We propose Laelaps, an energy-efficient and fast learn-
ing algorithm with no false alarms for epileptic seizure detection
from long-term intracranial electroencephalography (iEEG) signals.
Laelaps uses end-to-end binary operations by exploiting symbolic dy-
namics and brain-inspired hyperdimensional computing. Laelaps’s
results surpass those yielded by state-of-the-art (SoA) methods [1],
[2], [3], including deep learning, on a new very large dataset
containing 116 seizures of 18 drug-resistant epilepsy patients in 2656
hours of recordings—each patient implanted with 24 to 128 iEEG
electrodes. Laelaps trains 18 patient-specific models by using only
24 seizures: 12 models are trained with one seizure per patient, the
others with two seizures. The trained models detect 79 out of 92
unseen seizures without any false alarms across all the patients as a
big step forward in practical seizure detection. Importantly, a simple
implementation of Laelaps on the Nvidia Tegra X2 embedded device
achieves 1.7×–3.9× faster execution and 1.4×–2.9× lower energy
consumption compared to the best result from the SoA methods.
Our source code and anonymized iEEG dataset are freely available
at http://ieeg-swez.ethz.ch.

Index Terms—Hyperdimensional computing, symbolic analysis.

I. INTRODUCTION

Epilepsy is a highly prevalent chronic neurological disorder
affecting 1–2% of the world’s population [4]. One third of patients
with epilepsy continue to suffer from seizures despite pharmaco-
logical therapy. For improved monitoring of these patients with
drug-resistant epilepsy—e.g., during presurgical diagnostics—
machine learning methods are developed for automatic seizure
detection. These SoA methods are based on extracting useful
features followed by traditional supervised machine learning
methods such as K-nearest neighbor [5], random forest [6],
[4], and support vector machines (SVMs) [1], [7]; more recent
methods exploit automatic feature extraction algorithms based on
deep learning such as convolutional neural networks (CNNs) [2]
and long short-term memories (LSTMs) [3].

Most seizure detection methods assume that the patients with
epilepsy experience two distinct states of brain activity—i.e.,
interictal (between seizures) and ictal (during seizures)—that can
be detected by EEG. Recent methods propose to use unobtrusive
non-EEG signals such as heart rate and accelerometry that
despite the distance from the seizure generating brain regions
reflect extracerebral changes associated with specific types of
seizures [8]. However, these methods suffer from high false
alarm rates as high as 1.2 h−1 [9], compared to lower (e.g.,
0.47 h−1 [5] to 0.27 h−1 [7]) yielded by EEG-based methods;
the false alarms may increase anxiety in epilepsy patients and are
thus likely to further decrease their already impaired quality of
life [10]. Enabling even more proximate monitoring of the seizure
generating regions, intracranial EEG (iEEG, or ECoG) currently
provides the best spatial resolution and highest signal-to-noise

ratio to record electrical brain activity [4]. Using such invasive
recordings can reduce the false alarm rate to 0.13 h−1 [11].

However, one major challenge with iEEG signals is to real-
ize seizure detection algorithms with low complexity suitable
for execution on implantable devices with limited battery size
for long-term or even lifelong operation. Another challenge—
common to all methods—is to reliably detect seizures from a
small number of examples due to the uneven distribution with
much longer interictal than ictal time periods, and the patient-
specific seizure dynamics [7], [12]. To address these challenges,
one promising option is to develop computationally efficient and
fast learning algorithms by combining methods from symbolic
dynamics [5], [13], [14], [15], [1] and brain-inspired hyperdi-
mensional computing [16], [17]. In this paper, we describe the
following contributions:

(1) We propose Laelaps1, an energy-efficient algorithm for
both learning and inference from long-term iEEG recording of
patients having large heterogeneity implanted with 24 to 128
electrodes. Laelaps operates with end-to-end binary operations
to avoid otherwise expensive fixed- or floating-point arithmetic.
Laelaps exploits local binary patterns (Sec. II-A) to map a
sequence of iEEG samples into 6-bit codes as abstract symbols.
These symbols are further combined over time and across all
the electrodes to generate a compact representation for encoding
the brain state of interest. Such a holographic representation is
effectively constructed by using brain-inspired hyperdimensional
computing (Sec. II-B) that enables fast learning with binary
operations on d-bit vectors where d ∈ [1000, 10000] (see Sec. III).

(2) For each of the 18 patients, Laelaps trains a patient-specific
model with one or maximally two seizure examples from the
assigned patient. Remarkably, these models detect 79 out of
92 unseen seizures with no false alarms over 1357 hours of
recording. Using the same setup, the SoA methods detect fewer
seizures with higher false alarm rates: 69 detected seizures with
0.31 h−1 using the SVM, 51 detected seizures with 0.36 h−1

using the CNN, and 69 detected seizures with 0.54 h−1 using the
LSTM. The SoA methods also reach lower sensitivity averaged
across patients, except for the LSTM (88.4% vs. 85.5%). See
Sec. IV.

(3) GPU implementation of Laelaps on the Nvidia Tegra X2
(TX2) achieves 1.7×–3.9× faster execution and 1.4×–2.9× lower
energy consumption, depending on the number of electrodes,
compared to the SVM as the most energy-efficient implemen-
tation among the SoA methods (Section V).

1Laelaps was a dog in Greek mythology who never failed to catch what she
was hunting.

http://ieeg-swez.ethz.ch


II. BACKGROUND
We first provide a background in the symbolization that trans-

forms the iEEG signals into abstract symbols. Then we introduce
brain-inspired hyperdimensional computing that combines these
abstract symbols to compute useful representations for the brain
state of interest.

A. Symbolization using Local Binary Patterns (LBP)
A class of data analysis methods is referred to as symboliza-

tion, which describes the process of transforming experimental
measurements into a series of discrete symbols. Symbolization
is particularly interesting for iEEG analysis [14], [15], because
it faithfully preserves dominant dynamical signal characteristics
while significantly increasing the efficiency of detecting and
quantifying information contained in real-world time series [13].
Symbolization may be efficiently achieved by mapping a se-
quence of iEEG samples into a bit string, i.e. a one-dimensional
local binary pattern (LBP) [5], [1]. Here a LBP code reflects the
relational aspects between consecutive values of the iEEG signals,
i.e., whether their amplitudes increase or decrease. We find that
LBP codes are more efficient than other symbolization methods,
e.g., directed horizontal graphs [15] that assign an integer input
and output degree to each time point.

A LBP code can be computed in two steps: (1) The iEEG
samples are converted into a bit string depending on the sign of
the temporal difference of two adjacent samples. If the difference
is positive, we assign a 1 to the sampling point, otherwise a 0. (2)
A LBP code of length ` is associated with every sampling point by
concatenating its bit with the successive `−1 bits. We observe that
the distribution of LBP codes is significantly different between
the ictal and the interictal states [12]. More specifically, during
the interictal state the histogram of LBP codes is flattened out
(i.e., the counts are almost evenly distributed over all the possible
codes). In contrast, the ictal state has a predominant portion
of a single LBP code and many LBP codes never occur due
to the relatively slower and more asymmetric iEEG oscillations
typically emerging during seizures.

B. Hyperdimensional (HD) Computing
Inspired by the size of the brain’s circuits, we can model

neural activity patterns with points of a hyperdimensional space.
Hyperdimensional (HD) computing [16] explores this idea by
computing with hypervectors—very high dimensional (d) ran-
dom vectors with independent and identically distributed (i.i.d.)
components—in the following simply referred to as vectors. HD
computing starts by assigning an atomic vector to every symbol
defined in the system in a so-called item memory (IM) (see
Fig. 1). Atomic vectors are d-bit vectors that are drawn from
the binomial distribution with p = 0.5, n = d, and d/2 as
the mean (i.e., a generated vector contains i.i.d. components of
equally probable 1s and 0s). They serve as seeds for constructing
representations of more complex objects.

When the dimensionality is in the thousands, e.g. d ≥ 1000,
there exist a very large number of nearly orthogonal atomic
vectors [16]. This allows HD computing to combine two atomic
vectors into a new complex fixed-width vector using well-defined
vector space operations, while keeping the information of the
two atomic vectors with high probability. Computing with such
fixed-width (d) vectors offers fast [18] and energy-efficient [19]
learning by providing a novel perspective on data representations
and associated operations [17].

In the following, we describe how the d-bit vectors can be
combined using HD arithmetic operations. We focus on two main
operations of HD computing: bundling and binding. Bundling, or
addition, is defined as the componentwise majority function: the
input vectors are summed together followed by a normalization
that retains them inside the binary space. It is essentially a bitwise
thresholded sum of k vectors that results in 0 when k/2 or more
arguments are 0, and 1 otherwise. Bundling of three vectors
A,B,C is denoted as [A + B + C] where the brackets [. . .]
stand for normalization. Binding, or multiplication, is defined as
the componentwise Exclusive OR (XOR). Likewise, it is denoted
as A ⊕ B ⊕ C. Both operations work on an arbitrary number
of input vectors and produce a fixed-width d-bit vector with an
important distinction: bundling produces a vector that is similar to
the input vectors, whereas binding produces a dissimilar vector.
The similarity between vectors can be measured by Hamming
distance (η) defined as the number of components at which they
differ. See [17] for a more comprehensive overview.

HD computing for learning and classification tasks is composed
of four main steps: 1) mapping symbols to atomic vectors; 2)
combining atomic vectors with the arithmetic operations inside
an encoder to produce a complex vector representing an event
of interest; 3) combining the complex vectors from the same
category of events to produce a prototype vector representing
the entire class or category (i.e., learning); 4) finally comparing
the prototype vectors with a query vector for categorization (i.e.,
inference/classification).

III. LAELAPS: LBP CODES AND HD COMPUTING
In this section, we present the main contribution of the paper.

We show how the LBP feature extractor and HD computing can
be combined to efficiently learn from iEEG recordings, and then
detect novel seizures. Our proposed algorithm, named Laelaps,
exploits LBP codes to directly symbolize the iEEG signal of
each electrode. Laelaps then applies HD computing to construct
a holographic d-bit representation that captures the statistics of
the LBP codes across all the electrodes and over time. This
representation is then used for learning and classification in the
HD space, followed by straightforward postprocessing. Laelaps
is computationally efficient and extracts symbols for analyzing
the occurrence of patterns, a process even somewhat similar to
classical EEG reading by a human expert who tries to integrate
visually detectable local and global characteristics of the iEEG
signals into a coherent interpretation; then Laelaps quickly learns
from one or few examples of these patterns per patient. The entire
processing chain (Fig. 1) is described in the following.

A. Preprocessing and LBP Feature Extraction
After filtering and downsampling the raw iEEG signals, an `-

bit LBP code is computed for every sampling point. The LBP
codes with different lengths (` ∈ [4, 8]) produce almost similar
performance [12], hence we set ` = 6 because using larger code
sizes impairs the applicability to non-stationary iEEG signals. In
addition, larger codes increase the delay of classification since the
code size determines the minimum size of the statistical analysis
window, i.e., the size of such a window should be large enough
that all symbols can at least theoretically occur once [14]. With
` = 6, the analysis window can be as short as 1 s (containing
512 samples) that meets 512 > 2`. Our LBP code moves by one
sample, and generates 26 different symbols that are fed into the
next stage for learning and classification (see Fig. 1).
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Fig. 1: Processing chain of Laelaps: (1) Feature extraction generates a 6-bit LBP code for each electrode; (2) HD computing maps
these codes to d-dimensional atomic vectors and constructs a complex vector H to represent the histogram of 1 s recording. During
training the associative memory (AM) learns from this vector, and during inference provides a label; (3) As postprocessing, a
patient-dependent (tr) voting decides based on the last 10 labels and their distance scores (∆).

B. Learning and Classification in HD Space
HD computing first applies random embeddings of the LBP

codes in the HD space via the IM, which assigns a nearly orthog-
onal i.i.d. d-bit vector to every LBP code, i.e., C1⊥C2 . . .⊥C64.
To combine these vectors across all electrodes, HD computing
generates a spatial record (S), in which an electrode name
is treated as a field, and its LBP code as the value of this
field. The IM also maps the names of the electrodes to random
embeddings nearly orthogonal binary vectors: E1⊥E2 . . .⊥En

for a patient with n electrodes. This allows to bind (⊕) the
name of each electrode (Ej | j ∈ [1, n]) to its corresponding
code (Ci(j) | i ∈ [1, 64]). This binding (Ej ⊕ Ci(j)) gener-
ates a new set of nearly orthogonal vectors to represent LBP
codes per electrode that effectively reduces the size of IM from
64 × n vectors to 64 + n vectors. The spatial record (S) is
then constructed by bundling the bound vectors of all electrodes:
S = [E1 ⊕Ci(1) +E2 ⊕Ci(2) + ...+En ⊕Ci(n)]. The bundling
operation is well suited for representing sets and multisets.

The d-bit vector S is computed for every new sample, and
holographically represents the spatial information about the LBP
codes of all the electrodes. The next step is to compute the
histogram of LBP codes for a moving window of 1 s with 0.5 s
overlap. To estimate the histogram of LBP codes inside this
window, a multiset of temporally generated S vectors is computed
as H = [S1+S2+...+S512]. The bundling operation is applied in
the temporal domain through accumulation (i.e., componentwise
addition) of St vectors t ∈ {1, ..., 512}, that are produced within
the window, and then thresholding at half (i.e., normalization).
As mentioned in Sec. II-A, the interictal and ictal states are
characterized by different distributions of LBP codes that are
reflected by H .

The output of the encoding is H , a d-bit vector that is
updated every 0.5 s. Note that representation of H , as a com-
posite structure, is constructed directly from representations of
the atomic vectors by applying the operations in the encoder
without requiring any learning. To train our classifier, we use
vector H to build an associative memory (AM) containing two
prototype vectors representing ictal and interictal labels. To train
the interictal prototype, all H vectors computed over an interictal
state of 30 s are accumulated (summed), and then thresholded

(normalized) to be stored in the AM as a d-bit prototype vector
(P1). Similarly, an ictal prototype vector (P2) is generated from
an ictal state that can last 10 s to 30 s depending on seizures’
duration. For classification, every 0.5 s, the label of an unseen
window is determined by comparing its H to P1 and P2 in
the AM. The prototype that results in the minimum Hamming
distance (arg mink η(H,Pk)) is the label.

C. Postprocessing
The last part of Laelaps postprocesses the labels and distances

produced by the HD classifier for the final decision. For each
labeled window, we associate a ∆ score as the absolute difference
between two prototype distances: ∆ = |η(H,P1)−η(H,P2)|. We
consider a postprocessing window that takes into account the last
10 labels and their corresponding ∆ scores (shifting them every
0.5 s). The final decision is made based on two thresholds (tc, tr),
the former considers the classification labels and the latter checks
their ∆ scores. Laelaps flags an alarm (as the seizure onset) only
if the following two conditions are met: the number of ictal labels
inside the postprocessing window ≥ tc, and the mean of ∆ of
those labels exceeds tr.

We set tc = 10 for all the patients, thus flagging a seizure
alarm after at least 10 consecutive output labels indicating an ictal
state. This increases the detection delay but filters out many false
alarms. In contrast, tr is tuned for each patient Pi. If there are no
false alarms after filtering based on the hard classification results
using tc, we set t(Pi)

r = min ∆
(Pi)
ictal to maximize robustness to

false alarms without affecting the sensitivity. Otherwise, we select
tr as the highest integer multiple of max ∆

(Pi)
interictal, such that it

remains lower than max ∆
(Pi)
ictal − α, where α is the difference

between the mean ∆ictal across the samples used to train the HD
classifier and the remaining samples in the training set, averaged
across all patients. This is used to compensate for the higher
confidence of the classifier for the samples on which it was
trained.

IV. DATASET AND EXPERIMENTAL RESULTS

A. Long-term Human iEEG Dataset
Our anonymized dataset comprises 18 patients (P1–P18) from

the epilepsy surgery program of the Inselspital Bern. For each
patient, the number of seizures varies from 2 to 23, and the



TABLE I: Used abbreviations/symbols: Elect.: number of electrodes, Seiz.: total number of seizures, Rec.: total duration of the
recording, TrS: number of seizures used in training, `: delay of seizure onset detection, FDR: false detection rate, Sen.: sensitivity,
and n.a. not applicable. Note that FDR∗ is computed only on 20 h that is randomly selected from interictal test set.

Patient Information Laelaps LBP + Linear SVM [1] LSTM [3] STFT + CNN [2]

ID Elect.
[#]

Seiz.
[#]

Rec.
[h]

TrS
[#]

`
[s]

FDR
[h−1]

Sen.
[%]

d
[kbit]

`
[s]

FDR∗

[h−1]
Sen.
[%]

`
[s]

FDR∗

[h−1]
Sen.
[%]

`
[s]

FDR∗

[h−1]
Sen.
[%]

P1 88 2 293 1 28.5 0.00 100.0 3 10.0 0.00 100.0 8.0 0.10 100.0 8.0 0.00 100.0
P2 66 2 235 1 16.5 0.00 100.0 10 8.0 0.75 100.0 17.0 0.40 100.0 3.0 0.75 100.0
P3 64 4 158 1 17.0 0.00 100.0 7 7.0 0.05 100.0 5.8 0.20 100.0 2.0 0.00 100.0
P4 32 14 41 2 19.8 0.00 66.7 6 30.0 0.65 50.0 22.1 1.20 91.7 n.a. 0.00 0.0
P5 128 4 110 1 5.3 0.00 100.0 1 2.7 0.25 100.0 5.8 0.30 100.0 2.0 0.15 66.7
P6 32 8 146 1 17.9 0.00 85.7 10 10.0 0.20 85.7 12.4 0.20 100.0 0.8 1.90 42.9
P7 75 4 69 2 17.2 0.00 50.0 1 26.5 1.15 50.0 9.2 1.45 100.0 26.0 0.00 100.0
P8 61 4 144 2 11.0 0.00 100.0 10 2.0 1.30 100.0 8.5 1.05 100.0 16.3 1.20 100.0
P9 48 23 41 2 8.6 0.00 81.0 6 16.3 0.10 38.1 n.a. 0.05 0.0 n.a. 0.00 0.0
P10 32 17 42 1 17.4 0.00 100.0 3 3.6 0.10 100.0 25.9 1.60 100.0 37.0 1.00 93.8
P11 32 2 212 1 19.5 0.00 100.0 3 12.0 0.40 100.0 7.0 0.05 100.0 5.0 0.20 100.0
P12 56 9 191 2 36.3 0.00 100.0 1 27.6 0.00 100.0 28.4 1.15 100.0 7.0 0.00 100.0
P13 64 7 104 2 21.1 0.00 80.0 2 11.3 0.00 100.0 6.2 0.90 100.0 1.3 0.40 100.0
P14 24 2 161 1 n.a. 0.00 0.0 1 n.a. 0.00 0.0 n.a. 0.00 0.0 n.a. 0.00 0.0
P15 98 2 196 1 20.0 0.00 100.0 1 3.0 0.15 100.0 2.5 0.05 100.0 5.0 0.00 100.0
P16 34 5 177 1 20.4 0.00 100.0 10 9.0 0.55 100.0 8.8 0.80 100.0 7.0 0.20 100.0
P17 60 2 130 1 19.0 0.00 100.0 1 13.0 0.00 100.0 3.5 0.10 100.0 16.0 0.45 100.0
P18 42 5 205 1 25.7 0.00 75.0 1 26.3 0.00 75.0 19.0 0.15 100.0 11.0 0.20 75.0

mean 18.9 0.00 85.5 4.3 12.8 0.31 83.3 11.9 0.54 88.4 9.8 0.36 76.6

total durations of interictal recordings from 41 h to 293 h. Two
patients out of 18 (P8 and P14) show a high number of fast and
short seizures (70 and 60, respectively), hence we only consider
4 and 2 seizures as the lead seizures [20] for them. The dataset
includes a total of 2656 h of recording, with 116 seizures marked
by an experienced and board-certified epileptologist (K.S.). The
first part of Tbl. I shows the number of electrodes, the number
of seizures, and the total hours of recordings for every patient.

B. Results: Sensitivity, False Alarms, and Detection Delay
To evaluate the performance of Laelaps, we assess the follow-

ing metrics given a few trained seizure examples: (1) sensitivity,
defined as number of detected seizures out of the number of test
seizures; (2) false detection rate (FDR), defined as the number of
false alarms that occurred during an hour; (3) delay of detection,
defined as the time distance between the algorithm detection and
the expert marked seizure onset. Note that this is measured as the
working delay of algorithms, and not the implementation delay.
Implementation results including speed of execution and energy
consumption are discussed in Sec. V-C.

We evaluate the performance for a practical clinical setting
with the goal of reducing time-to-functioning of an algorithm to
get it reliably operational as soon as the first few seizures are
observed. Hence, we partition the dataset in chronological order
to a training set, covering continuous recording until the end of
the first or second seizure depending on the patient (see TrS in
Tbl. I), that is followed by a longer testing set until the end of
recording. The training set includes 37.7% of total recording on
average among the patients. We train patient-specific models by
using one or two ictal state(s), ranging from 10 s to 30 s, and
one 30 s interictal state that is chosen to be 10 min before the
first seizure onset. This training generates the content of AM
in Laelaps and weights for other SoA. We also use the rest of
interictal and ictal samples to tune tr available in the training set
at least until the first seizure.

As shown in Tbl. I, Laelaps achieves 85.5 % mean sensitivity
(100 % median) among the patients, and an ideal 0.0 h−1 FDR
on 1357 h of test set. In addition, for the majority of patients

(11 out of 18), Laelaps achieves perfect sensitivity (100 %). Note
that we have already done cross-validation on a short-time iEEG
dataset in [12], and we consistently observed superior sensitivity,
specificity, and fast learning benefits; however, cross-validation
with this long-term dataset is highly impractical especially for the
SoA methods, e.g., the classification time of the LSTM is 2.1×
slower than the real-time on an Intel Xeon CPU at 2.4 GHz.

We compare Laelaps with the SoA methods in seizure detection
including LBP+SVM [1], and LSTM networks [3]. Besides, we
consider CNNs coupled with short time Fourier transform (STFT)
that is proposed as a universal method for seizure prediction [2].
We apply these methods to our seizure detection task using the
same setup but tr = 0. These methods do not attain ideal FDR:
SVM comes closest and performs ideally on 4 out of 18 patients
(0.0 h−1 FDR and 100 % sensitivity), but achieves 0.31 h−1 FDR
and 83.3 % mean sensitivity among all the patients. The other
SoA methods suffer from significantly higher FDR, 0.36 h−1

with the CNN, and 0.54 h−1 with the LSTM, which limits their
application in long-term recording. Interestingly, Laelaps still
maintains a lower FDR of 0.15 h−1 even with tr = 0 (i.e.,
without any tuning). Note that we were able to compute the
FDR for the SoA methods only on 20 h of randomly selected
interictal recordings due to their slow inference time. Overall,
Laelaps detects 79 out of 92 unseen seizures, while the other
methods perform worse: 69, 51, and 69 detected seizures using
the SVM, the CNN, and the LSTM, respectively. Noteworthy,
only for two patients (P7 and P14), Laelaps shows a very low
sensitivity (50% and 0%, respectively). For P7, it could be due to
the LBP features as LBP+SVM also reaches the same sensitivity,
and for P14, all the SoA methods fail as well.

The average delay of seizure onset detection of Laelaps is
slightly larger than the one yielded by the SoA methods (18.89 s
vs. 12.84 s of the SVM). Other iEEG-based methods reach a
similar average delay of 13.8 s on 289 h of recording with an
FDR of 0.13 h−1 [11]. Such a detection delay below 20 s is still
suited for several important applications considering that iEEG
seizure onset often precedes clinical onset by more than 20 s [21].
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Fig. 2: GPU implementation of Laelaps using three kernels. Different colors indicate different threads and thread blocks.

Finally, we tune the dimension (d) of the vectors separately for
each patient. First, we perform the experiments with d = 10 kbit
to build a golden model, and then we reduce d as long as the same
performance is maintained. As shown in Tbl. I, d is reduced for
14 patients, on average to d = 4.3 kbit, without any performance
loss while saving memory, energy, and time.

V. IMPLEMENTATION ON THE TEGRA X2 PLATFORM

In this section, we introduce the Nvidia Tegra X2 platform and
describe the GPU implementation of Laelaps. We have chosen
Tegra X2 to be able to compare the energy consumption and
execution time of Laelaps with the SoA methods in the same
hardware fabric. However, HD computing naturally fits in ultra-
low power nodes (≈2 mW at 28 nm [19]) as well as emerging
3D nanoscalable fabrics [17].

A. Platform Overview
Nvidia’s Tegra X2 platform is an embedded computing SoC

targeted at AI workloads. It consists of a dual-core Denver2
ARMv8 CPU, a 4-core ARM Cortex-A57, and a 256-core GPU
based on the Pascal architecture, which provides a performance
of 750 GFLOPS (single-precision) at a power consumption of
around 15 W with a memory bandwidth of 58.4 GB/s. The TX2
has several power modes, among them Max-Q, which allows for
the maximum energy efficiency by running the ARM cluster at
1.2 GHz and the GPU at 0.85 GHz. We use this mode for all
our experiments on the Jetson TX2 development board, and the
on-board sensors for power measurements.

B. GPU Implementation of Laelaps
We provide an overview of the GPU implementation in Fig. 2

and discuss the individual computing kernels in the following
paragraphs. Readers inexperienced in GPU programming can
refer to [22].

a) LBP Kernel. The first kernel of Laelaps maps an iEEG
window of 256 samples (0.5 s) to its LBP codes. Each LBP
value is computed by an independent thread: one thread block per
electrode (e.g. 128), and one thread per block for each LBP (i.e.
256). This allows us to exploit data locality within each thread
block by copying the corresponding electrode’s data samples to
shared memory before computing the LBPs.

b) HD Encoding Kernel. For implementation of the IM we
consider two physical IM1 and IM2. The computed LBPs are used
to index the IM1 for mapping the LBPs to the vectors. Similarly
the electrode index is used to find the corresponding vector in
the IM2. The vectors (d = 1 kbit) stored in the IMs are packed
into 32 integer variables with 32-bit each (padded, if necessary).
With 64 possible LBPs, the IM1 occupies 64 kbit and the IM2 is

128 kbit. They thus fit entirely into the 64 kB of shared memory
available per multiprocessor on the TX2 for fast access, even for
the largest model configurations considered herein.

The processing is done by 32 thread blocks, one for each 32-bit
chunk of the vector independently, with 32 threads each. After
loading the IMs to the shared memory, the threads within each
block: 1) load the vector related to the LBP code, 2) load the
vector for the corresponding electrode, and 3) perform the XOR
operation on them. Each of these steps takes one cycle on the
TX2’s GPU. The threads are then synchronized.

At this point and for each thread block, we have 32 threads,
each storing a single 32-bit word. This 32 × 32-bit matrix
is now transposed (using bit-masking and __ballot_sync
instructions). A single popcount instruction is then used to sum
the contribution of 32 electrodes in each thread. This is repeated
until all electrodes’ contributions are accumulated (e.g., 4 times
for 128 electrodes).

Once this execution is completed, the results are binarized
producing S that is further accumulated over 256 time steps
(0.5 s), and stored as a partial sum. This result is added to the
one of the previous iteration (i.e. creating the window of 1 s) and
then again binarized, forming the d-bit vector H that can be used
for learning and classification.

c) Classification Kernel. In the last kernel, the vector H is
compared to the two prototype vectors in the AM, determining
the Hamming distance to each of them, and the aforementioned
(Sec. III-C) postprocessing is applied by the master thread. This is
a computationally negligible step and is only parallelized across
a single thread block of 32 threads.

C. TX2 Measurements: Inference Speed and Energy
To measure the speed and energy of different methods dis-

cussed in Section IV, we consider an identical scenario: each
model is trained offline and is loaded into the TX2 memory
together with a 30 min interictal state followed by one seizure
event. The model is then run on this data sequence, and the
execution time and energy consumption for a single classification
event are measured.

The SoA methods are implemented using optimized libraries
and frameworks, specifically Keras for deep learning approaches
(relying itself on Nvidia’s highly optimized cuDNN library)
and Scikit-learn for the SVM. We use various combinations of
resources (GPU and/or CPU) to find the best performance for
each of the SoA methods. Fig. 3 compares the mean FDR of all
the patients, and energy consumption per every 0.5 s classification
event using 64 electrodes as the median number electrodes among
the patients. It highlights that the SVM requires up to 2 orders of
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Fig. 3: Comparing the methods in terms of false detection rates
and energy consumption with 64 electrodes on the TX2 in the
Max-Q power mode. Legend: CPU, GPU.

TABLE II: Energy and inference time of Laelaps, SVM, CNN,
and LSTM for one classification event. Legend: CPU, GPU.

Feature Extr. LBP LBP STFT n.a.
Classifier HD SVM CNN LSTM

#Electrodes: 128
time [ms] 13 (1×) 51 (3.9×) 213 (16×) 6333 (487×)
energy [mJ] 35 (1×) 103 (2.9×) 556 (16×) 16224 (464×)

#Electrodes: 24
time [ms] 13 (1×) 21 (1.7×) 53 (4.2×) 1416 (113×)
energy [mJ] 32 (1×) 45 (1.4×) 131 (4.1×) 3980 (124×)

magnitude less energy with lower FDR compared to the deep
learning methods, confirming its usage in the wearable EEG-
based seizure detection devices [7]. Laelaps remarkably surpasses
the SVM by 1.9× lower energy and zero false alarms.

In Tbl. II, we further analyze these aspects for two electrode
configurations: 24 electrodes as the minimum number of elec-
trodes among patients (P14), and 128 as the maximum (P5).
We show the results of a single implementation of each method,
either on the CPU, GPU, or a combination of them, that results in
minimal energy consumption (note that LSTM is memory bound
while CNN is compute bound).

With the 24-electrode model, Laelaps takes 12.5 ms and 32 mJ
achieving 1.7× faster classification and 1.4× lower energy con-
sumption compared to the SVM. Laelaps achieves a speed-up of
4.2×–113× and an energy saving of 4.1×–124× with respect to
deep learning algorithms.

We also evaluate the scalability by increasing the number of
electrodes to 128. Laelaps’s savings (in both time and energy)
are magnified: 3.9× (2.9×) faster execution (lower energy) with
respect to the SVM, and 16×–487× (16×–464×) compared to
the deep learning methods. These results indicate almost constant
execution time and energy consumption of Laelaps with respect to
the number of electrodes (12.5 ms with 24 electrodes vs. 13.0 ms
with 128 electrodes, and 32.0 mJ vs. 35.0 mJ). In contrast, the
SoA methods exhibit a linear growth at least in both these metrics
(e.g., 20.8 ms vs. 51.0 ms, and 44.8 mJ vs. 103.0 mJ in SVM),
thus implying better scalability of Laelaps for more electrodes.

VI. CONCLUSION
Laelaps—on our very large dataset with 116 seizures in 2656 h

of continuous recording from 18 epilepsy patients implanted with
24 to 128 intracranial EEG electrodes—simultaneously reduces
the following metrics compared to LBP+SVM, STFT+CNN, and
LSTM: the number of undetected seizures, false alarms (to zero),
execution time and energy consumption for classification on a
TX2 embedded device. Our future work will focus on designing
specialized hardware for Laelaps and on reducing the delay of
detection.
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