
CIRCA-GPUs: Increasing
Instruction Reuse Through
Inexact Computing in
GP-GPUs
Abbas Rahimi and Rajesh K. Gupta
University of California San Diego

Luca Benini
ETH Zurich

h COMPLEMENTARY METAL–OXIDE–SEMICONDUCTOR

(CMOS) transistor scaling no longer provides un-

compromised performance and power gains for

integrated computing platforms [1]. Solutions

that improve energy efficiencyVperformance per

wattVwhile retaining as much generality as possi-

ble, are highly desirable. Modern applications in-

cluding graphics, multimedia, web search, and

data analytics offer massive parallelism and signifi-

cant degrees of tolerance to inexact computing. A

general-purpose programmable parallel architec-

ture, such as those found in the general-purpose

graphics processing units (GP-GPUs), can jointly

exploit these two key application characteristics to

improve energy efficiency.

Inexact computing, or approximate computing, ex-

ploits application tolerance to imprecision and trades

small losses in output quality for improving

performance and energy

[2], [3]. These error-toler-

ant applications exhibit en-

hanced error resilience at

the application level when

multiple valid output

values are permitted, in ef-

fect, creating a relation

from input values to (multiple) output values. Lack

of precision in computing results, to some extent,

can be tolerated as acceptable from the end applica-

tion point of view.

Besides the opportunity for inexact computing

of these applications, their parallelism exposes in-

herent value similarity and locality inside a paral-

lelized program [4]–[6]. This exposed property

avoids redundant executions by reusing the result

of a similar instruction rather than executing the

actual instruction. Instruction reuse comes from

the observation that many instructions can be

skipped if another instance has already been exe-

cuted using the same input values [7]. The in-

struction reuse recalls the outcome of an

instruction on a hardware table; therefore, a pro-

cessor can reuse it temporally if the processor per-

forms the same instruction with the same input

values.

The combined effort of inexact computing

and instruction reuse can yield significant energy-

efficiency gains since many of the applications that

can benefit from parallelism are amenable to ap-

proximation. However, there is a lack of techniques

Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/MDAT.2015.2497334

Date of publication: 03 November 2015; date of current version:

20 October 2016.

Editor's notes:
The authors introduce a method that exploits fine-grained parallelism and
approximate computing in GP-GPU architecture to increase the energy
efficiency through spatial and temporal reuse of instructions.

—Jörg Henkel, Karlsruhe Institute of Technology

2168-2356/15 B 2015 IEEENovember/December 2016 Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC 85

that exploit this opportunity in general-purpose pro-

grammable parallel architectures. This work aims

to further increase the rate of instruction reuse by

jointly exploiting inexact computing and parallel

processing in GP-GPUs.

We propose CIRCA-GPUs, a method for inex-

act spatio–temporal instruction reuse in GP-GPUs

to improve energy efficiency. The CIRCA-GPUs

method relaxes acceptance criterion upon an in-

struction reuse by neglecting mismatches in the

less significant bits. This inexact matching allows

a wider range of inflight instructions to benefit

from the reuse given that an instance of them is

already executed, or is executing, with similar

input values. GP-GPUs offer an ideal architectural

target for CIRCA-GPUs, because of their large num-

ber of relatively small and tightly coupled processing

cores. The CIRCA-GPUs method allows simulta-

neous spatial and temporal inexact matching to be

applied across multiple cores, and within every

core. This spatio–temporal inexact matching un-

leashes untapped value similarity and locality to be

fully exploited, therefore increasing the probability

of a reuse event. The CIRCA-GPUs method exhibits

the instruction reuse rate of 22%–90% for parallel ap-

plications selected from the AMD APP SDK v2.5 [8].

The synthesis results of the floating-point units for

the AMD Radeon HD 7970 demonstrate that the

CIRCA-GPUs method reduces 6%–72% energy with

less than 10% quality loss.

Related work

Instruction reuse
Sodani and Sohi [7] introduced the concept of

instruction reuse for single-core architectures. Fo-

cusing on GP-GPUs, exploiting redundant execu-

tions provides an opportunity for compiler [9] and

microarchitectural [10] techniques to reduce

power. These techniques identify and eliminate re-

dundant execution of instructions that are common

across multiple threads. A dynamic microarchitec-

ture detects the redundant instructions that pro-

duce the same results across multiple pipelines [10].

These instructions are then issued to a separate sca-

lar pipeline instead of a set of wide parallel pipe-

lines. The scalar pipeline reduces the energy

consumption due to the elimination of the redun-

dant instructions. In addition to this dynamic

method, a scalarizing compiler identifies these scalar

instructions and factors them out of the parallel

code [9]. The redundant execution constitutes from

10% to 50% of the overall dynamic instructions [10].

Inexact computing
Instruction reuse is limited by the overhead and

the low hit rate of reuse tables. To improve the hit

rates, fuzzy memoization techniques [11], [12] seek

to improve association of the entries of the table

with similar inputs to the same output. These tech-

niques rely upon the tolerance in the output preci-

sion of multimedia algorithms to achieve high reuse

rates, and work at the granularity of the floating-point

(FP) instruction [11], or a region of FP instructions

[12]. Spatial [4] and temporal [5] instruction reuses

relax their acceptance criterion in terms of a pro-

grammable matching constraint for inexact comput-

ing in GPUs. Such reuse techniques suffer from

scalability [4] or high overhead cost [5]. For certain

image processing applications, this relaxation can

be extended up to accepting two Hamming distance

mismatches between the operands during an instruc-

tion reuse, but limiting the search space within a tiny

associative memory [6]. A software-only technique

generates parameterized approximate kernels that

benefit mostly from computational reuse available in

data-level parallel programs [3].

Data-level parallelism in GPUs is exploited by

single-instruction–multiple-data (SIMD) execution

model that causes the same machine instruction to

be executed concurrently by a set of lanes in the

lockstep fashion. This exposed data-level parallel-

ism naturally facilitates the observation of availabil-

ity of value locally across the lanes, and provides

an important ability to reuse instructions. The

CIRCA-GPUs method enhances the GPU pipelines

by adding a reuse exploitation microarchitecture,

with a very small incremental cost, to increase

benefits from systematic approximation of comput-

ing results. The CIRCA-GPUs method exploits fine-

grained parallelism of the architecture to increase

instruction reuse in the context of inexact

computing.

CIRCA-GPUs: Spatio–temporal inexact
instruction reuse

We first present architectural details of GP-

GPUs. We then describe the details of temporal

IEEE Design & Test86

General Interest

and spatial instruction reuse methods. We show

how these two methods can be combined in con-

junction with the inexact computing to devise

CIRCA-GPUs.

GP-GPUs architecture
We briefly describe the architectural details of

one of the most recent GPUs from the AMDVthe

Southern Islands family (Radeon HD 7000-series).

The Southern Islands is based on AMD_s Graphics

Core Next which is a RISC SIMD architecture. We

target an enhanced Radeon HD 7970 device

which has 32 compute units as shown in Figure 1.

Any GPUs with SIMD fashion of execution can

benefit from our proposed method. Every com-

pute unit contains a scheduler and a set of four

SIMD execution units, also knows as vector units.

Each SIMD execution unit has 16 cores, or 16-wide

lanes, constituting a total number of 64 cores per

compute unit. The core executes the instructions

using integer units and floating-point units (FPUs).

A vector instruction is fetched once and executed

in a SIMD fashion across the wide lanes. After the

fetch and decode stages, the source operands for

each instruction are read from vector registers or

local memory. When the source operands are

ready in the vector unit, the execution stage starts

to issue the operations into the integer units or

FPUs. The execution stage of every FPU has a

latency of six cycles and a throughput of one

instruction per cycle [13]. Finally, the result of the

computation is written back to the destination

operands.

Exact temporal and spatial reuse
The temporal instruction reuse memorizes the

context of an instructionVinput operands and

resultVon a lookup table to

avoid its actual execution in

case of a match in future exe-

cutions. The lookup table is

composed of a set of entries

with combinational compara-

tors. In every entry, the lookup

table maintains the input oper-

ands and the related output re-

sult for a dynamic instance of

the instruction. The combina-

tional comparators implement

a full bit-by-bit comparison of

the stored operands in every entry with the input

operands of an inflight instruction. The lookup ta-

ble searches to find a match between the input op-

erand values of the inflight instruction and the

operand values stored in the entries. This exact

matching defines a one-to-one relation between

every stored entry and a dynamic instance of the

instruction. A match directly results in reuse of

the result stored earlier. However, the temporal

reuse suffers from inefficiencies of large lookup

tables, including energy overhead and moderate

reuse rate.

To overcome the issues of temporal reuse, we

earlier proposed the notion of spatial instruction

reuse that does not require any lookup table for

saving and storing the instruction context [4].

This technique seeks whether a single instruction

can be reused spatially, as opposed to tempo-

rally, across the set of parallel lanes residing

within the SIMD unit. We observed that the SIMD

unit explicitly exposes the value similarityVthat is

locally exhibited inside a parallelized programV

to all parallel lanes, thus facilitating the spatial

instruction reuse across the lanes. However,

broadcasting the result within the SIMD unit

increases the delay of the baseline unit up to

4.9%, hence hinders scalability of the spatial

reuse technique [4].

Spatio–temporal reuse with inexact matching
To address the aforementioned issues of high-

energy overhead cost, low reuse rate, and scalabil-

ity, we propose CIRCA-GPUs. The CIRCA-GPUs

method allows simultaneous occurrence of the

spatial and temporal reuses to alleviate the energy

overhead and the scalability issues. To ensure the

scalability, the CIRCA-GPUs method limits the

Figure 1. Block diagram of the Southern Islands GP-GPUs.

November/December 2016 87

scope of the spatial reuse to only adjacent lanes,

instead of all 16 lanes. This choice eliminates the

global broadcasting network across the SIMD unit,

hence enables CIRCA-GPUs mechanism to be ap-

plied to SIMD units with any number of lanes with-

out the delay penalty. The CIRCA-GPUs method

reduces the energy overhead of temporal reuse by

limiting the size of the lookup table to one entry,

while still capturing considerable amount of tem-

poral redundancies. This choice is because of defi-

ciency of temporal methods with large tables:

temporal reuse technique with two entries exhibits

30% lower hit rate per unit of power compared to

the spatio–temporal technique with only one entry.

The temporal reuse technique requires to store the

context of instructions on the storage elements,

while such a context is available concurrently for

the spatial reuse technique.

To boost the reuse rate up, the CIRCA-GPUs

method relaxes the criterion of the exact matching

during comparison of the operands by masking

the less significant N bits, where N is a programma-

ble masking vector that allows the combinational

comparators to perform a partial comparison. This

inexact matching defines a one-to-few relation be-

tween a reusable spatio–temporal context and few

dynamic instances of the same instruction. This

leads to an inexact instruction reuse where a set of

multiple output values will be fused to a single out-

put value.

Each error-tolerant application has full control

over the programmable masking vector through the

32-b memory-mapped registers. To determine the

matching constraints, the application can set

the 32-b memory-mapped register to ignore the

differences of the operands in the less significant

N bits of the fraction parts. With this inexact match-

ing, the pair of instructions with two different input

operands could have the same output. These com-

parators work in parallel with the first stage of the

lanes, and generate a temporal reuse signal for ev-

ery lane, and a spatial reuse signal for every neigh-

bor lanes. A match event, either temporal or

spatial, squashes the remaining stages of the pipe-

line to avoid the redundant execution by clock gat-

ing. Accordingly, a clock gating signal is forwarded

cycle by cycle to the rest of stages. Therefore, each

match event reduces the energy consumption by

retrieving the result either locally from the lookup

table, or spatially for the neighbor lane rather than

doing full reexecution by the pipeline. These reuse

signals select the appropriate output values as the

output of the pipeline. Figure 2 illustrates the exe-

cution pipeline with the spatio–temporal inexact

instruction reuse that delivers high reuse rate in a

low cost and scalable manner.

Evaluation
We targeted the Radeon HD 7970 device from

the AMD Southern Islands family. The CIRCA-GPUs

method is designed as the spatio–temporal inexact

instruction reuse microarchitecture that is added to

the baseline architecture. We evaluated its energy ef-

ficiency benefits for a wide range of parallel applica-

tions selected from the AMD accelerated parallel

processing (APP) SDK v2.5 [8], that is, a complete

development platform created by the AMD to lever-

age accelerated compute using OpenCL.

Experimental setup

Applications and simulations. The selected ap-

plications span a wide range of domains, including

signal processing, image processing, arithmetic

computations, and finance. We use average relative

error as a metric to measure the quality loss for

these applications [2], [3]. This metric measures

the average relative error between each output ele-

ment of the exact execution of the application and

its inexact execution. We set the quality loss target

to a maximum of 10% which is commensurate

with other work on quality tradeoffs [2], [3]. For

each application, we identify N as the masking

vector through profiling with a representative input

set. The applications set the masking vector, in the

range of 16–22, to ignore mismatches between

the operands in the fraction parts. We then verify

the quality loss of the applications with different

test input patterns, other than the representative

input set used during profiling. These input values

are generated by the default OpenCL host program

[8]. Multi2Sim [13], a cycle-accurate CPU-GPU

simulation framework, is modified to collect the

statistics for the value similarity. We integrated a

functional model of the spatio–temporal reuse

method that allows applying different inexact

matching and measures the reuse rate and the cor-

responding quality loss.

IEEE Design & Test88

General Interest

Synthesis. We extracted five frequently activated

FPUs during execution of these applications: addi-

tion, multiplication, multiplication–accumulation,

square root, and reciprocal. We used FloPoCo [14]

to generate these single-precision pipelined

synthesizable FPUs. To achieve a balanced clock

frequency across these FPUs, the reciprocal unit

has a latency of 16 cycles, while the rest of the

FPUs have six cycles latency according to the ar-

chitecture specification [13]. These FPUs are syn-

thesized and mapped using the TSMC 45-nm

technology library. The frontend flow with mul-

ti-VTH cells has been performed using Synopsys

Design Compiler with the topographical features

for the clock period of 1.0 ns. This forms the base-

line FPUs architecture. The spatio–temporal in-

struction reuse technique as a microarchitectural

module is described in Verilog synthesizable RTL,

that is, a reuse exploitation hardware including

approximate comparison and redundant execu-

tion bypass logic. This module is tightly integrated

on the baseline FPUs without any delay penalty.

The module performs concurrent comparisons

and bypasses results only to the adjacent lanes.

This forms a scalable module that does not limit

the clock period of 1.0 ns, however such broad-

casting across all the SIMD unit can incur 4.9%

delay penalty [4]. Compared to the baseline ar-

chitecture, the total energy overhead is 7% in the

extreme case of zero reuse. In real-life applica-

tions, this overhead is entirely paid off by the en-

ergy saving due to the frequent clock gating of

the FPUs during the reuse events resulting into

high energy efficiency, as shown in Figure 4.

Figure 2. Execution stage for CIRCA-GPUs. Approximate comparators for inexact
matching and redundant execution bypass logic (colored in green) are added to the
baseline execution stage.

November/December 2016 89

Increased rate of instruction reuse
Figure 3a illustrates the rate of instruction reuse

for the selected applications, and compares the

spatial, temporal, and spatio–temporal reuse

methods. For the spatio–temporal reuse, Figure 3a

shows the incremental benefit of also having the

temporal reuse on top of the spatial reuse. For in-

stance, 11% of the total FP instructions can be re-

used spatially for BlackScholes. Considering the

temporal reuse will add another 11% leading to a

total 22% FP instruction reuse while still meeting

the quality loss target. Using the spatio–temporal

technique over this set of applications, 22%–91% of

the total dynamic instructions in the FPUs can be

reused. This significantly avoids the redundant exe-

cutions therefore saving energy. On average, more

than 43% of the dynamic instructions can benefit

from CIRCA-GPUs, while the FPUs have to perform

the actual execution for the rest of instructions.

Figure 3b shows the corresponding quality loss.

Each application applies different masking vector

to meet the quality target. For instance, the mask-

ing vector for BlackScholes ignores the mismatches

in the less significant 17 b of the fraction parts; it

can ignore up to 22 b for QRandomSeq. Using the

masking vectors, all applications meet the quality

Figure 3. Instruction reuse with inexact matching. (a) Rate of inexact instruction reuse:
spatial, temporal, and spatio–temporal. (b) Corresponding quality loss for inexact
instruction reuse.

IEEE Design & Test90

General Interest

loss target of 10%: for instance, a maximum of 8.5%

for BlackScholes, and 7.3% for QRandomSeq. On aver-

age, the spatio–temporal technique has higher quality

loss compared to temporal one. This is mainly be-

cause the spatio–temporal technique has higher reuse

rate that fuses a larger number of multiple values into

a single value resulting in lower quality.

CIRCA-GPUs energy saving
Figure 4 shows the normalized energy consump-

tion of CIRCA-GPUs (the FPUs using the spatio–

temporal inexact instruction reuse) compared to

the baseline architecture. The energy saving is

correlated with the reuse rate. A 22% reuse rate

for BlackScholes leads to 6% energy saving.

QRandomSeq benefits from 72% energy saving due

to its high reuse rate of 90%. As shown, the normal-

ized energy for all applications is less than one,

confirming the efficacy of CIRCA-GPUs with a geo-

metric mean of 35% energy saving. This energy sav-

ing is directly translated to improving energy

efficiency since the CIRCA-GPUs method does not

impose any performance penalty. The CIRCA-GPUs

method also has potential for boosting perfor-

mance in case of a temporal reuse event that re-

duces the latency of a FPU to a single cycle. We

note that the energy benefits will be further in-

creased for deeper pipelines since the overhead of

CIRCA-GPUs is fixed while the clock gating is ap-

plied to the rest of stages after a hit event.

MODERN ARCHITECTURES AND applications pro-

vide additional degrees of flexibility in terms of

massive parallelism and tolerant to precision of the

computing results, respectively. This paper aims to

address the following challenge: how to increase

the rate of instruction reuse in GP-GPUs by jointly

exploiting parallelism and inexact computing?

The CIRCA-GPUs method relaxes the accep-

tance criterion for the instruction reuse that

matches a wider range of instructions together.

This relaxation frequently avoids actual execution

of an instruction by systematic approximation in

reuse of computed results. The CIRCA-GPUs

method generalizes the concept of instruction

reuse in GP-GPUs that offer a suitable architectural

target by tightly coupling a large number of rela-

tively small processing cores. The CIRCA-GPUs

method enables simultaneous spatial and temporal

reuse; the former approximately compares the in-

structions across the adjacent cores, while the lat-

ter does this comparison to the local instructions

within every core and over time. The extra hard-

ware cost of CIRCA-GPUs to exploit the reuse is

very low and affordable thanks to the architectural

features of GP-GPUs. The CIRCA-GPUs method in-

creases the rate of instruction reuse to 22%–90%

that reduces the FPUs energy by 6%–72% with less

than 10% quality loss on the Radeon HD 7970. The

CIRCA-GPUs method provides a scalable and low-

cost method of increasing the rate of reuse events

in GP-GPUs by exploiting inexact computing. h

Figure 4. Energy consumption using CIRCA-GPUs normalized to the baseline
architecture.

November/December 2016 91

h References
[1] H. Esmaeilzadeh, E. Blem, R. St. Amant,

K. Sankaralingam, and D. Burger, “Dark silicon and

the end of multicore scaling,” in Proc. 38th Annu.

Int. Symp. Comput. Architect., 2011, pp. 365–376.

[2] H. Esmaeilzadeh, A. Sampson, L. Ceze, and

D. Burger, “Neural acceleration for general-purpose

approximate programs,” in Proc. 45th Annu.

IEEE/ACM Int. Symp. Microarchitect., Dec. 2012,

pp. 449– 460.

[3] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke,

“Paraprox: Pattern-based approximation for data

parallel applications,” in Proc. 19th Int. Conf.

Architect. Support Programm. Lang. Oper. Syst.,

2014, pp. 35–50.

[4] A. Rahimi, L. Benini, and R. K. Gupta, “Spatial

memoization: Concurrent instruction reuse to correct

timing errors in SIMD architectures,” IEEE Trans.

Circuits Syst. II, Exp. Briefs, vol. 60, no. 12,

pp. 847–851, Dec. 2013.

[5] A. Rahimi, L. Benini, and R. K. Gupta, “Temporal

memoization for energy-efficient timing error recovery

in GPGPUs,” in Proc. Design Autom. Test Eur. Conf.

Exhibit., Mar. 2014, pp. 1–6.

[6] A. Rahimi, A. Ghofrani, K.-T. Cheng, L. Benini, and

R. K. Gupta, “Approximate associative memristive

memory for energy-efficient GPUs,” in Proc. Design

Autom. Test Eur. Conf. Exhibit., 2015, pp. 1497–1502.

[7] A. Sodani and G. S. Sohi, “Dynamic instruction

reuse,” in Proc. 24th Annu. Int. Symp. Comput.

Architect., 1997, pp. 194–205.

[8] AMD, “APP SDK v2.5,” [Online]. Available: http://

developer.amd.com/tools-and-sdks/opencl-zone/

amd-accelerated-parallel-processing-app-sdk/

[9] Y. Lee, R. Krashinsky, V. Grover, S. Keckler, and

K. Asanovic, “Convergence and scalarization

for data-parallel architectures,” in Proc. IEEE/ACM

Int. Symp. Code Generat. Optim., Feb. 2013,

DOI: 10.1109/CGO.2013.6494995.

[10] S. Z. Gilani, N. S. Kim, and M. J. Schulte,

“Power-efficient computing for compute-intensive

GPGPU applications,” in Proc. 21st Int. Conf.

Parallel Architect. Compilat. Tech., 2012,

pp. 445– 446.

[11] C. Alvarez, J. Corbal, and M. Valero, “Fuzzy

memoization for floating point multimedia

applications,” IEEE Trans. Comput., vol. 54, no. 7,

pp. 922– 927, Jul. 2005.

[12] C. Alvarez Martinez, J. Corbal San Adrian, and

M. Cortes, “Dynamic tolerance region computing for

multimedia,” IEEE Trans. Comput., vol. 61, no. 5,

pp. 650–665, May 2012.

[13] m2s, “Multi2sim: A heterogeneous system simulator,”

[Online]. Available: https://www.multi2sim.org/

[14] FloPoCo, “Floating-point cores generator,” [Online].

Available: http://flopoco.gforge.inria.fr/

Abbas Rahimi is currently a Postdoctoral
Scholar at the Department of Electrical Engineering
and Computer Sciences, University of California
Berkeley, Berkeley, CA, USA. Rahimi has a BS
in computer engineering from the University of
Tehran, Tehran, Iran (2010) and an MS and a PhD
in computer science and engineering from the
University of California San Diego, La Jolla, CA,
USA (2015). He is a Student Member of the IEEE.

Rajesh K. Gupta is a Professor of Computer
Science and Engineering at the University of
California San Diego (UCSD), La Jolla, CA, USA
and holds the Qualcomm endowed chair. Gupta
has a BTech in electrical engineering from the
Indian Institute of Technology, Kanpur, India (1984),
an MS in electrical engineering and computer sci-
ence from the University of California Berkeley,
Berkeley, CA, USA (1986), and a PhD in electrical
engineering from Stanford University, Stanford, CA,
USA (1994). He is a Fellow of the IEEE.

Luca Benini is a Professor of Digital Circuits
and Systems at ETH Zurich, Zurich, Switzerland,
and also a Professor at the University of Bologna,
Bologna, Italy. His research interests are in energy-
efficient system design and multicore system-on-
chip (SoC) design. He is also active in the area of
energy-efficient smart sensors and sensor networks
for biomedical and ambient intelligence applica-
tions. He has published more than 700 papers in
peer-reviewed international journals and confer-
ences, four books, and several book chapters.
Benini has a PhD from Stanford University, Stanford,
CA, USA. He is a member of Academia Europea.
He is a Fellow of the IEEE.

h Direct questions and comments about this article
to Abbas Rahimi, Department of Computer Science
and Engineering, University of California San Diego,
La Jolla, CA, USA; abrahimi@cs.ucsd.edu.

IEEE Design & Test92

General Interest

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

