From Variability Tolerance to Approximate
Computing in Parallel Integrated Architectures
and Accelerators

Abbas Rahimi - Luca Benini
Rajesh K. Gupta

From Variability Tolerance
to Approximate Computing
in Parallel Integrated
Architectures

and Accelerators

@ Springer

Abbas Rahimi Rajesh K. Gupta

Department of Electrical Engineering Department of Computer Science
and Computer Sciences and Engineering

University of California Berkeley University of California, San Diego

Berkeley, CA La Jolla, CA

USA USA

Luca Benini

Integrated Systems Laboratory
ETH Zurich

Ziirich

Switzerland

ISBN 978-3-319-53767-2 ISBN 978-3-319-53768-9 (eBook)
DOI 10.1007/978-3-319-53768-9

Library of Congress Control Number: 2017932004

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To my wife with everlasting love and
gratitude

—Abbas Rahimi

Foreword

There is no question that computing has dramatically changed society, and has
furthered humanity in ways that were hard to foresee at its onset. Many factors have
contributed to its unfettered success including the adoption of Boolean logic and
algorithmic thinking, the invention of the instruction set machine, and the advent
of the semiconductor technology. The latter offered us a semi-perfect switch device
and effective ways of storing data. All these factors have led to an amazing run of
almost 7 decades. Over time, the quest for ever higher performance in the presence
of power and energy limitations have forced us to make major changes to how the
processors were architected and operated—such as the introduction of concurrency,
the adoption of co-processors and accelerators, or the adoption of ever more
complex memory hierarchies. However, in essence the fundamentals remained
unchanged

For a number of reasons, this model is at the verge of undergoing some major
changes and challenges. On the one hand, the scaling model of semiconductors—
commonly known as Moore’s law—is running out of steam, hence depriving us
from a convenient means in improving computational performance, density and
efficiency. On the other hand, the nature of computation itself is changing with data
rather than algorithm taking primacy. Both these trends force us to reflect on some
of the foundational concepts that have driven computation for such a long period. In
an abundance of data, statistical distributions become more relevant than deter-
ministic answers. Many perceptual tasks related to human-world interaction fall
under the same class. Learning-based programming approaches are gaining rapid
interest and influence. Simultaneously the lack of “the perfect switch”, as well as
the high-variability of nanoscale devices operating under high energy-efficiency
(that is, low-voltage) makes deterministic computing an extremely expensive if at
all possible undertaking.

All of this has made researchers explore novel computational models that are
“approximate” in nature. This means that errors and approximations are becoming
acceptable as long as the outcomes have a well-defined statistical behavior.
A number of approaches have been identified and are being actively pursued under

vii

viii Foreword

different headers such as approximate computing, statistical computing and
stochastic processing. In this book, the authors investigate how errors caused by
variation (especially those caused by timing) can be exposed to the software layers,
and how they can be mitigated using a range of techniques and methods to reduce
their impact. The document provides a clear insight of what is possible through pure
software intervention.

This book is at the forefront of what is to come at the frontiers in the new age of
computation. As such, I heartily recommend it as a great intellectual effort and a
superb read.

Jan M. Rabaey

Preface

Variation in performance and power across manufactured parts and their operating
conditions is an accepted reality in modern microelectronic manufacturing pro-
cesses with geometries in nanometer scales. This book views such variations both
as a challenge as well an opportunity to rearchitect the hardware/software interface
that provides more resilient system architectures. We start with an examination of
how variability manifests itself across various levels of microelectronic systems.
We examine various mechanisms designers use, and can use, to combat negative
effects of variability.

This book attempts a comprehensive look at the entire software/hardware stack
and system architecture in order to devise effective strategies to address micro-
electronic variability. First, we review the key concepts on timing errors caused by
various variability sources. We use a two-pronged strategy to mitigate such errors
by jointly exposing hardware variations to the software and by exploiting flexibility
made possible by parallel processing. We consider methods to predict and prevent,
detect and correct, and finally conditions under which such errors can be accepted.
For each of these methods, our work spans defining and measuring the notion of
error tolerance at various levels, from instructions to procedures to parallel pro-
grams. These measures essentially capture the likelihood of errors and associated
cost of error correction at different levels. The result is a design platform that
enables us to combine these methods that enable detection and correction of
erroneous results within a defined criterion for acceptable errors using a notion of
memoization across the hardware/software interface. Pursuing this strategy, we
develop a set of software techniques and microarchitecture optimizations for
improving cost and scale of these methods in massively parallel computing units,
such as general-purpose graphics processing units (GP-GPUs), clustered many-core
architectures, and field-programmable gate array (FPGA) accelerators.

Our results show that parallel architectures and use of parallelism in general
provides the best means to combat and exploit variability. Using such pro-
grammable parallel accelerator architectures, we show how system designers can

ix

X Preface

coordinate propagation of error information and its effects along with new
techniques for memoization and memristive associative memory. This book natu-
rally leads to use of these techniques into emerging area of approximate computing,
and how these can be used in building resilient and efficient computing systems.

Berkeley, USA Abbas Rahimi
Ziurich, Switzerland Luca Benini
San Diego, USA Rajesh K. Gupta

January 2017

Contents

Introduction.
1.1 Sources of Variability.
1.2 Delay Variationttt
1.3 Book Organization
References.

Part I Predicting and Preventing Errors

2

Instruction-Level Tolerance
2.1 Introduction
2.2 Effect of Operating Conditions
2.3 Delay Variation Among Pipeline Stages.
2.4 Instruction Characterization Methodology and Experimental
Results
24.1 Gate-Level Simulation.
2.4.2 Instruction-Level Delay Variability
2.4.3 Less Intrusive Variation-Tolerant Technique
2.4.4 Power Variability.
2.5 Chapter SUMMATYottt e e
References.
Sequence-Level Tolerance.

3.1 Introduction
3.2 PVT Variations

3.2.1 Conventional Static Timing Analysis.

3.2.2 Variation-Aware Statistical STA

3.3 Error-Tolerant Applications
3.3.1 Analysis of Adaptive Guardbanding

for Probabilistic Applications

AN PR N ==

15

xi

xii

Contents

3.4 Error-Intolerant Applications. 30
34.1 Sequence-Level Vulnerability (SLV)............... 30

34.2 SLV Characterization 31

3.5 Adaptive Guardbanding 35
3.6 Experimental Results 37
3.6.1 Effectiveness of Adaptive Guardbanding............ 39

3.6.2 Overhead of Adaptive Guardbanding. 44

377 Chapter SUMmary.ttt 44
References. 45
Procedure-Level Tolerance. 47
4.1 Introduction 47
4.2 Variation-Tolerant Processor Clusters Architecture........... 48
4.2.1 Variation-Aware VDD-Hopping 49

4.3 Procedure Hopping for Dynamic IR-Drop 51
4.3.1 Supporting Intra-cluster Procedure Hopping 51

4.4 Characterization of PLV to Dynamic Operating Conditions 54
4.5 Experimental Results 55
4.5.1 Cost of Procedure Hopping 57

4.6 Chapter SUMMATY oottt 59
References. 59
Kernel-Level Tolerance. 61
5.1 Introduction 61
5.2 Device-Level NBTI Model 62
5.3 GP-GPU Architecturet 64
5.3.1 GP-GPU Workload Distribution 64

54 Aging-Aware Compilation 66
5.4.1 Observability: Aging Sensors 67

5.4.2 Prediction: Wearout Estimation Module 68

5.4.3 Controllability: Uniform Slot Assignment........... 68

5.5 Experimental Results 70
5.6 Chapter SUmmary.ttt 73
References. 73
Hierarchically Focused Guardbanding 75
6.1 Introduction 75
6.2 Timing Error Model for PVTA. 76
6.2.1 Analysis Flow for Timing Error Extraction.......... 76

6.2.2 Parametric Model Fitting. 78

6.2.3 TER Classification. 80

6.2.4 Robustness of Classification 81

6.3 Runtime Hierarchically Focused Guardbanding 81
6.3.1 Observability............ 83

6.3.2 Controllability 84

Contents xiii

6.4 A Case Study of HFGon GPUs. 85
6.5 Chapter Summary. 86
References. 87

Part I Detecting and Correcting Errors

7

Work-Unit Tolerance 91
7.1 Introduction 91
7.2 Architectural Support for VOMP 94
7.3 Work-Unit Vulnerability and VOMP Work-Sharing. 95
7.3.1 Intra- and Inter-corner WUV 98
7.3.2 Online WUV Characterization. 103
74 VOMP Schedulers 0o, 105
7.4.1 Variation-Aware Task Scheduling (VATS) 105
7.4.2 Variation-Aware Section Scheduling (VASS) 108
7.5 Experimental Results 109
7.5.1 Framework Setup 109
7.5.2 VOMP Results for Tasking 110
7.5.3 VOMP Results for Sections. 112
7.6 Chapter SUMMAryottt e e a s 113
References. 114
Memristive-Based Associative Memory for Error Recovery 117
8.1 Introductiont 117
8.2 Energy-Efficient GP-GPUs 119
8.2.1 Associative Memristive-Based Computing. 120
8.3 Collaborative Compilation 122
8.3.1 FPU Memristive-Based Computing 124
8.4 Experimental Results 125
8.4.1 FPUs with AMM Modules 125
842 Energy Saving............. 126
8.5 Chapter Summary. 129
References. 129

Part III Accepting Errors

9

Accuracy-Configurable OpenMP 133
9.1 Introduction 133
9.2 Controlled Approximation 135
9.3 Accuracy-Configurable OpenMP Environment. 136
9.3.1 Accuracy-Configurable FPUs. 136
9.3.2 OpenMP Compiler Extension for Approximation 137
9.3.3 Runtime Support................ 138

9.3.4 Application-Driven Hardware FPU Synthesis
and Optimization. 139

Xiv

10

11

12

Contents
9.4 Experimental Results 141
9.4.1 Error-Tolerant Applications. 142
9.4.2 Error-Intolerant Applications 146
9.5 Chapter SUMMArY.ttt 147
References. 148
An Approximation Workflow for Exploiting Data-Level
Parallelism in FPGA Acceleration 151
10.1 Introductiont 151
10.2 OpenCL Execution Model 153
10.2.1 Mapping OpenCL Programs on FPGAs 153
10.3 GraTer: Approximation Design Workflow 154
10.3.1 Analysis and Pruning 155
10.3.2 Genetic-Based Approximation Algorithm 156
10.4 Experimental Results 159
10.4.1 Experimental Setup 159
10.4.2 Area Savings with Approximate Kernels............ 160
1043 Speedup. 160
10.5 Chapter Summary.ttt 163
References. 163
Menristive-Based Associative Memory for Approximate
Computational Reuse 165
11.1 Introductiont 165
11.2 GPU Architecture Using A’M?Module. 167
11.2.1 Southern Islands Architecture 167
11.2.2 Approximate Associative Memristive Memory
Module 168
11.3 Framework to Support A>M? 171
11.3.1 Execution Flow....... 171
11.3.2 Design Space for A2M?. 173
11.4 Experimental Results 175
11.4.1 Experimental Setup 175
11.42 Energy Saving with Corresponding PSNR 177
11.5 Chapter Summary.ttt 178
References. 179
Spatial and Temporal Memoization. 181
12.1 Introductiont 182
12.2 Spatial Memoization (Concurrent Instruction Reuse) 183
12.2.1 Single Strong Multiple Weak (SSMW)
Architecture. L 184
12.2.2 Experimental Results. 186

12.3 Temporal Memoization (Temporal Instruction Reuse) 188

Contents XV

12.3.1 Temporal Memoization for Error Recovery.......... 188

12.3.2 Experimental Results. 189

12.4 Chapter Summary. 189
References. 190

13 Outlook 191
13.1 Domain-Specific Resiliency 191
13.1.1 Software 191

13.1.2 Architecture. 192

13.1.3 Circuit. . ..ot 192

13.2 Non-Von Neumann Massively Parallel Architectures......... 193

	Foreword
	Preface
	Contents

