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Foreword

There is no question that computing has dramatically changed society, and has
furthered humanity in ways that were hard to foresee at its onset. Many factors have
contributed to its unfettered success including the adoption of Boolean logic and
algorithmic thinking, the invention of the instruction set machine, and the advent
of the semiconductor technology. The latter offered us a semi-perfect switch device
and effective ways of storing data. All these factors have led to an amazing run of
almost 7 decades. Over time, the quest for ever higher performance in the presence
of power and energy limitations have forced us to make major changes to how the
processors were architected and operated—such as the introduction of concurrency,
the adoption of co-processors and accelerators, or the adoption of ever more
complex memory hierarchies. However, in essence the fundamentals remained
unchanged

For a number of reasons, this model is at the verge of undergoing some major
changes and challenges. On the one hand, the scaling model of semiconductors—
commonly known as Moore’s law—is running out of steam, hence depriving us
from a convenient means in improving computational performance, density and
efficiency. On the other hand, the nature of computation itself is changing with data
rather than algorithm taking primacy. Both these trends force us to reflect on some
of the foundational concepts that have driven computation for such a long period. In
an abundance of data, statistical distributions become more relevant than deter-
ministic answers. Many perceptual tasks related to human-world interaction fall
under the same class. Learning-based programming approaches are gaining rapid
interest and influence. Simultaneously the lack of “the perfect switch”, as well as
the high-variability of nanoscale devices operating under high energy-efficiency
(that is, low-voltage) makes deterministic computing an extremely expensive if at
all possible undertaking.

All of this has made researchers explore novel computational models that are
“approximate” in nature. This means that errors and approximations are becoming
acceptable as long as the outcomes have a well-defined statistical behavior.
A number of approaches have been identified and are being actively pursued under
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viii Foreword

different headers such as approximate computing, statistical computing and
stochastic processing. In this book, the authors investigate how errors caused by
variation (especially those caused by timing) can be exposed to the software layers,
and how they can be mitigated using a range of techniques and methods to reduce
their impact. The document provides a clear insight of what is possible through pure
software intervention.

This book is at the forefront of what is to come at the frontiers in the new age of
computation. As such, I heartily recommend it as a great intellectual effort and a
superb read.

Jan M. Rabaey



Preface

Variation in performance and power across manufactured parts and their operating
conditions is an accepted reality in modern microelectronic manufacturing pro-
cesses with geometries in nanometer scales. This book views such variations both
as a challenge as well an opportunity to rearchitect the hardware/software interface
that provides more resilient system architectures. We start with an examination of
how variability manifests itself across various levels of microelectronic systems.
We examine various mechanisms designers use, and can use, to combat negative
effects of variability.

This book attempts a comprehensive look at the entire software/hardware stack
and system architecture in order to devise effective strategies to address micro-
electronic variability. First, we review the key concepts on timing errors caused by
various variability sources. We use a two-pronged strategy to mitigate such errors
by jointly exposing hardware variations to the software and by exploiting flexibility
made possible by parallel processing. We consider methods to predict and prevent,
detect and correct, and finally conditions under which such errors can be accepted.
For each of these methods, our work spans defining and measuring the notion of
error tolerance at various levels, from instructions to procedures to parallel pro-
grams. These measures essentially capture the likelihood of errors and associated
cost of error correction at different levels. The result is a design platform that
enables us to combine these methods that enable detection and correction of
erroneous results within a defined criterion for acceptable errors using a notion of
memoization across the hardware/software interface. Pursuing this strategy, we
develop a set of software techniques and microarchitecture optimizations for
improving cost and scale of these methods in massively parallel computing units,
such as general-purpose graphics processing units (GP-GPUs), clustered many-core
architectures, and field-programmable gate array (FPGA) accelerators.

Our results show that parallel architectures and use of parallelism in general
provides the best means to combat and exploit variability. Using such pro-
grammable parallel accelerator architectures, we show how system designers can
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coordinate propagation of error information and its effects along with new
techniques for memoization and memristive associative memory. This book natu-
rally leads to use of these techniques into emerging area of approximate computing,
and how these can be used in building resilient and efficient computing systems.

Berkeley, USA Abbas Rahimi
Ziurich, Switzerland Luca Benini
San Diego, USA Rajesh K. Gupta

January 2017
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