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Abstract—EMG-based gesture recognition shows promise for
human–machine interaction. Systems are often afflicted by signal
and electrode variability which degrades performance over time.
We present an end-to-end system combating this variability
using a large-area, high-density sensor array and a robust
classification algorithm. EMG electrodes are fabricated on a
flexible substrate and interfaced to a custom wireless device
for 64-channel signal acquisition and streaming. We use brain-
inspired high-dimensional (HD) computing for processing EMG
features in one-shot learning. The HD algorithm is tolerant to
noise and electrode misplacement and can quickly learn from
few gestures without gradient descent or back-propagation. We
achieve an average classification accuracy of 96.64% for five
gestures, with only 7% degradation when training and testing
across different days. Our system maintains this accuracy when
trained with only three trials of gestures; it also demonstrates
comparable accuracy with the state-of-the-art when trained with
one trial.

I. INTRODUCTION

Hand gestures are an integral part of human–human com-
munication and can be leveraged for more natural human–
machine interaction (HMI). They are a fast and effective physi-
cal medium for communicating with and controlling intelligent
devices. Accurate and efficient gesture recognition enables
intuitive control for applications ranging from polyarticulated
prosthetic hands [1] to mobile and game interfaces [2]. Hand
gestures may be recognized based on muscular activity mea-
sured using electromyography (EMG), the detection of field
potentials representing the superimposed electrical activity of
muscle fibers. Surface EMG is a non-invasive method of
acquiring these signals by placing recording electrodes directly
on the surface of the skin.

Both research work [3], [4], [5] and commercial products [6]
have demonstrated great potential for machine learning tech-
niques to decode EMG and enable natural gesture recognition.
Most of these systems are composed of an array of EMG
sensors placed on the forearm and connected to a PC for
acquiring data and running pattern recognition algorithms [1].
Over a single acquisition session, these systems can achieve
classification accuracies above 90% in recognition of 5-6 ges-
tures with an array of 3-8 sensors. Nevertheless, classification
accuracy depends highly on precise electrode positioning for

sufficient muscle coverage. For systems with low electrode-
counts, inaccurate positioning can result in recording insuffi-
cient information for gesture recognition.

Furthermore, the EMG signal can be highly variable, and it
is challenging to have a reliable interface which reaches the
same accuracy over multiple acquisition sessions. This perfor-
mance variability is mostly caused by muscle fiber crosstalk,
skin perspiration, and by changes in the skin-electrode inter-
face. Moreover, even small variations in sensor positioning
over multiple sessions can further decrease the classification
performance. For instance, an accuracy degradation of 27% is
observed when training and testing are performed on different
sessions for a 14-sensor EMG system classifying 7 gestures
using a random forest algorithm [7]. In the same vein, a
support vector machine (SVM) algorithm suffers from a 30%
accuracy drop with a single training session and multiple
classification sessions [8].

A promising solution to assure sufficient muscle coverage
is to acquire EMG signals from a dense array of sensors [9],
obtaining a fine-grained coverage of the muscular surface.
Commercial active sensors [10] are not suited for use with
dense arrays as they are large and cumbersome due to the
integrated active conditioning circuitry. Passive single-lead
electrodes must be applied one-by-one, which is inconvenient
for daily use of the HMI. In contrast, a matrix of passive
EMG sensors can be built into a flexible printed circuit board
(PCB) and easily positioned on the skin, enabling high-density
and small form-factor multichannel EMG acquisition [9]. All
electrodes can be placed at once, and the flexible nature of
such an array allows it to conform to the curvature of the
arm, ensuring good signal quality. Dense electrode spacing on
a large array increases channel-count and can easily lead to
bulky signal acquisition systems, so a small form-factor and
wireless device is desirable.

Additionally, an intrinsically robust classification algorithm
is needed to process the large number of noisy inputs and
mitigate the effects of signal variability. Brain-inspired high-
dimensional (HD) computing [11] is a promising avenue
that can overcome low signal-to-noise ratio and large data
variability to perform robust decision making and classifica-



Fig. 1. Flexible electrode array with attached wireless biosignal acquisition
device (left) positioned on the arm (right).

tion [12]. The HD computational paradigm provides generality,
scalability, and fast one-shot learning, making it a prime
candidate for processing multidimensional sensor data such
as EMG [13], electroencephalography (EEG) [14], etc.

This paper presents two major contributions: (1) an end-to-
end, high-density, wireless EMG gesture recognition system
featuring a compact wearable device; and (2) the use of
brain-inspired HD computing to improve the robustness of
classification using variable data from a large number of noisy
sensors. The proposed system wirelessly acquires 64 channels
of EMG from a flexible PCB sensor array connected to a ded-
icated biopotential readout device [15], [16]. We implement
an enhanced version of our previous work demonstrating HD
computing for classification of EMG signals recorded from
four gel-based electrodes [13]. We extensively evaluate the
classification accuracy and its robustness over three acquisition
sessions, including repositioning of the array strip. We show
how the HD algorithm is easily scaled to operate with 64
channels, tolerates noise, and can be trained quickly from a
single trial of each gesture, paving the way toward extremely
fast calibration and online learning.

II. SYSTEM OVERVIEW

The gesture recognition device is composed of two main
components: a high-density flexible electrode array, and a
wireless neural-signal acquisition device.

A. Flexible Electrode Array

A high-density flexible electrode array serves as the in-
terface between the skin and the neural recording circuitry
(Figure 1). 64 uniformly-distributed electrodes are laid out
in a 16 × 4 grid on a 200 µm-thick flexible substrate wide
enough to cover the circumference of the forearm (29.3 cm ×
8.2 cm). The size and flexibility of the substrate guarantee full,
stable coverage of all muscles used for different gestures. The
electrodes (4.3mm diameter) and traces are fabricated out of
copper. A piece of conductive hydrogel tape is applied to each
electrode to help maintain good contact with the skin.

Interfacing flexible electronics with rigid PCBs (recording
module) is often challenging. This is solved by designing a
small form-factor adapter board which has a zero insertion
force (ZIF) connector for connecting the flexible array on
one side, and a DF-12 connector for connecting the recording
module on the other side.

Fig. 2. Wireless biosignal acquisition device with important blocks annotated.

TABLE I
WIRELESS BIOSIGNAL ACQUISITION DEVICE SPECIFICATIONS

Number of Recording Channels 128
ADC Sample Rate 1 kS/s
ADC Resolution 15 bits

Input Range 100mVpp
Noise Floor 1.65 µVrms

Number of Channels Wirelessly Streamed 96
Wireless Data Rate 2Mbps
PCB Dimensions 3.3 cm × 3.56 cm

Weight (w/ battery) 6.62 g (17.18 g)
Battery Life 11hr

B. Wireless Neural Recording Module

A compact wireless module attaches to and interfaces with
the electrode array to record, digitize, and wirelessly transmit
the raw EMG signals to a base station (Figure 2). The
device is based on our previous design for a closed-loop
artifact-free neuromodulation platform [15], [16]. Two custom
neuromodulation ICs [17] (NMICs by Cortera Neurotech-
nologies, Inc.) provide 128 recording front-ends in a small
footprint, and an SoC FPGA with a 166MHz ARM Cortex-
M3 processor (SmartFusion2 M2S060T, Microsemi) acts as
the master module aggregating data. The digitized raw data is
transmitted by a 2.4GHz low-energy radio (nRF51822, Nordic
Semiconductor) to a base-station. Table I summarizes main
device specifications. The device is powered by a 500mAh
4.1V Li-ion battery providing up to 11 hours of streaming.

Data is streamed to a wireless base-station connected to a
laptop running a text-based MATLAB (MathWorks, Inc.) GUI
for configuring the device, instructing the subject, visualizing
and storing data, and performing classification.

III. HIGH-DIMENSIONAL (HD) COMPUTING

The human brain contains billions of neurons and synapses,
suggesting that large circuits are fundamental to its computa-
tional power. High-dimensional (HD) computing [11] explores
this idea by looking at computing with vectors of very high
dimensionality, e.g. 10,000. HD vectors can be combined into
new vectors using well-defined vector space operations while
maintaining the original information with high probability.
They can be compared for similarity using a distance metric
over the HD vector space.

HD vectors are initially taken from a 10,000-dimensional
space and have an equal number of randomly placed +1s and
−1s. Such HD vectors are used to represent the basic elements



Fig. 3. Preprocessing and spatiotemporal encoding for EMG-based gesture recognition where vti is the preprocessed scalar value of electrode i at time t, St

(spatial HD vector) is the output of spatial encoder at time t, and G (spatiotemporal HD vector) is the output of temporal encoder.

in the system (e.g., the electrodes [13], [14]), and are stored in
an item memory (IM) that functions as a fixed symbol table.

The following vector space operations can be used on
the elements of the IM to encode information: Point-wise
multiplication (*), or binding, takes two vectors and yields
a third vector that is dissimilar (orthogonal) to the two. Point-
wise addition (+), or bundling, takes several vectors and yields
their mean vector that is maximally similar to all of them.
These operations, along with scalar multiplication (×) and
permutation (ρ) of vector components for sequences, form an
algebraic field beyond arithmetic and linear algebra.

A. Preprocessing

The EMG signal is recorded from 64 single-ended channels
all referenced to a single Ag/AgCl patch electrode placed
on the elbow. The acquired signal is a mixture of the EMG
potentials and time-varying offset and noise, but the desired
feature is the envelope of the high-frequency EMG. Hence,
some preprocessing is needed in order to make it suitable for
the HD classifier.

The preprocessing chain is illustrated in Figure 3. The first
step is the elimination of the power line interference by a notch
filter at 60Hz with Q-factor of 50. Additionally, an 8th-order
Butterworth band-pass filter for frequencies between 1 and
200Hz cancels the undesired frequency components such as
DC offset and drift.

To extract the envelope, we take the absolute value of the
signal and apply a moving average filter with window size of
100. Finally, the data is normalized per channel, and down-
sampled by a factor of 100, i.e. 10 samples per second are fed
to the HD classifier described in the next section.

B. HD classifier

The HD algorithm encodes windows of EMG signals into
HD vectors that are ultimately used for robust learning and
classification. The input features at each time point are the
preprocessed and downsampled scalar values for each elec-
trode. We encode the input features at a single time point into a
spatial HD vector, St. The IM assigns a unique orthogonal HD
vector to every electrode, i.e., E1 ⊥ E2... ⊥ E64. To represent
the preprocessed scalar value (vti ) of an electrode i at time

t, we simply multiply the scalar with the corresponding HD
vector: Ei×vti . These vectors are added across all electrodes to
compute the spatial HD vector representing the input features:
St = σ(

∑64
i=1Ei × vti) where σ is a bipolar thresholder that

turns a positive element to +1 and a negative element to −1.
This new spatial encoder computes the sum of the electrode
vectors weighted by the scalars, and naturally maps a large
number of features to a single spatial HD vector.

Next, we need to encode a sequence of n spatial HD vectors
to capture relevant temporal information into a final spatiotem-
poral vector by using permutation: G =

∏n
t=1 ρ

t−1St where
ρk is a rotation over k positions of the HD vector. For the
preprocessed EMG signals subsampled at 10 Hz, we observe
that a temporal window of 5 samples, i.e., n = 5 yields the
best classification results.

To train the classifier, we use the G spatiotemporal HD
vectors to build an associative memory (AM) containing an
HD vector representing each gesture label. During training,
all spatiotemporal HD vectors computed over a labeled gesture
window are accumulated (summed) to form a prototype HD
vector representing that gesture. The prototype HD vector is
thresholded by σ and stored in the AM. For classification,
newly computed spatiotemporal HD vectors are compared to
each entry of the AM using cosine similarity as the distance
metric. The classified gesture is that of the closest gesture
vector in the AM.

IV. EXPERIMENTAL RESULTS

A. Generating Dataset

We acquired EMG gesture data from three healthy, adult
male subjects1. Each subject participated in three data collec-
tion sessions across different days, where the electrode array
was reapplied with fresh hydrogel tape for each session. For
Sessions 1 and 2, the array was placed in approximately the
same position each time (Figure 1). A training data set and
testing data set were recorded 30 minutes apart during Session
1, and a second testing data set was recorded 24 hours later
in Session 2. For Session 3, new training and testing data sets

1Dataset and processing scripts available at https://github.com/a-
moin/flexemg



Fig. 4. Dataset gestures (a) with the associated normalized activity maps
for different sessions (Subject 1 shown) (b). Pixels correspond to electrode
positions in the array.

TABLE II
CLASSIFICATION ACCURACY RESULTS

Same Session Across Sessions Same Session Rotated
No Vote 1s Vote No Vote 1s Vote No Vote 1s Vote

Sub. 1 99.44% 100% 90.97% 93.26% 99.57% 100%
Sub. 2 98.87% 98.99% 98.68% 98.88% 97.67% 98.29%
Sub. 3 91.61% 93.03% 79.69% 82.64% 90.81% 95.61%
Avg. 96.64% 97.34% 89.78% 91.59% 96.02% 97.97%

were recorded with the array in a different orientation 1 week
after Sessions 1 and 2.

Each data set contained ten trials of four hard gestures
(fist, raise, lower, open) (Figure 4) held for 5 seconds each
in different sequences. Each sequence began and ended with
rest, which we treated as a fifth gesture. Centered 3-second
segments of each 5-second gesture were labeled for inclusion
in the testing and training sets.

Preprocessed features for each gesture were averaged and
arranged in matrices for visualization as heat maps of muscular
activity (Figure 4). For Session 3, the array was rotated from
its Session 1-2 position. This can be seen in the differences of
the heat maps, though the large, high-density array maintained
full coverage of muscle activity across all sessions.

B. Classification Results

To quantify single- and across-session classification ac-
curacies, the HD classifier was trained on Session 1 and
tested on Sessions 1 and 2. During testing, we generated a
classification result for every 500-ms window sliding by 100
ms. Accuracies for three subjects, calculated as the percentage
of classification results that matched the labeled gesture, are
shown in Table II. Single-session accuracies were on average
96.64%. For comparison, single-session accuracy using an
SVM classifier on similarly processed signals [10] is 88.96%
for 5 gestures [8]. Training and testing across Sessions 1 and
2 resulted in accuracy degradation of only about 7%, a large
improvement over degradations of more than 30% using the
SVM classifier [8]. We attribute this robustness to the high
channel density and ability of HD computing to overcome
variance in signal quality and electrode placement.

Simple majority voting of the classification results over
a 1.1-second window of classifications (11 results) further

Fig. 5. Classification accuracy for different number of training trials.

improved accuracy on average by 1.5%. This is an insignificant
improvement due to high baseline accuracy.

The HD algorithm was also successfully used to train and
test on Session 3, demonstrating that the high-density array
could record sufficient information for accurate classification
in multiple orientations. When trained on Session 1 data,
the classifier could not classify Session 3 gestures directly
with good accuracy. However, we anticipate that a simple
remapping of the input features could be implemented to
recover the accuracy.

Limiting the number of trials used for training the classifier
only marginally degraded performance. Figure 5 plots the
classification accuracy averaged over all three subjects for
training set sizes from 1 to 10 trials. Maximum performance
(96.64%) is achieved when training on only 3 trials, and
training on a single trial can deliver acceptable accuracy
(89.19%) for true one-shot learning.

V. CONCLUSION

Robustness and reliability of gesture recognition are big
challenges in designing an EMG-based HMI. Electrode mis-
placement over multiple sessions is the root cause of accuracy
degradation, which can be higher than 30%. We have presented
a system for EMG-based gesture classification combining
a flexible high density electrode array, a dedicated biopo-
tential acquisition device, and a brain-inspired classification
algorithm. Large area coverage and dense electrode spacing
ensures sufficient muscular coverage without requiring pre-
cise placement. Furthermore, the wireless and compact signal
acquisition device promotes comfort and ease of use. Finally,
the HD algorithm achieves high classification accuracy without
substantial degradation over multiple sessions, and can be
trained using minimal amounts of data.
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