
An 826 MOPS, 210 uW/MHz Unum ALU in 65 nm
Florian Glaser∗, Stefan Mach∗, Abbas Rahimi∗†, Frank K. Gürkaynak∗, Qiuting Huang∗, Luca Benini∗‡

∗Integrated System Laboratory (IIS), ETH Zurich, Zurich, Switzerland.
†EECS Department, University of California, Berkeley, USA.‡DEI, University of Bologna, Italy.

{glaser, mach, abbas, kgf, huang, benini}@iis.ee.ethz.ch

Abstract—To overcome the limitations of conventional floating-
point number formats, an interval arithmetic and variable-
width storage format called universal number (unum) has been
recently introduced [1]. This paper presents the first (to the
best of our knowledge) silicon implementation measurements
of an application-specific integrated circuit (ASIC) for unum
floating-point arithmetic. The designed chip includes a 128-bit
wide unum arithmetic unit to execute additions and subtractions,
while also supporting lossless (for intermediate results) and lossy
(for external data movements) compression units to exploit the
memory usage reduction potential of the unum format. Our chip,
fabricated in a 65 nm CMOS process, achieves a maximum clock
frequency of 413 MHz at 1.2 V with an average measured power
of 210 uW/MHz.

Index Terms—universal number (unum), floating-point, inter-
val arithmetic, computing accuracy, ASIC, ALU

I. INTRODUCTION

Large scale data analytics and numerical applications have
very widely ranging requirements in terms of numerical preci-
sion. While approximate computing shows flexibility with low
precision arithmetic and aggressive bit width reduction [2], the
other side of the application spectrum adheres to the IEEE
standard for floating-point arithmetic [3] (IEEE 754) in spite
of its possible side effects e.g., accumulation of rounding
errors [4] that can cause deviation from the exact value. To
cover this wide range of demands, efficient hardware solutions
that retain as much flexibility as possible, are highly desirable.

The IEEE 754 format mainly suffers from rigid allocation
of bits to its sign, exponent and mantissa fields and lacks
robustness to rounding errors [5]. The latter weakness is
caused by the implicit rounding rules defined in the standard:
When a desired value lies in between of two representable
values, it will be forced to be rounded to the next best
value producing an inevitable rounding error; across multiple
calculations, such rounding error can be accumulated without
allowing the application an explicit observation or control over
the error. As an alternative, the universal number (unum) [6]
format is proposed by John L. Gustafson to better control
precision loss. The goal of unum is to overcome the lim-
itations of the IEEE 754 format by introducing a variable-
width storage format, and a ubit which determines whether a
unum corresponds to an exact number or an interval between
exact unums, hence explicitly representing when a calculation
produces a value that is not exactly representable in the number
system. Therefore, the ubit explicitly enables encoding the
error bound. The unum format additionally defines two fields

that make the number self-descriptive, as discussed briefly in
Section II and deailed in [1].

The unum format, so far, has been supported in various
programming environments including Julia [7], Matlab [8],
Python [9], J and Mathematica [6] languages. VHDL code
of three operators (addition, multiplication, and comparison)
has been synthesized [10], and an FPGA implementation
targets four operators (addition, subtraction, multiplication and
division) [11]. To clearly evaluate the benefits and challenges
of unum hardware design in silicon, we present – to the best
of our knowledge – the first ASIC as a fully operational unum
processor capable of performing additions and subtractions
as well as format-specific functions for lossless and lossy
compressions. This paper makes the following contributions:

• We present an ASIC integrating a unum arithmetic unit
(ALU), supporting addition, subtraction, implicit lossless
and explicit lossy compression, measuring 0.07 mm2 in
65 nm CMOS.

• We report measurement results of the fabricated chip,
achieving a maximum clock frequency of 413 MHz at
1.2 V with an average power of 210 µW/MHz.

• We critically analyze advantages and shortcomings in
supporting the unum format in hardware.

The rest of the paper is organized as follows. Section II
provides background on the unum format, how to perform
computations with it and discusses associated advantages and
shortcomings in terms of precision and memory footprint.
Section III presents synthesis experiments for the IEEE 754
and unum compatible arithmetic units, followed by the design
and optimization of the implemented ALU. In Section IV,
we present the chip implementation and experimental results.
Finally, Section V concludes the paper with a discussion of
results.

II. UNUM COMPUTING BACKGROUND

A. The Unum Format

The unum format, depicted in Fig. 1 bears similarity to the
IEEE 754 floating-point representation for real numbers with
its sign-exponent-mantissa notation. The unum format extends
this representation by adding three new fields that allow for the

sign exponent fraction

1 es fs 1

ubit
es-1 fs-1

exp

size

frac

size

utag

s e f u

Fig. 1: The unum format, extending sign-exponent-mantissa floats
with self-descriptive fields in the utag.

1 16 32

es-1 fs-1s e f u

5411 1 1 1 1

2
n

d
=

0
+

-I
n

f
N

aN

single unum

64

don’t care

0

1 16 32

es-1 fs-1s e f u

5411 1 1 1 1

2
n

d
=

0
+

-I
n

f
N

aN

left bound

1 16 32

es-1 fs-1s e f u

5411 1 1 1 1

=
0

+
-I

n
f

N
aN

right bound

1

Fig. 2: Layout of the internal representation of single unums (top)
and ubound values (bottom) in the 128-bit register file.

inclusion of self-descriptive information about the represented
value. These additional fields are summarized under the name
utag.

The last two fields in the utag denote the exponent size es
and fraction size fs of the unum, making unum a variable-size
format. Hence, floating-point values that can be represented
with a small number of bits require fewer storage bits com-
pared to a large fixed-size floating-point environment thanks
to the self-descriptive nature of the utag.

Since it is practically not feasible to allow for unlimited
exponent and mantissa sizes, the widths of the exponent
size and fraction size fields in the utag are fixed, defining
the maximum range of possible unum values. The chosen
widths for the exponent size and fraction size fields then
define a so-called unum environment. For example, setting
the exponent size width to 4 bits and the fraction size width
to 5 bits, the resulting environment can represent unums
with up to 16 exponent and up to 32 fraction bits. Such
unums are defined in a {4,5}-environment – the maximum
possible size of a unum in an {a,b}-environment is given as
maxubits = 2 + 2a + 2b + a+ b.

The first field in the utag, called the ubit, can be set to
denote that the represented value x is not an exact point on
the real line, but rather an open interval (x, x+ ulp) with ulp
being the unit in the last place for the current unum format.
Explicitly encoding that the exact value cannot be represented
in the current format sets unum apart from regular floating-
point representations where all encoded values are considered
as exact and approximation is completely implicit.

For describing general intervals more than one ulp apart,
two unums can be connected to create a so-called ubound1,
each denoting one endpoint of an interval. In a ubound, each
of the two ubits indicates whether the respective endpoint is
part of the interval or not, i.e., whether the interval is closed
or open there.

B. Unum Operations

In this work’s implementation, we include the basic op-
erations that are addition and subtraction. Unum addition is
similar to floating-point addition, with more complex special
cases involving infinities being dependent on both values and
bound types. The left and right bound of ubounds can be
handled independently, however.

One complexity of the floating-point arithmetic, namely
rounding, is greatly simplified in unum: whenever the result of
an operation on two exact values requires more precision than

1This definition deviates from Gustafson’s definition in [1], where the term
ubound can also denote a single unum with the ubit set.

available in the unum environment, the ubit is set to mark the
value as inexact. When handling bounds, the bound type of
the result bound corresponds to the logical-OR of its operand
ubits.

Since the bit-pattern representation of a value is not unique
within a unum environment, there are additional unum-specific
operations to be considered. Since implementations should
strive to utilize as little bits as possible for a given value,
we also define the lossless optimize operation, calculating the
representation of a ubound with the smallest number of bits.
Furthermore, Gustafson [1] specifies the unify operation that
attempts to merge a ubound consisting of two unums into
the smallest single unum that fully includes the interval. This
operation can incur loss of precision, namely if the resulting
inexact unum covers a larger interval than the initial ubound.

C. Considerations for Unum in Hardware

The interchange format for unums as shown in Fig. 1 is
specified in [1]. Unum values reside in memory in this format,
using only as much storage as mandated by the exponent
size and fraction size fields – which can be drastically less
than using a fixed-width floating-point representation. This
departure from using uniformly sized and aligned operands
however requires additional effort when handling unums in
the memory system.

In order to illustrate the dynamic behavior of unum during
calculations, axpy was run with input coefficients of rising
complexity, calculating and accumulating the result using
either floats or unum environments. The change of the relative
error compared to a double precision reference as well as the
bit-size over the iterations is shown in Fig. 3.

During phase I, only small coefficients are used, leading to
results that can be exactly represented in all evaluated formats.
The size of unum results is made up of the fixed size of the
utag – 8 bit and 10 bit, respectively, for the {3,4} and {4,5}
environments – and the dynamic number of bits needed to
store the actual value.

Phase II applies large coefficients, significantly increasing
the accumulated values. Unum formats start increasing in
size to still accurately store the result. Once the exact value
requires more fraction bits than available in the format, error

10 -10

10 -5

10 0

M
ea

n
R

el
. E

rr
or

 v
s.

flo
at

64

Relative Error over AXPY Iterations

0

Phase I - small coefficients Phase II - large coefficients Phase III - random float coeff.

10 20 30Iteration #
0

16

32

48

64

80

96

112

A
ve

ra
ge

 S
iz

e
[b

it]

Bitsize over AXPY Iterations

float32
float16
{3,4}-unum
{3,4}-unum, unified
{3,4}-unum, aggressive unify
{4,5}-unum
{4,5}-unum, unified
{4,5}-unum, aggressive unify

overflow

exactly representable

Fig. 3: Relative error of axpy iterations using floating-point and unum
formats (top) and the bit-size of the results (bottom).

Expand 2Expand 1

UboundAdder

UB Add

operand 1: (a,b)

da dc dd da db dc

b1

bx: operand x is ubound

dx: sign(x) | exp(x) (16 bit) | frac(x) (32 bit)

sx: ubit(x) | NaN(x) | inf(x)

b2

dd

operand 2: (c,d)

Unify Optimize

Pack

Controlu

u
LB Add
u

u

: ubit trigger pointu

128128

128

128

128

128

49

sign

a
d
d
/su

b

sign

ovflw, ubit,
int. sign

49
2

3
9

3

49 49

3
49 4949 49

3

sa
3

sb
3

sc
3

sd

49

b2 b1

0 0 a+c

add sub

(a+c,b+c)

(a+c,a+d) (a-d,a-c)

(a+c,b+d) (a-d,b-c)

(a-c,b-c)

a-c

0 1

1 0

1 1

special bits
result

Fig. 4: Data path of the proposed, 128-bit wide ALU and architecture
of the unum adder along with supported operations. Blue lines
indicate automatically retimed pipeline stages.

proportional to the format-specific minimal ulp-width appears
and unum starts using ubounds to accurately represent the
uncertainty of the results.

In phase III more error is introduced by using random floats
as coefficients, causing also the {4,5}-unum’s 32 fraction bits
to be insufficient for exact results.

The ubounds used for unum results would require sig-
nificantly more storage space than floats, thus they should
stay contained within the processing unit registers if possible.
Before storing to main memory, unify can be used to reduce
storage size at the cost of increasing the error bound. Unifying
excessively, for example after each iteration as shown in Fig. 3,
causes the additional error introduced by each unification to
quickly accumulate.

We notice in this example that there is a range where unum
provides lower memory footprints than float32 with equivalent
accuracy, while float16 error already grows rampant. Unified
{3,4}-unums require 7% less memory than float32 at the price
of a significant error increase similar to float16 – while re-
maining usable long after float16 overflows due to insufficient
range. Unified {4,5}-unums require around 45% more storage
than float32 values mostly due to utag overhead – albeit at
around 5× lower error and explicitly denoting this error. Using
float32 interval arithmetic to store the error bound would cost
39% more memory compared to unum in this example.

Since arithmetic units and register files must be provisioned
for handling all possible unums in a given environment, this
incurs a relative hardware overhead for those unums that do
not use the maximum width of the environment. Unpacking of
unum values in the register file and the storage of additional
meta-information, called summary bits in [1], can simplify the
implementation of unum operations, especially the handling of
bounds and special cases such as NaN and infinity operands.
As our ALU is targeted to extend embedded processing
systems, we follow this approach in our implementation.

III. UNUM ALU DESIGN

We present a fully unum-{4,5} compatible ALU with sup-
port for a subset of the arithmetic and unum-specific operations
proposed in [1]. The design is targeted for integration into

TABLE I: Post-layout area distribution of the proposed ALU

Overall ALU area 50 kGE / 0.07 mm2

Lower, upper bound adder, each 14 %
Expand units, each 17 %
Unify unit 27 %
Optimize unit 7 %
Control, data routing 6 %

embedded parallel processing systems as a tightly memory-
coupled accelerator, or a core data path extension. We thus
follow the hardware-oriented unpacked data format for rep-
resenting unums proposed in [1] to a large extent; details of
the employed format are shown in Fig. 2. One single unum
operand in this internal format is 64 bit wide.

The maximum number of bits needed to represent these
unums is maxubits = 59 bits. We add the summary bits for
NaN, ±∞, =0 as well as the 2nd flag to mark a unum part of
a ubound, the ALU datapath that supports parallel operations
for ubounds is therefore 128-bit wide.

A. ALU Architecture

The ALU is depicted in Fig. 4 and can perform addi-
tions and subtractions on either two ubounds, two unums
or one ubound and one unum. Additionally, the format-
specific functions optimize and unify were implemented: With
optimize, lossless compression is provided on the one hand
by calculating the representation with the smallest exponent
and fraction size for a given unum or ubound. On the other
hand, the (usually) lossy unify reduces a ubound to a unum
whenever possible, saving potentially half of the storage at the
expense of precision. Consequently, the adder and the unify
unit can possibly output inexact results from exact operands;
this behavior is deeply manifested in the unum format by a set
ubit. All units with the capability of introducing this format-
specific number property are marked with an inverted, green u
in Fig. 4.

B. Unum Adder

The adder is internally split into separate data paths for the
calculation of the resulting upper and lower bounds in case any
of the operands is a ubound. The operands are denoted as (a, b)
and (c, d) in case of ubounds and a and c in case of unums,

T [ns]
1 2 3 4 5 6 7 8

A
 [k

G
E]

0

10

20

30

40

50

data type
ubound yes

yes
no

N/A

249
124

98
98

125
62
51
49

2
2
1
1

unum
unum

IEEE 754

expand /
optimize

bits
input

bits
output

pipeline
stages

Fig. 5: Area and timing comparison of the proposed ubound adder
and its sub-parts against an IEEE 754 compliant adder.

Fig. 6: Die micrograph of the taped-out ASIC.

respectively. In order to take advantage of the regularity of the
floating-point arithmetic units, the operands are expanded to
the maximum supported precision with 16 exponent and 32
fraction bits beforehand. The core of each adder then consists
of a floating point adder of appropriate size with hidden bit,
overflow and rounding support, complemented with checks for
unum infinity, zero and NaN special cases. Most importantly,
however, the adder detects if its result cannot be represented
exactly and sets the ubit in such cases.

C. Optimized Compression

Particular focus was put on optimizing the routing of data
through the available compression units during ALU design:
The optimize operation is carried out both through a dedicated
opcode as well as implicitly after every adder operation to
leverage the storage-saving capabilities of the unum format;
the unify operation can only be carried out with an explicit
opcode to maintain controllability over all lossy operations.
In a typical processing environment, intermediate results can
then be successively optimized while unified only once and
right before expensive data movements, e.g., DRAM transfers.
This mechanism allows for maximum storage savings while
not sacrificing desired intermediate precision.

D. Comparison with IEEE 754

Fig. 5 shows synthesis experiments in 65 nm, comparing
different unum-enabled arithmetic units with an IEEE 754
compliant floating-point adder with corresponding exponent
and fraction sizes. A first observation is a modest area increase
(27% or 1.08 kGE with a 4 ns period constraint) when only
considering the unum adder. However, complementing the
adder with the expand and optimize units to take advantage
of on-the-fly data compression comes with an area increase
of more than 3.5×. The implemented, fully-parallel ubound
adder adds roughly another factor of two while also providing
double the throughput. The second important observation is
the limitation in terms of minimum clock period for the
compression-enabled unum units, even with an additional
pipeline stage. Table I confirms the findings that compression-
related blocks consume a significant part of the overall ALU

area; they however can be reused and shared between arith-
metic operations.

IV. ASIC IMPLEMENTATION

For silicon verification and characterization, we embedded
the proposed ALU into a test-bed consisting of instruction
SRAM, register file and control state machine. A maximum
of 1024 instructions can be executed sequentially once or
repeatedly, hiding IO delays to emulate operating conditions
resulting from integration into embedded processing systems.

A. Experimental Setup

Both SRAM and register file are accessible for writing
and reading through dedicated commands to a memory con-
troller block; consequently, the maximum ALU speed can be
determined after preloading instruction memory and register
file with suitable instructions and data, respectively. Results
from the register file are then read out and verified against a
golden model implementation [9]. The design nets 0.258 mm2

of circuit area within the ASIC die pictured in Fig. 6.

B. Experimental Results

The fabricated prototypes were characterized on a commer-
cial Advantest SoC V93000 ASIC tester, using full-range data
generated in a directed random fashion. The findings with
further ASIC properties are summarized in Table II.

V. CONCLUSION

We presented measurement results of the first unum-{4,5}
ALU ASIC implementation. Our 128-bit wide ALU supports
addition and subtraction of ubounds and the unum-specific
operations optimize and unify at up to 413 MHz, allowing
up to 826 M unum additions or subtractions per second.
We discussed synthesis experiments for the comparison of
unum-enabled arithmetics with the IEEE 754 counterparts
and conclude that it must be carefully analyzed whether
memory accesses are expensive enough for the significant
(de)compression overhead linked to variable-width number
formats to pay off. Furthermore, we touched on the possible
storage-saving capabilities of the unum format through an
example, concluding that unum formats provide moderate
memory footprint advantage (7%) with respect to the standard
FP32 and wider range than FP16, at a price of a significant
increase in datapath complexity and requiring special care in
avoiding aggressive unification to prevent error blow-up.

TABLE II: Measured characteristics of unum-{4,5} ASIC, all num-
bers acquired from measurements at 1.2 V at room temperature

Technology / Supply umcL65 / 1.2 V
Circuit Area 0.258 mm2

Measured Leakage Power 1.3 mW
Measured Dynamic Power 210 µW/MHz

Maximum Speed
Add/Subtract 413 MHz
Unify 468 MHz
Optimize 471 MHz

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of David
Oelen and Lucas Mayrhofer during ASIC design and testing.
Support received from the ETH Zurich Postdoctoral Fel-
lowship program and the Marie Curie Actions for People
COFUND Program.

REFERENCES

[1] J. L. Gustafson, The End of Error: Unum Computing. CRC Press,
2017.

[2] N. M. Ho, E. Manogaran, W. F. Wong, and A. Anoosheh, “Efficient
floating point precision tuning for approximate computing,” in 2017
22nd Asia and South Pacific Design Automation Conference (ASP-DAC),
Jan 2017, pp. 63–68.

[3] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of Floating-
Point Arithmetic. Birkhäuser Boston, 2010, ACM G.1.0; G.1.2; G.4;
B.2.0; B.2.4; F.2.1., ISBN 978-0-8176-4704-9.

[4] D. Monniaux, “The pitfalls of verifying floating-point computations,”
ACM Trans. Program. Lang. Syst., vol. 30, no. 3, pp. 12:1–12:41, May
2008. [Online]. Available: http://doi.acm.org/10.1145/1353445.1353446

[5] J. L. Gustafson, “A radical approach to computation with real
numbers,” Supercomputing Frontiers and Innovations, vol. 3, no. 2,
2016. [Online]. Available: http://superfri.org/superfri/article/view/94

[6] W. Tichy, “The end of (numeric) error: An interview with John L.
Gustafson,” Ubiquity, vol. 2016, no. April, pp. 1:1–1:14, Apr. 2016.
[Online]. Available: http://doi.acm.org/10.1145/2913029

[7] “Unum arithmetic in Julia,” 2017. [Online]. Available:
https://github.com/JuliaComputing/Unums.jl

[8] M. Kvasnica, “munum: Matlab(R) library for universal numbers,” 2017.
[Online]. Available: https://bitbucket.org/kvasnica/munum

[9] J. Muizelaar, “Python port of the Mathematica unum
prototype from ’The End of Error’,” 2017. [Online]. Available:
https://github.com/jrmuizel/pyunum

[10] A. Bocco, Y. Durand, and F. de Dinechin, “Hardware support for unum
floating point arithmetic,” in 2017 13th Conference on Ph.D. Research
in Microelectronics and Electronics (PRIME), June 2017, pp. 93–96.

[11] J. Hou, Y. Zhu, Y. Shen, M. Li, Q. Wu, and H. Wu, “Enhancing precision
and bandwidth in cloud computing: Implementation of a novel floating-
point format on fpga,” in 2017 IEEE 4th International Conference on
Cyber Security and Cloud Computing (CSCloud), June 2017, pp. 310–
315.

