
A Robust and Energy-Efficient Classifier Using
Brain-Inspired Hyperdimensional Computing

Abbas Rahimi
EECS Department

University of California
Berkeley

abbas@eecs.berkeley.edu

Pentti Kanerva
Redwood Center for

Theoretical Neuroscience
University of California

Berkeley
pkanerva@berkeley.edu

Jan M. Rabaey
EECS Department

University of California
Berkeley

jan@eecs.berkeley.edu

ABSTRACT
The mathematical properties of high-dimensional (HD) spaces
show remarkable agreement with behaviors controlled by the brain.
Computing with HD vectors, referred to as “hypervectors,” is a
brain-inspired alternative to computing with numbers. Hypervec-
tors are high-dimensional, holographic, and (pseudo)random with
independent and identically distributed (i.i.d.) components. They
provide for energy-efficient computing while tolerating hardware
variation typical of nanoscale fabrics. We describe a hardware ar-
chitecture for a hypervector-based classifier and demonstrate it with
language identification from letter trigrams. The HD classifier is
96.7% accurate, 1.2% lower than a conventional machine learning
method, operating with half the energy. Moreover, the HD classi-
fier is able to tolerate 8.8-fold probability of failure of memory cells
while maintaining 94% accuracy. This robust behavior with erro-
neous memory cells can significantly improve energy efficiency.

1. INTRODUCTION
Reducing the size of CMOS transistors no longer guarantees the

customary gains in performance and energy efficiency of integrated
computing platforms. The manufacture of devices near atomic fea-
ture dimensions is particularly challenging. Any variation in di-
mensions, doping, etc. has a large effect on the resulting device
and circuit behavior [1]. Solutions that improve energy efficiency
– performance per Watt – in the presence of such variations, are
highly desirable.

Bio- and brain-inspired information processing architectures are
a promising new avenue to energy efficiency, asymptotically ap-
proaching the efficiency of brain computation, while tolerating
variations in nanoscale fabrics [2, 3, 4]. Among brain-inspired
computing paradigms, hyperdimensional computing is founded
on the mathematical properties of high-dimensional spaces which
show remarkable agreement with behaviors controlled by the
brain [5, 6, 7, 8, 9]. Instead of computing with numbers, we
compute with hypervectors that are high-dimensional (HD; e.g.,
10,000-D) and holographic, i.e., every piece of information con-
tained in the vector is distributed equally over all the components

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISLPED ’16, August 08-10, 2016, San Francisco Airport, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4185-1/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934583.2934624

of the vector. These features allow hyperdimensional computing
to achieve robustness in the presence of hardware-induced errors,
greatly improving energy efficiency at the expense of slight, or no
functional performance degradation.

The algorithm that forms the basis of this paper is available
on [9]. It identifies the language of text samples based on letter N-
grams. Here, we introduce an HD classifier for that task as the first
energy-efficient and robust hardware design of hyperdimensional
computing. We propose a modular, scalable, and memory-centric
architecture where a hypervector for a text sample is produced and
compared concurrently with a set of trained hypervectors. Our de-
sign optimizations include substituting a high-precision hypervec-
tor of integers with a low-precision binary hypervector, reducing
switching activities, and lowering the complexity of search oper-
ations. We compare classification accuracy, energy consumption
and robustness of the HD classifier with a conventional machine
learning method of the same hardware complexity. Compared to
this conventional method: 1) the HD classifier enables 53% energy
saving at the expense of 1.2% lower accuracy in language recogni-
tion. 2) the HD classifier exhibits extremely robust behavior with
low-precision components and tolerates hardware-induced errors
in them; it tolerates 8.8-fold probability of failure per individual
memory cells, while maintaining a recognition accuracy of above
94%. In addition, the same architecture can be retrained to perform
other tasks such as text classification by topic with similar success
rates [10].

In Section 2, we present the concepts of hyperdimensional com-
puting. Our proposed memory-centric architecture with energy op-
timizations for HD classifier are described in Section 3. In Sec-
tion 4, we present experimental results followed by discussion.
Section 5 concludes this paper.

2. HYPERDIMENSIONAL COMPUTING
The brain’s circuits are massive in terms of numbers of neurons

and synapses, suggesting that large circuits are fundamental to the
brain’s computing. Hyperdimensional computing [7] is based on
the understanding that brains compute with patterns of neural ac-
tivity that are not readily associated with numbers. In fact, the
brain’s ability to calculate with numbers is feeble. However, due
to the very size of the brain’s circuits, we can model neural activ-
ity patterns with points of a high-dimensional space, that is, with
hypervectors. When the dimensionality is in the thousands (e.g., D
=10,000), it is called hyperdimensional.

Hypervectors are holographic, and (pseudo)random with i.i.d.
components. A hypervector contains all the information combined
and spread across all its bits in a full holistic representation so that
no bit is more responsible to store any piece of information than an-

http://dx.doi.org/10.1145/2934583.2934624

other. Hypervectors are combined with operations akin to addition,
multiplication, and permutation that form an algebra over the vector
space (e.g., a field). Hypervectors can be compared for similarity
using a distance metric over the vector space. These operations on
hypervectors can be combined into interesting computational be-
havior with unique features that make them robust and efficient. In
this paper, we target an application of hyperdimensional comput-
ing for identifying the language of text samples, based on encoding
consecutive letters into hypervectors.

Recognizing the language of a given text is the first step in all
sorts of language processing, such as text analysis, categorization,
translation, etc. High-dimensional vector models are popular in
natural-language processing and are used to capture word mean-
ing from word-use statistics. The vectors are often called semantic
vectors. Ideally, words with a similar meaning are represented by
semantic vectors that are close to each other in the vector space,
while dissimilar meanings are represented by semantic vectors far
from each other [11]. Latent semantic analysis [11] is a standard
way of making semantic vectors. It relies on singular value decom-
position of a large matrix of word frequencies. It is computationally
heavy and scales poorly.

Random indexing [5, 6] is an algorithm based on high dimen-
sionality and randomness and it provides a simple and scalable
alternative to methods based on principal components, including
latent semantic analysis. It is incremental and computes semantic
vectors in a single pass over the text data. With the dimensional-
ity in the thousands it is possible to calculate useful representations
with fast, and highly scalable algorithms. We use random indexing
for identifying the source language of text samples by compiling
their N-grams – N consecutive letters – into hypervectors, and by
comparing the vectors to each other.

2.1 Random Indexing
Random indexing represents information by projecting data onto

vectors in a hyperdimensional space. There exist a huge number of
different, nearly orthogonal hypervectors in such a space [12]. This
lets us combine two such hypervectors into a new hypervector using
well-defined vector-space operations, while keeping the informa-
tion of the original two with high probability. We consider a vari-
ant of the multiplication, addition, and permutation (MAP) coding
described in [13] to define the hyperdimensional vector space. The
hypervectors are initially taken from a 10,000-dimensional space
and have an equal number of randomly placed 1s and −1s. Such
hypervectors are used to represent the basic elements, i.e., the 26
letters of the Latin alphabet and the (ASCII) space.

The MAP operations on the hypervectors are defined as follows.
Componentwise addition of two hypervectors A and B, is denoted
by A+B. Information from a pair of hypervectors A and B is stored
and utilized in a single hypervector by exploiting the addition op-
eration. That is, the sum of two separate hypervectors naturally
preserves unique information from each hypervector because of the
mathematical properties of vector addition. The vector addition is
well suited for representing sets. Componentwise multiplication is
denoted by A ∗B. Multiplication of two hypervectors produces a
vector that is dissimilar to its constituent vectors; hence it is well
suited for binding hypervectors. The third operation is a permu-
tation, ρ , that rotates the hypervector coordinates. The permuta-
tion operation generates a dissimilar vector by scrambling that is
good for storing a sequence of hypervectors. For example, the se-
quence trigram of A-B-C, is stored as the following hypervector,
ρ(ρA ∗B) ∗C = ρρA ∗ ρB ∗C. This efficiently distinguishes the
sequence A-B-C from A-C-B, since a rotated hypervector is uncor-
related with all the other hypervectors.

Cosine similarity is used to measure similarity between two hy-
pervectors by measuring the cosine of the angle between them us-
ing a dot product. It is defined as cos(A,B) = |A′ ∗B′|, where A′

and B′ are the normalized vectors of A and B, respectively, and |C|
denotes the sum of the elements in C.

3. MEMORY-CENTRIC ARCHITECTURE
FOR HD CLASSIFIER

In this section, we first describe our proposed architecture for the
HD classifier and in Sections 3.1 and 3.2 describe its main mod-
ules. In Section 3.3, we show how the hyperdimensional comput-
ing for language recognition is very robust to low-precision binary
components, followed by our optimizations for energy efficiency in
Section 3.4.

The proposed design uses the same strategy as presented in [9]
for recognizing a text’s language by generating and comparing text
hypervectors: the text hypervector of an unknown text sample is
compared for similarity to precomputed text hypervectors of known
language samples – the former is referred to as a query hypervector,
while the latter are referred to as language hypervectors. As shown
in Figure 1, the design is based on a memory-centric architecture
where logic is tightly integrated with the memory and all compu-
tation is fully distributed. The architecture has two main modules:
encoding and similarity search. The encoding module projects an
input text, composed of a stream of letters, to a hypervector in high-
dimensional space. Then this hypervector is broadcast to the simi-
larity search module for comparing with a set of precomputed lan-
guage hypervectors. The search module returns the language that
has the closet match. In the following two sections, we describe the
architectural details of these two modules.

3.1 Encoding Module
The encoding module accepts a stream of letters from a text

and computes a hypervector that represents the text. First, an item
memory assigns a unique but random hypervector, that is called let-
ter hypervector, to an input letter. The item memory is a catalog of
meaningful patterns, and it is implemented as a lookup table. In the
binary implementation of our encoding module, a hypervector has
an equal number of randomly placed 1s and 0s. This assignment
is fixed throughout the computation, and formed 27 approximately
orthogonal hypervectors as the basic elements of our alphabet here
with 27 symbols.

Second, we need to compute a hypervector for a block of N con-
secutive letters, for example, a window of three letters or a trigram.
Hence, we consider three stages of memory, in the FIFO style, each
of which stores a letter hypervector. A trigram hypervector is cre-
ated by permuting the letter hypervectors and multiplying them as
described earlier. The random permutation operation ρ is fixed, and
implemented as a cyclic rotation to right by 1 position as shown in
Figure 1. In geometry sense, this permutation rotates the vector
in the space. For instance, considering the trigram of A-B-C, A
hypervector is rotated twice (ρρA), B hypervector is rotated once
(ρB), and there is no rotation for C hypervector. Once the letter
C is reached, its corresponding C hypervector is fetched from the
item memory and is directly written to the first stage of encoder
(i.e., letter3 hypervector in Figure 1). To apply ρ(ρA, B) on the
two previous letters, they are rotated as they pass through the en-
coder stages. The pointwise multiplications are then applied be-
tween these new hypervectors to compute the trigram hypervector,
i.e., ρρA∗ρB∗C. Since the trigram hypervector is binary, the mul-
tiplication between two hypervectors is implemented with D XOR
gates.

Input letter

01D-1 D-2 D-3 Letter3 hypervector

01D-1 D-2 D-3 Letter1 hypervector

Letter hypervector (with D dimensions)

01D-1 D-2 D-3 Trigram hypervector

*

*

Item memory

ACC

THR

ACC

THR

ACC

THR

ACC

THR

ACC

THR

01D-1 D-2 D-3 Letter2 hypervector

01D-1 D-2 D-3 Text hypervector

Encoding module Search module

0D-1 Query hypervector

Similarity measurement

0D-1 Language hypervector0

0D-1 Query hypervector

Similarity measurement

0D-1 Language hypervector1

0D-1 Query hypervector

Similarity measurement

0D-1 Language hypervectorL

C
lo

s
e

s
t

S
im

il
a

ri
ty

S
e
le

c
te

d
 l
a

n
g

u
a

g
e

..
.

Q
u

e
ry

 h
y

p
e
rv

e
c

to
r

ACC Di
<k/2 0
else 1

Di ACC
0 +0
1 +1

Figure 1: Memory-centric architecture for hyperdimensional computing: encoding module and search module.

Third, a text hypervector for an input text is computed by adding
all the trigram hypervectors using a sliding window of three let-
ters across the text. This pointwise addition, or summation, pro-
duces another D-dimensional hypervector where each component
is an integer value. Section 3.4.2 shows how we can substitute such
a high-precision text hypervector with a binary hypervector. The
output of the encoding module is the text hypervector.

The encoding module is used for both training and testing. Dur-
ing training when the language of the input text in known, we refer
to the text hypervector as a language hypervector. Such language
hypervectors are stored in the search module. When the language
of a text is unknown, as it is during testing, we call the text hyper-
vector as a query hypervector. The query hypervector is sent to the
similarity search module to identify its source language.

3.2 Similarity Search Module
The search module stores a set of language hypervectors that are

precomputed by the encoding module. These language hypervec-
tors are made in exactly the same way described above, by making
the text hypervectors from samples of a known language. There-
fore, during the training phase, we feed texts of a known language
to the encoding module and save the resulting text hypervector as a
language hypervector in the search module. We consider 21 Euro-
pean languages, consequently at the end of the training phase, we
will have 21 language hypervectors, each of which is stored sepa-
rately in a row of the search module.

Determining the language of an unknown text is done by com-
paring its query hypervector to all the language hypervectors. This
comparison is effectively performed in a distributed fashion using
an associative memory. The cosine similarity is used as the sim-
ilarity metric [8, 9]. It measures distancecos between a language
hypervector (LVi) and an unknown query hypervector (QV) as fol-
lows:

distancecos =
LVi ·QV
| LVi || QV |

(1)

where LVi · QV is the dot product between the two hypervectors,
|LVi | and | QV | are the magnitudes of LVi and QV, respectively.
If distancecos is close to 1, it means that the trigram frequencies of
the unknown text presented in QV are similar to the trigram fre-
quencies of the language vectori, and therefore the text is likely to

94.0%

94.5%

95.0%

95.5%

96.0%

96.5%

97.0%

97.5%

98.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

R
e
c

o
g

n
it

io
n

 a
c

c
u

ra
c

y

Hypervector bitwidth

Figure 2: Recognition accuracy while varying the component
bitwidth of 10,000-dimensional hypervectors.

be written in the same language. We design a modular similarity-
measurement block that calculates such distancecos between a pre-
computed LVi and QV. This block is replicated L times within
the search module; L is the number of languages in our applica-
tion. The QV is broadcast across the search module, hence all the
similarity-measurement blocks compute their cosines concurrently.
Finally, a combinational comparison block selects the highest co-
sine and returns its associated language as the language that the
unknown text has been written in.

3.3 Robustness in the Presence of Low-
Precision Components

Here we assess the robustness of hyperdimensional computing
for the language recognition by replacing high-precision compo-
nents with low-precision components. As described in Section 3.1,
a text hypervector contains integer components due to the addition
operation that accumulates the trigram hypervectors over the text.
Hence, each component in the hypervector requires a multibit cell
memory. For learning a megabyte of text, each hypervector com-
ponent will need 19 bits precision for summing a million of ran-
domly placed 0s and 1s. Figure 2 shows the accuracy of language
recognition as a function of bitwidth of the hypervector compo-
nents. As shown, the recognition accuracy is slightly decreased by
reducing the bitwidth (i.e., the precision of each component). Such
a robust behavior enables us to turn the high-precision hypervec-

Input letter

Letter hypervector (with D dimensions)

Item memory

01D-1 D-2 D-3 Trigram hypervector

Barrel Sh.01D-1 D-2 D-3 Letter3 hypervector

=2

Barrel Sh.01D-1 D-2 D-3 Letter2 hypervector

=2

Barrel Sh.01D-1 D-2 D-3 Letter1 hypervector

=2

P0 P1 P2

*

*

Rotating pointers

for Barrel shifters

Wr. en.

Wr. en.

Wr. en.

Figure 3: Barrel shifters for trigram hypervector generation.

tors to binary hypervectors, with the same dimensionality, while
slightly degrading the recognition accuracy from 97.4% to 96.7%.
This bitwidth reduction saves the required memory for the search
module by a factor of 19×. Moreover, computing with such binary
hypervectors requires fewer hardware resources in both encoding
and search modules, motivating us to look for further optimizations
presented in the following section.

3.4 Optimizations for Energy Efficiency
In this section, we describe our design optimization techniques

for energy-efficient hyperdimensional computing with binary com-
ponents. Our energy analysis in Section 4.2.2 shows that more than
55% of the total power consumption goes to the encoding mod-
ule. This is because the encoding module, shown in Figure 1, in-
volves power-hungry operations: trigram hypervector generation,
and text hypervector generation. The former requires high amount
of switching activity, and the latter requires a large number of re-
sources for accumulation and thresholding. In the following two
sections, we provide effective solutions to address each of these
concerns. In Section 3.4.1, we describe a technique for reducing
memory switching activity during trigram hypervector generation.
In Section 3.4.2, we demonstrate savings in resources by using bi-
nary hypervectors rather than high-precision hypervectors. In Sec-
tion 3.4.3, we reduce the complexity of hardware implementation
of the similarity search module.

3.4.1 Encoding Trigrams with Minimal Switching
Generating a trigram hypervector involves permutation and mul-

tiplication operations. As we describe in Section 3.1, the permuta-
tion is implemented as a cyclic 1-bit rotation to right. This rotation
operation imposes high amount of switching activity in the mem-
ory stages where the hypervectors for the letters are stored. Be-
cause the hypervectors have equal number of randomly placed 0s
and 1s, rotating them in the memory consumes a lot of energy. To
address this issue, we propose a new design for trigram encoding
that avoids such high switching activity in the memory.

Figure 3 illustrates the proposed encoding of trigrams. The letter
hypervectors, retrieved from the item memory, are stored in a sepa-
rate letter memory in their arrival order. The design uses three Bar-
rel shifters to rotate the letter hypervectors as desired, before send-
ing them into the multipliers as opposed to rotating them in each cy-
cle and storing the rotated hypervectors in the memory stages (see
Figure 1). The design includes a set of rotating pointers (P0, P1,
and P2) that rotate values of 0, 1, and 2 among themselves. These
pointer values for the Barrel shifters implement the no rotate, 1-bit
rotate (ρ), and 2-bit rotate (ρρ) operations. Every Barrel shifter
rotates the letter hypervector based on the assigned pointer value.

The rotated letter hypervectors are multiplied (i.e., XORed) and the
resulting hypervector is written to the trigram memory. This design
inhibits the undesirable switching activities due to the rotate oper-
ations in the memory while generating the trigrams as accurately
as the naive encoder, therefore it does not degrade the recognition
accuracy.

3.4.2 Binary Hypervector Generation
Here, we focus on resource optimizations for the second part of

the encoder that uses the trigrams. As described in Section 2.1, a
text hypervector is computed by adding all the trigrams over the
input text. To produce a binary hypervector, we implement such
pointwise addition through a set of D accumulators (ACC) and
threshold units (THR) as shown in Figure 1. Every accumulator is
assigned to a dimension of the hypervector, and counts the number
of 1s in that component location. Once a new trigram hypervector
is generated, i accumulators will be accordingly incremented where
i is the number of 1s in the generated trigram hypervector. An in-
put text with k letters generates k−2 trigram vectors. Finally, to
compute the corresponding binary text hypervector, the encoding
module applies a majority function of (k, k/2) to every accumula-
tor value. The accumulator values are compared to a threshold of
k/2 by the encoding module and passed on to the text hypervec-
tor as either 0 or 1. Left side of Figure 1 shows such a dedicated
accumulation and thresholding for every hypervector component.

3.4.3 Low-Cost Modular Similarity Search
The last optimization focuses on the similarity search module

that is composed of a set of similarity-measurement blocks. In
a similarity-measurement block, the broadcast query hypervector
(QV) is compared to a precomputed language hypervector, LVi.
Our optimization reduces the complexity of hardware resources
that are required to compare these two hypervectors while provid-
ing a reliable distance measurement. In Section 3.2, the cosine is
suggested as a measure of similarity between hypervectors [7, 9].
The cosine is a non-Euclidean distance that is based on angles be-
tween vectors and not their “locations” in space. We find that Ham-
ming distance measures the similarity of hypervectors as reliably as
the cosine without any degradation in the recognition accuracy.

Hamming distance counts the number of components at which
two binary hypervectors disagree. Hamming distance reduces the
energy consumption of similarity-measurement block since it does
not require any normalization calculation as opposed to the cosine.
We use a set of D XOR gates to identify mismatches between QV
and LVi. To ensure the scalability, the module compares only one
component each clock cycle. Hence, the similarity-measurement
block takes O(D) cycles to compute the Hamming distance be-
tween the two hypervectors. Thanks to its modularity, this block
is replicated L times in the search module as shown in Figure 1.
The search module selects a language that has the minimum Ham-
ming distance with QV.

4. EXPERIMENTAL RESULTS
In this section, we first present our application of language recog-

nition and its dataset. Next, we describe a conventional machine
learning method as a baseline to compare our HD classifier to.
We provide1 both Matlab and RTL implementations for these two
classifiers. We then compare their classification accuracy, memory
footprints, energy consumption and robustness. Finally, we discuss
our observations.

1Available for download at https://github.com/abbas-rahimi/
HDC-Language-Recognition

https://github.com/abbas-rahimi/HDC-Language-Recognition
https://github.com/abbas-rahimi/HDC-Language-Recognition

4.1 Language Recognition Dataset
We consider an application for recognition of 21 European lan-

guages. The sample texts are taken from the Wortschatz Cor-
pora [14] where large numbers of sentences in these languages are
available. We train each language hypervector based on about a
million bytes of text. To test the ability of identifying the language
of unseen text samples, we select test sentences from Europarl Par-
allel Corpus [15] as an independent text source. This corpus pro-
vides 1,000 samples of each language, and each sample is a single
sentence. The accuracy recognition metric used throughout this
paper is the percentage of these 21,000 test samples that are iden-
tified correctly. This accuracy is measured as the microaveraging
that gives equal weight to each per-sentence classification decision,
rather than per-class.

4.2 Baseline Machine Learning Method
As the baseline technique, we choose a nearest neighbor classi-

fier that uses histograms of N-grams. To compute distance between
histograms, the dot product is used. A histogram is generated for
each language to capture the frequency of N-grams that are ob-
served during the training text. Hence, the outcome of the training
phase is a set of 21 histograms that represent the language profiles.
In the same vein, a histogram is generated from a test sentence. To
find out the language of the test sentence, we compute the dot prod-
uct of its histogram with the 21 precomputed histograms. The high-
est dot product score identifies the language that the test sentence is
written in. Considering N-grams as the input features, a histogram
requires #elementsN integer components where #elements is 27 in
our application. To reduce this memory footprint, we convert the
integer components of histograms to binary using their mean value
as the threshold.

We choose such a nearest-neighbor classifier among histograms
as the baseline for two reasons. First, the histogram has full infor-
mation about the N-gram statistics, so it sets the highest standard of
comparison. Second, from a hardware point of view, this baseline
shares similarity with the HD classifier. Both use N-grams as input
for the encoding, and involve operations with the same complexity.
For instance, computing the frequency of an N-gram in the baseline
is a lookup action followed by addition. During search operations,
both use dot product to measure the distances; it is then simplified
to Hamming distance for the binary components. Essentially, this
baseline uses the same hardware components as the HD classifier
does, but excludes the item memory. In the following sections we
compare them in detail.

4.2.1 Classification Accuracy and Memory Usage
Table 1 compares the two classifiers when using binary compo-

nents with different N-grams. The first two columns summarize
the classification accuracy; the last two columns list the memory
footprint with the binary components. Using bigrams of letters, the
baseline has 2.3% lower recognition accuracy compared to the HD
classifier. However, using N-grams with N ≥ 3, the baseline dis-

Table 1: Classification accuracy and memory footprint of HD
and baseline classifiers.

Accuracy Memory (Kb)
HD Baseline HD Baseline

Bigrams (N=2) 93.2% 90.9% 670 39
Trigrams (N=3) 96.7% 97.9% 680 532
Tetragrams (N=4) 97.1% 99.2% 690 13837
Pentagrams (N=5) 95.0% 99.8% 700 373092

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

7.8E-09 3.1E-08 1.2E-07 5.0E-07 2.0E-06 8.0E-06 3.2E-05

R
e

co
gn

it
io

n
 a

cc
u

ra
cy

Probability of failure for each memory cell

HD

Baseline

Figure 4: Accuracy of classifiers with faulty memory cells.

plays slightly higher accuracies. For example, the baseline shows
97.9% recognition while the HD classifier shows 96.7% using tri-
grams. In this case, the HD classifier requires 1.2× as many mem-
ory cells as the baseline. On the upside, the HD classifier is able to
represent many more N-grams within the same hardware structure.
It scales very well: for instance, by moving from trigrams (N = 3)
to pentagrams (N = 5), the HD classifier must add memory cells
only for 2 extra hypervectors whereas the memory required by the
baseline grows exponentially with N. Using pentagrams of letters,
the baseline shows an accuracy of 99.8% (4.8% higher than the HD
classifier), at the expense of 500× larger memory size. Of course
the exact counts of all pentagrams that appear in a million bytes of
text can be captured in much less memory than that but the algo-
rithm is no longer as simple.

4.2.2 Energy Efficiency
We use a standard ASIC flow to design dedicated hardware for

these two classifiers. We describe the classifiers, in a fully parame-
terized manner, using RTL SystemVerilog. We apply the identical
constraints and flow to both designs. For the synthesis, we use Syn-
opsys Design Compiler with the TSMC 65-nm technology library,
the low-power process with high VT H cells. The designs are opti-
mized for a cycle time of 1 ns. We extract the switching activity of
these classifiers during postsynthesis simulations in ModelSim by
applying the test sentences. Finally, we measure their power con-
sumptions using Synopsys PrimeTime at (1.2V, 25◦C, TT) corner.

We compare the power consumption for trigrams only, since with
N-grams of N ≥ 4, the baseline classifier becomes increasingly less
efficient compared to the HD classifier due to exponential growth
in the amount of memory required. With 47% of the energy re-
quired by the baseline classifier, the HD classifier is only 1.2% less
accurate: 96.7% versus 97.9% for the baseline. Although both de-
signs use binary components and low-cost Hamming distance for
similarity measurements, the HD classifier achieves higher energy
efficiency thanks to its one-shot computation with highly scalable
and local operations, in addition to the optimizations presented in
Section 3.4.

4.2.3 Robustness Against Memory Errors
Here we assess the classifiers’ tolerance for memory errors. We

target RTL fault simulations where we inject memory bit flips dur-
ing every clock cycle of execution. We consider a wider range of
probability of failures for each memory cell; the fault simulations
cover all the memory elements in both designs.

Fig. 4 shows the recognition accuracy with the erroneous mem-
ory cells; the X-axis displays the probability of failure for each
memory cell in every clock cycle. The baseline is able to maintain

its high accuracy of 97% using faulty memory cells with the prob-
ability of failure at 3.16E-08, and lower values. At 3.17E-08 the
accuracy falls sharply to below 46%. However, the HD classifier
exhibits a very robust behavior: it maintains the recognition accu-
racy of 94% and higher for the probability of failure up to 2.78E-
07. At or near peek performance (94% for the HD classifier and
97% for the baseline), the HD classifier tolerates 8.8-fold proba-
bility of failure compared to the baseline. By further increasing
the probability of failure by 2.8× to 7.69E-07, the HD classifier is
still 80% accurate or better. Finally, the accuracy of the HD clas-
sifier drops to 43% when using memory cells with probability of
failure at 4.00E-06, i.e., ≈120× higher that the failure rate that the
baseline could tolerate for the same accuracy.

4.3 Discussion
Here, we further discuss energy efficiency and robustness ben-

efits of hyperdimensional computing. At its very core, hyperdi-
mensional computing is about manipulating and comparing large
patterns, stored in memory. The operations are either local or can
be performed in a distributed fashion leading to a substantial energy
reduction. These properties of hyperdimensional computing make
it an excellent match to emerging 3D nanoscale device platforms.
This presents a fundamental departure from traditional computa-
tional architectures, where data has to be transported to the pro-
cessing unit and back, creating the infamous memory wall.

Hyperdimensional computing also exhibits a robust behavior en-
abling further energy saving by operating in low signal-to-noise
ratio conditions, or by utilizing emerging imprecise nanoscale de-
vices. Such robustness to the low-precision and faulty components
is achieved thanks to the special brain-inspired properties of hyper-
dimensional computing: (pseudo)randomness with i.i.d. compo-
nents, high-dimensionality, and holographic representations. In the
following, we briefly discuss their contributions to such robustness.

The algorithm starts with seed letter vectors with i.i.d. com-
ponents and combines them with the MAP operations. Compo-
nentwise multiplication and addition are i.i.d.-preserving. When
the permutation is combined with the multiplications to encode N-
grams, we end up with vectors whose components are identically
distributed and nearly independent. This means that the compo-
nents of the language vectors are identically distributed and nearly
independent; hence, a failure in a component is not contagious. At
the same time, failures in a subset of components are compensated
by the holographic representation, i.e., the error-free components
can still provide a useful representation that is “good enough” for
distinction. This property inherently eliminates any needs for the
asymmetric error protection in the memory units.

Further, the algorithm for hyperdimensional computing is one-
shot and incremental. It involves componentwise and local opera-
tions to compute and compare the hypervectors without any control
flow conditions, which brings another degree of robustness for the
algorithm.

5. CONCLUSION
We propose a robust and energy-efficient hardware design for

hyperdimensional computing. The proposed HD classifier forms
a memory-centric architecture with modular and scalable compo-
nents. We compare it with the conventional nearest neighbor clas-
sifier that uses histograms of trigrams: the HD classifier uses half
the energy and tolerates 8.8-fold probability of failure for individ-
ual memory cells, while displaying a recognition accuracy of 94%
(at maximum, 3% lower than the conventional method). This ex-
cellent performance with low-precision and faulty components is
accomplished by appeal to the mathematical properties of high-

dimensional spaces, including the high-dimensional, holographic,
and (pseudo)random representation with i.i.d. components, in ad-
dition to the absence of control flow during execution. Our ongoing
work is focused on efficient encoding with hierarchical searches, as
well as their realization on 3D nanofabrics.

6. ACKNOWLEDGMENT
This work was supported by Systems on Nanoscale Information

fabriCs (SONIC), one of the six SRC STARnet Centers, sponsored
by MARCO and DARPA.

7. REFERENCES
[1] S. Borkar, et. al. Parameter variations and impact on circuits

and microarchitecture. In Proc. of the Design Automation
Conference, pages 338–342, June 2003.

[2] T.-T. Liu and J.M. Rabaey. A 0.25 V 460 nW asynchronous
neural signal processor with inherent leakage suppression.
Solid-State Circuits, IEEE Journal of, 48(4):897–906, 2013.

[3] D. Kuzum, et. al. Low-energy robust neuromorphic
computation using synaptic devices. Electron Devices, IEEE
Transactions on, 59(12):3489–3494, Dec 2012.

[4] Beinuo Zhang, Zhewei Jiang, Qi Wang, Jae sun Seo, and
Mingoo Seok. A neuromorphic neural spike clustering
processor for deep-brain sensing and stimulation systems. In
Proc. of the International Symposium on Low Power
Electronics and Design, 2015.

[5] Pentti Kanerva, Jan Kristoferson, and Anders Holst. Random
indexing of text samples for latent semantic analysis. In Proc.
of the Conference of the Cognitive Science Society, 2000.

[6] Magnus Sahlgren. An introduction to random indexing. In
Methods and Applications of Semantic Indexing Workshop at
the 7th International Conference on Terminology and
Knowledge Engineering, TKE 2005, 2005.

[7] Pentti Kanerva. Hyperdimensional computing: An
introduction to computing in distributed representation with
high-dimensional random vectors. Cognitive Computation,
1(2):139–159, 2009.

[8] Pentti Kanerva. Computing with 10,000-bitwords. In Proc.
52nd Annual Allerton Conference on Communication,
Control, and Computing, 2014.

[9] Aditya Joshi, Johan Halseth, and Pentti Kanerva. Language
geometry using random indexing. In Quantum Interaction
2016 Conference Proceedings, in press.

[10] Fateme Rasti Najafabadi, Abbas Rahimi, Pentti Kanerva, and
Jan M. Rabaey. Hyperdimensional computing for text
classification. Design, Automation Test in Europe Conference
Exhibition (DATE), University Booth, March 2016.

[11] T.K. Landauer and S.T. Dumais. A solution to Plato’s
problem: The latent semantic analysis theory of acquisition,
induction, and representation of knowledge. Psychological
Review, 104(2):211–240, 1997.

[12] Pentti Kanerva. Sparse Distributed Memory. MIT Press,
Cambridge, MA, USA, 1988.

[13] Ross W. Gayler. Multiplicative binding, representation
operators & analogy. Advances in analogy research, 1998.

[14] Uwe Quasthoff, Matthias Richter, and Christian Biemann.
Corpus portal for search in monolingual corpora. In Proc. of
the International Conference on Language Resources and
Evaluation, 2006.

[15] Philipp Koehn. Europarl: A parallel corpus for statistical
machine translation. http://www.statmt.org/europarl/, 2005.

http://www.statmt.org/europarl/

	Introduction
	Hyperdimensional Computing
	Random Indexing

	Memory-Centric Architecture for HD Classifier
	Encoding Module
	Similarity Search Module
	Robustness in the Presence of Low-Precision Components
	Optimizations for Energy Efficiency
	Encoding Trigrams with Minimal Switching
	Binary Hypervector Generation
	Low-Cost Modular Similarity Search

	Experimental Results
	Language Recognition Dataset
	Baseline Machine Learning Method
	Classification Accuracy and Memory Usage
	Energy Efficiency
	Robustness Against Memory Errors

	Discussion

	Conclusion
	Acknowledgment
	References

