
A High Throughput Low Power FIFO used for GALS
NoC Buffers

Mohammad Fattah, Abdurrahman Manian, Abbas Rahimi and Siamak Mohammadi
School of Electrical and Computer Engineering

University of Tehran
Tehran, Iran

(m.fattah, abd.manian, ab.rahimi and smohammadi)@ece.ut.ac.ir

Abstract— In Networks-on-chip, increasing the depth of routers’
buffers even by a few stages can have a significant effect on
average latency and saturation threshold of the network.
However, the price to pay could be high in terms of power and
silicon area. In this paper, we propose a low power, high
throughput asynchronous FIFO suitable for buffers of GALS
NoC routers. We consistently compare the performance with
regards to power, area and throughput of our FIFO with some
different FIFO structures, by exploring their design trade-offs
with various number of stages and for different data lengths.
These structures are simulated in 90nm CMOS technology with
accurate spice simulations, where results show a low power
consumption and latency, with a higher throughput. Finally, a
back-annotated HDL model of a 4x4 mesh network, wherein a
fully asynchronous router is implemented, shows better average
latency, saturation threshold and power tradeoffs, using the
proposed FIFO.

Keywords-FIFO; buffer; networ-on-chip; NoC; Asynchronous;
GALS

I. INTRODUCTION
Networks-on-Chip (NoCs) [1-4] are new approaches for

high throughput, and scalable design of Multi-Processor
Systems-on-Chip. This method is to divide an overall system
into multiple independent processors that are connected
through a network infrastructure; i.e. NoC paradigm is to route
packets instead of interconnects [4]. An asynchronous design is
a good candidate for NoC paradigm. It enables the GALS
systems to operate in multi clock frequencies [5], and moves
the synchronization issue only in the point of interfacing the
synchronous IP with the NoC infrastructure [6].

In a NoC infrastructure, each router employs buffers in its
input/output ports to overcome interconnects bottleneck of the
network. The depth of these buffers has significant effect on
average packet latency and network saturation threshold
[6],[7]; however they take a large portion of silicon area of the
NoC [8],[9]. This motivates us to design buffers that have
acceptable area and power characteristics while they provide
higher throughput and performance with smaller latencies.

In this paper we propose a new asynchronous self-timed
FIFO which can be suitably used as NoC I/O buffers. The
proposed FIFO has better metrics in comparison to FIFOs
introduced so far in literature. Rest of the paper is organized as
follows: First, different types of FIFOs which have been
proposed will be presented in Section II. Their benefits and
drawbacks will be also discussed in this section. Then the new

proposed FIFO will be explored in Section III. In addition to
accurate spice simulation, this structure is applied to a 4x4
mesh network to be examined as NoC buffers. Spice simulation
results, besides saturation threshold and average packet latency
of the mesh network are extracted and compared in Section IV.
Finally, Section V concludes the paper.

II. RELATED WORKS
A variety of 4-phase bundled-data asynchronous FIFOs

have been proposed so far in literature. Muller pipeline, as a
fundamental structure, is a particularly simple one. Its pipeline
controller consists of a simple C element and an inverter gate.
But its main drawbacks [10] are that only every other stage
stores data when the pipeline is full; and each stage
handshaking should tightly interact with both neighboring
stages. In [10],[11] a fully-decoupled latch controller is
introduced where all stages store data when the pipeline is full
and each stage handshaking on the input channel completes
without any interaction with the output channel. However, the
throughput decreases as the controller is more complicated and
therefore, slows down the handshaking.

The pipelines introduced above are designed for
computational asynchronous circuits, and working with
combinational logics inserted between their stages, where data
move through all stages. But in a buffering FIFO data is stored
with no processing, and the input data can be stored in only one
stage and be read from the same stage for the output
handshake. This makes the FIFO consume less dynamic power
in comparison to a ripple through pipeline. Ono and
Greenstreet [12] have proposed a modular FIFO which follows
the asP* handshaking protocol, and is synthesizable by
standard cell logics without any particular asynchronous cell.
However, this FIFO does not follow the conventional 4-phase
handshake protocol and requires some timing considerations:
the input request must go low strictly within a time range after
the acknowledge signal. And the range may vary versus
different depths and word lengths. Sheibanyrad et al. [13]
proposed a FIFO based on the fully-decoupled pipeline. The
input data is demultiplexed on the corresponding fully-
decoupled stage and the corresponding stage is multiplexed on
the output channel using a proposed domino controller. Their
FIFO exhibits the throughput of a fully-decoupled FIFO in
addition to some multiplexing and demultiplexing penalties.

Note that all the introduced FIFOs are self-timed because of
their bundled data natures which require some timing
engineering.

2010 IEEE Annual Symposium on VLSI

978-0-7695-4076-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ISVLSI.2010.44

333

W
rite

Pointer

R
ead

Pointer

Figure 1. General architecture of the proposed FIFO

III. FIFO ARCHITECTURE
Our proposed FIFO architecture for an n deep configuration

FIFO is shown in Figure 1. It consists of a one-hot addressed
memory (RAM), read and write pointers, full and empty
detectors, and input and output handshake controllers. This
FIFO produces “extended-early” outputs where data is valid
while request is high, and latches are normally open (latches
are open while acknowledge is low), like simple four phase
bundled data latch controller [10]. This FIFO completely
follows the 4-phase bundled data handshake protocol, and thus
it can be easily inserted in the design as a 4-phase bundled-data
pipeline stage. In the following subsections, first the general
functionality of the FIFO is introduced, and then different parts
of the FIFO will be explored in details.

A. General Archittecture
The input data is written into the RAM row selected by the

write pointer whenever the request has not yet been
acknowledged and the FIFO has at least one free space to store
it. When the input request goes high and the FIFO has free
space, the handshake controller asserts the acknowledge signal
and removes wrload. Subsequently the write address increases,
and both full and empty detectors update their output.

Once the write phase has finished and the write address was
increased, the arrival of a new data is indicated to output port,
which raises the request as soon as the empty detector has
indicated the existence of data and the previous handshaking
has finished. After asserting the req_out signal, the read
address is increased and causes the write and empty detectors
to update their output.

B. Detailed Architecture
As mentioned, the FIFO architecture is composed of four

main sections: a one-hot addressed memory, read and write
pointers, full and empty detectors, and input and output
handshake controllers.

1) Memory
The memory module has been implemented using latches

and pass-transistors, see Figure 2, which could be replaced by a
memory plane for better performance. Since addresses are one-
hot, no address decoder for the memory module is needed. The
increment and decrement modules will also be degraded to
simple shift registers, although it implies more storage in
comparison to binary address.

Figure 2. One-hot addressed memory structure

334

Figure 3. Address pointers and their half-period shifted signals, obtained from master latches with a circular wire shifting.

2) Handshake Controllers
The handshake controllers consist of an asymmetric C-

element, as shown in Figure 1, and n AND gates for input
channel. When the environment requests to enqueue a new
word into the FIFO, the handshake controller blocks the
request till the FIFO has a free space to store it. And when the
FIFO has a free space and ack_in line is zero, it enables Ld
signal regardless of a write request, which makes latches
normally open like Muller pipeline. The delay element on
ack_in line is to guarantee that not-full flag is valid before
wrload signal rises.

FIFO requests to send out its data when it is not empty
upon lowering of ack_out signal. Similarly the delay element
on ack_out signal is to ensure validation of not-empty flag
before lowering of ack_out.

3) Address Pointers
The write and read pointers will be zero (00…01)one-hot to

point to the first row of the memory, after resetting the FIFO.
This equality of pointers shows the empty state of the FIFO.
Assume a condition where the sender writes words into the
FIFO, while the output port is stalled and does not respond to
the req_out signal. The FIFO will be full exactly after n writes,
and the write pointer is zero again, equal to read pointer. It
shows the read and write pointers are equal, when the FIFO is
either full or empty [14]. There are several techniques to
distinguish the full and empty states, when the read and write
pointers are equal. One is to consider a flag for each row of the
FIFO to store its full or empty state. This is done in [12] by
inserting an SR-Latch for each place. Another way to indicate
the FIFO state, as used in this work, is to add one extra bit to
both write and read pointers [14]. These extra bits are noted as
radrflag and wadrflag, and toggle whenever their pointers
circulate and become zero again, see Figure 3.

Since the write pointer is trigged on ack_in rising edge, the
not-full flag could be evaluated before lowering of ack_in
signal, which enables us to have normally open latches. To
have an “extended-early” output, where data is stable while
req_out is high, a half-period shifted value of read pointer
(noted as radr∆) is obtained from the master latches of DFFs,
see Figure 3. Thus the read pointer which is injected to
memory would change its value on falling edge of the req_out
clock. Although it stores the next address (radr∆+1), thanks to
one-hot address coding the correct value can be easily
recovered by a circular wire shifting. The half-period shifted

value of pointer’s flag (radr∆flag) is driven by an extra latch
which is fed by the actual value of the flag.

4) Full/Empty Detectors
In the case the FIFO is full and a read operation occurs, the

full detector should not announce a not-full state before the
read operation is finalized to avoid a write to take place on the
same location at the same time. To avoid explained read/write
race, as shown in Figure 4, full detector is fed by a half-period
shifted value of read pointer that changes its value after having
finished the current output handshake, i.e. after falling edge of
req_out.

IV. RESULTS AND COMPARISON
To evaluate this work, the proposed FIFO and some other

introduced ones (Muller, Fully-Decoupled, asP*-based [12],
Domino-Controlled [13]) were simulated using accurate Spice
simulation. We have described some available FIFOs at the
gate level in Verilog and used them as buffers in routers of a
4x4 mesh network. Spice simulation results for throughput,
energy, latency and area of different FIFO models will be
shown and discussed. Subsequently the simulated network,
saturation threshold and average packet latency for different
FIFOs will be explained.

Figure 4. Full (a) and empty (b) detectors: A half-period shifted value of read

pointer is injected to full detector, preventing read/write race.

335

A. Spice Simulation
The proposed design, as well as all other FIFO designs, is

modeled using accurate Spice simulations in 90nm CMOS
PTM. A Spice library of basic logics and different C-element
types are modeled and used to construct all FIFOs. As
mentioned before, the designed FIFO, as all the other ones,
belongs to the class of self-timed circuits and needs elaborate
and engineering timing assumptions for reliable correct
operation [10]. Timing engineering and evaluation of results
were done without consideration of wire delays for all
considered FIFOs.

To extract proper results a random Galois LFSR sequence
of data words is injected to the FIFOs. Note that timing
engineering of the asP*-based FIFO [12] turned out to be very
difficult for large data width; thus results of this design are only
discussed in 8-bit data versus different depths (3, 4, 5).
Furthermore for an n depth Muller pipeline, twice stages are
needed. In view of the fact that all FIFOs are made by the same
common basic library, and the reported results do not include
wiring cost for all of results; a comparison between attained
results would be reasonable.

Figure 5 shows Spice simulation waveform of a 3-stage 8-
bit data word FIFO, in which the handshaking is done with
1GW/S speed at both sides. As could be seen, the “extended-
early” output is satisfied and the new output data changes
before asserting req_out and is valid while it is high.

The maximum handshaking speed that could be achieved
simultaneously at both sides is called throughput and is shown
for 8-bit data words in Figure 6 for different FIFO depths. The
maximum achieved throughput for 32-bit data word FIFOs is
also reported in Table I. It could be seen that the FIFOs’
throughputs are sorted according to their controllers’
complexity. Since the handshake controllers of our proposed
FIFO are made of simple asymmetric C-elements, it exhibits
the highest throughput, as it could be expected. The Muller and
fully-decoupled pipelines’ throughputs are constant versus
different depths because their respective controllers do not
change when the FIFO depth increases. And due to serious
timing engineering of the asP*-based FIFO its throughput falls
down considerably for a 5-stage design. As predicted,
throughput of the FIFO proposed in [13] is less than fully-
decoupled one, due to additional overheads.

To have a comparison between power consumption of
different FIFO types, the amount of the energy which would be
dissipated to enqueue and send a data word is reported in Table
I. It could be seen that as said because of ripple through nature
of Muller and fully-decouple pipelines the dissipated energy
for a single data word increases sharply as a function of FIFO
depth. Energy consumptions in this work and asP*-based are
considerably higher than in domino, due to usage of Flip-Flops
for each stage; as nearly 45% of energy is used by address
pointers of this work in an 8-bit 5-stage FIFO.

As latency of FIFOs, delta times between req_in and
req_out for a data word is measured in two situations: injecting
data to an empty FIFO and to a FIFO in a stable condition
where data words traverse at the highest possible throughput.
These two latency numbers are reported in Table I respectively,
separated with a comma. It could be seen that the proposed
FIFO’s latency is less than others in a stable state, and is near
to domino’s and less than that of the others in an empty
situation.

As mentioned, all FIFOs have been modeled using a library
of basic elements. As a consequence, number of transistors
used in each FIFO would be a fair metric to express silicon
area which will be occupied by each FIFO, as listed in Table I.

req_in

ack_in

data_in[0]

data_in[1]

req_out

ack_out

data_out[0]

data_out[1]

Figure 5. Waveform of the proposed FIFO in 1GW/S data transfer.

Table I. Spice simulation results for different configurations of the modeled asynchronous FIFOs.

Metric

D
epth:

8-bit data word 32-bit data word

This work Muller asP*-based Fully-decoupled Domino This work Muller Fully-decoupled Domino

Throughput
(GW/S)

3 2.8 2.4 2.4 1.55 1.32 2.8 2.6 1.65 1
4 2.6 2.4 2.28 1.55 1.27 2.6 2.6 1.65 1
5 2.5 2.4 1.9 1.55 1.27 2.4 2.6 1.65 1

Energy(pJ)
3 0.208 0.438 0.217 0.217 0.173 0.427 1.481 0.768 0.379
4 0.211 0.585 0.238 0.366 0.173 0.438 1.940 1.031 0.375
5 0.214 0.732 0.280 0.456 0.177 0.447 2.425 1.282 0.385

Latency(pS)
3 386, 556 520, 596 228, 1180 638, 824 392, 1870 386, 390 505, 550 598, 770 380, 2600
4 426, 637 704, 785 238, 1240 855, 1050 392, 2770 435, 440 679, 728 798, 982 380, 3730
5 482, 691 886, 974 317, 2060 1069, 1270 390, 3590 491, 475 852, 903 1000, 1190 378, 4750

#Transistors
3 980 840 832 561 940 2324 3192 1737 2260
4 1236 1120 1108 748 1252 3015 4256 2316 3019
5 1504 1400 1452 935 1568 3740 5320 2895 3778

336

Figure 6. Maximum achievable throughput for different FIFO structures.

Figure 7.EDP for different FIFOs with 32-bit data word.

Neither the throughput nor energy dissipation is a good
candidate to express benefits and costs of a design. Thus we
rather use EDP which is obtained by dividing energy by
throughput of a FIFO. This is shown in Figure 7Figure 7.EDP
for different FIFOs with 32-bit data word. for different 32-bit
length designs.

As shown, domino FIFO dissipates the least energy
compared to all simulated FIFOs. Compared to domino, the
proposed FIFO in its worst case has about 100% gain in
throughput and latency with only 20% penalty in consumed
energy with a nearly equal but better area in its 8-bit 5stage
configuration. However Muller pipeline exhibits 4% higher
throughput in 32-bit 5stage state, at the expense of 4 times
more energy dissipation and 1.5 times larger transistor count.
Accordingly, the comparing results would be better for other
FIFOs configurations.

Figure 8. Overall router architecture of the simulated network.

B. Network Simulation
In the previous subsection, we explored transistor-level

simulation results of our FIFO compared with some other ones.
To evaluate the performance of the proposed FIFO, we have
employed it as buffers in routers of a 4x4 mesh network.
Hereunder we explain routers’ structure and network
architecture. After that, extracted saturation threshold and
average packet latency of the network over different network
loads will be shown and compared.

1) Router Architecture
The NoC used in this paper is a fully asynchronous NoC,

based on QNoC [5] and ASPIN [6], using two cascaded Flip-
Flops to connect synchronous IP cores to the asynchronous
network. The four-phase bundled data handshake protocol is
employed for implementing the routers.

As shown in Figure 8, each router addressable with a two
dimensional number (X, Y) contains five (input/output) ports
that connect it to its neighbors and to the local IP core. To route
packets between these five different sides, from input ports to
output ports, asynchronous NoC uses the distributed X-First
algorithm guaranteeing the in-order-delivery property for the
network [6], which has been implemented in the input ports of
the router.

Wormhole data flow control is used where each packet is
divided into some flits. Input ports of each router buffers
incoming flit and when a header flit of a packet is received, the
destination address field is analyzed and the flit as well as its
following ones is forwarded to the corresponding output port.
The output port arbitrates between simultaneous packets and
sends out packets to the neighbor’s input port without any
precedence. The Round-Robin scheduler [15] which
implements the Token-Ring arbiter [16] is used in output ports
for arbitrating different incoming packets.

2) Simulation Environment and Results
Delay and energy parameters from the Spice library are

extracted as a function of gates’ fanout, and are back-annotated
in a Verilog HDL library. The described router is modeled in
gate level, using back-annotated library, and a 4x4 mesh
network is constructed by behavioral model local IP cores as
network traffic generators and analyzers. As interconnect links
between two neighboring nodes, delay parameters of our delay-
insensitive current-mode link proposed in [17] are used.

The proposed FIFO as well as domino is modeled using
back-annotated library and used as buffers of routers’ input
ports. FIFOs are selected to be 5-stages deep with 34bit data
word length, since each flit is 32 bits of data next to 2 control
bits.

A uniform [18] type of traffic is generated by local IPs,
where each node generates a constant rate of traffic and sends it
to all other nodes with a constant probability. Packets are 8flit
length in the injected traffic. And the network load varies from
1M packets per second for each router till network saturates.
As shown in Figure 9 the proposed FIFO results in less packet
latency and more network saturation threshold compared to
domino FIFO. The power consumption of the routers
(excluding links and synchronizing Flip-Flops) for different
network loads is shown in Figure 10 for both employed FIFOs.

0

0.5

1

1.5

2

2.5

3

3.5

2 3 4 5 Depth

Troughput (GW/S)

this work

Muller

asP*-based

Fully

Domino

0
1
2
3
4
5
6
7
8
9

10

2 3 4 5

×10-10

Depth

EDP(pJ.Sec.)

Muller

Fully

Domino

This work

337

Figure 9. Average packet latency of the network over different loads.

Figure 10. Routers power consumtion versus different loads.

Table II shows more details of results of the simulated
networks for two employed buffers. It could be seen that nearly
half of the consumed power is dissipated and 65% of the area is
occupied by input buffers.

Thanks to one-hot address coding, it is easy to find out
portion of the FIFO which is occupied, and thus power
consumption of the network could be reduced by applying our
history based DVS policies [19] as future work.

V. CONCLUSION
In this paper, we proposed an asynchronous one-hot

memory addressed FIFO for NoC buffers. The Spice
simulation results exhibit better energy, throughput and area
tradeoffs compared to some previous works. The proposed
architecture is also suitable for being used in different
asynchronous designs, as well as in NoCs for interfacing IP
cores to the network which can be done by any type of
synchronizer. The proposed FIFO structure was examined in a
4x4 mesh network and a 12% gain in network saturation
threshold reached. With the proposed buffer we have found a
trade-off between throughput and power metrics, where DVS
can be applied for better power results as a future work. Double
cascaded Flip-Flops, used as a synchronizer, decrease the
throughput and therefore as a future work, the design of the
FIFO should be modified to make it more suitable for GALS
interface and reach higher throughput.

Table II. Detailed results of network simulation
Buffer Sat. threshold Power ratio Area ratio

This work 28.8 MP/S 48% 65%
Domino 25.7 MP/S 45% 67%

REFERENCES
[1] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-

switched interconnections,” 2000, pp. 250-256.
[2] A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, D. Lindqvist, and

A. Hemani, “Network on chip: An architecture for billion transistor era,”
Proceeding of the IEEE NorChip Conference, 2000, pp. 166–173.

[3] G. De Micheli and Benini, “Networks on chips: a new SoC paradigm,”
Computer, vol. 35, pp. 70-78.

[4] W. Dally and B. Towles, “Route packets, not wires: on-chip
interconnection networks,” 2001, pp. 684-689.

[5] D. Rostislav, V. Vishnyakov, E. Friedman, and R. Ginosar, “An
asynchronous router for multiple service levels networks on chip,” 2005,
pp. 44-53.

[6] A. Sheibanyrad, A. Greiner, and I. Miro-Panades, “Multisynchronous and
Fully Asynchronous NoCs for GALS Architectures,” Design & Test of
Computers, IEEE, vol. 25, 2008, pp. 572-580.

[7] Jingcao Hu, Umit Y. Ogras, and Radu Marculescu, “System-Level Buffer
Allocation for Application-Specific Networks-on-Chip Router Design,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 25, 2006, pp. 2919-2933.

[8] Jingcao Hu and R. Marculescu, “DyAD - smart routing for networks-on-
chip,” Design Automation Conference, 2004. Proceedings. 41st, 2004, pp.
260-263.

[9] I. Saastamoinen, M. Alho, and J. Nurmi, “Buffer implementation for
Proteo network-on-chip,” Circuits and Systems, 2003. ISCAS '03.
Proceedings of the 2003 International Symposium on, 2003, pp. II-113-II-
116 vol.2.

[10] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design: A
Systems Perspective, Springer, 2001.

[11] S. Furber and P. Day, “Four-phase micropipeline latch control circuits,”
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol.
4, 1996, pp. 247-253.

[12] T. Ono and M. Greenstreet, “A modular synchronizing FIFO for NoCs,”
Proceedings of the 2009 3rd ACM/IEEE International Symposium on
Networks-on-Chip, IEEE Computer Society, 2009, pp. 224-233.

[13] A. Sheibanyrad and A. Greiner, “Hybrid-Timing FIFOs to use on
Networks-on-Chip in GALS Architectures,” International Conference on
Embedded Systems and Applications (ESA'2007), Las Vegas, Nevada,
USA: 2007.

[14] E.C. Clifford, “Simulation and Synthesis Techniques for
Asynchronous FIFO Design,” Synopsys Users Group Conference, SNUG
2002, also available at. www.sunburst-design.com/papers.

[15] A. Sheibanyrad, “Asynchronous Implementation of a Distributed
Network-on-Chip,” Pierre et Marie Curie (UPMC), 2008.

[16] A.J. Martin, “The Design of a Self-timed Circuit for Distributed Mutual
Exclusion,” Jan. 1983.

[17] M. Fattah, S.A. Moghaddam, and S. Mohammadi, “A Hazard-Free Delay-
Insensitive 4-phase On-Chip Link Using MVCM Signaling,” Proceedings
of the 2009 12th Euromicro Conference on Digital System Design,
Architectures, Methods and Tools, IEEE Computer Society, 2009, pp. 61-
66.

[18] S. Koohi, M. Mirza-Aghatabar, S. Hessabi, and M. Pedram, “High-Level
Modeling Approach for Analyzing the Effects of Traffic Models on Power
and Throughput in Mesh-Based NoCs,” Proceedings of the 21st
International Conference on VLSI Design, IEEE Computer Society, 2008,
pp. 415-420.

[19] A. Rahimi, M. E. Salehi, M. Fattah, and S. Mohammadi, “History-Based
Dynamic Voltage Scaling with Few Number of Voltage Modes for GALS
NoC,” 5th IEEE International Conference on Future Information
Technology (DATICS-FutureTech'10), Busan, Korea: .

0

20

40

60

80

100

120

0 5 10 15 20 25 30
Load(MP/S)

Average Latency(nS)

Domino

This work

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30
Load(MP/S)

Power(mW)

This work

Domino

338

