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Abstract— In Networks-on-chip, increasing the depth of routers’ 
buffers even by a few stages can have a significant effect on 
average latency and saturation threshold of the network. 
However, the price to pay could be high in terms of power and 
silicon area. In this paper, we propose a low power, high 
throughput asynchronous FIFO suitable for buffers of GALS 
NoC routers. We consistently compare the performance with 
regards to power, area and throughput of our FIFO with some 
different FIFO structures, by exploring their design trade-offs 
with various number of stages and for different data lengths. 
These structures are simulated in 90nm CMOS technology with 
accurate spice simulations, where results show a low power 
consumption and latency, with a higher throughput. Finally, a 
back-annotated HDL model of a 4x4 mesh network, wherein a 
fully asynchronous router is implemented, shows better average 
latency, saturation threshold and power tradeoffs, using the 
proposed FIFO. 

Keywords-FIFO; buffer; networ-on-chip; NoC; Asynchronous; 
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I.  INTRODUCTION 
Networks-on-Chip (NoCs) [1-4] are new approaches for 

high throughput, and scalable design of Multi-Processor 
Systems-on-Chip. This method is to divide an overall system 
into multiple independent processors that are connected 
through a network infrastructure; i.e. NoC paradigm is to route 
packets instead of interconnects [4]. An asynchronous design is 
a good candidate for NoC paradigm. It enables the GALS 
systems to operate in multi clock frequencies [5], and moves 
the synchronization issue only in the point of interfacing the 
synchronous IP with the NoC infrastructure [6]. 

In a NoC infrastructure, each router employs buffers in its 
input/output ports to overcome interconnects bottleneck of the 
network. The depth of these buffers has significant effect on 
average packet latency and network saturation threshold 
[6],[7]; however they take a large portion of silicon area of the 
NoC [8],[9]. This motivates us to design buffers that have 
acceptable area and power characteristics while they provide 
higher throughput and performance with smaller latencies. 

In this paper we propose a new asynchronous self-timed 
FIFO which can be suitably used as NoC I/O buffers. The 
proposed FIFO has better metrics in comparison to FIFOs 
introduced so far in literature. Rest of the paper is organized as 
follows: First, different types of FIFOs which have been 
proposed will be presented in Section II. Their benefits and 
drawbacks will be also discussed in this section. Then the new 

proposed FIFO will be explored in Section III. In addition to 
accurate spice simulation, this structure is applied to a 4x4 
mesh network to be examined as NoC buffers. Spice simulation 
results, besides saturation threshold and average packet latency 
of the mesh network are extracted and compared in Section IV. 
Finally, Section V concludes the paper. 

II. RELATED WORKS 
A variety of 4-phase bundled-data asynchronous FIFOs 

have been proposed so far in literature. Muller pipeline, as a 
fundamental structure, is a particularly simple one. Its pipeline 
controller consists of a simple C element and an inverter gate. 
But its main drawbacks [10] are that only every other stage 
stores data when the pipeline is full; and each stage 
handshaking should tightly interact with both neighboring 
stages. In [10],[11] a fully-decoupled latch controller is 
introduced where all stages store data when the pipeline is full 
and each stage handshaking on the input channel completes 
without any interaction with the output channel. However, the 
throughput decreases as the controller is more complicated and 
therefore, slows down the handshaking. 

The pipelines introduced above are designed for 
computational asynchronous circuits, and working with 
combinational logics inserted between their stages, where data 
move through all stages. But in a buffering FIFO data is stored 
with no processing, and the input data can be stored in only one 
stage and be read from the same stage for the output 
handshake. This makes the FIFO consume less dynamic power 
in comparison to a ripple through pipeline. Ono and 
Greenstreet [12] have proposed a modular FIFO which follows 
the asP* handshaking protocol, and is synthesizable by 
standard cell logics without any particular asynchronous cell. 
However, this FIFO does not follow the conventional 4-phase 
handshake protocol and requires some timing considerations: 
the input request must go low strictly within a time range after 
the acknowledge signal. And the range may vary versus 
different depths and word lengths. Sheibanyrad et al. [13] 
proposed a FIFO based on the fully-decoupled pipeline. The 
input data is demultiplexed on the corresponding fully-
decoupled stage and the corresponding stage is multiplexed on 
the output channel using a proposed domino controller. Their 
FIFO exhibits the throughput of a fully-decoupled FIFO in 
addition to some multiplexing and demultiplexing penalties. 

Note that all the introduced FIFOs are self-timed because of 
their bundled data natures which require some timing 
engineering. 

2010 IEEE Annual Symposium on VLSI

978-0-7695-4076-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ISVLSI.2010.44

333



W
rite 

Pointer

R
ead 

Pointer

 
Figure 1. General architecture of the proposed FIFO 

III. FIFO ARCHITECTURE 
Our proposed FIFO architecture for an n deep configuration 

FIFO is shown in Figure 1. It consists of a one-hot addressed 
memory (RAM), read and write pointers, full and empty 
detectors, and input and output handshake controllers. This 
FIFO produces “extended-early” outputs where data is valid 
while request is high, and latches are normally open (latches 
are open while acknowledge is low), like simple four phase 
bundled data latch controller [10]. This FIFO completely 
follows the 4-phase bundled data handshake protocol, and thus 
it can be easily inserted in the design as a 4-phase bundled-data 
pipeline stage. In the following subsections, first the general 
functionality of the FIFO is introduced, and then different parts 
of the FIFO will be explored in details. 

A. General Archittecture 
The input data is written into the RAM row selected by the 

write pointer whenever the request has not yet been 
acknowledged and the FIFO has at least one free space to store 
it. When the input request goes high and the FIFO has free 
space, the handshake controller asserts the acknowledge signal 
and removes wrload. Subsequently the write address increases, 
and both full and empty detectors update their output. 

Once the write phase has finished and the write address was 
increased, the arrival of a new data is indicated to output port, 
which raises the request as soon as the empty detector has 
indicated the existence of data and the previous handshaking 
has finished. After asserting the req_out signal, the read 
address is increased and causes the write and empty detectors 
to update their output. 

B. Detailed Architecture 
As mentioned, the FIFO architecture is composed of four 

main sections: a one-hot addressed memory, read and write 
pointers, full and empty detectors, and input and output 
handshake controllers. 

1) Memory 
The memory module has been implemented using latches 

and pass-transistors, see Figure 2, which could be replaced by a 
memory plane for better performance. Since addresses are one-
hot, no address decoder for the memory module is needed. The 
increment and decrement modules will also be degraded to 
simple shift registers, although it implies more storage in 
comparison to binary address. 

 
Figure 2. One-hot addressed memory structure 
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Figure 3. Address pointers and their half-period shifted signals, obtained from master latches with a circular wire shifting. 

2) Handshake Controllers 
The handshake controllers consist of an asymmetric C-

element, as shown in Figure 1, and n AND gates for input 
channel. When the environment requests to enqueue a new 
word into the FIFO, the handshake controller blocks the 
request till the FIFO has a free space to store it. And when the 
FIFO has a free space and ack_in line is zero, it enables Ld 
signal regardless of a write request, which makes latches 
normally open like Muller pipeline. The delay element on 
ack_in line is to guarantee that not-full flag is valid before 
wrload signal rises. 

FIFO requests to send out its data when it is not empty 
upon lowering of ack_out signal. Similarly the delay element 
on ack_out signal is to ensure validation of not-empty flag 
before lowering of ack_out.  

3) Address Pointers 
The write and read pointers will be zero (00…01)one-hot to 

point to the first row of the memory, after resetting the FIFO. 
This equality of pointers shows the empty state of the FIFO. 
Assume a condition where the sender writes words into the 
FIFO, while the output port is stalled and does not respond to 
the req_out signal. The FIFO will be full exactly after n writes, 
and the write pointer is zero again, equal to read pointer. It 
shows the read and write pointers are equal, when the FIFO is 
either full or empty [14]. There are several techniques to 
distinguish the full and empty states, when the read and write 
pointers are equal. One is to consider a flag for each row of the 
FIFO to store its full or empty state. This is done in [12] by 
inserting an SR-Latch for each place. Another way to indicate 
the FIFO state, as used in this work, is to add one extra bit to 
both write and read pointers [14]. These extra bits are noted as 
radrflag and wadrflag, and toggle whenever their pointers 
circulate and become zero again, see Figure 3. 

Since the write pointer is trigged on ack_in rising edge, the 
not-full flag could be evaluated before lowering of ack_in 
signal, which enables us to have normally open latches. To 
have an “extended-early” output, where data is stable while 
req_out is high, a half-period shifted value of read pointer 
(noted as radr∆) is obtained from the master latches of DFFs, 
see Figure 3. Thus the read pointer which is injected to 
memory would change its value on falling edge of the req_out 
clock. Although it stores the next address (radr∆+1), thanks to 
one-hot address coding the correct value can be easily 
recovered by a circular wire shifting. The half-period shifted 

value of pointer’s flag (radr∆flag) is driven by an extra latch 
which is fed by the actual value of the flag. 

4) Full/Empty Detectors 
In the case the FIFO is full and a read operation occurs, the 

full detector should not announce a not-full state before the 
read operation is finalized to avoid a write to take place on the 
same location at the same time. To avoid explained read/write 
race, as shown in Figure 4, full detector is fed by a half-period 
shifted value of read pointer that changes its value after having 
finished the current output handshake, i.e. after falling edge of 
req_out. 

IV. RESULTS AND COMPARISON 
To evaluate this work, the proposed FIFO and some other 

introduced ones (Muller, Fully-Decoupled, asP*-based [12], 
Domino-Controlled [13]) were simulated using accurate Spice 
simulation. We have described some available FIFOs at the 
gate level in Verilog and used them as buffers in routers of a 
4x4 mesh network. Spice simulation results for throughput, 
energy, latency and area of different FIFO models will be 
shown and discussed. Subsequently the simulated network, 
saturation threshold and average packet latency for different 
FIFOs will be explained. 

  
Figure 4. Full (a) and empty (b) detectors: A half-period shifted value of read 

pointer is injected to full detector, preventing read/write race.  
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A. Spice Simulation 
The proposed design, as well as all other FIFO designs, is 

modeled using accurate Spice simulations in 90nm CMOS 
PTM. A Spice library of basic logics and different C-element 
types are modeled and used to construct all FIFOs. As 
mentioned before, the designed FIFO, as all the other ones, 
belongs to the class of self-timed circuits and needs elaborate 
and engineering timing assumptions for reliable correct 
operation [10]. Timing engineering and evaluation of results 
were done without consideration of wire delays for all 
considered FIFOs. 

To extract proper results a random Galois LFSR sequence 
of data words is injected to the FIFOs. Note that timing 
engineering of the asP*-based FIFO [12] turned out to be very 
difficult for large data width; thus results of this design are only 
discussed in 8-bit data versus different depths (3, 4, 5). 
Furthermore for an n depth Muller pipeline, twice stages are 
needed. In view of the fact that all FIFOs are made by the same 
common basic library, and the reported results do not include 
wiring cost for all of results; a comparison between attained 
results would be reasonable. 

Figure 5 shows Spice simulation waveform of a 3-stage 8-
bit data word FIFO, in which the handshaking is done with 
1GW/S speed at both sides. As could be seen, the “extended-
early” output is satisfied and the new output data changes 
before asserting req_out and is valid while it is high. 

The maximum handshaking speed that could be achieved 
simultaneously at both sides is called throughput and is shown 
for 8-bit data words in Figure 6 for different FIFO depths. The 
maximum achieved throughput for 32-bit data word FIFOs is 
also reported in Table I. It could be seen that the FIFOs’ 
throughputs are sorted according to their controllers’ 
complexity. Since the handshake controllers of our proposed 
FIFO are made of simple asymmetric C-elements, it exhibits 
the highest throughput, as it could be expected. The Muller and 
fully-decoupled pipelines’ throughputs are constant versus 
different depths because their respective controllers do not 
change when the FIFO depth increases. And due to serious 
timing engineering of the asP*-based FIFO its throughput falls 
down considerably for a 5-stage design. As predicted, 
throughput of the FIFO proposed in [13] is less than fully-
decoupled one, due to additional overheads. 

To have a comparison between power consumption of 
different FIFO types, the amount of the energy which would be 
dissipated to enqueue and send a data word is reported in Table 
I. It could be seen that as said because of ripple through nature 
of Muller and fully-decouple pipelines the dissipated energy 
for a single data word increases sharply as a function of FIFO 
depth. Energy consumptions in this work and asP*-based are 
considerably higher than in domino, due to usage of Flip-Flops 
for each stage; as nearly 45% of energy is used by address 
pointers of this work in an 8-bit 5-stage FIFO. 

As latency of FIFOs, delta times between req_in and 
req_out for a data word is measured in two situations: injecting 
data to an empty FIFO and to a FIFO in a stable condition 
where data words traverse at the highest possible throughput. 
These two latency numbers are reported in Table I respectively, 
separated with a comma. It could be seen that the proposed 
FIFO’s latency is less than others in a stable state, and is near 
to domino’s and less than that of the others in an empty 
situation. 

As mentioned, all FIFOs have been modeled using a library 
of basic elements. As a consequence, number of transistors 
used in each FIFO would be a fair metric to express silicon 
area which will be occupied by each FIFO, as listed in Table I. 

req_in

ack_in

data_in[0]

data_in[1]

req_out

ack_out

data_out[0]

data_out[1]

 
Figure 5. Waveform of the proposed FIFO in 1GW/S data transfer.

Table I. Spice simulation results for different configurations of the modeled asynchronous FIFOs. 

Metric 

D
epth:

 

8-bit data word 32-bit data word

This work Muller asP*-based Fully-decoupled Domino This work Muller Fully-decoupled Domino 

Throughput 
(GW/S) 

3 2.8 2.4 2.4 1.55 1.32 2.8 2.6 1.65 1
4 2.6 2.4 2.28 1.55 1.27 2.6 2.6 1.65 1
5 2.5 2.4 1.9 1.55 1.27 2.4 2.6 1.65 1

Energy(pJ) 
3 0.208 0.438 0.217 0.217 0.173 0.427 1.481 0.768 0.379
4 0.211 0.585 0.238 0.366 0.173 0.438 1.940 1.031 0.375
5 0.214 0.732 0.280 0.456 0.177 0.447 2.425 1.282 0.385

Latency(pS) 
3 386, 556 520, 596 228, 1180 638, 824 392, 1870 386, 390 505, 550 598, 770 380, 2600
4 426, 637 704, 785 238, 1240 855, 1050 392, 2770 435, 440 679, 728 798, 982 380, 3730
5 482, 691 886, 974 317, 2060 1069, 1270 390, 3590 491, 475 852, 903 1000, 1190 378, 4750

#Transistors 
3 980 840 832 561 940 2324 3192 1737 2260
4 1236 1120 1108 748 1252 3015 4256 2316 3019
5 1504 1400 1452 935 1568 3740 5320 2895 3778
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Figure 6. Maximum achievable throughput for different FIFO structures. 

 
Figure 7.EDP for different FIFOs with 32-bit data word. 

Neither the throughput nor energy dissipation is a good 
candidate to express benefits and costs of a design. Thus we 
rather use EDP which is obtained by dividing energy by 
throughput of a FIFO. This is shown in Figure 7Figure 7.EDP 
for different FIFOs with 32-bit data word. for different 32-bit 
length designs. 

As shown, domino FIFO dissipates the least energy 
compared to all simulated FIFOs. Compared to domino, the 
proposed FIFO in its worst case has about 100% gain in 
throughput and latency with only 20% penalty in consumed 
energy with a nearly equal but better area in its 8-bit 5stage 
configuration. However Muller pipeline exhibits 4% higher 
throughput in 32-bit 5stage state, at the expense of 4 times 
more energy dissipation and 1.5 times larger transistor count. 
Accordingly, the comparing results would be better for other 
FIFOs configurations.  

 
Figure 8. Overall router architecture of the simulated network. 

B. Network Simulation 
In the previous subsection, we explored transistor-level 

simulation results of our FIFO compared with some other ones. 
To evaluate the performance of the proposed FIFO, we have 
employed it as buffers in routers of a 4x4 mesh network. 
Hereunder we explain routers’ structure and network 
architecture. After that, extracted saturation threshold and 
average packet latency of the network over different network 
loads will be shown and compared. 

1) Router Architecture 
The NoC used in this paper is a fully asynchronous NoC, 

based on QNoC [5] and ASPIN [6], using two cascaded Flip-
Flops to connect synchronous IP cores to the asynchronous 
network. The four-phase bundled data handshake protocol is 
employed for implementing the routers.  

As shown in Figure 8, each router addressable with a two 
dimensional number (X, Y) contains five (input/output) ports 
that connect it to its neighbors and to the local IP core. To route 
packets between these five different sides, from input ports to 
output ports, asynchronous NoC uses the distributed X-First 
algorithm guaranteeing the in-order-delivery property for the 
network [6], which has been implemented in the input ports of 
the router. 

Wormhole data flow control is used where each packet is 
divided into some flits. Input ports of each router buffers 
incoming flit and when a header flit of a packet is received, the 
destination address field is analyzed and the flit as well as its 
following ones is forwarded to the corresponding output port. 
The output port arbitrates between simultaneous packets and 
sends out packets to the neighbor’s input port without any 
precedence. The Round-Robin scheduler [15] which 
implements the Token-Ring arbiter [16] is used in output ports 
for arbitrating different incoming packets. 

2) Simulation Environment and Results 
Delay and energy parameters from the Spice library are 

extracted as a function of gates’ fanout, and are back-annotated 
in a Verilog HDL library. The described router is modeled in 
gate level, using back-annotated library, and a 4x4 mesh 
network is constructed by behavioral model local IP cores as 
network traffic generators and analyzers. As interconnect links 
between two neighboring nodes, delay parameters of our delay-
insensitive current-mode link proposed in [17] are used. 

The proposed FIFO as well as domino is modeled using 
back-annotated library and used as buffers of routers’ input 
ports.  FIFOs are selected to be 5-stages deep with 34bit data 
word length, since each flit is 32 bits of data next to 2 control 
bits. 

A uniform [18] type of traffic is generated by local IPs, 
where each node generates a constant rate of traffic and sends it 
to all other nodes with a constant probability. Packets are 8flit 
length in the injected traffic. And the network load varies from 
1M packets per second for each router till network saturates. 
As shown in Figure 9 the proposed FIFO results in less packet 
latency and more network saturation threshold compared to 
domino FIFO. The power consumption of the routers 
(excluding links and synchronizing Flip-Flops) for different 
network loads is shown in Figure 10 for both employed FIFOs. 
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Figure 9. Average packet latency of the network over different loads. 

 
Figure 10. Routers power consumtion versus different loads.   

Table II shows more details of results of the simulated 
networks for two employed buffers. It could be seen that nearly 
half of the consumed power is dissipated and 65% of the area is 
occupied by input buffers. 

Thanks to one-hot address coding, it is easy to find out 
portion of the FIFO which is occupied, and thus power 
consumption of the network could be reduced by applying our 
history based DVS policies [19] as future work.  

V. CONCLUSION 
In this paper, we proposed an asynchronous one-hot 

memory addressed FIFO for NoC buffers. The Spice 
simulation results exhibit better energy, throughput and area 
tradeoffs compared to some previous works. The proposed 
architecture is also suitable for being used in different 
asynchronous designs, as well as in NoCs for interfacing IP 
cores to the network which can be done by any type of 
synchronizer. The proposed FIFO structure was examined in a 
4x4 mesh network and a 12% gain in network saturation 
threshold reached. With the proposed buffer we have found a 
trade-off between throughput and power metrics, where DVS 
can be applied for better power results as a future work. Double 
cascaded Flip-Flops, used as a synchronizer, decrease the 
throughput and therefore as a future work, the design of the 
FIFO should be modified to make it more suitable for GALS 
interface and reach higher throughput. 

Table II. Detailed results of network simulation 
Buffer Sat. threshold Power ratio Area ratio

This work 28.8 MP/S 48% 65%
Domino 25.7 MP/S 45% 67%
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