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Abstract—Manufacturing and environmental variations cause
timing errors in microelectronic processors that are typically
avoided by ultra-conservative multi-corner design margins or
corrected by error detection and recovery mechanisms at the
circuit-level. In contrast, we present here runtime software sup-
port for cost-effective countermeasures against hardware timing
failures during system operation. We propose a variability-aware
OpenMP (VOMP) programming environment, suitable for
tightly-coupled shared memory processor clusters, that relies
upon modeling across the hardware/software interface. VOMP is
implemented as an extension to the OpenMP v3.0 programming
model that covers various parallel constructs, including ,

, and . Using the notion of work-unit vulnerability
(WUV) proposed here, we capture timing errors caused by
circuit-level variability as high-level software knowledge. WUV
consists of descriptive metadata to characterize the impact of vari-
ability on different work-unit types running on various cores. As
such, WUV provides a useful abstraction of hardware variability
to efficiently allocate a given work-unit to a suitable core for
execution. VOMP enables hardware/software collaboration with
online variability monitors in hardware and runtime scheduling
in software. The hardware provides online per-core character-
ization of WUV metadata. This metadata is made available by
carefully placing key data structures in a shared L1 memory
and is used by VOMP schedulerss. Our results show that VOMP
greatly reduces the cost of timing error recovery compared to the
baseline schedulers of OpenMP, yielding speedup of 3%–36%
for tasks, and 26%–49% for sections. Further, VOMP reaches
energy saving of 2%–46% and 15%–50% for tasks, and sections,
respectively.

Index Terms—Cross-layer variability management, OpenMP,
processor clusters, recovery, robust system design, scheduling,
timing errors, variations.
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I. INTRODUCTION

W HILE shrinking CMOS minimum feature sizes and
higher transistor density open the way to many-core

processor chips [1], these also come with the side effects of
increased variability in device geometries and undesirable
fluctuations in operating condition [2], [3]. Variations arise
from different physical sources, and have static and dynamic
components that are expected to be worse in future technolo-
gies [4]. The most immediate manifestation of variability is
in path delay variations. Path delay variations cause violation
of timing specification resulting in circuit-level timing errors.
Timing errors can result in an errant instruction leading to a
malfunction within the computing core. Hence, robust system
design needs to ensure that systems perform correctly despite
increasing timing failures caused by variability in many-core
processor chips [5].
An important aspect of such robust system design is the

ability to detect variations and adaptively compensate for
their effects during system operation [6]. A wide range of
dynamic variations includes fast changing voltage droops and
comparatively slow changing temperature fluctuations that
could occur locally as well as globally across the die area.
Nowadays, multi-core processors include hardware support for
dynamic thermal management—based on monitors and sen-
sors—that enables online measurement and feedback control
policies [7]. The use of in situ [8], [9] or replica [10], [11]
circuit sensors has been investigated to detect the timing errors
due to static process, and dynamic voltage and temperature
variations. Razor [8] or error-detection sequential (EDS) [9]
have been used to achieve robustness. A common strategy in
these circuit/microarchitectural approaches to robustness is to
detect incorrect circuit state values caused by timing errors.
To ensure correct functionality in the presence of timing

error, these approaches rely upon error recovery mechanisms
that guarantee correct program execution eventually. The
timing failures are typically corrected by either adaptive tuning
of CMOS control knobs to provide better-than-worst case
guardband for error-free instruction execution [12], or by
replaying the errant instruction [13]. For instance, a 45-nm
Intel resilient core [13] places EDS at the endpoints of the
critical paths of the pipeline stages. Once a timing error is
detected during instruction execution, the core prevents the
errant instruction from corrupting the architectural state and
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an error control unit (ECU) triggers proper actions to ensure
error recovery. The ECU first flushes the pipeline to resolve
any complex bypass register issues, and then triggers one of the
two recovery mechanisms: 1) instruction replay at half clock
frequency; 2) multiple-issue instruction replay at the same
clock frequency. These mechanisms impose energy overhead
and latency penalty of up to 28 extra recovery cycles per error
[13] which can adversely affect both performance and energy
[14].
To achieve the required robustness while reducing these

overheads, the variability-induced timing errors can be ad-
dressed through a combined hardware-software approach
[15]–[17] that allows to evaluate the impact of timing errors
on the overall system. A holistic cross-layer variability man-
agement can abstract the circuit-level timing error information
into the vulnerability of individual (or streams of) instructions
when executed on a particular core [18], [19]. For multi-core
processors, this knowledge can be used by the runtime system
to implement variability-tolerant parallel workload deployment
for reducing the cost of timing error failure correction [20],
[21]. We have earlier defined a set of hierarchically organized
vulnerability measures—from instruction set architecture to a
parallel programming model—to expose variations and their
effects to the software stack. These measures include instruc-
tion-level vulnerability (ILV) [18], sequence-level vulnerability
(SLV) [19], procedure-level vulnerability (PLV) [20], and
finally task-level vulnerability (TLV) [21]. ILV characterizes
individual instructions as the most fine-grained abstraction of
the processor’s functionality, while SLV determines streams of
instructions that have a significant impact on the timing error
rate. Raising further the level of abstraction, PLV exposes the
effect of dynamic voltage variations for use in software preven-
tive actions. Within a shared-memory multi-core computing
cluster, PLV enables a runtime procedure hopping technique
to mitigate the effect of variations by means of low-cost sub-
routine (procedure) migration to a less vulnerable core [20].
TLV is an extension to the OpenMP v3.0 tasking programming
model to dynamically characterize the vulnerability of tasks.
Here, the runtime system reduces the cost of error recovery
by matching the characteristics of different variability-affected
cores to the vulnerability of individual parallel tasks.
Inthispaper,weextendthedefinitionofTLVtothatofwork-unit

vulnerability (WUV), where the notion of a parallel work-unit
(WU) is specialized into any of three OpenMP constructs to
specify work-sharing among parallel threads: ,
and . Our goal is to provide runtime software support to in-
crease cost-effective countermeasures against timing errors in
hardware.Wepursuethisgoalbyexposingvariabilityanditseffect
to the OpenMP programmingmodel, thus enabling holistic vari-
abilitymanagement.Accordingly,wemakethreecontributions.
1) We devise a variation-aware synergistic hardware/soft-
ware approach. It enhances robustness of cluster-based
processors through cost-effective software countermea-
sures against timing failures in hardware during system
operation. On the hardware side, our multi-core cluster is
equipped with circuit sensors for online measurement of
variability and per-core introspective metadata character-
ization for a given workload. Fast access to metadata for

each type of OpenMP work-sharing construct is guaran-
teed by carefully placing the key data structures on fast
shared-L1 memory.

2) On the software side, we propose a fully variation-aware
OpenMP (VOMP) environment, which supports ,

, and . VOMP provides online charac-
terization of descriptive metadata for these constructs.
Characterized WUV, or work-unit vulnerability, abstracts
hardware variability that reflects the manifestation of cir-
cuit-level timing errors during the execution of an instance
of a specific OpenMP construct. We also propose a set
of scheduling algorithms, that implement software-only
countermeasure schemes, one for each work-sharing
construct. Hence, the OpenMP runtime scheduler utilizes
WUV metadata during scheduling to efficiently mitigate
the variability-induced timing errors at the level , and

. This leads to a holistic runtime management
system that strives to reduce the cost of error recovery
caused by execution of various work-sharing constructs.

3) We demonstrate the effectiveness of our approach on a
variability-affected tightly-coupled processor cluster with
accurate ILV models in 45-nm TSMC technology. Our ex-
perimental results indicate the following. a) The entire cost
of online software characterization and countermeasures
is paid off for a variability-affected fabric. b) The pro-
posed VOMP environment is able to save both energy and
total execution time for a wide range of parallelized ap-
plications. VOMP reduces the execution time by 3%–36%
and energy by 2%–46% for applications parallelized with

directives. VOMP also reaches to energy saving of
15%–50% and faster execution of 26%–49% for applica-
tions using directives. Further, we evaluate the
robustness of our approach across C temperature vari-
ations.

The rest of the paper is organized as follows. Section II sur-
veys prior work in this specific topic area. Section III covers
the architectural details to support VOMP. Section IV describes
characterization of WUV metadata for every type of work-unit
under a full range of dynamic voltage and
temperature C) variations. The proposed runtime
scheduling algorithms for each work-sharing construct are pre-
sented in Section V. In Section VI, we explain our method-
ology to capture variations, framework setup, and present ex-
perimental results followed by conclusions in Section VII.

II. RELATED WORK

Various solutions have been proposed to mitigate the hard-
ware timing failures, including adaptive management of guard-
banding through “circuit failure prediction” mechanisms, “con-
current error detection and correction” techniques, and “cross-
layer resiliency” approaches.
“Circuit failure prediction” mechanisms provide an early in-

dication of the occurrence of a circuit failure and then adaptively
avoid timing errors while reducing the conservative guardband
[6], [23]. A model-based rule technique is proposed in [24] that
enables focused adaptive guardbanding for various functional
units at a given amount of variations. IBM POWER7 integrates
adaptive power management techniques to proactively exploit
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Fig. 1. Variation-tolerant tightly-coupled processor cluster for VOMP. The left part shows a 4 8 logarithmic interconnection [22]. The right part shows a resilient
core that relies on EDS [9] and ECU [13] to correct timing errors by the replica instructions; is the number of error-free executed instructions, and is the
number of replayed instructions.

variations in workload as well as operating environment [25],
[26]. The 8-core POWER7 prevents the timing errors by inte-
grating five critical path monitors [11] per each core to capture
PVT variations. The cores also employ two cooperating feed-
back controllers [27]: the first one is a clock frequency controller
that reacts quickly to voltage droops by coupling between the
monitors output and a phase-locked loop; the second controller
dynamically adjusts the processor voltage to achieve a desired
performance level on a longer time scale. These predictive tech-
niques are well-suited for loosely-coupled processors, whereas
our focus is on processor clusters. With frequent timing errors
in aggressive voltage overscaling [28] and near-threshold com-
putation [29], we opportunistically reduce guardbands by ex-
ploiting the opportunity given by tightly-coupled architecture
to dynamically adjust workloads across the cores with minimal
overhead.
“Concurrent error detection” techniques like Razor and

EDS raise a warning signal to indicate timing error caused by
variations [8]–[11]. Then, a recovery mechanism compensates
the timing error while incurring extra recovery cycles [13].
This cost of recovery is shown to be high in face of frequent
timing errors. Moreover, the circuit-level detection-correction
mechanism that seeks to act for every instance of timing errors
may be inefficient in large-area many-core systems that feature
a cluster of tightly-coupled processors [5]. Higher level tech-
niques are needed not only to support independent per-core
recovery mechanisms, but also to reduce the cost of recovery
across all processors within a cluster.
“Cross-layer resiliency” approaches have been proposed

to mitigate timing errors on individual instructions [18] and
sequences of instructions [19], [30]. Such fine granularly is
expensive to control and requires fast hardware reactions.
Moving up to a coarser granularity, techniques have been
proposed to address variability at various levels, including
procedure [20], thread [31], task [32], [33], and workload [34].
The main drawbacks of these techniques are the following.
1) Lack of online adaptation: for instance, [20], [33] do not
support online characterization; similarly implemented policy
in [32] applies static task mapping only during application
initialization without providing any feedback for dynamic
policy and management features. 2) Lack of standard execution

environment: proposed techniques in [20], [33] define a generic
notion of procedure or task execution which does not tie to
a standard parallel execution model, and therefore requires
intrusive changes through program source code. 3) Lack of
architectural efficiency: target fabrics in [31], [33], [34] are
based on coarse-grained many-core systems that impose high
penalties any time that a migration is required. For instance,
[31] needs to transfer the entire contents of instruction and data
memories in one tile to another over a packet-switched router.
This migration cost of over thousand cycles is simply too high
to be useful.
OpenMP is an industry-standard combination of compiler

directives and library routines, for shared-memory computers,
that allows programmers to specify parallelism in their code
without excessive details of parallel programming. Recently,
there have been various extensions to OpenMP, as the de facto
standard for shared memory multi-cores systems, to support
resiliency [21], [35]–[37]. For instance, a set of extended
custom directives allows a programmer to specify parts of a
program that can be executed approximately or accurately [37].
Extended OpenMP task construct can also define a reliable task
through a reliable clause
[35]. Then, a dynamic triple modular redundancy (TMR)
technique can be used for reliable OpenMP tasking execution.
Therefore, to assure fault tolerance, when a parent task creates a
reliable child task into the runtime environment, it will dynam-
ically replicate and submit three redundant children tasks, and
finally a majority voting is applied. Similarly, [36] proposes a
loosely coupled application-level TMR schema for P2012 [5],
in which the cluster controller generates three replicas of the
main thread. However, these technique target a generic fault
model, and impose a large penalty due to TMR, for example up
to 1.8 slower execution [35].

III. ARCHITECTURAL SUPPORT FOR VOMP

We now describe the architectural details of the variation-tol-
erant processing cluster, shown in Fig. 1. The architecture is
inspired by STMicroelectronics Platform 2012 (P2012) [5],
[38] as a programmable many-core accelerator for next-gen-
eration data-intensive embedded applications. The P2012
computing fabric is modular and scalable, since it is based on



RAHIMI et al.: IMPROVING RESILIENCE TO TIMING ERRORS BY EXPOSING VARIABILITY EFFECTS TO SOFTWARE 219

multiple processor clusters such as those found in GP-GPUs
[39] and clustered accelerators like HyperCore architecture
line processors from Plurality [40], and Kalray multi-purpose
processor array [41]. Every cluster has independent power
and clock domain, therefore enabling fine-grained power and
variability management [5]. The clusters are connected via
a fully-asynchronous network-on-chip that enables them to
work with different clock frequencies decided by a cluster
controller for the power/variability management [5]. In our
implementation, we focus on a single cluster consisting of
sixteen tightly-coupled 32-bit in-order RISC cores, a level-one
(L1) tightly coupled data memory (TCDM) and a low-latency
16 32 logarithmic interconnection [22]. The TCDM is a
software-managed scratchpad memory, configured as a shared,
multi-ported, multi-banked L1 memory that is directly con-
nected to the logarithmic interconnection for fast accesses. The
number of TCDM ports is equal to the number of banks (32) to
enable concurrent access to different memory locations. Note
that a range of addresses mapped on the TCDM space provides
test-and-set read operations, which we use to implement basic
synchronization primitives, e.g., locks.
The logarithmic interconnection is composed of mesh-of-

trees networks to support single cycle communication between
the cores and TCDM banks (see the left part of Fig. 1). When
a read/write request is brought to the memory interface, the
data is available on the negative edge of the same clock cycle,
leading to two clock cycles latency for a conflict-free TCDM
access. The cores have direct access into the off-cluster L2
memory, also mapped in the global address space. Transactions
to the L2 are routed to a logarithmic peripheral interconnect
through a de-multiplexer stage. From there, they are conveyed
to the L2 via the system interconnection which is based on
the AHB bus. Since the TCDM has a small size (256 KB) the
software must explicitly orchestrate continuous data transfers
from L2 to L1, to ensure locality of computation. To allow for
performance- and energy- efficient transfers, the cluster has
a DMA engine. This can be controlled via memory-mapped
registers, accessible through the peripheral interconnect.
In the embedded tightly-couple processor cluster, it is es-

sential that all the cores within a cluster work with the same
clock frequency to avoid the latency of the synchronization [5].
Synchronization across multiple frequencies increases the la-
tency of the interconnection, and has a performance penalty
as high as a L1 cache miss1[22]. Therefore, the cores within
the cluster are equipped with two circuit-level resiliency tech-
niques. First, each core relies on the EDS [9] circuit sensors
to detect any timing error due to dynamic delay variation. To
recover the errant instruction without changing the clock fre-
quency, the core employs the multiple-issue instruction replay
mechanism [13] in its error recovery unit (ECU). It issues seven
replica instructions (equal to the number of pipeline stages)
followed by a valid instruction. Second, the cluster supports a

-hopping technique [42] that discretely tunes the voltage
of slow cores- the cores that are affected by static process vari-
ation. The -hopping improves the clock speed of the slow

1Eight cycles are required for synchronization between multiple clock do-
mains for a read/write operation, while performance of the architecture relies
on the fact that we have two cycles access to L1 memory.

cores, thus enables all the components of the variability-affected
cluster to work at same frequency (with memories at a 180
phase shift). This technique avoids the inter-core synchroniza-
tion that would significantly increase L1 TCDM latency. The
core-level -hopping has been already employed in a vari-
ability-tolerant tightly-coupled cluster [20]. However, a core
with higher vulnerability will impose extra cycles to correct the
errant instructions.

IV. WORK-UNIT VULNERABILITY ANDVOMPWORK-SHARING

OpenMP [43] consists of a set of compiler direc-
tives and library routines to specify parallel execution
within a sequential code. Enclosing a code block within a

directive has the effect of launching
multiple instances of that code over the available processors.
Differentiating the actual work done by different processors
in OpenMP is achieved by means of work-sharing con-
structs: , and

. The for directive can only be associated
to a loop nest, and distributes loop iterations over available pro-
cessors. Within a directive multiple section blocks
can be specified, each containing a different parallel work-unit.
Sections have limited expressiveness for describing task paral-
lelism. For this reason, the latest OpenMP specifications have
included the new directive, which supports sophisticated
forms of task parallelism. However, implies significant
overheads, which makes more convenient to outline
few coarse grained tasks in a program. In addition, it is easy to
describe software pipeline parallelism with , by just
adding point-to-point synchronization to enforce dependencies
within parallel tasks. The latter is the main use we make of

in this paper.
As discussed earlier in the introduction, to enable software-

driven policies for variability-tolerant parallel workload sched-
uling we need to characterize parallel work-units, WU, in terms
of vulnerability to timing errors2. Each OpenMP work-sharing
construct outlines an execution unit which runs a sequence of
instructions. Enclosing portions of code within any of these
constructs allows the programmer to statically identify several
WU types in the program, as every directive syntactically de-
limits a unique stream of instructions.While at runtime the same
stream may be dynamically instantiated several times (e.g., a
work-sharing directive nested within a loop), from the point of
view of our characterization it uniquely identifies a single WU
type. As a direct consequence, there are as many types of WUs
in a program as there are work-sharing directives in its code, as
shown in Fig. 2.
Intuitively, the closer we can associate information on vari-

ability-induced timing errors (metadata ) to software abstrac-
tions of a parallel WU, the better we can schedule WUs to cores
in a variation-tolerant manner. From this perspective, task-level
vulnerability, or TLV, is an important metadata to address vari-
ability-tolerance within standard parallel programming models.
The main limitation of TLV as described in [21] is that its im-
plementation is specific to the OpenMP construct. While

2Our platform does not have control over the errors happening while exe-
cuting library code. The functionality is preserved as each core is equipped with
the replay mechanism.
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Fig. 2. Outlined WU types in a OpenMP program: , , .

this construct allows to express very flexible and sophisticated
forms of dynamic parallelism, it is also true that several em-
bedded workloads focus on more regular forms of parallelism,
at the loop- or procedure-level [44]. Until the specification v2.5
OpenMP used to be focused on exactly those types of paral-
lelism, through the and constructs.
In our previous work [18] we have introduced ILV or instruc-

tion-level vulnerability as a metric to expose to the software
stack the effect of variations on the performance of a processing
core, at the level of individual instructions. In a variability-af-
fected core ILV is not uniform across the instruction set. In fact,
ILV partitions instructions into three classes: 1) logical/arith-
metic, 2) memory, 3) hardware multiply/divide. Instructions be-
longing to different classes have different vulnerability to vari-
ations depending on the way they exercise the nonuniform crit-
ical paths across the various pipeline stages. For instance, in
an in-order RISC core the execution and memory stages are
highly vulnerable to dynamic variations, and the memory class
has a higher vulnerability in comparison to the logical/arith-
metic class. We note that complex out-of-order core such as
IBM POWER6 also confirms that vulnerability is not uniform
across the instructions set [45].
Here we extend the notion of ILV to a more coarse-grained

(in terms of software execution units) metric: parallel work-unit
vulnerability (WUV). WUV is a metric to estimate execution
time of each WU type per each core, under variability. This
metric is quite useful for the purpose of simultaneous vulner-
ability measurement and load balancing. The vulnerability of
a WU type varies based on the class of instructions that it ex-
ecutes. WUV is clearly a per-core metric since the amount of
variation affecting different classes of instructions changes from

one core to another. Therefore, different dynamic instances of
the same WU type can face different degrees of variability-in-
duced timing errors.
While the identification of WU types can be done statically

(i.e., at compile time), WUV characterization has to be done
online due to two main reasons. First, dynamic instances of
the same WU type may exercise the processor pipeline in a
non-identical manner due to data-dependent control flow that
results in the execution of different (classes of) instructions.
Second, the characterization must reflect the variability-affected
characteristic of every core (not known a priori) on every WU
type. WUV is defined as follows:

(1)

where is the number of error-free executed instructions;
is the number of replayed instructions3 during execution

of WU type j on core i, as reported by the ECU. Intuitively,
for a given WU type if all the instructions run without any
timing error, the corresponding WUV is equal to as the
total error-free dynamic instruction count. In the event of timing
errors, WUV also accounts for the additional replica instruc-
tions. The lower theWUV, the lower number of recovery cycles,
the lower the dynamic instruction count, and thus the higher
throughput and energy efficiency. WUV dynamically character-
izes both vulnerability and execution time of WU types. Hence,
based onWUV values, VOMP runtime schedulers can optimize
the system performance or energy efficiency by matching vari-
ability-affected core characteristics to WU types.

A. Intra- and Inter-Corner WUV

For (1) WUV is the dynamic instruction count, including the
replica instructions, for a given WU type. Similar to ILV, WUV
is also not uniform across different variability-affected cores,
which may exhibit different vulnerability to specific instruc-
tion classes. To demonstrate how this effect is propagated to
the programming model level, we measure WUV across dif-
ferent WU types. More specifically, we use OpenMP constructs
to outline software execution units, or WUs, which iterate sev-
eral times over an identical instruction. We build four WU types
each stressing a different instruction, as shown in Fig. 3.
In the following, we repeat the same experiment with

different OpenMP work-sharing constructs. This synthetic
experiment allows to stress a use case where we can estimate
the variations in WUV among the software execution units.
Fig. 4 illustrates the synthetic benchmark parallelized with the

construct, while the synthetic bench-
mark in Fig. 5 uses the construct.
For the sake of clarity we organize the presentation of this
experiment in following three consecutive subsections, one per
each OpenMP construct. Section VI-A provides details of our
simulation setup.
1) -Level WUV: Fig. 4 shows the synthetic benchmark

parallelized using the construct. We mea-
sure WUV for different WU (here, ) types when executing
on fixed and variable operating corners (current voltage and

3Proportional to the number of errant instructions
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Fig. 3. WU types each stressing a different class of instructions.

temperature). Specifically, we analyze the effects of a full range
of operating corners, a temperature range of C– C, and a
voltage range of 0.88–1.1 V. For sake of simplicity, in this sec-
tion we illustrate a normalizedWUV (thereafter called NWUV)
as a metric which divides WUV value to its , therefore this
normalized metric will have a range of values greater than or
equal to 1. For instance, if NWUV displays a value of 1, it indi-
cates that there is no replica instructions .
Fig. 6 shows the task-levelWUV for a core that works at fixed

voltage supply of 1.1 V, while the environmental temperature is
varied. As shown, the -level vulnerability is an increasing
function of temperature; for instance, the execution of task type
one at a temperature of C results in an NWUV value
of 1.0017, while executing the same task at C causes an
NWUV of 1.09 that increases the vulnerability of by 9%.
This inter-corner WUV variation is the direct manifestation of
dynamic temperature fluctuation. At supply voltage of 1.1 V,
higher temperature leads to a higher timing error rate that in-
creases the number of errant instructions, as mirrored by the
WUV values.
Apart from the inter-corner WUV variation, for a given

(fixed) temperature point there is an intra-corner WUV varia-
tion among the four types of WUs (tasks). As shown in Fig. 6,
at the fixed temperature of C, the WUV value of is
6% higher than the WUV of , indicating a considerable
variation across task types. WUV of each task type is different,

Fig. 4. Synthetic benchmark using OpenMP task.

even within the fixed operating conditions and in the absence of
environmental variations, since each task type executes distinct
classes of instructions experiencing different rates of the errant
instructions.
Fig. 7 shows the -level WUV for the core operating

at a fixed temperature of C, while voltage is dynamically
varied. As shown by the plot, NWUV is a decreasing function
of voltage. Higher voltages result in shorter critical path delay,
thus lower error rate and finally lower NWUV values. Similar to
Fig. 6, intra-corner WUV variation can also be observed: WUV
for different task types at the same operating corner is not equal
because their instructions do not uniformly exercise the various
critical paths of the pipeline. We have already seen that the vul-
nerability of instructions is not uniform [18] resulting in dif-
ferent levels of vulnerability for task types.
2) -Level WUV: Fig. 5 shows the code for the syn-

thetic software pipeline implemented using parallel .
Each WU type (here indicated as , , ,
and ) is mapped on a different core. Synchronization
between the pipeline stages is accomplished via simple point-to-
point synchronization primitives that we implement on top of
test-and-set semaphores. This guarantees that once computa-
tion of one pipeline stage is finished we can start the following
stages. The construct is nested within a loop, which
models the repetitions of the pipeline. It outlines fourWUs, each
dependent from the previous one. Note however that there is no
dependence between the last stage of one iteration and the first
stage of the next iteration.
In this parallel pattern, representative of image processing

kernels where a set of filters is applied in sequence to indepen-
dent image blocks (e.g., JPEG macro-blocks), there are
stages, such that , where is the number of



222 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 4, NO. 2, JUNE 2014

Fig. 5. Software pipelined synthetic benchmark using OpenMP .

Fig. 6. Normalized WUV (NWUV) to temperature variations for types.

available cores (16 cores in our platform). Normally, at the end
of any work-sharing construct it is implied a barrier synchro-
nization operation among all processors. However, we specify
the clause to skip this and allow the idle cores to start
execution of the next pipeline iteration.
We now examine the -level WUV for different

section types when executing on fixed and variable operating
corners.Fig. 8 shows NWUV values for a core operating at
fixed supply voltage of 1.1 V with a variable temperature range
of C– C, while Fig. 9 shows NWUV values for a fixed
temperature of C with a supply voltage variation range

Fig. 7. Normalized WUV to voltage variations for types.

Fig. 8. Normalized WUV to temperature variations for types.

Fig. 9. Normalized WUV to voltage variations for types.

of 0.22 V. Akin to the -level WUV, the -level
WUV is an increasing function of temperature and a decreasing
function of voltage. A temperature fluctuation of C in-
creases the -level WUV by an average of 9%, and
the voltage variation of 0.22 V increases the -level
WUV by an average of 50%. Among the different section types,
a maximum of 16% intra-corner WUV variation is observed at
( C, 1.09 V).
3) -Level WUV: Applications running on multi-core

systems often focus on a very common data parallel scenario
where each core works on a portion of a data structure (e.g.,
array or matrix) and must synchronize with the others on a
barrier. Similar parallelization schemes are typically focused
on parallel loops, whose iterations are spread among several
concurrent threads. Data-level parallelism, for instance parallel
loops, can be exploited to distribute workload within a cluster.
OpenMP v3.0 provides dynamic loop scheduling as another
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work-sharing construct based on the notion of a work queue
to parallelize loops locally inside a cluster. A
directive describes a loop as a set of identical work-units;
therefore the directive statically identifies one
type of work-unit in the program. For every loop iteration, the
work-unit is dynamically instantiated but it uniquely identifies
a single type from our characterization point of view. In other
words, the work-units generated from the
directive are equivalent hence forming a homogeneous work-
load across all cores. This limits the capability of VOMP to
schedule a single type work-unit to an appropriate core given
that maintaining all cores busy.
4) Conclusion for WUV: The main conclusion that we can

draw from the experiments presented in the aforementioned
subsections is that WUV varies significantly: 1) among WU
types; and 2) among the operating conditions. On one hand this
is due to how different instruction streams exercise the vari-
ability-affected critical paths in the processor pipelines, which
is the typical case for programs parallelized with
or directives, that outline several parallel tasks (i.e., WU
types). This confirms the previous observation that executing
different streams of instructions may result in various error rates
[30]. For example, for any given operating condition the WUV
of simple arithmetic operations (e.g., addition/shift) is lower
than or equal to the WUV of complex arithmetic operations
(e.g., MUL/DIV). Details sensitivity analysis of a sequence of
instructions to changes in voltage and temperature are provided
in [19]. On the other hand, even identical instruction streams
behave differently on different cores in presence of dynamic
temperature and voltage variations. This is particularly evident
for the construct, which always distributes
among processors an identical work-unit type (i.e., the same
instruction stream). Yet, WUV across cores varies significantly,
because of the different vulnerability to specific instruction
classes and to operating conditions.
This motivates the need to specialize WUV for different WU

types and for online characterization. In the following section,
we describe how we augment the VOPM runtime support for
each of the work-sharing constructs to support online WUV
characterization.

B. Online WUV Characterization

In the proposed VOMP, each core performs online character-
ization while executing a given WU type. To quantify WUV,
the core collects and statistics for (1) through a set
of available counters in the ECU. The online characterization
mechanism is distributed among all the cores in the cluster, thus
enables full parallel WU execution monitoring and characteri-
zation. WUV is represented as a two-dimensional lookup table
(LUT) for different WU types and cores. This lookup table is
physically distributed across all the banks of the L1 TCDM for
fast parallel read/write operations. Since each entry of the LUT
consists of 32-bit integer data, and since each application in-
cludes a bounded4 number of work-sharing directives,
the LUT has a footprint of Bytes, being

4Up to a few tens, for large programs

Fig. 10. Pseudo-code for task-level WUV characterization.

the number of cores in the cluster. We provide two simple func-
tions for reading and writing the LUT, namely

In addition, we implement two functions for retrieving the cal-
culated WUV of a task running on a core

The former function reads the WUV value from
per-core hardware counters, identified via the param-
eter. These counters implement (1), accumulating instruction
count and replica instruction count for the target core since the
last reset. The second function resets the counter
for the target core .
Based on these low-level APIs, we modify the OpenMP

runtime schedulers to enable online WUV characteriza-
tion as illustrated in Fig. 10 (our additions in bold font).
While this pseudo-code explicitly refers to the sched-
uler, we modify in an equivalent manner also the sched-
uler for . For what concerns loops the imple-
mentation is slightly more complicated. OpenMP allows
to couple the clause to the

directive. Choosing dynamic scheduling,
chunks of iterations of user-defined size are scheduled to par-
allel cores in a first-come, first-served manner. This allows for
better load balancing at runtime, but is implemented through
calls to a runtime scheduler and implies higher over-head. For
those cases where loop iterations contain identical amount of
works it is often better to use static scheduling, which is im-
plemented by statically inlining the code that precomputes the
assigned iterations to any cores. Thus, for dynamic scheduling
we instrument the runtime scheduler similar to Fig. 10. For
static scheduling we modify the OpenMP compiler to inline
the additional WUV characterization code during the loop
expansion pass.
Note that in principle it would be strictly necessary to char-

acterize a couple only once. Once a
WU type is characterized for a given core the online charac-
terization could be stopped. However, we rather keep the char-
acterization active at every scheduling event and apply a his-
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tory-based weighted average calculation between the new char-
acterized WUV value and the previously WUV value stored
in the LUT. This has been used to estimate power and time
for a given interval [46]; and also better captures recent ef-
fects of dynamic variations on the cores, conditional code within
WUs, and future workload. At each scheduling point, the en-
countering core incurs only a fixed negligible overhead for WU
characterization. This is achieved by distributing the LUT in the
multi-banked TCDM that enables not only predictable accesses,
as opposed to cache-based hierarchical memories, but also fast
parallel read/write operations among the cores.
From the observation point of view, our online characteriza-

tion can reflect any changes in dynamic behavior of a core and
the environment in which the core is used. More specifically, in
our cluster each core can be powered at a different voltage (that
could lead to different temperature points due to self-heating),
but all the 16 cores have to work with a fixed clock frequency.
Figs. 6–9 show the sensitivity of WUV to changes in the op-
erating voltage and temperature. These figures illustrate that
a wide range of dynamic variations can be reflected by WUV
metric. From the controllability point of view, the cluster as an
accelerator operate under the control of a main host processor,
capable of running full-fledged operating systems (OS). The
cluster itself, on the other hand, typically does not have all the
necessary support to run unmodified OS. Resource management
is demanded to custom lightweight middleware. In this respect,
the OpenMP implementation that we leverage in this work [47]
as a baseline to demonstrate our techniques is designed to op-
erate on bare metal, as it is built directly on top of the hardware
abstraction layer (HAL). The HAL provides the lowest-level
software services for processor (thread) and memory manage-
ment, as well as the power control APIs.

V. VOMP SCHEDULERS

A. Variation-Aware Task Scheduling (VATS)

In this subsection we first explain our OpenMP tasking im-
plementation followed by our specific variation-aware sched-
uling policy. OpenMP tasking has already been considered as a
convenient programming abstraction for embedded multi- and
many-cores [21], [35], [48], [49]. Typically in these approaches
the task scheduler is implemented using a centralized queue
which collects the task descriptors. The central FIFO design re-
duces the overhead for task management, which is usually a rel-
evant design choice for energy- and resource-constrained sys-
tems. This design choice works well for homogeneous systems,
but places limitations on applying efficient scheduling policies
in presence of variability-induced heterogeneity across compu-
tational resources.
Our OpenMP implementation leverages distributed task

queues (private queue per each core), where all the threads5

involved in parallel computation can actively push and pop job
descriptors. Fig. 11 shows the design of our OpenMP tasking
framework based on a distributed queue system. Every thread
can access a queue using two basic operations: insert and
extract, which are translated into lock-protected operations

5There is a 1:1 correspondence between threads and cores, thus we will use
the two terms interchangeably.

Fig. 11. Distributed queues for OpenMP tasking.

on a queue descriptor (stored in TCDM for minimal access
time). Queue descriptors are statically instantiated during the
initialization of the run-time to avoid the time overheads for
dynamic memory management. Since threads with an empty
queue are set to a low-power IDLE mode, the insertion of a
task in a queue wakes up the associated core. This is achieved
by inspecting an additional flag of the queue descriptor, where
the destination core operating mode is annotated (executing,
sleeping). The core that inserts the task in a remote queue is
responsible for checking the flag and waking up the destination
core to resume execution of the newly inserted task. In addition,
the queue descriptor holds synchronization flags used for the

directive. Extracting a task from a queue updates the
queue descriptor in the dual manner. Note that also in this case
we use lock-protected operations, since we allow all threads to
extract work from any queue. Extracting tasks always occurs
from the head of the queue, while insertion can be done at
the head and tail. Insert operations at the head are useful to
prioritize the execution of non-characterized tasks (in terms of
vulnerability to errors). Stealing tasks occurs from the head of
the queue.
As a baseline policy we implement a simple round-robin

scheduler (RRS) [43]. This policy aims at balancing the number
of tasks assigned among all cores, and introduces minimal run-
time overhead due to a very lightweight implementation. To
account for tasks of different durations, RRS is enhanced with
a task stealing algorithm, which searches remote queues in a
round-robin fashion for work to steal.
We propose a reactive policy for variability-aware task sched-

uling (VATS) shown inAlgorithmV-1. This scheduler leverages
the characterized WUV metadata to allocate tasks to cores so
as to minimize both overall number of instruction replays and
unbalanced loads. The main goal of this scheduler is to prevent
allocation of tasks to unreliable cores, which is representative of
a policy adopted in a system where task failure has critical con-
sequences. At system startup, when there is no WUV available,
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the scheduler operates in round-robin mode. Since the OpenMP
tasking model assumes completely independent tasks, it is al-
lowed to execute them in any order. We leverage this property
to insert tasks for which WUV is not available yet at the head
of the queue (out-of-order task characterization). This will give
higher priority to non-characterized task types, thus speeding up
the “system warm-up”.

Algorithm V.1:VATS( )

for to

return

VATS scheduling policy strives to minimize the number of
replayed instructions utilizing characterized WUV metadata.
VATS also extends its awareness of the load on each queue, thus
avoids heavily unbalanced situations that could increase the
total execution time. Each queue descriptor is enhanced with a
status register that estimates the overall load (loadQueue), in
terms of dynamic instructions count, of all tasks present into
that queue. This is a better metric for workload-awareness than
just the total task count, because different task types present in
the queue may have various computational weight.
To account for imbalance effects due to nonhomogeneous

task durations and other system-level issues, VATS is further en-
hancedwith amost loaded queue-first stealing algorithm. An ad-
ditional array structure is used to keep the sorted workload over
the various queues. This array is then traversed to steal work
from the most loaded queues first. Note that after the execution
of a stolen task we always check if in the meantime some tasks
have been inserted in the local queue. It this case, we switch to
the execution of the tasks with better WUV values, otherwise
we continue executing the stealing algorithm until there is no
task left in the system.

B. Variation-Aware Section Scheduling (VASS)

The default OpenMP section scheduling policy is to allocate
a section to an available thread in a first-come, first-served
(FCFS) fashion. When sections are used in a traditional manner
to outline parallel tasks with no dependencies among each
other Algorithm V.1 cab be applied. However, when sections
are used to model software pipeline parallelism we have an
additional constraint: avoiding the variability-induced errors
(hence their instruction replays) that lengthen in an uncon-
trolled manner one or more sections. This effect dominates the
overall pipeline duration. Since in a variability-affected com-
puting cluster, there might be a set of cores that display poor
performance—depending upon their software and hardware
context—causing bottlenecks in the entire pipeline execution.
For these cases, we propose a variation-aware section sched-

uling (VASS) policy shown in Algorithm V.2. VASS has a

warm-up phase which assigns execution of different section
types to all cores for a constant6 number of iterations. After
execution of each section, the characterization process updates
the corresponding WUV matadata in LUT using the mecha-
nisms described in Section IV-B. When the warm-up phase is
completed, the WUV metadata in the LUT are ready and can
be inspected by the runtime environment to take decisions on
workload distribution. Accordingly, VASS assigns the execu-
tion of each section to a set of suitable cores.
In this way, VASS strives to maintain all cores in theexecuting

operating mode, while reducing the instruction replays and the
overall pipeline duration. VASS sorts each section types based
on their averageWUV decreasingly. The first section type in the
sorted list has either high instruction count or high replica
instruction count . Therefore it should be executed on
a set of suitable cores that display fewer error rate during its
execution. Basically, every core has a private tag vector that
lists the types of permissible sections for executing on this par-
ticular core. This constraint limits the participation of worse
cores for executing long or high vulnerable types of sections.
The worse cores instead may execute shorter sections or sec-
tions with lower vulnerability; therefore avoiding the latency
penalty for the synchronization between the unbalanced stages
and effectively utilizing all the resources in the variability-af-
fected cluster.
As shown in Algorithm V.2, VASS assigns the execution

of the longest section type to the best set of cores (those that
display lower WUV values), then the execution of the second
longest section type to the next best set of cores, and so on. In
other words, VASS performs a one-to-many dynamic pipeline
mapping between the section types (i.e., the stages) and the
cores such that the overall execution time is reduced. After the
section-to-core assignment, once a encounters a ,
VASS checks the condition to decide whether is
assigned for the execution on top of . If is
assigned for , it means that there is a match between the
characteristics of and , therefore the execution
will be performed. Otherwise VASS does not allocate the

to the . Thanks to the statement, for a
consists of sections, VASS repli-

cates the entire for
times to maintain all cores active while reducing overall
pipeline duration.

Algorithm V.2:VASS ( : )

while

return

6In our applications, it is selected as 2 iterations.
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TABLE I
ARCHITECTURAL PARAMETERS OF THE CLUSTER

VI. EXPERIMENTAL RESULTS

A. Framework Setup

We demonstrate our approach on an OpenMP-enabled Sys-
temC-based virtual platform [50] modeling the tightly-coupled
cluster described in Section III. The virtual platform supports
tasking on top of a runtime [47] optimized for the target plat-
form. Table I summarizes the main architectural parameters, a
typical setup for the considered platform template (see [5]). To
emulate variations on the virtual platform, we have integrated
variations models at the level of individual instructions using
the ILV characterization methodology presented in [18]. Inte-
gration of ILV models for every core enables online assess-
ment of presence or absence of errant instructions at the cer-
tain amount of dynamic voltage and temperature variations. We
re-characterized ILV models of an in-order RISC LEON-3 [51]
core for 45-nm, for which an advanced open-source RISC core
with back-end details for variation analysis is available. First,
we synthesized the VHDL code of LEON-3 with the 45-nm
TSMC technology library, general-purpose process. The fron-
tend flow with normal cells has been performed using Syn-
opsys DesignCompiler, while Synopsys IC Compiler has been
used for the back-end where the core is optimized for perfor-
mance.
To observe the effects of a full range of dynamic voltage and

temperature variations, we analyze the delay variability on the
individual instructions, leveraging voltage-temperature scaling
features of Synopsys PrimeTime for the composite current
source approach of modeling cell behavior. Finally, delay vari-
ability is annotated to the gate-level simulations for creating
ILV models. To utilize ILV models on the virtual platform,
each core maps ARM v6 instructions to the corresponding ILV
models in an instruction-by-instruction fashion during exe-
cution. Therefore, every core will face the errant instructions
during work-units execution based on the available amount of
variations on the variability-affected cluster. From the same
flow we also extract energy models for our cluster architecture.
For the following experiments we consider the cluster with

16 cores. To observe the effect of static process variation on
the clock frequency of individual cores within the cluster,
we analyze how critical paths of each core are affected due
to die-to-die and within-die process parameters variation,
following the methodology presented in [20]. Each core
maximum frequency varies significantly due to the process
variation. As a result, six cores for 16-core cluster cannot
meet the design time target clock frequency. To compensate
this core-to-core frequency variation, the -hopping tech-
nique [42] uses the measured delay variation of each core and
then selects one of available three discrete voltage modes:

-high, -medium, -low. This technique mitigates

Fig. 12. Execution time for VATS normalized to RRS under temperature vari-
ation.

the core-to-core frequency variations within the variability-af-
fected cluster: six cores are powered up with -high, four
cores with -medium, and six cores with -low. This
ensures all cores work with the design time target frequency,
but they face different error rate based on the instruction type
and the operating condition.

B. VOMP Results for Tasking

We use nine widely adopted computational kernels mainly
from the image processing domain, that we parallelize using

directives. These kernels include RGB-to-HSV and
XYZ-to-RGB for colormap conversions, Integral image and
Sobel for filter operations, FAST for corner detection, Color
Tracking , Strassen matrix multiplication, and Blowfish for
encryption/decryption. Each kernel has one task type, therefore
there is no task dependency during execution. We compare the
total execution time and energy consumption of VATS, our
variability-aware task scheduler, to the baseline RRS policy.
Fig. 12 shows the execution time for all the kernels for three
operating corners with temperature of C, C, and C.
VATS aims at reducing the instruction replays by allocating
tasks on reliable cores while taking into account the load of
every queue. As a result, at an operating temperature of C,
VATS achieves up to 30% better performance than RRS, and
13% on average. This clearly indicates that the entire overhead
of the variation-tolerant technique is paid off, including the
online task characterization, reading and updating WUV meta-
data, and cost of execution of Algorithm V.1. As shown, VATS
displays a robust behavior across a wide range of temperature
variations thanks to the reflection by the always-on character-
izations. At higher temperature, VATS achieves better average
performance gain of 17% (at C) and 21% ( C), since
WUV is increased at higher temperature.
Fig. 13 shows the energy consumption of the kernels for

VATS normalized to RRS. VATS achieves on average 21% and
up to 38% better energy efficiency than RRS at the temperature
of C. VATS further reaches to an average energy saving of
31% at the operating temperature of C.
We also compare the TLV technique with the centralized

queue proposed in [21]. TLV, which has variation-agnostic task
insertion operations displays on average 75% slower execution
than RRS. TLV is on average 100% less energy efficient than
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Fig. 13. Energy consumption for VATS normalized to RRS under temperature
variation.

RRS. This lack of efficient utilization of resources under vari-
ability is mainly because of TLV characterization that does not
consider the overall system workload. Its single tasking queue
also limits the potentials of task scheduling policies: a core can
utilize TLV to only decide whether to proceed to the execution
of a task or leave it in the single queue for other cores that leads
to an imbalanced system.

C. VOMP Results for Sections

For evaluating VOMP in the , we used
seven computational intensive kernels amenable to software
pipelining. Pitch extractor algorithm (PEA), and FFT with
covariance matrix factorization (DFT-COV) are embedded
signal processing kernels extracted from [52], [53].Sobel and
Prewitt are filter operations useful in the edge detection algo-
rithms. N-body is a simulation of a large number of particles
under the influence of physical forces. Mersenne twister is a
pseudorandom number generator. Synthetic is a microkernel
implementing a four-stage parallel pipeline (see Fig. 5), rep-
resentative of streaming applications [54]. We evaluate the
effectiveness and robustness of our approach across a wide
temperature range of C.
Fig. 14 shows the normalized performance (execution time)

of VASS to FCFS for three operating corners with temperature
of C, C, and C. At an operating temperature of C,
the total execution time is reduced on average by 31% (and up to
40%) thanks to proper assignment of sections to those cores that
avoid unbalanced pipelines. This is accomplished by preventing
the worst cores from executing a section type that leads to the
highest WUV. At the temperature of C, VASS reaches on
average 39% performance improvement, thanks to the online
WUV metadata characterization which reflects the latest tem-
perature variations, thus enabling the scheduler to react accord-
ingly.
Moreover, as shown in Fig. 15, VASS simultaneously reduces

the total dynamic instruction count that yields an average of
28% (up to 35%) reduction in energy consumption at an op-
erating temperature of C. A similar pattern for energy saving
is observed under temperature fluctuations, confirming the ro-
bustness of our approach. VASS reduces energy consumption
on average by 37% for high operating temperatures of C.

Fig. 14. Execution time for VASS normalized to FCFS under temperature vari-
ation.

Fig. 15. Energy consumption for VASS normalized to FCFS under temperature
variation.

VII. CONCLUSION

Circuit failures due to timing errors are considered an impor-
tant concern in the design of reliable circuits. In this paper, we
show that processing cores can be made robust against an im-
portant class of such errors, caused by manufacturing and envi-
ronmental variabilities, by raising the visibility of such failures
across the hardware/software boundary. This is achieved by at-
taching metadata that captures work-unit vulnerability (WUV)
from hardware sensing circuits to the runtime system via the
software stack. We specifically address its implementation in
a parallel execution environment that associates WUV meta-
data to OpenMP parallel constructs: , , and .
WUV metadata is characterized during work-unit execution on
individual cores, and is used to efficiently schedule new in-
stances of the same work-unit type. We have implemented our
approach in VOMP, a variability-aware OpenMP execution en-
vironment. With VOMP, we propose scheduling algorithms for

and that use WUV metadata for countermea-
sures against variability-induced timing errors. This matches the
characteristics of different variability-affected cores to the error-
vulnerability of different work-unit types in the program, min-
imizing the need for timing error recovery and the associated
costs. Across a wide operating temperature of C, VOMP
effectively eliminates the timing error recovery in the 16-core
cluster resulting in average 17% and 36% faster execution for
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and , respectively. VOMP achieves an average
energy saving of 27% for and 33% for .
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