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Abstract—Associative memory, in the form of lookup tables, is
a promising approach to improving energy efficiency by enabling
computing-with-memory. A processing element can be tightly
coupled with an associative memory where function responses are
pre-stored. Associative memories can recall function responses for
a subset of input values therefore avoiding the actual function
execution on the processing element that leads to energy saving.
One challenge however is to reduce the energy consumption of
associative memory modules themselves.

In this paper, we address the challenge of designing ultra-low-
power associative memories. We first use memristive parts for
memory implementation and demonstrate the energy saving po-
tential of integrating associative memristive memory (AMM) into
graphics processing units (GPUs). Next, we leverage approximate
computing which takes advantage of application-level tolerance
to errors, to enable voltage overscaling to further reduce energy
consumption of an AMM module. Voltage overscaling deliber-
ately relaxes the searching criteria of an AMM: The AMM
module finds stored patterns matching an input search pattern
with a Hamming distance of 0, 1, or 2. This controllable inexact
matching introduces some errors to the computation, that are
tolerable for the target application. The energy consumption
is further reduced by employing a purely resistive crossbar
architecture for the AMM module. To evaluate our solution, we
tightly integrate AMM modules with floating point units (FPUs)
in an AMD Southern Islands GPU. Then we run four image
processing kernels on an AMM-integrated GPU to evaluate the
proposed architecture. Our experimental results show that the
use of the AMM modules reduces energy consumption of running
these kernels on GPU by, on average, 23%–45%, compared to
the baseline GPU without AMM modules. We also show that
these image processing kernels can tolerate errors resulting from
approximate search operations with an acceptable degradation
of image quality, i.e., a PSNR greater than 30dB.

Index Terms—Associative memory, TCAM, memristor, ap-
proximate computing, GPUs, voltage overscaling, FPUs.

I. INTRODUCTION

The scaling of physical dimensions in semiconductor cir-
cuits has reached an astonishing level of integration of over
eight billion transistors in a single chip based on a 28-
nm process. This gives a grand total of 3,072 processing
cores in recent GPU chips [1] enforcing energy efficiency
as a primary concern. Earlier work has suggested supply
voltage overscaling (VOS) [2] to reduce energy consumption.
However, reducing the operating voltage of a core beyond
a critical point leads to the so-called “path walls” [3], [4].
Hitting the path walls results in a core failure or massive
number of errors, which is not acceptable [5], [6].
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Approximate computing is another approach to increase en-
ergy efficiency that leverages application-level tolerance to few
errors in many multimedia applications. In most multimedia
applications, the final output is interpreted by human and thus
does not have to be perfect [7]. Hence, such applications can
generally tolerate a limited number of errors as long as the
degraded output maintains an expected quality. However, ap-
proximate computing cannot support aggressive VOS beyond
the critical point, due to the sudden increase in the number of
errors [8], [9].

Associative computing using ternary content-addressable
memories (TCAMs) has also emerged as a promising solution
to improve energy efficiency [10], [11]. Associative memories
can pre-store highly frequent computations and minimize their
re-execution to save energy. Conventional TCAM designs
based on CMOS suffer from low density and high power
consumption. To address this, recent works propose TCAMs
using memristive memories [12], [13]. Li et al. demonstrate a
1-Mb TCAM chip using a 2-transistor/2-resistive-memristor
(2T-2R) cell that achieves a 10× smaller cell size than a
CMOS-based TCAM [12]. This TCAM also enables low
voltage search operation. A 1-Mb memristive memory (aka
ReRAM) operating at a voltage as low as 270mV for ultra-
low energy consumption has also been demonstrated [14].

The low voltage operation of memristive devices provides
an opportunity to further reduce energy consumption in asso-
ciative memories: aggressive VOS techniques can be applied to
associative memristive memories, while managing errors to an
acceptable level suitable for approximate computing in GPUs.
This paper explores this opportunity and makes the following
contributions:

(1) We propose an associative memristive memory (AMM)
module to enable low-power computing-with-memory. An
AMM, tightly integrated into a floating point unit (FPU),
is a programmable module accessible by software to store
computations that appear frequently. An AMM is composed
of a memristive TCAM and a memristive memory block
that together represent the pre-stored computations as partial
functionality of the associated FPU. We implement the TCAM
block in two flavors, 2T-2R and 0T-2R. The 0T-2R implemen-
tation leverages memristive devices with diode-like rectifying
behavior to eliminate the access-transistors, needed in the 2T-
2R TCAM. We show that the 0T-2R TCAM generally offers
better energy saving due to the elimination of the static power
consumption of the access-transistors.

(2) We explore the potential of the AMM module to
enable “approximate computing-with-memory” under VOS:
we carefully employ VOS in an AMM module which leads
to approximate search operation in TCAMs (i.e., inexact
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matching). Varying the degree of VOS, an AMM module
exhibits a “controllable” inexact matching behavior: when we
reduce the voltage from 1.0V down to 725mV (or 800mV),
the 2T-2R (or 0T-2R) TCAM inside an AMM module is able
to find stored patterns matching an input query pattern within
a Hamming distance of 0, 1, or 2. Employing this inexact
matching under VOS further lowers the power consumption
at the cost of few errors in the output result. This level of
approximate computing is often acceptable for most of image
processing applications.

(3) We present an OpenCL execution flow, to profile
GPU kernels, identify frequently repeated computations, and
program the AMM module. The profiler extracts a set of
values that occur frequently through searching the space of
possible inputs provided by training samples. These key-
computations are then pre-stored in the AMM module, which
can be searched to avoid repeated executions in the FPU. We
demonstrate the effectiveness of our AMM modules on the
Southern Islands GPUs with four image processing kernels
adopted from the AMD APP SDK v2.5 [15]. We use 10%
of Caltech 101 computer vision dataset [16] for the training,
and the full dataset for the testing. Our experimental results
show that by integrating small AMM modules into FPUs, we
can reduce the energy consumption of running these image
processing kernel by, on average, 23%–45%. We also show
that the image processing kernels can tolerate the error due to
the inexact pattern matching for all test images with a peak
signal-to-noise ratio (PSNR) no lower than 30dB.

The rest of the paper is organized as follows. Section II
discusses the relevant research on computing-with-memory
and approximate computing. Section III covers the neces-
sary background on memristors. In Section IV, we discuss
the AMM module in detail and describe how it enables
approximate computing-with-memory in GPUs. Section V
elaborates on the 0T-2R TCAM architecture and its operation.
Section VI discusses execution flow and programming for
AMM modules, and provides experimental results to validate
the energy saving merits of the method. Section VII concludes
the paper.

II. RELATED WORK

Computing-with-memory has shown significant energy effi-
ciency using emerging non-volatile memories [12], [17], [18],
[19], [20]. For instance, spin-torque transfer RAM (STTRAM)
has been used for reconfigurable frameworks which partition
the entire input application into smaller representable lookup
tables [17] or use a co-design approach for a better application
mapping [18]. Compilers can further optimize the lookup
table resource allocation among various functions used in
a program [19]. However, these frameworks map the entire
application [17], [18] or hot functions [19] to the non-volatile
memory, hence limit their applicability to a subset of applica-
tions amenable to full memory-based computing. Others have
proposed associative memories that use TCAMs with mem-
ristive elements to realize a low-power search operation [12],
[13], [21], [22]. However, their exact search operation does
not exploit the application-level tolerance to errors, leaving an
untapped energy saving potential.

Approximate Computing has been also explored to reduce
the energy consumption in the processing cores [23], [24],
[25], [9]. In [23], approximate computing is applied to the
floating point operations in GPUs by designing imprecise
hardware blocks. An associative memory with approximate
matching reduces energy of the FPUs by exploiting value
similarity and locality inside GPU applications using tiny
lookup tables [25]. However, it can afford to maintain very few
contexts due to the limitations of conventional CMOS-based
lookup tables. Moreover, these CMOS-based lookup tables and
imprecise hardware blocks suffer from the common drawback
of having a critical operating voltage during VOS [3], [4], [6].

We have earlier designed an AMM module that enables ap-
proximate computing-with-memory under aggressive VOS [9].
We improve its TCAM architecture by employing an access-
transistor-free implementation that further reduces energy con-
sumption and area. Our proposed programming flow also
limits the write stress to the AMM modules, thus extending
their lifetime, by allowing only a limited number of write
operations at the beginning of the kernel.

III. BACKGROUND ON MEMRISTORS

Recent studies on metal oxide valence change
ReRAMs [26], generally referred to as memristors [27],
demonstrate their potential to offer ultra-small and low-power
non-volatile memory elements [28]. A memristor is a two-
terminal passive programmable resistor, the resistance of
which is maintained in the absence of an electric field. This
characteristic makes them an ideal candidate as a non-volatile
memory. Memristive devices with high (or low) resistances,
ROFF (or RON), can be used to store logic value 0 (or 1). The
stored logic can be read by applying a low voltage pulse to
the device and sensing the resulting current: a high (or low)
current indicates a low (or high) resistance state stored in the
device, and thus a logic 1 (or 0).

Memristors typically have a metal/insulator/metal structure.
The change in the resistance is due to the non-volatile forma-
tion of a conductive filament inside the insulating oxide layer.
Such filament is formed by applying a voltage (or current)
pulse across the device. The applied electric field forms a
filament by mobilizing the conductive particles (e.g., metallic
ions, oxygen vacancies, etc.) and making them drift inside
the insulating oxide layer [29]. With the formation of such a
highly conductive filament, the device is set to a low resistance
state (ON state). To reset the device back to a high resistance
state (OFF state), a pulse with an opposite voltage polarity
is applied. Such pulse ruptures the filament by dispersing the
conductive particles. Fig. 1(a) and Fig. 1(b) show the filament
formation and rupture processes in a Pt/TaO2/Pt memristor.

The change to the resistance has a strong non-linear depen-
dency on the amplitude and the duration of the applied pulse;
applying voltages above a write threshold, Vthw, effectively
changes the resistance of the device, while applying voltages
below Vthw has negligible impact on device’s resistance, as
is shown Fig. 2(a). This behavior is generally attributed to
the super-exponential dependence of the ionic mobility on the
applied voltage [30]. A second type of non-linearity is further
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(a) (b)
Fig. 1. A memristor’s exemplar realization: (a)/(b) applying a posi-
tive/negative write voltage to the device can form/destroy a low-resistance
filament, by attracting/dispersing conductive particles, thus writing logic 1/0
to the cell.

engineered in the “I-V characteristics” of several memristive
devices by introducing extra layers in the device stack of mem-
ristors [31], [32], [33]. Researchers have achieved a variety of
I-V behaviors; from rectifying devices that behave as a diode
in the presence of negative biases, as shown in Fig. 2(b), to
devices that exhibit a very high resistance > 100GΩ below
a read threshold, for both ON and OFF states, as shown in
Fig. 2(d).

The existence of such non-linearities in the dR/dt-V and
I-V characteristics of memristive devices, enables the realiza-
tion of crossbar-based memristive memory modules with no
access-transistor per memory element [34]. Ultra-high density
memory arrays can be realized with memristive devices due to
the possible elimination of the access-transistors per memory
cell [33], [35], [34], as well as the memristor’s simple structure
which enables feature sizes that can be shrunk to a sub-
10nm scale [36], [37]. Both analysis and preliminary exper-
imental measurements have also demonstrated the potential
of memristive memory modules for lower power consumption
than existing technologies [38], [39]. The main contributors
to its power efficiency are the elimination of the access-
transistors that have considerable static power consumption
in small technology nodes, and the memristor’s non-volatile
attribute which requires no power to maintain the state. Sev-
eral nanoscale memristive crossbars have been successfully
demonstrated recently [33], [40], [41].

Memristive memories can also be utilized to implement
power-efficient associative memories [9], [44]. Section IV de-
scribes the design and operation of associative memories using
linear I-V memristive devices. Fig. 2(a) shows such a typical
linear I-V behavior. In Section V, an access-transistor-free
associative memory is presented that leverages the rectifying
I-V behavior observed in W/SiGe/a-Si/Ag devices, as shown
in Fig. 2(b) [33].

IV. ASSOCIATIVE MEMRISTIVE MEMORY (AMM)

In the following subsections, we describe 1) the integration
of the AMM modules with the FPU pipelines commonly
found in the state-of-the-art GPUs, 2) the architecture of the
AMM modules, and 3) the realization of the inexact matching
operation suitable for approximate computing.
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Fig. 2. A memristor’s I-V and dR/dt-V characteristic. (a) Exemplar real-
ization: the solid line shows the non-linearity in the rate of change for the
resistance of the device based on the applied voltage. Applying voltages over a
threshold voltage Vthw effectively changes the state of the device. The dashed
red lines show the linear I-V characteristic observed in Pd/Ta2O5−x/TaOy/Pd
memristors [32]. (b) The rectifying I-V behavior observed in W/SiGe/a-
Si/Ag memristors [33]. Application of negative voltages results in negligible
currents for both ON and OFF devices. (c) Non-linear I-V characteristics of a
Pt/TiOx/TiO2−x/Pt memristor [42]. (d) Non-linear I-V diagram of a memristor
with a field assisted super-linear threshold selector (FASTTM) [43]. The inset
of sub-figure (a) as well as the sub-figures (b)-(d) show the current in log-
scale, to highlight the non-linearity in the I-V characteristics.

A. Integration of the AMM modules with GPU Architecture

We focus on the integration of an AMM module on one
of the most recent GPUs from AMD, the Southern Islands
family (Radeon HD 7000-series). The Southern Islands is
based on AMD’s Graphics Core Next which is a RISC single
instruction, multiple data (SIMD) architecture. We target the
Radeon HD 7970 device which has 32 compute units as shown
in Fig. 3. Every compute unit contains a scheduler and a set
of four SIMD execution units. Each SIMD execution unit has
16 cores, which gives a total number of 64 cores per compute
unit. The core executes the instructions using integer units
(IUs) and floating point units (FPUs). A vector instruction
is fetched once and executed in a SIMD fashion within the
compute unit. After the fetch and decode stages, the source
operands for each instruction are read from vector registers
or local memory. When the source operands are ready, the
execution stage starts to issue the operations into the IUs or
FPUs. The execution stage of every FPU has a latency of
six cycles and a throughput of one instruction per cycle [45].
Finally, the result of the computation is written back to the
destination operands.

In order to fully exploit the energy saving potential of both
partial computing-with-memory and approximate computing,
we tightly integrate an AMM module to a FPU [21], [9]. For
each type of FPU (e.g., ADD or SQRT), we first identify a
set of highly frequent input operands. This is done during a
profiling stage described in Section VI-B. Such highly frequent
inputs and their pre-calculated results are then stored in the
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Fig. 3. Radeon HD 7970 GPU architecture. An AMM module (TCAM+MRAM) is integrated to the execution stage of each FPU, which is not present in
the original GPU design.

AMM module. During the normal operation of the FPUs,
input patterns to FPUs are searched for within the highly
frequent input patterns already stored in the AMM module. In
case of a match, the pre-computed result stored in the AMM
module (QAMM in the rightmost part of Fig. 3) is read and
propagated toward the end of the pipeline along with a hit
signal. The propagated hit signal clock-gates the remaining
stages of the FPU to save energy by avoiding unnecessary re-
execution. In case of a miss, the FPU works normally, and
its result (QFPU ) is selected as the pipeline output. The hit
signal selects either QFPU or QAMM as the output. The use
of an AMM module enables significant power savings, as
1) it performs the match operation and returns the output at
lower energy costs compared to the FPU, thanks to the ultra-
low-power characteristics of the memristive memories, and 2)
several stages of the FPU pipeline are clock-gated in case of
match events. It is worth mentioning that the reduction in the
power consumption is achieved without affecting the latency
and the throughput of the FPU, as the AMM modules work
under the same clock frequency and their outputs are pipelined
to match the latency of the FPU pipeline. The rightmost part
of Fig. 3 illustrates the integration of an AMM module with
the FPU.

The AMM module consists of two pipelined stages: (1) a
memristive TCAM which stores and searches for the highly
frequent sets of input operands detailed in Section IV-B, and
(2) a resistive random access memory (ReRAM) that maintains
the pre-calculated output results for each set of such frequent
operands discussed in Section IV-C. For each FPU, in the
first stage, the inputs are also fed to the memristive TCAM.
The TCAM searches to determine whether the input pattern
belongs to the set of high frequency input patterns. In case of
a match, the result of the operation is read from the ReRAM
in the second stage of the pipeline.

B. Memristive TCAM

CMOS-based associative memories require a large number
(10+) of transistors per bit to store and search for patterns [46],
incurring significant penalty in terms of power and area [10].
In an attempt to improve the energy- and area-efficiency of the
TCAM modules, memristive TCAMs have been proposed [12],
[22] that employ nano-scale and ultra-low-power memristive
devices instead of transistors that are larger than memristors
and consume more energy.

Fig. 4(a) shows the structure of a memristive TCAM. Each
TCAM row stores one pattern of the highly frequent input
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a row in the 1T-1R resistive random access memory (ReRAM) to read the
computation results stored in the ReRAM.

operands. We use a 2-transistor/2-memristor structure for each
bit (i.e., a 2T-2R bit-cell) for the TCAM design inspired
from [12]. Memristors store the data pattern according to the
Table I, while the gates of the access transistors are driven
by the search pattern (SL and SL) to facilitate the search
operation. All the 2T-2R bit-cells on each TCAM row are
connected to a “match-line” (ML), the voltage value of which
indicates a match/mismatch at the end of the search cycle.
Each 2T-2R bit-cell provides two possible “discharge paths”
from the ML to the ground, each consisting of a transistor
and a memristor in series. The highlighted TCAM cell in
Fig. 4(a) illustrates the two discharge paths per bit-cell in
red and blue. To program the TCAM, individual memristive
devices are written into by applying the write voltages on the
MLs and connecting the access-transistors via the search lines
(SL and SL).

The search operation in a memristive TCAM consists of two
phases, a precharge phase and an evaluation phase. During
the precharge phase, the MLs are precharged, as illustrated
in Fig. 5(a): both transistors in the 2T-2R cell are OFF,
disconnecting the discharge paths, while the match line is
being precharged. In the evaluation period, the search pattern
and its complement are applied on SL and SL respectively.
Hence, either T1 or T2 is turned OFF, leaving only one possible
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TABLE I
RESISTANCE PATTERN STORED IN 2T-2R TCAM CELLS.

Logic Value M1 M2

‘1’ OFF ON
‘0’ ON OFF

‘X’ (Don’t care) OFF OFF

discharge path per bit-cell. In case of a match, the memristive
device connected to the ON transistor is in the OFF state,
which effectively disconnects the remaining discharge path,
and thus prevents the discharge of the ML. A TCAM match
is illustrated in Fig. 5(b): A logic ’1’ is searched for in a cell
storing a logic ’1’. Both discharge paths are disconnected via
either an OFF memristor (M1) or an OFF transistor (T2). In
case of a mismatch, however, the memristor connected to the
ON transistor is also in the low-resistance ON state, providing
a highly conductive path between ground and the match-line
which discharges the ML quickly. A TCAM mismatch is
shown in Fig. 5(c): A logic ’1’ is searched for in a cell storing
a logic ’0’. Both the transistor and the memristor on one
discharge path are ON (M1 and T1), leading to the discharge
of the ML. At the end of the evaluation phase, the ML is
sampled to determine the “match” output.

In each TCAM row, a ML is shared among W 2T-2R cells,
where W is the number of bits in each word. In case of an
exact word match, i.e. bit-by-bit, the ML stays charged for
an extended period of time as all the discharge paths are
disconnected in every 2T-2R cell. If the pattern-under-search
and the stored pattern mismatch by even a single bit, the
ML is discharged quickly because of the existence of highly
conductive path(s) between the ML and ground. This provides
a clear margin between an exact match and mismatches. As the
number of bit-mismatches increases, the ML will be discharged
even faster. We exploit this property to design inexact matching
suitable for approximate computing described in Section IV-D.

In order to increase the noise margin and provide a dig-
ital match/mismatch output signal, a clocked self-referenced
sensing circuitry is utilized [12]. Fig. 7(a) illustrates the
evolution of the digital “match” signal, i.e., the output of the
clocked self-reference sensing circuitry, during the evaluation
phase for different number of bit-mismatches based on SPICE
simulations. As it is expected, this signal drops faster with
more bit-mismatches. The digital match signals are sampled
(i.e., latched) at the end of the evaluation phase. A logic ‘1’
means that the line is not discharged yet, indicating a match.
The latched match signals are then fed to the ReRAM as
enable lines (EnL), to read the previously-computed and stored
results from the corresponding word-line in the ReRAM. The
logical OR of the EnLs provides a “hit signal” which indicates
that the result is provided by the AMM module.

C. Resistive RAM (ReRAM)

Fig 4(b) shows the structure of the ReRAM module that
stores the pre-computed results of the highly frequent input
patterns. In our implementation, the ReRAM uses 1T-1R bit-
cells to store each bit [47]. The memory is programmed
by applying proper write voltages on the bit-lines, while
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Fig. 5. 2T-2R TCAM operation. (a) Precharge: Both SL and SL are driven to
ground, disconnecting both discharge paths. A precharge circuity precharges
the ML. (b) Match: {search pattern, stored pattern} = {1,1}. Both discharge
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discharge the ML. Transistors are not drawn to scale.

enable lines are used to select the target cell. During the read
operation, the enable lines are driven by the EnLs provided by
the TCAM. Either one or none of the EnLs are active based
on a hit or a miss in the TCAM stage, respectively. The active
EnL selects a row in the ReRAM: The access transistor in the
1T-1R cell is turned on, which provides a path from the bit-line
to the ground, through the selected memristor. Each bit-line
is connected to a read circuit consisting of a sense resistor
RSense and a NOT gate. The read circuitry works as a voltage
divider. If the selected memristor stores a high-resistance logic
‘0’, RMemristor >>RSense and thus the voltage drop on the sense
resistor is negligible and the output of the NOT gate will be
a logic ‘0’. If the memristor stores a low-resistance logic ‘1’,
RSense >> RMemristor, thus most of the voltage is dropped on
the sense resistor and the output of the read circuitry is a logic
‘1’. Fig. 6 illustrates the ReRAM operation.

D. AMM Module with Inexact Matching

Fig. 7(a) shows the effect of the number of bit-mismatches
on the discharge time. It can be observed that when the number
of bit mismatches is small (e.g., 1 or 2), there is a clear
difference in the drop time of the mismatched signals with
distinct number of bit-mismatches. This clear margin allows
us to provide a controllable “inexact” matching by shorten-
ing the evaluation period (i.e., faster sampling), or similarly
by reducing the supply voltage (i.e., voltage overscaling or
VOS) while preserving the same evaluation period. In both
cases, a pattern with a Hamming distance of 1 or 2 (i.e.,
the number of bit-mismatches) is considered as a “match”.
This inexact matching causes approximations during search
operation, which introduces a limited number of errors in
the computation. We show that the quality degradation due
to the incurred error is tolerable in several image processing
applications, i.e., PSNR does not fall below a certain threshold.
Hence, we enable approximate computing on AMM module
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Fig. 6. 1T-1R Memristive RAM operation.
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Fig. 7. 2T-2R TCAM match operation under VOS. Different x-HD lines show the drop time of the digital match signal for TCAM rows storing patterns with
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increases the discharge time, thus patterns with 1-bit mismatch are still considered as matched. (c) Further lowering the VDD to 725mV, enables inexact
matching of patterns with 2 bit Hamming distance to the search pattern. 0T-2R TCAM exhibits a similar behavior with slightly different voltage levels and
drop times.

by applying VOS which further lowers the power consump-
tion [9].

Fig. 7 illustrates the effect of VOS on the matching opera-
tion of the TCAM module. Operating at the nominal voltage
of 1V guarantees an exact matching with no errors as shown
in Fig. 7(a). Decreasing the VDD results in longer discharge
times. Hence, given the same clock period, with a one-bit
mismatch, the match line is not yet discharged by the time
of sampling, manifesting itself as a match. Thus, by reducing
the supply voltage to 775mV, the TCAM reports a hit, even
if the input pattern has a Hamming distance of 1 with any
of the stored patterns (1-HD inexact matching). This way,
an inexact matching operation is realized with reduced power
consumption due to the lowered VDD. VOS down to 725mV
matches the input patterns with up to 2 bit-mismatches (2-
HD inexact matching) at even lower energy costs. Further
lowering the supply voltages results in an abrupt increase
in the number of bit-mismatches that cannot be tolerated in
approximate computing.

Inexact matching reduces the power consumption by VOS
at the cost of relaxing the matching criteria. There are two
downsides to this approach: (1) possibility of a false match,
and reporting a wrong output as the result of the computation,
and (2) having several matches, which would enable several
word-lines in the ReRAM, resulting in the logical OR of
the corresponding outputs being reported as the output of the
AMM module, QAMM . Possibility of several matches can be
avoided by ensuring a minimum Hamming distance among the
stored patterns in the TCAM (e.g., 3 and 5 for 1-HD and 2-
HD inexact matching respectively); this is practical given the
typical TCAM word-size (i.e., 32, 64, or 96), and the small
number of TCAM rows. As for the case of a false match,
its likelihood is reduced by a proper sizing of AMM module
described in Section VI-F. The significance of the error caused
by a false match can also be decreased, by utilizing a hybrid
fashion in the design of the AMM module. Such a hybrid
module performs exact matching on few critical bits (e.g., the
sign and exponent bits), and limits the inexact matching search
to less critical bits. In Section VI-F, we apply the proposed
inexact matching to different image processing kernels that
can tolerate the incurred errors and display a high PSNR while
benefiting from the lower energy consumption.

V. ACCESS-TRANSISTOR-FREE MEMRISTIVE TCAMS

Utilizing a 2T-2R bit-cell structure to implement mem-
ristive TCAM significantly improves the area and power
cost compared to the conventional CMOS TCAMs. However,
this structure does not fully exploit the ultra-low-power and
extremely-small characteristics of the memristive memory: the
energy consumption of the access-transistors dominates the
total energy consumption of the TCAM module, and the size
of the TCAM cell is still limited by that of the transistors.

Here we implement an access-transistor-free memristive
TCAM to address such issues that utilizes purely resistive
bit-cells (i.e., 0T-2R) to store the data patterns and perform
the match operation. The 0T-2R TCAM has the same inter-
face and operates based on a similar “match-line discharge”
mechanism: a match-line is precharged in the precharge phase,
which will be discharged in the evaluation phase in case of a
mismatch. However, this structure solely relies on memristors
as the ON/OFF switches to disconnect the discharge paths.
Fig. 8(a) shows the implementation of the access-transistor-
free TCAM module.

The access-transistors are eliminated by exploiting the
diode-like rectifying I-V characteristics, shown in Fig. 2(b),
observed in W/SiGe/a-Si/Ag memristive devices [33]. Such
memristive devices demonstrate an inherent rectifying behav-
ior; while in case of positive biases, memristors in the ON (or
OFF) state exhibit an electrical resistance of RON (or ROFF),
applying a negative bias yields the device to demonstrate a
fairly high resistance, RRectify, in orders of giga-ohms for both
ON and OFF states.

A. Access-Transistor-Free Memristive TCAM Operation

Each bit-cell is composed of two rectifying memristors, M1
and M2, which are placed in between the match line (ML)
and the search lines (SL or SL). The rectifying memristors’
device stack is fabricated such that it exhibits a large RRectify
when the ML’s voltage is larger than the voltage of the search
line(s). The access-transistor-free bit-cell provides two paths
from the ML to the search lines (SL and SL). Hence, during
the evaluation phase that the search pattern and its complement
are applied on SL and SL, one path discharges the ML, while
the other tends to charge it: Either SL or SL is at VDD while the
other one is grounded. However, the “charge-path” is always
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disconnects ML and SL (i.e., at VDD). (c) Match for {search pattern, stored
pattern} = {1,1}. M1 is ON, but reverse-biased, thus exhibits a high rectifying
resistance, disconnecting SL from ML. M2 is also OFF, thus disconnects SL
and ML, preventing the discharge.

reverse-biased, as the ML voltage level is always below VDD.
Hence, the charge-path is always disconnected according to
the rectifying behavior of the W/SiGe/a-Si/Ag devices. This
leaves the bit-cell with one possible “discharge path” which is
connected (or disconnected) if the data stored in the bit-cell
mismatches (or matches) the search pattern. Table II shows the
resistance patterns stored in the memristive devices of a 0T-2R
bit-cell for different logic values. The following elaborates on
the match and mismatch events in the 0T-2R TCAM in details.

Consider the 0T-2R bit-cell in Fig. 8(b) that stores a logic
‘1’; M1 and M2 are in the ON and OFF states respectively.
When searching for a logic ‘0’, SL and SL are driven to GND
and VDD respectively. Hence, the low-resistance M1 connects
the match line to the grounded SL, and thus discharges the
ML indicating a mismatch. Note that while SL is at VDD, it
does not “charge” the ML, as M2 is reverse-biased and exhibit
a large resistance.

Fig. 8(c) shows the case in which a search pattern ‘1’ is
applied to a bit-cell also storing a logic ‘1’: SL and SL are
driven to VDD and GND respectively, while {M1,M2} are in
the {ON,OFF} states. In this case, both memristors exhibit
a high-resistance as M1 is reversed-biased and M2 is in the
high-resistance OFF state. As a result, a bit-match, does not
affect the ML’s voltage.

Note that the rectifying behavior of the W/SiGe/a-Si/Ag
memristive devices [33] is crucial to the functionality of the
0T-2R TCAM cell. Without this inherent rectifying behavior,
the “charge-paths” could keep charging the ML during the
evaluation period, resisting the discharge of the ML even in
case of bit-mismatches.

B. 0T-2R TCAM Design Considerations

The 0T-2R structure utilizes the search lines to discharge the
ML, rather than the global GND lines. As a result, the line

TABLE II
RESISTANCE PATTERN STORED IN 0T-2R TCAM CELLS.

Logic Value M1 M2

‘1’ ON OFF
‘0’ OFF ON

‘X’ (Don’t care) OFF OFF

drivers for the search lines should be properly sized to enable
effective discharge of several match-lines: large buffers are
needed for large TCAMs which could dominate the energy
consumption of the TCAM module and incur energy penalty.
However, in Section VI-F we show that for the purpose of
approximate computing-with-memory, the optimum size of
a TCAM is sufficiently small, e.g., ≤ 32 rows. The buffers
necessary for such a small TCAM have a negligible effect on
the performance or the energy consumption of the TCAM.

The 0T-2R structure generally has smaller noise margins
compared to the 2T-2R TCAM. This is is due to the elim-
ination of the transistors from the TCAM and relying only
on memristors to disconnect the discharge paths: An OFF
transistor typically have higher resistance values compared
to an OFF memristor, and hence, it is a better “switch” to
disconnect the discharge paths. The reduced noise margin
limits the feasible amount of voltage overscaling to achieve
1-HD and 2-HD inexact matching, compared to the 2T-2R
structure. Nevertheless, we have observed a consistent inexact
matching behavior for the 0T-2R TCAM similar to the digital
match signals shown in Fig 7, but with a shift in the VOS
values. Moreover, we show that the energy saving due to the
elimination of the transistors in a 0T-2R TCAM, is generally
more significant than the possible energy saving due to further
VOS in the 2T-2R structure. The 0T-2R structure also reduces
the area overhead of the TCAMs. With the elimination of
the transistors, the memristive TCAM can be monolithically
integrated on top of the CMOS FPUs to increase the area
efficiency, as shown in Fig. 9.

VI. EXPERIMENTAL SETUP AND RESULTS

In this section, we briefly describe our experimental setup,
the AMM programming and execution flow, and evaluation
of the AMM effectiveness in improving energy efficiency of
FPUs in GPUs.

A. Experimental Setup

We focus on the AMD Southern Islands GPU, Radeon HD
7970. However, our technique is similarly applicable to other
GPUs, as it leverages the application-level-tolerance to errors
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Fig. 9. Monolithical integration of a 0T-2R TCAM on top of a CMOS FPU.



IEEE JETCAS, SPECIAL ISSUE ON EMERGING MEMORIES – TECHNOLOGY, ARCHITECTURE & APPLICATIONS, 2015 8

which is an application property and is independent of the
underlying architecture. Note that the proposed method is
mainly suitable for data-intensive kernels that are amenable
to approximate computing, such as applications in multimedia
and vision domains. Such applications often exhibit inherent
data-level parallelism that makes them ideal for GPU execu-
tion [48], [8]. Image processing applications are adopted from
AMD APP SDK v2.5 [15] which is a software ecosystem writ-
ten in OpenCL, suitable for stream applications. Multi2Sim
[45], a cycle-accurate CPU-GPU simulation framework, is
used for profiling and simulations. Four image processing
filters are examined in this study: Roberts, Sobel, Sharpen,
and Shift. These kernels typically apply a 2D convolution; we
examine frequently activated FPUs during the kernel execu-
tions: adder (ADD), multiplier (MUL), multiply-accumulator
(MAC), and SQRT. Accordingly, the 6-stage balanced FPUs
are generated and optimized using FloPoCo [49]. These FPUs
are synthesized and mapped using a 45-nm ASIC flow. The
front-end flow has been performed using Synopsys Design
Compiler, while Synopsys IC Compiler has been used for the
back-end. The FPUs have been optimized for power and a
signoff clock period of 1.5ns. Finally, Synopsys PrimeTime is
used to report the power consumption at the nominal operating
voltage of 1.0V.

AMM modules are designed with different word-sizes
based on the type of FPU: the TCAM has a word-size of
32-bit for SQRT, 64-bit for ADD, MUL, and 96-bit for MAC,
considering the single precision FPU operands. The resistive
memory, or ReRAM, module has a fixed word-size of 32-bit
for any FPU to maintain the outputs. Transistor-level SPICE
simulations are performed in Cadence Virtuoso to estimate
power and delay of the AMM module at the worst corner
with regard to the data patterns. Regular memristive devices
with an exemplar 50KΩ RON and 50MΩ ROFF are employed to
implement the 2T-2R TCAM cells, while rectifying memristive
devices reported in [33] are utilized for 0T-2R TCAM imple-
mentation. Measurements on fabricated rectifying memristors
exhibit RON, ROFF, and RRectify values of 50KΩ, 50GΩ, and
8GΩ respectively. Line resistance and capacitance values of
0.02Ω/nm and 1.2aF/nm are derived from [50]. The 2T-
2R AMM implementation exhibits 1-HD and 2-HD inexact
matching behaviors at 775mV and 725mV respectively. The
0T-2R, however, performs inexact matching at slightly higher
voltages, i.e., 830mV and 800mV for 1-HD and 2-HD inexact
matching respectively. This is due to the reduced noise margins
as discussed in Section V-B. Note that these voltages are se-
lected conservatively to ensure correct 1-HD and 2-HD inexact
matching for different types and sizes of AMM modules. A
worst-case precharge time of 0.9ns is considered for all cases
to ensure successful precharge operation even at the lowest
voltage level (i.e. 725mV). We integrate a functional model of
the AMM module into Multi2Sim for every FP operation to
quantify the hit rates and PSNR drops.

B. AMM Programming and Execution Flow

The execution flow of an AMM-integrated GPU has two
main stages: (1) design time profiling, and (2) run-time

Host code 
Profiler 

√ : {e1} → {q1} 

 *: {c1, d1} → {p1} 

 +: {a1, b1} → {o1} 

+: {a2, b2} → {o2} 

Kernel code 

Highly frequent 

computations (HFC) 

Training 

dataset 

… 

+ FPU 

* FPU 

√ FPU 

Core 

GPU device 

HFC + Exact/1HD/2HD 

Functional Simulations 

√ : 2HD match 
*: 1HD match 
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Desired 

PSNR 

Matching constraints 

to meet desired 

PSNR 

Fig. 10. Programming and execution flow for AMM modules.

computing-with-memory. Fig. 10 illustrates this execution
flow. The profiling stage identifies the computations with
a high frequency of occurrence. In this stage, we have an
OpenCL kernel and a host code with a training input dataset.
To expose highly frequent set of operands at the finest granu-
larity, we independently profile each type of FPU. The output
of this stage is the list of highly frequent computations (HFC)
for each FP operation: a sorted list of the input operand(s)
and the corresponding result. The list is sorted based on the
frequency of occurrence of input operand(s) and does not
consider the commutative property of the operations. That is,
A+B and B+A are considered as two different entries. This
is to match the search behavior of the AMM modules.

Next, we need to determine the tolerable level of inexact
matching in the TCAMs for each kernel. To this end, we
leverage the Southern Islands functional simulator. We ad-
justed the simulator accordingly to incorporate the proposed
AMM modules. The simulator starts with the exact matching
and then increases the degree of approximation step-by-step
by applying 1-HD and 2-HD inexact matching. The exact
matching output is then considered as the golden reference
and the outputs of the 1-HD and 2-HD inexact matching is
compared with that to measure the PSNR. The maximum
degree of inexact matching is determined for each AMM
module such that the output maintains a desired PSNR ≥ 30dB
in spite of the incurred errors. It is worth mentioning that the
profiling stage is a one-off activity whose cost is amortized
across all future usages of the kernel.

In the next step, the host code can transfer the output of the
profiling stage to the AMM modules for run-time reuse. The
AMD compute abstraction layer (CAL) provides a run-time
device driver library that supports code generation and kernel
loading. furthermore, it allows the host program to interact
with the stream cores at the lowest-level. The AMM module
is designed to be addressable by software therefore the host
code can program it using the CAL. Right before launching the
kernel execution, the host code programs the AMM modules:
for each type of FP operation activated during the kernel, a
subset of HFCs in conjunction with the degree of applicable
inexact matching is set for the corresponding AMM modules.
This could be up to few hundred bytes of data depending on
the size of the AMM.

Note that the proposed method updates the values in the
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Fig. 11. Hit rate versus size of AMM for MAC operation during Roberts filter executions.

AMM module only once per kernel, and thus: (1) enhances
the lifetime of the AMM module by putting a minimum
write stress on the memristive devices, and (2) minimizes the
performance overhead of the required write operations to a
negligible level. This is in contrast to methods such as [51]
that use memristors in place of regular registers. Such methods
are critical with respect to the current limitations in number of
write cycles for memristor devices. Typical memristive devices
exhibit an endurance of 108 write operations [52].

C. Design Space for AMM

We explain the design space for utilizing the AMM modules
as a case study for Roberts filter, one of our edge detection
kernels. We evaluate the trade-off between the size of AMM
module, i.e., the number of rows that store different patterns,
with its hit rate. A higher hit rate means a greater number
of operands are matched with the stored patterns in AMM
module. Hence, there is no need for re-computing the results
for those input patterns which leads to higher energy saving.
We quantify the hit rate of an AMM module for multiply-
accumulator (MAC) operator for 100 test input images. Fig. 11
summarizes the minimum, the maximum, and the average
(shown in bars) hit rates of the AMM module for a wide range
of sizes. The experiment is repeated for all three matching
constraints.

Fig. 11(a) shows the hit rates for the exact matching. A
4-row AMM module displays the hit rates in the range of
25%–83%. Increasing the size of the AMM from 4-row to
8-row, and to 16-row improves the average hit rate from 40%
to 42%, and to 50%. Overall, the average hit rate increases
about 12% when the number of rows increases from 16 to
512. Such high hit-rates are achieved due to the value locality
and similarity in GPU applications. For example, the Roberts
filter typically applies a 2-D convolution with a matrix of
fixed weights on input pixels, while the values of adjacent
input pixels are mostly in a similar range [48]. A similar
trend of the hit rate versus the AMM size is observed for
the inexact matching, as shown in Figs. 11(b)-(c). When the
number of rows increases from 16 to 512, the average hit rate
improves about 19% and 18% for 1-HD and 2-HD inexact
matching, respectively. Fig. 11 also illustrates that an AMM
with a given size experiences higher hit rates by switching
from the exact matching to any of the inexact matching modes.
For instance, the hit rate of a 4-row AMM increases 12% on
average (from 40% to 52%) by using 2-HD inexact matching
instead of the exact matching. This increased hit rate is due to
the relaxed matching constraint in the AMM modules: more

of input patterns are approximately matched with the stored
patterns.

In a nutshell, choosing a large AMM size has two disad-
vantages. (1) It diminishes the gain of energy saving, because
after a certain size the average hit rate almost saturates, while
the energy consumption of the AMM increases for larger
sizes. For example, increasing the AMM size from 8-row by
64× only brings a 25% higher hit rate with 2-HD inexact
matching. This significantly lowers the hit rate per unit of
power consumed by the AMM. In Section VI-F, we show
that enlarging the AMM beyond a certain size will not bring
any energy saving. (2) It increases the likelihood of false
matches that might quickly drop PSNR below the desired
threshold. Our profiling results indicate that Roberts filter is
able to tolerate the errors in computations (an average PSNR
of 34dB) with the AMM modules with up to 512 rows using
2-HD inexact matching. Increasing the AMM size above 512
rows drops the PSNR below 30dB. Visual depiction and the
corresponding PSNR of different matching constraints for one
of the test images is shown in Fig. 12.

D. Energy Consumption of AMM Modules versus FPUs

Table III summarizes the energy consumption per operation
for individual FPUs, and for the corresponding AMM modules
with different number of entries. Furthermore, energy num-
bers are reported for AMM modules with different matching
criteria and both 2T-2R and 0T-2R TCAM implementations.
Reported energy numbers demonstrate the considerable energy
saving potential of the AMM modules. For example, in case
of an 8-row AMM module for a SQRT operation, a 2T-2R
AMM can perform the SQRT operation at ∼8X lower energy
costs compared to the CMOS FPU, at the nominal voltage
of 1.0V. A 0T-2R implementation of the same size AMM
further improves the energy efficiency, with ∼13X less energy
compared to the FPU.

By allowing the inexact matching, the energy saving of an
8-row SQRT AMM can be further improved by factors of 17X
and 23X, for 1-HD and 2-HD inexact matching respectively.

Exact matching 

No noise 

1-HD inexact matching 

 PSNR=61dB 

2-HD inexact matching  

PSNR=42dB 

Fig. 12. Visual depiction of the output quality degradation with exact, 1-
HD, 2-HD inexact matching for the Roberts filter, based on an 8-row AMM
implementation.
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TABLE III
ENERGY CONSUMPTION (FJ) PER OPERATION IN 45NM TECHNOLOGY FOR FPUS AND 0T-2R AND 2T-2R AMM MODULES.

Module FPU (1.0V) Matching 2T-2R AMM 0T-2R AMM
4-row 8-row 16-row 32-row 4-row 8-row 16-row 32-row

ADD 4742
Exact 1176 1403 1858 2740 749 848 1056 1511
1-HD 644 732 906 1262 476 539 677 1007
2-HD 505 555 709 999 468 464 649 913

MUL 9891
Exact 1176 1403 1858 2740 749 848 1056 1511
1-HD 644 732 906 1262 476 539 677 1007
2-HD 505 555 709 999 468 464 649 913

SQRT 9983
Exact 934 1137 1528 2322 629 727 932 1380
1-HD 514 594 756 1084 402 464 599 961
2-HD 397 441 593 864 394 444 575 956

MAC 12051
Exact 1410 1653 2122 3096 867 967 1178 1639
1-HD 774 867 1052 1422 550 612 753 1037
2-HD 612 667 832 1124 533 584 718 986

The reduction in power consumption is realized by lowering
the operating voltage of the modules by up to 27%. Such
saving trend is consistent for different types of FPUs, and
different sizes of AMM modules. Note that while the AMM
modules work reliably under the designated VOS points (see
Section IV-D), these VOS points are well below the critical
operating voltage of CMOS FPUs. Hence, such aggressive
VOS cannot be applied to the FPUs, as it would cause an
unacceptably huge number of timing errors.

Fig. 13 highlights the energy consumption of different
implementations of an ADD operation: FPU, 2T-2R AMM
and 0T-2R AMM. The energy consumption of the AMM
module is directly proportional to its size. Thus increasing
the size of the AMM beyond a limit will hurt the energy
efficiency, as the AMM module would consume higher energy
than the CMOS FPU. Hence, larger AMM modules, e.g.,
greater than 64, incur energy penalty, even in case of an ideal
hit-rate.

E. Energy Consumption of 0T-2R AMM versus 2T-2R AMM
Table III also shows the power saving merits of the 0T-2R

implementation compared to the 2T-2R implementation. At the
nominal voltage of 1.0V, the 0T-2R module consumes ∼2X
less energy, for all TCAM sizes. It can be observed that the
energy saving potential of the 0T-2R implementation tends to
be lower for: (1) smaller TCAMs; and (2) relaxed matching
criteria, e.g., 2-HD inexact matching.
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Fig. 13. Energy consumed during an ADD operation. Approximate
computing-with-memory using the proposed AMM module offers a signifi-
cant potential reduction in the energy consumption over the CMOS FPU.

The 0T-2R implementation improves the energy consump-
tion by removing the transistors from the bit-cell structure of
the TCAM. However, the remaining parts of AMM module,
i.e., line drivers, sensing circuitry, latches, and the second
stage 1T-1R MRAM, are not affected. Hence, better energy
savings are achieved with larger TCAMs that have more
entries (rows) and a larger number of bits per entry. An AMM
module to perform a MAC operation has 96 bit-cells per entry.
Hence, using 0T-2R implementation saves 96×2 transistors
per row compared to a 2T-2R implementation. In contrast, the
reduction in the number of transistors per row is 32×2 for a
SQRT AMM. As a result, for an exemplar 32-row AMM with
the exact matching operation, the energy saving advantage
of the 0T-2R implementation over the 2T-2R implementation
reduces from 47% for a MAC AMM to 40% for a SQRT
AMM.

The smaller energy saving advantage of the 0T-2R imple-
mentation in case of inexact matching is mainly due to the
higher supply voltages at which a 0T-2R AMM performs
inexact matching compared to the 2T-2R AMM, i.e., 830mV
and 800mV versus 775mV and 725mV for 1-HD and 2-HD
inexact matching respectively. For example, while operating a
16-row 0T-2R ADD AMM at the exact matching mode offers
43% energy saving compared to the 2T-2R implementation,
relaxing the matching criterion to 1-HD and 2-HD matching
decreases the advantage of 0T-2R over 2T-2R to 25% and
8% respectively. To summarize, the 0T-2R structure offers
better energy saving for all exact and 1-HD inexact matching
cases, as well as 2-HD inexact matching for operations with
2 or 3 operands, i.e. ADD, MUL, and MAC. However, in the
worst case of 2-HD inexact matching for one operand SQRT
operation, the 0T-2R implementation has up to 10% higher
energy consumption.

F. Energy Saving with Corresponding PSNR

In this section, we take the hit-rates into the account,
and present the actual energy saving offered by the AMM
modules during the execution of the image processing kernels.
Moreover, we consider the effect of the 1-HD and 2-HD
inexact matching on the output quality. For the four image
processing kernels, our profiler utilizes 10% of the Caltech
101 computer vision dataset [16] as the training set in order
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Fig. 14. AMM normalized energy and PSNR: for different TCAM implementations, sizes, matching criteria, and kernels – values are averaged over the full
dataset [16]. It should be noted that same-sized 0T-2R and 2T-2R implementations yield the same PSNR.

to extract the HFC as explained in Section VI-B. Next, the host
code loads the top X pairs of the HFC to the X-entry AMM
modules, before the kernel execution, where X ∈ {4,8,16,32}.
The full Caltech dataset [16] is then considered to quantify the
average energy saving and the corresponding average PSNR
degradation of employing inexact AMM modules.

Fig. 14 shows the energy consumption, normalized to that
of FPUs for each kernel, as well the degraded PSNR in
case of inexact matching. Different bars represent different
cases of 0T-2R or 2T-2R implementation, as well as various
matching criteria. AMM modules with sizes smaller than 32
rows provide a significant range of energy efficiency (23%–
45%) for different application kernels. Relaxing the matching
criteria improves the energy efficiency of the AMM module,
while an acceptable PSNR above 30dB is maintained for most
of the applications. For example, the energy saving advantage
of utilizing 2T-2R AMM modules for Roberts filter, increases
from 21% in case of exact matching, to 45% by allowing 2-HD
inexact matching, while maintaining a PSNR of 36dB. The
increased energy efficiency is due to the aggressive voltage
overscaling of the AMM module.

The size of the AMM also affects the amount of energy
saving. As shown in Fig. 14(d), 2T-2R AMM modules with
4 rows improve the average energy of Sobel by 20% using
1-HD inexact matching. Increasing the AMM size to 8 rows
leads to a higher average energy saving of 28% due to the
higher hit rate. However, increasing the size beyond 8 rows is
not optimum because the potential energy saving offered by
the extra hit events is less than the energy overhead due to the
increased AMM sizes.

Fig. 14 also demonstrates the energy-saving merits of the
0T-2R implementation. In Shift, for example, an exact-matcher
0T-2R implementation offers 4% to 13% lower energy con-
sumption than a 2T-2R implementation, depending on the
AMM size. Relaxing the matching criterion to allow 1-HD
inexact matching reduces the energy saving advantage of
the 0T-2R implementation to about 2%. It is shown that
in case of 2-HD inexact matching, both 0T-2R and 2T-2R
implementations offer about the same energy efficiency.

The average PSNR degrades with larger AMM sizes, which

is due to the higher possibility of false matches. While Sharpen
and Roberts filters exhibit acceptable PSNR even in case of
2-HD approximate matching, Sobel and Shift kernels can only
tolerate errors introduced in the 1-HD approximate matching.
Increasing the number of stored patterns beyond 32 (or 8) for
Sobel (or Shift) abruptly increases the likelihood of a false
match, which introduces more computational errors and drops
the PSNR below 30dB. Considering an acceptable PSNR being
≥ 30dB, AMM modules with 8 rows provide the best average
energy saving for Sobel (31%), Sharpen (23%), and Shift
(36%); Roberts exhibits the best energy saving of 45% with
16-rows AMM modules. Choosing 8-row as the size of the
AMM modules brings an average energy saving of 33% across
all four kernels, while guaranteeing an acceptable PSNR.

VII. CONCLUSION

This work aims to address the following challenge: how to
exploit both memristive technology and approximate comput-
ing to increase energy efficiency in GPUs? Our approach is
to integrate associative memristive memory (AMM) modules
with the FPUs in GPUs to save energy in threefold. (1) AMM
modules pre-store highly frequent input patterns to avoid
actual computations on the FPUs by recalling the output at
lower energy costs. (2) We reduce this energy cost by applying
VOS to AMM modules that unleashes an untapped energy
efficiency through approximate computing. (3) We further
reduce the energy consumption of the TCAM part by using
an access-transistor-free crossbar that realizes a purely mem-
ristive TCAM, i.e., 0T-2R bit-cell structure. We demonstrated
that the proposed inexact matching due to the VOS and the
0T-2R AMM structure results in significant energy saving, and
the incurred errors due to the inexact matching can be tolerated
by image processing kernels, displaying an acceptable PSNR
larger than 30dB.
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