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Abstract— The field of machine learning is witnessing rapid
advances along several fronts: new machine learning models, new
machine learning algorithms utilizing these models, new hard-
ware architectures for these algorithms, and new technologies
for creating energy-efficient implementations of such hardware
architectures. Hyperdimensional (HD) computing represents one
such model. Emerging nanotechnologies, such as carbon nan-
otube field-effect transistors (CNFETs), resistive random-access
memory (RRAM), and their monolithic 3D integration, enable
energy- and area-efficient hardware implementations of HD com-
puting architectures. Such efficient implementations are achieved
by exploiting several characteristics of the component nanotech-
nologies (e.g., energy-efficient logic circuits, dense memory, and
incrementers naturally enabled by gradual reset of RRAM cells)
and their monolithic 3D integration (enabling tight integration
of logic and memory), as well as various characteristics of
the HD computing model (e.g., embracing randomness that
allows us to utilize rather than avoid inherent variations in
RRAM and CNFETs, resilience to errors in the underlying
hardware). We experimentally demonstrate and characterize an
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end-to-end HD computing nanosystem built using monolithic
3D integration of CNFETs and RRAM. Using our nanosys-
tem, we experimentally demonstrate the pairwise classification
of 21 languages with measured mean accuracy of up to 98%
on >20 000 sentences (6.4 million characters), training using one
text sample (∼100 000 characters) per language, and resilient
operation (98% accuracy) despite 78% of bits in HD repre-
sentation being stuck at 0 or 1 in hardware. We also show
that the monolithic 3D implementations of HD computing can
have 35× improved energy-execution time product for training
and inference of language classification data sets (while using
3× less area) compared to silicon CMOS implementations.

Index Terms— Carbon nanotube (CNT), CNT field-effect
transistor (CNFET), hyperdimensional (HD) computing, mono-
lithic 3D integration, nanosystems, resistive random-access mem-
ory (RRAM).

I. INTRODUCTION

HYPERDIMENSIONAL (HD) computing is a brain-
inspired computing model that is built upon a set of well-

defined operations on high-dimensional binary vectors [1].
As a result, it does not require brute-force hyperparameter tun-
ing unlike deep neural networks [2]. HD computing promises
fast, energy-efficient training and inference [3]. This paper
is about efficient hardware realizations of HD computing by
utilizing emerging nanotechnologies. Hardware realizations of
HD computing are expected to (as with other machine learning
computing models as well): 1) tightly integrate computing and
storage to reduce energy consumption and latency associated
with data transfer [3], [4]; 2) employ efficient circuit imple-
mentations (e.g., through approximation) that save energy
while achieving “good enough” accuracy levels as required
by the application [5]; and 3) utilize variability in underlying
technologies (rather than minimize it) for computing models,
such as HD that embrace randomness [6].

To achieve tight integration of energy-efficient memory
and compute elements, we employ monolithic 3D integra-
tion, whereby multiple layers of transistors and memory are
vertically integrated (sequentially) and connected using short,
high-density interlayer vias (i.e., standard vias used to con-
nect metal layers in the interconnects of integrated circuits
today) [7], [8]. Compared to traditional chip stacking [9],
monolithic 3D integration can provide orders of magnitude
greater memory bandwidth [10]. As has been experimentally
demonstrated [11], monolithic 3D integration is naturally
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enabled by carbon nanotube field-effect transistors (CNFETs)
and resistive random-access memory (RRAM) due to low-
temperature fabrication (<250 °C). CNFETs promise an order-
of-magnitude improvement in energy-delay-product versus
silicon CMOS [12], enabling energy-efficient computation.
RRAM is an emerging memory technology that promises high-
capacity and non-volatile (as well as multiple bits per cell) data
storage with improved speed, energy efficiency, and density
compared to dynamic RAM (DRAM) [13]. Computing system
architectures using monolithic 3D integration of CNFETs and
RRAM promise to significantly improve the energy efficiency
(expressed as the product of energy and execution time) of a
wide variety of emerging applications (e.g., deep learning and
graph analytics), often in the range of 1000× [10], [14].

In this paper, we design, fabricate, and demonstrate an HD
computing nanosystem for cognitive tasks, such as language
recognition. We use monolithic 3D integration of CNFETs
and RRAM. We exploit RRAM and CNFETs to create area-
and energy-efficient monolithic 3D circuit blocks that combine
CNFETs with fine-grained access to RRAM memories:

1) circuits that embrace inherent variations in RRAM and
CNFETs with estimated 3× lower dynamic energy
(versus silicon CMOS implementations at the same tech-
nology node) stemming from both the circuit topology
and the use of energy-efficient CNFETs;

2) approximate incrementer circuits using gradual RRAM
reset operation, which can use 30× fewer transistors
versus full-digital incrementer implementations;

3) ternary content-addressable memory (TCAM) cells built
using pairs of CNFETs and RRAM, which use 19×
lower energy (simulated versus SRAM-based TCAM
cells) due to reduced leakage of non-volatile RRAM.

Using our HD nanosystem hardware prototype, we experi-
mentally demonstrate the followings:

1) pairwise classification of 21 European languages with
measured accuracy of up to 98% on >20 000 sentences
(6.4 million characters) per language pair;

2) on-chip learning using one text sample (∼100 000 char-
acters) per language;

3) resilient operation (98% accuracy) despite 78% of bits
in HD representation being stuck at 0 or 1 in hardware.

When implemented at a scaled technology node
(e.g., 28 nm), HD nanosystems like ours are projected
to offer 35× energy-efficiency (product of energy and
execution time) improvement with a simultaneous 3×
reduction in area footprint compared to conventional silicon
CMOS implementations. For larger HD nanosystems, the
benefits can be potentially greater.

Our previous paper [15] introduced our monolithic
3D nanosystem for HD computing. This paper extends [15]
in the following ways.

1) We provide a detailed overview of system functionality
as well as more measurement data to characterize our
nanosystem.

2) We analyze the projected energy, delay, and area of HD
computing nanosystems implemented using monolithic
3D integration of CNFETs and RRAM at scaled tech-
nology nodes (e.g., 28 nm) to demonstrate the benefits

of monolithic 3D nanosystems for brain-inspired com-
puting models.

The rest of this paper is organized as follows. Section II
describes the HD computing model and the component
nanotechnologies, Section III explains our HD nanosystem
implementation and highlights the properties of nanotechnolo-
gies we rely on, and Section IV explains the projected benefits
of implementing our system in scaled technology nodes.
We conclude this paper in Section V.

II. HD COMPUTING MODEL AND

COMPONENT NANOTECHNOLOGIES

In this section, we introduce HD computing and the com-
ponent nanotechnologies used in our nanosystem.

A. Hyperdimensional Computing

HD computing performs computations on high-dimensional
vectors using a set of well-defined operations. One of its
attractive features is learning using a few examples for various
cognitive tasks (due to the non-iterative nature of its training
mechanisms) [1]. In HD computing, inputs are represented
using high-dimensional vectors (e.g., 10 000 bits), also referred
to as HD vectors (HVs). HVs are processed using operations
on binary vectors (discussed later in this section).

Training on input samples is equivalent to a process of
combining HVs representing the inputs into a new HV
of same dimensionality (which can be easily distinguished
from other HVs during inference). The high-dimensional
nature of HD framework [16], [17] allows for resilience
to errors in the HVs. In general, increasing the dimension
of HVs increases overall classification accuracy. However,
it also manifests as large area footprint when implemented
in hardware. HD computing has been shown to be effec-
tive (i.e., similar or higher accuracy compared to state-of-
the-art methods, such as the k-nearest neighbors (KNNs)
algorithm, support vector machines, or neural networks) for
cognitive tasks, such as language classification, electromyogra-
phy (EMG)-based hand gesture recognition, electroencephalo-
graph (EEG) brain-machine interfaces, and human activity
recognition [3], [18]–[21], while requiring fewer training sam-
ples [19]. Moreover, tasks beyond object recognition (such as
analogy making and logical inference) have been demonstrated
using HD computing with cellular automata [22].

In this paper, we focus on a case study for HD com-
puting: classification of European languages given an input
sentence. For language classification, an input sentence (i.e., a
sequence of characters) is first transformed into a sequence of
binary HVs. Each unique character is mapped to a unique HV
through a process called random projection (see Fig. 1). Next,
a series of three HD operations is performed on the sequence
of HVs: 1) HD permutation; 2) HD multiplication; and
3) HD addition. HD permutation is a 1-bit rotating shift of
an HV, HD multiplication is a bitwise XOR of two HVs, and
HD addition is bitwise accumulation of multiple HVs followed
by a threshold operation (to transform back to a binary HV).
The same threshold is used for all elements in the HV. These
three operations are performed on the sequence of binary HVs
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Fig. 1. HD computing, showing main operations. 1—random projection.
2—HD permutation. 3—HD multiplication. 4—HD addition in the context of
language classification. QVs are stored as language vectors in memory during
training. QVs are compared to stored language vectors during inference.

by the HD encoder to produce a single HV that represents the
entire sentence called a queryvector (QV) (explained in more
detail in Section III-B).

For language classification, HVs are combined into bigrams
(i.e., HVs that represent groups of two adjacent letters)
(or trigrams for three, tetragrams for four, and so on) using the
HD permutation and HD multiplication operations. To create
a bigram, the HV that corresponds to a preceding character
is first rotated, and then, bitwise XOR is performed with the
HV that corresponds to the current character, which encodes
a bigram. Then, all bigrams in the sentence are accumulated
bitwise, producing the QV (as shown in Fig. 1).

During training, this QV is chosen to represent a particular
language (in its entirety, i.e., all sentences corresponding to
a language are encoded into a single QV) and stored in
memory, which is called a language vector (see Fig. 1). During
inference, a QV is compared to all of the stored language
vectors using the Hamming distance (i.e., the number of
elements that do not match between the vectors). The language
represented by the language vector that corresponds to the least
Hamming distance from QV is chosen as the output language.

B. Component Nanotechnologies

In this paper, we use CNFETs for logic circuits, RRAM for
memories, and their monolithic 3D integration (through low-
temperature fabrication) to realize the hardware implementa-
tions of HD computing architectures.

1) Carbon Nanotube Field-Effect Transistors: CNFETs rep-
resent an emerging transistor technology, which promises
an order of magnitude improvement in energy-delay-product
(a metric of energy efficiency) for digital circuits [12].
CNFETs use multiple CNTs (cylindrical structures of carbon
atoms 1–2 nm in diameter) that act as channels (see Fig. 2).
CNTs simultaneously enable high carrier mobility and excel-

Fig. 2. CNFET. The scanning electron microscopy image shows multiple
parallel CNTs in the channel region. Example measured I–V curves are
shown.

lent electrostatic control in CNFETs [23], enabling highly
energy-efficient digital logic circuits. CNFETs can be used
in high-performance complementary logic (with 106 ION/IOFF

ratio, the drive current/off-state leakage current) [24], [25]
and can be built at scaled gate lengths (5 nm) [26].
Hysteresis-free CNFETs have been demonstrated in [27].
CNFETs have been fabricated as negative capacitance FETs
with sub-55-mV/decade subthreshold swing at room tempera-
ture [28].

Imperfections inherent in CNTs, such as mis-positioned
CNTs (that can lead to stray conducting paths resulting
in incorrect functionality) and metallic CNTs (i.e., CNTs
with little or no bandgap), were a major limitation in the
past—the imperfection-immune paradigm overcomes these
obstacles through a combination of fabrication and design
techniques [29]–[31]. The imperfection-immune paradigm
enables wafer-scale fabrication and VLSI-compatible design
of CNFET circuits. This paradigm has since enabled exper-
imental demonstrations, such as the first CNT computer and
the first 3D nanosystem consisting of over 2 million CNFETs
on a single die [11], [32]. Since CNFETs can be fabricated at
low temperature (<250 °C), they naturally enable monolithic
3D integration (discussed in Section II-B3).

In addition to process variations that exist in silicon tran-
sistors (e.g., variations in threshold voltage, channel length,
and oxide thickness), CNFETs are subject to CNT-specific
variations, such as CNT count variations (i.e., variations in the
number of CNTs in a CNFET). These variations cause drive
current variations, which can manifest as delay variations in
digital circuits. These variations can be suppressed using opti-
mized process and circuit design [30]. However, in this paper,
we utilize these inherent variations (instead of suppressing
them) to perform the random projection operation for HD com-
puting. In particular, we capitalize on variations in CNT count
and threshold voltage (discussed in detail in Section III-A).

2) Resistive RAM: RRAM is an emerging memory technol-
ogy, which promises high-capacity, non-volatile data storage
(10-year retention) and can be fabricated at low tempera-
ture (<250 °C) [13]. RRAM is fabricated as a metal oxide
switching layer (insulator) sandwiched between two metal-
lic electrodes. While RRAM can be realized using various
metal–insulator–metal material combinations [13], we use
Pt/HfOX /TiN RRAM, where the bottom electrode is Pt, the top
electrode is TiN, and the switching layer is HfOX (see Fig. 3).
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Fig. 3. RRAM. (a) Set operation increases the conductive filament
length, while the reset operation decreases the conductive filament length.
(b) Transmission electron micrograph of RRAM cell.

Unlike [33] and [34] that suggest bitwise HD operations inside
RRAM cells, we utilize the following properties of RRAM
in our demonstration: digital storage (i.e., store a 0 or 1),
gradual reset (i.e., ability to increment the RRAM resistance
in a fine-grained manner), and its stochasticity (i.e., variations
in RRAM resistance) for HD computing (see Section III).

Three main operations are typically performed on an RRAM
cell: set, reset, and read. The set operation transforms the cell
from high-resistance state (HRS) to low-resistance state (LRS)
by applying a positive voltage (i.e., set voltage, Vset) across
the top and bottom electrodes [13]. In our chip, the set
voltage is 2.6 V. A transistor is used to limit the current
for the set operation (called the compliance current). This
creates or lengthens a filament of oxygen vacancies from
the bottom electrode to the top electrode. As the length
of the conductive filament increases, the resistance of the
RRAM decreases [13]. In most cases, a higher set voltage
(called forming voltage, 4 V in our chip) is applied to form
the filament (once) after fabrication. However, forming-less
RRAM cells have also been demonstrated [13], [35]. A reset
operation transforms the cell from LRS to HRS by applying
a negative voltage (i.e., reset voltage, Vreset) across the top
and bottom electrodes, rupturing the filaments between the
electrodes. In our chip, the reset voltage is −2.6 V. RRAM
cells with <2-V set/reset voltage (∼10-ns pulse duration)
and 10–100 HRS/LRS resistance ratio have been demon-
strated [13], [36]. RRAM is also subject to variations in its
resistance, stemming from the stochastic size and shape of the
conductive filament after a set or reset operation [13]. A read
operation detects the state of the cell (e.g., HRS or LRS) by
sensing the current after applying a small voltage (e.g., 0.5 V
in our chip) across the two electrodes. This voltage is small
enough to not change the resistance of the cell.

Although RRAM has limited write (i.e., set/reset) endurance
(1012 cycles at the cell level [36] and 105–107 cycles at the
array level [37], [38]), HD computing is robust to endurance-
related errors [18]. Moreover, our nanosystem only performs
onewrite cycle (i.e., set and reset) for each text sample inferred
or trained and can endure one year of continuous operation
(i.e., repeatedly training the entire training set and inferencing
all of the sentences in the data set) on the data set given an
RRAM write endurance of 107 cycles.

Although many cell structures (e.g., 1 transistor–1 RRAM
cell, 1 transistor–n RRAM cell, 1 selector–1 RRAM cell [13])
may be used, in our chip, we use the 1 transistor–1
RRAM cell (1T-1R) structure (see Fig. 5) as it prevents
current overshoot during the set operation [13]. Array-level
implementations using the 1T-1R RRAM structure have been
demonstrated up to 16 Gb of capacity [39].

A single RRAM cell can store a single bit or multiple
bits (see [40]). To demonstrate multi-bit storage in RRAM
cells, one or a combination of set or reset parameters are
adjusted to change the resistance of the cell to an intermediate
value (between LRS and HRS): compliance current in the
set operation, reset voltage, and set or reset pulse duration.
These parameters can also be adjusted to gradually increase the
RRAM cell resistance (i.e., increasing the resistance incremen-
tally). This gradual increase in RRAM cell resistance has been
demonstrated for a variety of switching layers (i.e., the mate-
rial in which the filament forms, such as HfOX [41]) [13]
by using short pulse durations (50-μs pulses in this paper)
during the reset operation. In this paper, we call this behavior
as gradual reset.

3) Monolithic 3D Integration: Monolithic 3D integration
is a process, whereby tiers of circuits (i.e., a layer of logic,
memory, or sensors) are fabricated on top of each other on the
same substrate. Monolithic 3D integration uses inter-layer vias
(ILVs), standard vias used to connect adjacent metal layers in
the interconnect stack of today’s silicon CMOS technologies,
to connect between tiers of circuits. This is in contrast to
chip stacking using through-silicon vias (TSVs) with typical
pitches of around 10 μm [9]. ILVs can have the same pitch as
metal interconnects (100 nm at 28-nm technology node [42]),
enabling significantly denser vertical connectivity compared
to TSVs [43], a key to tight integration between logic and
memory.

Monolithic 3D integration requires low-temperature fab-
rication for upper tiers of circuits (<400 °C) as higher
temperatures can damage existing circuits (transistors and
interconnects) on the bottom tiers. While this is difficult for
traditional silicon CMOS technologies (e.g., high-temperature
requirements for dopant activation >1000 °C), it is naturally
enabled by CNFETs and RRAM due to their low-temperature
fabrication [13], [44]. For our chip, we fabricate CNFETs and
RRAM in which all fabrication steps on the wafer have a
maximum temperature of 200 °C. Monolithic 3D integration
of CNFETs, RRAM, and silicon transistors has been demon-
strated [45], demonstrating compatibility with silicon CMOS.
Recently, a four-layer monolithic 3D nanosystem consisting of
>2 million CNFETs with 1-Mb RRAM on top of >1 million
silicon transistors has been demonstrated [11].

III. IMPLEMENTING HD COMPUTING IN HARDWARE

Fig. 4 shows the overall architecture of our nanosys-
tem. It contains three main blocks: random projection unit,
HD encoder, and HD classifier. Inputs (text characters) are
streamed into the random projection unit and mapped to HVs
(explained in detail in Section III-A); the HD encoder applies
HD operations (HD permutation, HD multiplication, and HD
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Fig. 4. Block diagram of our HD nanosystem.

addition, explained in detail in Section III-B) to produce a
QV to represent the entire text; the HD classifier stores the
QV (in RRAM) during training or compares the QV to stored
(i.e., learned) HVs using the Hamming distance metric during
inference (explained in detail in Section III-C). Our nanosys-
tem uses four-phase operations, governed by four clocks (clk1,
clk2, clk3, and clk4, explained in Section III-B). While this
architecture is tailored specifically for language classification,
additional random projection units may be required for other
applications, such as biosignal classification using EMG [19]
and EEG [20].

A. Random Projection

A key requirement for HD computing is that the unique
inputs should be mapped to unique HVs that are at a maximal
(Hamming) distance (i.e., Hamming distance of 50% of the
HV dimension, D) from all other HVs [1]. Moreover, the same
inputs must map to the same HVs. One approach approximates
this mapping through random projection (i.e., randomly choose
the mapping) to obtain the large Hamming distances [3],
[18], [30]. In this paper, we achieve the Hamming distance
of 16 between HVs for D = 32.

To achieve random projection, several methods can be
used. Random projection may be hard-coded or reconfigurable
(i.e., the mapping of inputs to HVs can be changed) during
either test or operation in the field. For hard-coded random
projection, the mapping is determined during design time
(e.g., hard-coded into the RTL as a truth table) [18]. While
this method may be comparable in terms of energy and
delay versus some reconfigurable methods, it generally has
a larger area footprint (details in Section IV). Reconfigurable
random projection may be realized in several different ways:
using pseudo-random number generators [e.g., linear feed-
back shift registers (LFSRs)] or utilizing natural randomness
(e.g., stochastic behavior of RRAM [33]) to generate the
mapping. This mapping can be stored in an on-chip memory
for lookup during random projection to recall the same HV
for each unique input. We compare these methods in detail in
Section IV.

In this paper, we implement random projection by embrac-
ing inherent variations in our component nanotechnologies:
variations in RRAM resistance values (discussed in
Section II-B2) and in CNFET drive currents (discussed

Fig. 5. (a) Schematics of CNFET + RRAM delay cell, CNFET delay cell,
and RRAM delay cell (with only an RRAM cell in the pull-down network),
showing (b) operating voltages for inputs and (c) measured waveforms using
CNFET + RRAM delay cells and coincidence detectors. (d) Schematic of
coincidence detector. (e) Programming (Set and Reset) curve of the CNFET +
RRAM delay cell using the Pgrm pin.

in Section II-B1). Our approach can achieve up to 22×
less energy compared to other random projection methods
outlined earlier (details in Section IV).

To utilize inherent variations in RRAM and CNFETs,
we create delay cells [PMOS-only CNFET inverters with an
additional RRAM in the pull-down network (see Fig. 5)]
to translate device-level variations into delay variations of
the delay cell circuits. In addition, we also fabricated delay
cells with CNFETs only and delay cells with RRAM only
to characterize the individual effects of RRAM and CNFET
variations (also shown in Fig. 5). The pull-up CNFETs are
all sized the same (i.e., same width) with the pull-down
transistor in CNFET delay cells sized at 1/10 of the pull-
up transistor for increased gain and swing of the PMOS-only
logic. In CNFET + RRAM delay cells, an additional wide
transistor [see Fig. 5(a)] is inserted in the pull-down network
and used to set and reset the RRAM by applying a voltage on
the drain of the CNFET (Pgrm) [see Fig. 5(e)]. During delay
mode [see Fig. 5(b)], Pgrm is set to high impedance to allow
the delay cell to operate as an inverter.

To quantify delay variations of delay cells, we use the
σ /μ metric (σ : standard deviation of delays and μ: mean
delay). HD computing generally requires HVs corresponding
to inputs to be nearly orthogonal to each other (the Hamming
distance close to 50% of HV dimension D) [1]. To generate
HVs using delay cells, each possible input (26 letters of the
alphabet and the space character) is first time-encoded and
mapped to an evenly spaced delay [maximum delay T = 2 μ
(see Fig. 6)]. For example, “A” = 0, “B” = T/27, “C” =
2T /27, and so on. To calculate each bit of the HV, random
delays are added to clk1 and input (in) using CNFET + RRAM
delay cells. If the resulting signals are coincident (the falling
edges are close enough to set the SR latch), the output is “1”
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Fig. 6. Time encoding of a sentence of length n; 27 possible characters are
encoded as a time delay from a reference clock, clk1. The encodings of the
27 characters are evenly spaced (e.g., “A” = 0, “B” = T/27, “C” = 2T/27,
and so on) with T = 2μ (2× the mean delay cell delay).

Fig. 7. Delay variation and its effect on inference accuracy. Higher inference
accuracy can be achieved by using delay cells with both CNFETs and RRAM
since the generated HVs have higher Hamming distance values from each
other (i.e., the individual characters of the alphabet are mapped to HVs
that are further apart from each other). Measured inference accuracies (each
from a different chip) are similar to simulated accuracies (for the same delay
variations). In general, higher Hamming distance values between HVs result
in higher classification accuracy [1].

(Fig. 5(c) and (d), a coincidence detector). Each element in the
HV is an output of a single coincidence detector consisting of
an XNOR gate and an SR latch. Our 3D nanosystem contains
64 delay cells and 32 coincidence detectors, forming the
random projection unit.

In our design, larger variations (thus, larger σ /μ) correspond
to the greater Hamming distance between HVs. Through
simulations of our nanosystem (see Fig. 7), we show that
higher values of σ /μ correspond to higher classification accu-
racy. Delay cells and coincidence detectors were simulated
in SPICE using a CNFET model [46] and a resistor for the
RRAM. CNT count variations and RRAM resistance variations
were swept until the desired delay variations were achieved.
Then, HVs that correspond to each character in the alphabet
were extracted from the SPICE simulations. This mapping
of the 27 characters was then used to simulate pairwise
language classification on a software implementation of the
HD computing algorithm [18].

In general, the smaller the width of the pull-down transistor
(corresponding to width W2), the higher the σ /μ. To increase
variations in CNFET drive current, W2 is set to the minimum
width corresponding to the technology node. While delay cells
can be created using CNFETs only (i.e., CNFET delay cells),
our measured CNFET delay cells only achieve σ /μ = 0.3,
which results in low pairwise classification accuracy (76%).
Alternatively, by utilizing inherent RRAM variations only
(i.e., RRAM delay cells, with only an RRAM cell in the pull-
down network), we achieve σ /μ = 0.8, which corresponds to
higher pairwise classification accuracy compared to CNFET

Fig. 8. Approximate incrementer using RRAM.

delay cells. However, by combining the RRAM resistance
variations and CNFET drive current variations, our CNFET +
RRAM delay cells achieve σ /μ = 1.5 (measured), correspond-
ing to the mean Hamming distance of 16 for 32-bit HVs,
resulting in higher accuracy (see Fig. 7, where actual chip
measurements are superimposed on top of simulation results
to obtain classification accuracy).

To initialize delay cells, the RRAM resistance is first reset to
HRS and then set to LRS. To reset the RRAM to HRS, VB is
set to −2.6 V, whereas Pgrm is set to −2.6 V. To set the
RRAM to LRS, VB is set to 1.9 V and Pgrm is set to 2.6 V
(see Fig. 5). This process is performed before training. During
random projection operation, the resistance of the RRAM in
each delay cell does not change (i.e., the voltage across the
RRAM (0–1 V) is not enough to change its resistance). Thus,
the same input will generate the same output HV.

B. HD Encoder

The HD encoder transforms a sequence of HVs representing
a sequence of characters into a single vector, QV, representing
the entire text. It follows the method described in [18]. Groups
of two adjacent HVs in the sequence (bigrams) are first
combined into a single HV (representing the bigram) using
the HD multiplication and HD permutation operations. The
current HV (HV2) is multiplied with a permuted (rotating
shift) version of the previous HV ρ(HV1))to form the HV
representing the bigram (ρ(HV1) � HV2). The permutation of
the previous HV is used to preserve the order of the letters
and distinguish between the pairs of characters in different
order (e.g., “ab” versus “ba”). In hardware, we use a 1-bit
shift with D-latches and a bitwise XOR to implement the HD
permutation and HD multiplication operations, respectively.

Then, all HVs (each representing a bigram) are added
together using the HD addition operation. The HD addition
operation corresponds to counting the number of ones in each
bit location of the HVs. For example, HD addition of binary
vectors 0100, 0101, and 1011 produces (1, 2, 1, 2). Thresh-
olding is then performed to transform the vector back into a
binary vector [e.g., (1, 2, 1, 2) turns into 0101 for threshold
of 1.5]. The threshold value is set to half of the number of total
HVs added (e.g., threshold 50 for 100-character sentence). For
language classification, the average input sentence contains
fewer than 128 characters (requiring 7 bits of precision to
perform HD addition on 128 HVs) [47]. In hardware, we use
incrementers to implement the HD addition operation.
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Fig. 9. Characterization of approximate incrementer using CNFETs and
RRAM. (a) Gradual resistance increase in the RRAM when more reset pulses
are applied (single cell shown). (b) Measured output of the approximate
incrementer. (c) 100 repeated cycles of the same HV sequence at the inputs
to the HD incrementer, showing consistent outputs (same QVs are generated).

Fig. 10. Characterization of approximate incrementer error, showing mean
cycle-to-cycle error (i.e., fraction of QV bits different in cycle 100 and cycle 1)
of just 4%.

To implement an approximate incrementer, we utilize the
gradual reset property of RRAM to realize area-efficient HD
addition [41] (see Fig. 8). When in its LRS, the RRAM
can be incrementally reset by applying short reset pulses,
gradually increasing the resistance to HRS [see Fig. 9(a)].
This provides the ability to store non-binary values inside
the RRAM. We leverage the multiple values of RRAM resis-
tance that can be programmed by performing a gradual reset
(Vtop– Vbot: −2.6 V, 50-μs pulsewidth, and 1-ms period) to
count the number of ones in each bit location of the HV
(see Fig. 8). When the input (in, corresponding to a bit location
of an HV) is “1,” a reset pulse is applied to the RRAM cell
when the clock is high. When the value is read (Vtop − Vbot:
+0.5 V), a pair of inverters threshold (transform) the sum
to a binary value. The threshold value, typically representing
half of the total number of bits incremented, can be adjusted
using the voltages Vtop and Vbot (determining the voltage
range of the input of the first inverter). Multiple (one per
HV bit) approximate incrementers form the HD approximate
incrementer unit.

Since the incremented value (for each location of an HV)
is thresholded to a binary value, the impact of errors due to
the approximate nature of the HD approximate incrementer
unit is somewhat mitigated (with measured mean cycle-to-
cycle error 4%, showing consistency across time) (see Fig. 10).
Here, we define the cycle-to-cycle error as the normalized
Hamming distance (i.e., the Hamming distance divided by the
HV dimension) of a QV at cycle 1 and a QV at cycle 100. The
same sequence of input HVs (with dimension 32) was used to
generate the QVs [see Fig. 9(c)]; thus, identical QVs should

Fig. 11. Schematic of our HD nanosystem. It consists of 32 functional units
connected in parallel. Each block (Random Projection unit, HD encoder, and
HD classifier) uses a different unique property RRAM and/or CNFETs. The
Random Projection Unit uses RRAM and CNFET variations in delay cells
to randomly map inputs (in) to HVs. clk2 is used to reset this unit. The
HD encoder uses CNFET digital logic (to permute and multiply HVs) and
HD approximate incrementers using the gradual reset property of RRAM to
accumulate HVs. Then, the CNFET and RRAM TCAM cells compare the
HVs using current summing in the HD classifier.

be generated each cycle. To arrive at a mean error of 4%,
1000 trials were performed.

To clear the sum, a set operation is performed on
the RRAM (Vtop–Vbot: +2.6 V). In HD computing, one
approximate incrementer is used for each bit in the HV
(i.e., D incrementers, where D = HV dimension). Each such
approximate incrementer uses eight transistors and a single
RRAM cell. In contrast, a digital 7-bit incrementer (used for
language classification of sentences of 128 characters) may
use 240 transistors. Thus, for large values of D (e.g., 10 000),
the savings’ transistor count can be significant (30×).

We create multiple functional units (shown in Fig. 11): each
functional unit contains a delay cell pair with a coincidence
detector, a D-latch for HD permutation, an XOR gate for
HD multiplication, and an HD approximate incrementer for
HD addition. The functional units, when connected in par-
allel, form the random projection unit and the HD encoder.
Fig. 12 shows measured waveforms of functional unit. The
functional units use a four-phase operation (each controlled
by a separate clock: clk1, clk2, clk3, and clk4): project,
multiply and increment, permute, and reset projection. First,
during the random projection phase, a new input (character)
is transformed into an HV (described in Section III-A). Then,
the HV is multiplied by a permuted HV (of the previous
input character) and incremented. The HV is then permuted
via the HD permutation operator. Each D-latch takes its data
input from the output of the coincidence detector belonging
to a neighboring functional unit. Finally, the coincidence
detectors are all reset (each SR-latch is reset, described in
Section III- A). This four-phase process is repeated for every
single character in the text to produce the final output of the
HD encoder (QV).
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Fig. 12. (a) Measured waveforms of a functional unit (see Fig. 11),
showing individual output waveforms for each of the HD operations. A sample
output of a coincidence detector, HD permute, and HD multiplication is
shown; 32 approximate incrementer waveforms (from 32 functional units)
are superimposed, showing 34% of the approximate incrementer outputs
stuck-at-1 and 44% of the outputs stuck-at-0. (b) Each cycle of operation
of the functional unit includes four steps: 1) an input character is projected
into a HV; 2) multiply the increment; 3) permute the HV for the next cycle;
and 4) reset the random projection unit for the next cycle.

C. HD Classifier

For each QV generated by the HD encoder, training or infer-
ence is performed by the HD classifier. During training,
the QV is stored in the HD classifier in a location (spec-
ified during operation) representing the trained language.
It is then referred to as a language vector (described in
Section II-A). During inference, the QV is compared (using the
Hamming distance metric) to all the stored language vectors
in parallel. The language that represents the language vector
corresponding to the shortest Hamming distance is reported as
the classified language.

The HD classifier is implemented using 2-CNFET tran-
sistors and 2-RRAM cells (2T2R) TCAM cells to form an
associative memory [48] (see Fig. 11). The TCAM cells store
the language vectors and calculate the Hamming distance
between the language vectors and the QV. TCAM cells are
used to include the flexibility of using language vectors and
QVs with smaller dimension (i.e., <32) by setting the unused
cells to a “do not care” state (LRS–LRS or HRS–HRS).

Initially, all RRAM cells are in HRS. During training,
a matchline [e.g., ml0 or ml1 (see Fig. 11)] corresponding
to the language (e.g., ml0 for English and ml1 for Span-
ish) is set to 3 V, writing the QV into the RRAM cells
(see Fig. 11). Since the gates of the transistors in the TCAM
cell are connected to complementary signals, when writing
the QV, each RRAM cell in the TCAM cell will store
complementary values (i.e., LRS–HRS or HRS–LRS) in order
to compute a bitwise XOR during inference.

During inference, ml0 and ml1 are set to a low voltage
(e.g., 0.5 V), and the current on each matchline is read as
an output. When a QV bit is equal to the value stored in a

Fig. 13. Measured output currents of the HD classifier distinguishing between
English and Spanish languages. When an English sentence is classified
correctly, ml0 shows higher current. When a Spanish sentence is classified
correctly, ml1 shows higher current.

TCAM cell (match), the current is high (∼1.3 μA); otherwise
(mismatch), the current is low (∼0.06 μA). Each individual
TCAM cell has current ratio of ∼20 between the match and
mismatch states (see Fig. 12). Cell currents are summed on
ml0 and ml1 with each current inversely proportional to the
Hamming distance (shown in Fig. 13). The line with the most
current corresponds to the output class (read and compared
off-chip).

We perform pairwise language classification on 21
European languages (e.g., English versus Spanish, English
versus German, and Spanish versus French). Sample texts
from the Worschatz Corpora [49] for training texts and sample
sentences from the European Parallel Corpus [47] are used
for inference. By testing the functional units individually,
we determine that 25 out of the 32 functional units have
outputs permanently stuck at 0 or 1 (34% at 1 and 44%
at 0). Thus, some QV and language vector bits are either stuck
at 0 or 1.

The cause of these stuck-at bits at the outputs of the
functional units (bits corresponding to the QV) is primar-
ily be attributed to performing all fabrication steps in an
academic facility. To analyze the cause of these stuck-at
bits, we examine each functional unit’s electrical behavior
(e.g., switching behavior of internal nodes and leakage cur-
rent). We determined that the cause of 80% of the stuck-at bits
can either be attributed to weaknesses in the gate dielectric
of a CNFET in the functional unit (i.e., the breakdown
voltage of the gate dielectric being much lower than the
expected 16 V for 20 nm of aluminum oxide, characterized
experimentally), causing significant gate leakage current and
dielectric breakdown in the CNFETs [see Fig. 14(a)], or due
to the high current drive variability in the CNFETs. The
following behaviors were observed: incorrect combinational
logic behavior (e.g., XOR gate behaving like an AND gate),
SR latches or D-latches not being able to hold state (e.g., latch
cannot hold a “1” or “0” state), or incorrect behaviors of access
transistors to the RRAM (in the delay cells or the approximate
incrementer). One or a combination of these behaviors can
result in the output of the functional units (bits corresponding
to the QV) being stuck. While CNFETs with the high current
drive variability are needed for delay cells (in Section III-A),
they can reduce the yield of digital logic (i.e., cause incorrect
switching behavior) [31]. We found no correlation in the
location of the observed behaviors [i.e., different functional
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Fig. 14. (a) Scanning electron micrograph (SEM) of gate dielectric failure.
(b) Distribution of functional unit failure due to gate dielectric weakness.
(c) Distribution of open ILVs across the wafer.

Fig. 15. Iterative method to emulate HD computing systems with larger
vector dimension.

units as well as different transistors in the functional units
were affected across the wafer, see Fig. 14(b)].

The dielectric weakness can be mitigated using more robust
gate dielectric deposition procedures, such as those used in
foundry processes, which are not available in our academic
facility (e.g., using a machine that only deposits one type of
material to avoid contamination). The other 20% of the stuck-
at bits are attributed to open vias to the RRAM (confirmed by
measuring test structures for the vias), causing open circuits;
thus, the RRAM cells could not be set and reset. We found
that dies on the edges of the wafer tended to exhibit more
of these open vias [see Fig. 14(c)] since the etch rate using
our equipment is spatially nonuniform for the vias. Despite
these stuck-at bits, our nanosystem still achieves 98% pairwise
classification accuracy using our iterative method, described in
the following.

D. Emulating Larger HD Computing Systems

We emulate larger HD computing systems (more bits
per HV, i.e., higher values of D) by running our fabricated
nanosystem iteratively, as illustrated in Fig. 15. In each iter-
ation, language pairs are trained (each language is trained
on one text sample of 100 000 characters), generating new
language vectors stored in the HD classifier, and all inferences
are performed. The currents from all inferences are recorded
off-chip. After each iteration, the RRAM in the delay cells
is cycled (i.e., reset to HRS, then set to LRS). This provides
a new set of mappings from input characters to HVs in the
random projection unit. This creates a different segment of
a higher dimension HV, generating another segment of the

Fig. 16. (a) Measured inference accuracy for various vector dimensions.
As the vector dimension increases, our nanosystem accuracy approaches the
software benchmark. (b) Accuracy values for all language pairs using HV
dimension of 128 and 8192. Accuracy for most language pairs increases
significantly with larger HV dimension.

Fig. 17. Image of the live demonstration of the brain-inspired 3D nanosystem
at the ISSCC 2018.

QV for each sentence encoded. Then, more iterations are
performed. After all iterations, the recorded currents from
ml0 and ml1 of the corresponding sentences are summed and
compared off-chip.

For a single iteration, the accuracy is 59%. Using 256
iterations with 22% non-stuck QV bits (D = 8192 with
1792 non-stuck QV bits), our nanosystem can categorize
between two European languages with a mean accuracy
(i.e., arithmetic mean of inference accuracies between all
language pairs) of 98% (see Fig. 16). The classification energy
per iteration is measured at 540 μJ (3-V supply, average power
5.4 mW, 1-kHz clock frequency, and 1-μm gate length). The
reported accuracy is the percentage of 84 000 sentences that
were classified correctly (data set: 420 language pairs, 200 sen-
tences per language pair) [47]. We compare our nanosystem
against a software implementation of the HD algorithm as
well as a software implementation of a KNNs algorithm
(state-of-the-art for language classification [18]). For bigrams,
using KNN shows less accuracy than both the software HD
algorithm and our nanosystem using >64 iterations. However,
by using tetragrams, the KNN algorithm shows comparable
accuracy as the software HD algorithm, albeit using 20× more
memory (1.7 MB versus 86 KB), as shown in [18]. Using
256 iterations (and an additional 2 KB of off-chip memory for
recorded currents), our nanosystem approaches the accuracy
of the software HD implementation (using 8192-bit HVs with
HV sparsity 0.5, achieving 99.2% accuracy) [21].
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Fig. 18. (a) Transmission electron micrograph of our chip, showing CNFETs
on the upper tier and RRAM on the lower tier. (b) Computer rendering
of our nanosystem, showing CNFETs on the upper tier and RRAM on the
lower tier connected with ILVs. (c) Photograph of wafer, showing wafer-scale
fabrication. (d) Die photograph, showing the three main blocks. (e) SEM of
delay cell. (f) SEM of a CNFET channel, showing multiple parallel CNTs.

Fig. 17 shows an image of a live demonstration by
Wu et al. [15] at the IEEE International Solid-State Circuits
Conference (ISSCC) on February 13, 2018. Users were able to
train the 3D nanosystem (Fig. 18) in any of the 21 European
languages and classify sentences based on their text input. As a
visualization, for each inference, a gumball was redirected to
a container representing the language identified.

IV. PROJECTED BENEFITS

In order to quantify the benefits of our nanosystem,
we compare our implementation (exploiting monolithic 3D of
CNFETs and RRAM) with a comparable silicon CMOS-based
digital design at a 28-nm node in simulation (modified from
an existing design in [18]). The silicon CMOS-based digital
design, implemented as a conventional 2-D chip, includes the
following [see Fig. 19(a)].

1) Silicon CMOS SRAM lookup for reconfigurable random
projection. Each of the 27 unique HVs is pre-determined
off-chip and stored in on-chip SRAM. They can be
determined by using pseudo-random number generators,
such as LFSRs. The same 27 HVs are recalled repeat-
edly (in arbitrary order); thus, we use a RAM. While
many methods can be used to generate unique HVs,
the majority of the time and energy is spent reading
the on-chip SRAMs (i.e., random projection) since the
HVs are only generated on system initialization; thus,
we do not include its energy and time in our calcu-
lations. The address of the SRAM corresponds to the
ASCII representation of the input character, such that
the corresponding HV is the output of the SRAM during
a read operation.

2) Silicon CMOS digital 7-bit incrementers for each ele-
ment of the HD addition operator in the HD encoder.
A threshold function is used to transform the incre-
mented value into a binary value a digital comparator.

Fig. 19. (a) Silicon-only HD system. (b) Monolithic 3D HD nanosystem
(using CNFETs and RRAM), showing the 3D structure as well as the flow
of data (HVs) across the tiers.

3) Silicon CMOS SRAM TCAM cells [50] are used in the
HD classifier in the place of CNFET and RRAM TCAM
cells.

The monolithic 3D design [see Fig. 19(b)] uses the same
architecture as our experimental demonstration using CNFETs
and RRAM for all of the individual modules (see Fig. 4) with
the following design modifications.

1) HV dimension (D) 8192 to achieve 98% accuracy with-
out using the iterative method described in Section III-D.

2) An additional tier to facilitate the place-and-route (P&R)
of a system with larger HV dimension (D = 8192). The
CNFET-only blocks (i.e., HD permute and HD multi-
plication) are on the first tier, while the next tiers have
the CNFET + RRAM blocks (i.e., Random projection,
HD classifier, and HD approx. incrementer), as shown
in Fig. 19(b).

In our fabricated chip, we used two tiers since the HV
dimension was small (D = 32); thus, the interconnects
between the circuit blocks were short. However, a larger HV
dimension (e.g., D = 8192) with a similar floor plan would
yield longer interconnect lengths due to limited horizontal
routing resources (we used four metal layers per routing
direction); thus, an additional tier is utilized to reduce the inter-
connect distance. Fabricating an additional tier of CNFETs is
feasible and has been demonstrated in [11].

A. Methodology

To compare the area, energy, and execution time of the two
designs, we perform a full physical design. Fig. 20 explains
our physical design flow.

First, we use a variation-aware nanosystem design kit
(NDK) [51] to generate a CNFET standard cell library. The
NDK uses an experimentally calibrated, SPICE-compatible,
virtual-source CNFET model [46] and accounts for
CNT-specific variations, such as those in CNT density
and CNT diameter [31]. The standard cell library is generated
by first extracting the interconnect resistances and parasitic
capacitances (RC) from a standard cell library of an existing
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Fig. 20. Simulation methodology for monolithic 3D ICs as well as
2-D ICs using emerging technologies. For the silicon-CMOS implementation,
we use device models from and industry silicon foundry rather than those for
emerging technologies.

silicon CMOS process design kit (PDK) using Synopsys
StarRC; in our case, an industry 28-nm PDK is used. Then,
the transistor models in the extracted layouts are replaced by
the CNFET model; thus, the CNFETs will have the same
width and contacted gate pitch as the original silicon standard
cells. Parameters, such as power supply voltage and gate
length, are optimized for the lowest energy-delay product
(using the methodology in [52]). In our designs, we use
VDD = 0.5 V for CNFETs (1 V for silicon CMOS) and a gate
length of 27 nm. The standard cells are then re-characterized
for leakage power, input pin capacitance, propagation delay
tables, output slew rate tables, and internal switch energy
and timing constraint tables using the NDK (as in standard
Electronic Design Automation (EDA) tools for timing/power
characterization, such as the Cadence Liberate).

For the delay cells, approximate incrementers, and HD
classifier (all of which use RRAM and CNFETs and span two
tiers), layout was performed using the Cadence Virtuoso to
determine their area footprints. After extracting the intercon-
nect RCs, energies and delays were determined using SPICE.
RRAM characteristics (i.e., set/reset voltage and resistance)
found in the literature (Vset = 0.8 V, Vreset = −0.8 V, HRS
1.7 M�, and LRS 30 k�) [13], [41], [53] were used. Physical
(e.g., pin location), power, and timing information for delay
cells and approximate incrementers were added to the standard
cell library to be included in the netlists. The HD classifier is
represented as a black box in the layout (as well as netlist)
to account for its presence in floor planning and P&R and its
power and timing were used in P&R.

We perform synthesis and P&R using the Synopsys Design
Compiler (DC) and IC Compiler, respectively. To facilitate
P&R for a monolithic 3D design (since no commercial EDA
tool exists), the gate-level netlist is partitioned into two sepa-
rate netlists, one representing tier 1 and another representing
tiers 2 and 3 [see Fig. 20(b)]. The netlist representing tier 1
consists of CNFET-only circuits, such as the HD multiplication
and HD permutation units, while the other netlist, representing
tiers 2 and 3, consists of CNFET and RRAM circuits, such
as the random projection unit, HD approximate incrementer,
and the HD classifier. Tiers 2 and 3 are combined into a
single netlist since each custom standard cell or black box

Fig. 21. Simulated benefits for 28-nm implementations of HD computing
configured for pairwise language classification, showing 35× system-level
energy efficiency (execution time × energy) benefits.

TABLE I

COMPARISON OF PRIOR CNFET AND/OR RRAM DEMONSTRATIONS

already contains both CNFETs and RRAM (described earlier).
The inter-tier connections are treated as I/O ports in each
netlist, and their location is determined prior to P&R according
to a manually determined floor plan. Each netlist is P&R’d
separately.

After P&R, interconnect RCs are extracted for each of
the two layouts (containing standard cells and black boxes)
along with their final netlists. A wrapper (Verilog) module
that instantiates and connects each final netlist is then created
(using Synopsys DC), representing the entire 3D nanosystem,
and used for power and timing analysis.

B. Simulation Results

In this section, we compare the system-level energy effi-
ciency, quantified as energy × execution time (for training
and inference of the entire data set), and area footprint of
the two systems (see Fig. 19). For this comparison, we main-
tain the same pairwise classification accuracy (98% between
21 European languages) for the two systems.

When we compare system-level energy efficiency and area
footprint, the monolithic 3D design (using CNFETs and
RRAM) provides 35× and 3× benefits versus the 2-D silicon
CMOS-based digital design (see Fig. 21), respectively. Our
design achieves 4.6× faster execution time. A combination of
using CNFETs (with higher drive strength than silicon FETs
at half the supply voltage [14]) and area reduction (shorter
wires) from monolithic 3D integration and smaller circuits
(HD approximate incrementer) allows for faster clock rate
and, thus, a 4.6× faster execution time. Simultaneously, our
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design achieves 7.6× lower energy. By utilizing the inherent
variations of CNFETs and RRAM, the energy consumption
of random projection is reduced by 22× compared to the
silicon CMOS SRAM lookup approach. Using CNFET and
RRAM TCAM cells instead of SRAM TCAM cells for the
HD classifier reduces the classifier energy by 19×. This is
primarily due to a reduction of leakage energy (since the HD
classifier is idle for most of the execution time) by using non-
volatile memory (RRAM) instead of SRAM. The HD encoder
energy is reduced by 5.4×, owing to a combination of using
CNFETs (instead of silicon FETs) and RRAM approximate
incrementers. While the monolithic 3D design only uses two
tiers of CNFET logic, a 3× area reduction was achieved,
thanks to the area savings of using RRAM versus SRAM and
RRAM approximate incrementers versus digital incrementers.

V. CONCLUSION

This paper illustrates how various properties of het-
erogeneous nanotechnologies can be effectively exploited
and combined to realize brain-inspired computing architec-
tures that tightly integrate computation and storage, enable
energy-efficient computation, employ approximation, embrace
randomness, and exhibit resilience to errors. We have experi-
mentally demonstrated the followings:

1) pairwise classification of 21 European languages
with measured accuracy of up to 98% (comparable
to software implementations) on >20 000 sentences
(6.4 million characters) per language pair;

2) learning from a few examples (often referred to as one-
shot learning) using one text sample (∼100 000 charac-
ters) per language;

3) resilient operation (98% accuracy) despite hardware
errors (circuit outputs stuck at 0 or 1).

In simulation, we demonstrate significant system-level
energy-efficiency and area benefits when brain-inspired com-
puting models are implemented using monolithic 3D integra-
tion compared to silicon CMOS implementations.

Future research directions include: 1) demonstration of
larger nanosystems at scaled technology nodes [significant
progress is being been made along this direction (see Table I)];
2) expanding the domain of HD nanosystem demonstrations
beyond language recognition (e.g., computer vision and health-
care applications); and 3) applying the nanosystems’ principles
presented in this paper to a broader class of (brain-inspired)
computing systems that leverage emerging nanotechnologies
(see [34], [54], [55]).
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