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Abstract The mathematical properties of high-dimensional
(HD) spaces show remarkable agreement with behaviors
controlled by the brain. Computing with HD vectors,
referred to as “hypervectors,” is a brain-inspired alternative
to computing with numbers. HD computing is character-
ized by generality, scalability, robustness, and fast learning,
making it a prime candidate for utilization in application
domains such as brain—computer interfaces. We describe the
use of HD computing to classify electroencephalography
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(EEG) error-related potentials for noninvasive brain—com-
puter interfaces. Our algorithm naturally encodes neu-
ral activity recorded from 64 EEG electrodes to a single
temporal—spatial hypervector without requiring any elec-
trode selection process. This hypervector represents the
event of interest, can be analyzed to identify the most dis-
criminative electrodes, and is used for recognition of the
subject’s intentions. Using the full set of training trials,
HD computing achieves on average 5% higher single-trial
classification accuracy compared to a conventional machine
learning method on this task (74.5% vs. 69.5%) and offers
further advantages: (1) Our algorithm learns fast: using only
34% of training trials it achieves an average accuracy of
70.5%, surpassing the conventional method. (2) Conven-
tional method requires prior domain expert knowledge, or
a separate process, to carefully select a subset of electrodes
for a subsequent preprocessor and classifier, whereas our
algorithm blindly uses all 64 electrodes, tolerates noises in
data, and the resulting hypervector is intrinsically clustered
into HD space; in addition, most preprocessing of the elec-
trode signal can be eliminated while maintaining an average
accuracy of 71.7%.

Keywords Electroencephalogram (EEG) - Error-related
potentials (ERP) - Classification - Hyperdimensional
computing

1 Introduction
Over the past six decades, the semiconductor industry has
been immensely successful thanks to the set of well-defined

abstraction layers, starting from robust switching devices
that support a deterministic Boolean algebra and going up
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to a scalable and stored program architecture, which is Tur-
ing complete, and hence capable of tackling (almost) any
computational task. Unfortunately this abstraction chain is
being challenged as device scaling continues to nanometer
dimensions and also by exciting new applications that must
support a myriad inputs such as brain—computer interfaces
[1].

A brain—computer interface is a device that enables com-
munication and control without movement. For these appli-
cations, cognitive functions such as classification, recogni-
tion, synthesis, decision-making and learning are of crucial
importance for fast and efficient information-extraction.
This is in sharp contrast to the past when the central objec-
tive of computing was to perform calculations on numbers
and produce results with extreme numerical accuracy. It is
therefore worth exploring alternative computational models
for emerging applications by abandoning the deterministic
requirement.

Brain-inspired information processing architectures pro-
vide significant increase in energy efficiency, asymptot-
ically approaching the efficiency of brain computation,
while aligning well with the variability of nanoscale devices
[10, 17, 20, 23]. The mathematical properties of high-
dimensional spaces correlate strongly with behaviors con-
trolled by the brain [13, 15, 16, 24]. We focus on a
model of computing with high-dimensional (HD) vectors—
hereafter HD computing—where the dimensionality is in
the thousands (e.g., 10,000 dimensions). HD computing is
also referred to as “hyperdimensional computing” [13] on
account of the very high dimensionality. In this formal-
ism, information is represented in HD vectors referred to
as “hypervectors”. HD computing explores the emulation of
cognition by computing with hypervectors as an alternative
to computing with bits and numbers.

Key properties of HD computing include: (1) HD com-
puting paradigm is universal and complete. (2) By its
very nature, HD computing overcomes large variability and
uncertainty in both data and implementation platform to per-
form robust decision making and classification. (3) In con-
trast to other neuro-inspired approaches, in which learning
is separate from subsequent execution, learning in HD com-
puting shares its constructs with execution, is relatively fast,
and does not rely on biologically unlikely algorithms such
as back-propagation. (4) In HD computing, the encoding
of information and memory storage are separate processes.
In contrast, in the artificial neural nets these are entangled
which can lead to catastrophic forgetting. Such generality,
robustness against data uncertainty, and one-shot learning
make HD computing a prime candidate for utilization in
application domains such as brain—computer interfaces and
wearable cyberbiological systems.
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HD computing has been used for text analytics solely
from a stream of input letters. More specifically, HD com-
puting can identify the language of unknown sentences from
21 European languages [11, 23], and classify Reuters news
articles to eight topics [19] with very high accuracy. It has
also been adapted to wearable biosignal processing charac-
terized by a set of parallel and analog streaming inputs. Very
simple vector-space operations are used to classify hand
gestures from four electromyography (EMG) electrodes
[21].

We further extend the application domain of HD comput-
ing to noninvasive brain—computer interfaces in [22], and
in this paper explain it with more details. We develop an
encoding algorithm and a classifier! for recognition of the
subject’s intentions from error-related electroencephalogra-
phy (EEG) potentials. Our algorithm encodes neural activity
that is recorded simultaneously by 64 EEG electrodes, to a
single temporal—spatial hypervector representing the inten-
tion of a subject. Our proposed HD classifier surpasses the
state-of-the-art method [4]—referred to as baseline in this
paper—for classifying single-trial EEG error-related poten-
tials in the following aspects:

1. Higher accuracy. With an equivalent setup, HD clas-
sifier achieves an average classification accuracy of
74.5% which is 5% higher than the baseline.

2. Faster learning. HD classifier learns ~ 3x faster by
using only 34% of training trials while maintaining an
average accuracy of 70.5% which is higher than the
baseline using the full set of training trials.

3. No electrode selection. A particularly important aspect
of our HD classifier is that it can maintain high accu-
racy while blindly using all 64 electrodes. Authors in
[4] carefully selected one or two electrodes, depending
upon the subject, to be used for the baseline classifier.
In this paper, we also observe that in fact those selected
electrodes have a high Fisher score for discrimination of
the subject’s intentions. Nevertheless, our HD classifier
does not require such domain expert knowledge or elec-
trode selection process, and hence operates naturally
with all 64 electrodes at negligible loss of accuracy.

4. Analyzable code. The learned code (i.e., the temporal—
spatial hypervector) can be analyzed to extract useful
information. For example, the most discriminating elec-
trodes can also be identified by measuring the relative
distances between the learned class prototypes in the
HD space. This feature enables standard verification of

IMATLAB code for our encoding algorithm and classifier is
open access and available at https:/github.com/abbas-rahimi/
HDC-EEG-ERP.
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the learned model and is in sharp contrast to conven-
tional learning methods that produce a “black box.”

5. Less preprocessing. Most preprocessing of the elec-
trode signal can be eliminated in our classifier. Such
“blind” operation with all electrodes and less prepro-
cessing results in only a slight loss of accuracy (from
74.5 to 71.7%).

This paper is organized as follows. In Section 2, we
describe EEG error-related potentials and its usage in non-
invasive brain—computer interfaces followed by its baseline
preprocessing and classification. In Section 3, we intro-
duce HD computing and discuss how its operations can be
used to form an HD classifier. In Section 4, we present our
algorithm for encoding and classifying EEG error-related
potentials. In Section 5, we provide experimental results fol-
lowed by discussion in Section 6. Section 7 concludes this

paper.

2 Noninvasive brain—computer interfaces

Noninvasive brain—computer interfaces and neuroprosthe-
ses aim to provide a communication and control channel
based on the recognition of the subject’s intentions from
spatiotemporal neural activity typically recorded by EEG
electrodes. What makes it particularly challenging, how-
ever, is its susceptibility to errors in the recognition of
human intentions.

2.1 EEG error-related potentials

As an alternative interaction approach, the user can observe
the performance of an autonomous agent endowed with
learning capabilities, and the erroneous behavior of the
agent can be recognized directly from the analysis of the
user’s brain signals, i.e., EEG error-related potentials (ERP).
In the frame of brain—computer interaction, Ferrez and
Millan have described an ERP elicited by errors in the
recognition of the user’s intention when operating a brain—
computer interface [6, 7]. In their experimental protocol, the
human subject tries to move a cursor toward a target loca-
tion either using a keyboard [6] or mental commands [7].
Next, they have observed that similar error-related signals
are generated when a human user observes the performance
of an external agent upon which the user has no con-
trol [4]. In this approach, the user does not provide any
commands, but only observes the agent’s performance. Effi-
cient and fast learning methods of encoding these ERPs for
accurately classifying the user’s intentions with regard to
the agent further motivates its application for noninvasive
brain—computer interfaces.

2.2 Dataset for error-related potentials

Here, we first describe a publicly available dataset [2] for
ERPs, and then outline the baseline method [4] that is used
for processing of these potentials. Six subjects are seated in
front of a computer screen where a moving cursor is dis-
played. A colored square at either the left or right of the
cursor indicates a target location. At each trial the cursor
moves toward or away from the target. During the exper-
iment, shown in Fig. 1, the user has no control over the
cursor’s movement and is asked only to observe the perfor-
mance of the agent that controls the cursor, knowing that
the goal is to reach the target. To study signals generated
by erroneous actions, at each trial, there is a probability of
~ (.20 for the cursor to move in the wrong direction (i.e.,
opposite to the target location). A trial is labeled as “cor-
rect” if the curser is moved toward the target; otherwise it
is labeled as “‘error”, e.g., when the target is located in the
right and the cursor moves to the left, as in Fig. 1.

Trials have an approximate duration of 2000 ms. There
are two recording sessions, the first one is used for training,
and the second one is used for testing. Each experimental
session consists of 10 blocks of 3 min each (& 64 trials
per block). Full details of the experimental protocol are pro-
vided in [4]. In the following, we explain their methods for
EEG signal acquisition, preprocessing, and classification.
We refer to them as the baseline for comparing with our HD
computing method.

2.2.1 Baseline preprocessing and classification

EEG potentials were recorded at a sampling rate of 512 Hz
using 64 electrodes according to the standard 10/20 interna-
tional system. For preprocessing, data was spatially filtered
using common average reference (CAR) [18]. By apply-
ing the CAR filter to an electrode, the average signal level
of the entire electrode array is subtracted from that of the

start
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t+1 C: correct move
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3 t+2 W: wrong move
2 O
)

Fig. 1 Experimental Protocol of ERPs: black square as target loca-
tion; white square as moving cursor; and dotted square as cursor
location at the previous time step
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electrode of interest. If the entire head is covered by equally
spaced electrodes and the potential on the head is generated
by point sources, the CAR results in a spatial voltage dis-
tribution with a mean of zero [3]. We show in Section 5.3
that this spatial filter preprocessing can be eliminated with
negligible effect on the classification accuracy thanks to the
HD operations that can work on raw data. Then, a 1-10 Hz
band-pass filter (BPF) was applied to remove the unwanted
frequency components. For every subject, a time window
corresponding to erroneous and correct cursor movements
was extracted for further analysis and classification (listed
in the third column of Table 1).

A Gaussian classifier was used for recognition of a single
trial, as described in [6]. This statistical classifier estimates
the posterior probability of a given trial corresponding to
one of the two classes: “error,” and “correct.” FCz and Cz
electrodes were used as the inputs to the classifier follow-
ing their earlier studies for electrode selection process [5].
The same learning rates and number of prototypes were
used in all cases. Classifier parameters are then tuned using
a stochastic gradient descent on the mean square error [6].
To tune the classification performance, the choice of elec-
trodes (FCz, Cz, or both) and time windows were selected
independently per subject [4] (see Table 1).

Our aim is to develop an efficient and fast learning
method based on HD computing that replaces the afore-
mentioned preprocessing and classification enabling blindly
operating with all electrodes, and with raw data. We provide
backgrounds about HD computing in Section 3, and then
present details of our method in Section 4.

3 HD computing

The brain’s circuits are massive in terms of numbers of
neurons and synapses, suggesting that large circuits are
fundamental to the brain’s computing. HD computing [13,
15] explores this idea by looking at computing with ultra-
wide words — that is, with hypervectors. There exist a huge
number of different, nearly orthogonal hypervectors with
the dimensionality in the thousands (e.g., D = 10,000)

Table 1 Classifier parameters: selected electrodes and time windows
used in Gaussian classifier [4]; and n-gram sizes for our HD classifier

Subjects Electrodes Time window (ms) n-gram
S1 FCz, Cz 200450 16
S2 Cz 150-600 29
S3 FCz, Cz 200450 16
S4 FCz 0-600 19
S5 FCz, Cz 150-600 29
S6 FCz, Cz 150-600 29
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[12]. This lets us combine two such hypervectors into a
new hypervector using well-defined vector-space opera-
tions, while keeping the information of the two with high
probability.

Computing with hypervectors begins with selecting a set
of random HD vectors to represent basic objects. These vec-
tors are also thought of as labels. In a language application,
for example, letters of the alphabet can be the basic objects
and they are assigned random labels, and in dealing with
EEG signals each channel is assigned a random label, inde-
pendently of all the other labels. They serve as seed vectors,
and they are used to make representations for more com-
plex objects. For seeds, we use random 10,000-dimensional
vectors of equally probable 1s and —1s, i.e., dense bipolar
elements of {1, —1}10000,

3.1 Item memory

Item memory (iM) is a symbol table or dictionary of all the
hypervectors defined in the system. In a typical language
application, the 26 letters of the alphabet and the space are
the initial items, and they are assigned hypervectors at ran-
dom (with i.i.d. components). They stay fixed throughout
the computation, and they serve as seeds from which fur-
ther representations are made. HD computing has been used
for identifying the source language of text samples from a
sequence of n consecutive letters (n-grams) [11, 23]. For
example, letter trigrams of a text sample were encoded into
a hypervector by random indexing and vector-space opera-
tions to represent a language. In the same vein, pentagrams
of letters have been used for classifying news articles [19].

Text and language applications are well-matched to the
HD computing framework because the input data already
comes in the form of discrete symbolic primitives (letters,
or words), which can be readily mapped to hypervectors.
On the other hand, biosignal processing applications often
operate on analog time series with multiple sensory inputs
demanding a different mapping scheme to hypervectors.
Accordingly, we have extended the notion of iM to a contin-
uous item memory (CiM) that maps an analog input after a
discretization step [21]. CiM utilizes a method of mapping
quantities and dates “continuously” to hypervectors [25]. In
this continuous vector space, orthogonal endpoint hypervec-
tors are generated for the minimum and maximum levels
in the range. Hypervectors for intermediate levels are then
generated by linear interpolation between these endpoints
so that the similarity of vectors corresponds to the closeness
of levels.

For example, if an analog signal is discretized into m
levels, we choose a random hypervector for the mini-
mum level and randomly flip D/2/(m — 1) of its bits for
each successively higher level (once flipped, a bit will not
be flipped back). The vectors for the minimum and the
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maximum levels will then be D/2 bits apart or orthogonal
to each other. These hypervectors are stored in the CiM and
used to encode signal levels.

3.2 MAP operations

The seed hypervectors that are stored in iM and CiM can
be further combined using the following well-defined set of
arithmetic operations. We consider a variant of the multipli-
cation, addition, and permutation (MAP) coding described
in [8] to define the hyperdimensional vector space. The
MAP operations on the hypervectors are defined as follows.
Point-wise multiplication of two hypervectors A and B is
denoted by A * B, and point-wise addition is denoted by
A + B. Multiplication takes two vectors and yields a third,
A % B, that is dissimilar (orthogonal) to the two and is
suited for variable binding; and addition takes several vec-
tors and yields their mean vector [A + B + ... + X] that
is maximally similar to them and is suited for representing
sets. The brackets [- - - | mean that the sum vector is normal-
ized to {41, —1}10900 paged on the sign, with ties broken at
random. In the following, we describe the use of these two
operations to holistically encode a data record composed of
various fields [14].

A data record consists of a set of fields (vari-
ables/attributes) and their values (fillers); for example, the
variables x, y, z with values a, b, ¢, respectively. The holis-
tic encoding is done as follows. The field—value pair x = a
is encoded by the hypervector X *x A that binds the corre-
sponding hypervectors, and the entire record is encoded by
the hypervector R = [(X % A) + (Y % B) 4+ (Z * C)] which
includes both the variables and the values, and each of them
spans the entire 10,000-bit hypervector.

Finally, the third operation is a permutation, p, that
rotates the hypervector coordinates. It is implemented as a
cyclic right-shift by one position. The permutation opera-
tion generates a dissimilar pseudo-orthogonal hypervector
that is good for encoding sequences. In geometry sense, the
permutation rotates the hypervector in the space. For exam-
ple, the sequence trigram abc is encoded as the hypervector
p(pAxB)*xC = ppAxpB=C. This efficiently distinguishes
the sequence abc from acb, since a rotated hypervector is
uncorrelated with all the other hypervectors.

3.3 Associative memory

Hypervectors can be stored in an associative memory to be
compared for similarity using a distance metric over the
vector space. We use cosine similarity as the distance met-
ric between two hypervectors by measuring the cosine of
the angle between them using a dot product. It is defined
as cos(A,B) = |A" % B’|, where A’ and B’ are the
length-normalized vectors of A and B, respectively, and |C|

denotes the sum of the elements in C. It is thus a mea-
sure of orientation and not magnitude: two hypervectors
with the same orientation have a cosine similarity of 1, two
orthogonal hypervectors have a similarity of 0, and two
hypervectors diametrically opposed have a similarity of —1.

4 HD computing for EEG ERP

In this section, we describe how HD computing can be used
to encode ERPs into hypervectors. Our proposed encoder
first captures a sequence of electrical activities of an elec-
trode into a temporal hypervector (Section 4.1) and then
encodes the information across all the electrodes into a
temporal—spatial hypervector (Section 4.2) for the HD clas-
sifier (Section 4.3). Figure 2 shows the structure of proposed
temporal—spatial encoder.

4.1 Temporal encoder for one electrode

There are 64 EEG electrodes with unique names, and each
electrode produces an analog signal with an amplitude. We
draw an analogy from [14] to generate a holistic vector rep-
resenting information about a given electrode by using a
field—value pair. Hence, we decouple the name and the sig-
nal level of an electrode. The electrode name corresponds to
a field of a traditional data record, and its signal level cor-
responds to the value for the field. Since the name of every
electrode is a unique string, it forms a field that can be easily
mapped to a hypervector (N) using an iM with 64 entries.
The iM represents the 64 basic fields by assigning a unique
orthogonal hypervector to every field: Ny L N> ... L Nga.

N; = iM (name of ith electrode) (1)

Although the names of electrodes can be readily mapped
to hypervectors, mapping their signal levels requires a quan-
tization step. Here, the signal level can be the raw analog
data or the preprocessed data as described in Section 2.2.1.
The signal levels of each electrode are scaled linearly from
0 to 100, and quantized into 100 discrete levels. This quan-
tized signal level is mapped to a hypervector (L) using
a CiM with 100 entries. In CiM, the hypervector that is
assigned to the minimum signal level is orthogonal to the
hypervector representing the maximum signal level: CiM(0)
1 CiM(99).

An event of ERP is not a single signal sample but rather
a sequence of samples spanned over a time window form-
ing a temporal component. Hence, we should design a
temporal encoder to capture all the signal levels gener-
ated during the entire event of an ERP. We can encode a
sequence of symbols by using the permutation operation,
p. As shown in Section 3.2, permutation has been used to
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Fig. 2 Temporal-spatial encoder for EEG ERPs: Temporal encoder
rotates the signal level to capture its history that produces a temporal
n-gram (G;) to be bound with the electrode name (N;) for constructing

encode a sequence of n letters to form an n-gram hyper-
vector. By analogy, for example, a sequence of three signal
levels of electrode i that are generated at time stamps of 1,
2, and 3 is encoded as follows: the first hypervector L;; is
rotated twice p>L;1, the second hypervector is rotated once
p'Li>, and finally there is no rotation for the last hyper-
vector L;3. These three hypervectors are then combined
with point-wise multiplication into a trigram hypervector,
G, = szil *,olL,-g*L,g. For n-grams at large this becomes:

L;; = CiM (signal level of ith electrode at time stamp t) (2)
n
Gi=[]r""Li 3)
=1

With this temporal encoding algorithm, one important
step is to determine the proper size of an n-gram to be
able to capture the entire event of an ERP for the subjects.
In this regard, we measured the number of samples avail-
able in an event of ERP. Table 1 shows the time windows
in which the events of ERP are observed during the trials
of 2000 ms for each subject. As shown, this time window
can be as large as 600 ms (for S4) containing 308 sam-
ples with sampling rate of 512 Hz. Computing an n-gram
of this size is inefficient; earlier, we overcame such issue
for the EMG signals by highly downsampling the electrode

@ Springer

a record (R;); Spatial encoder adds these records across 64 electrodes
to produce a temporal—spatial hypervector (E) representing the entire
event of ERPs

such that the hand gestures can be fit into n-grams where
n € [3, 5] [21]. Similarly, the electrical activity on the EEG
electrodes was downsampled to 64 Hz [4]. Consequently,
we partition the time widow of ERP to a set of nonoverlap-
ping slices of equal length. The length of every slice is 8
samples as the ratio of sampling rate (512 Hz) to the down-
sampling rate (64 Hz). With 8 samples in a slice, the number
of slices in the window is proportional to the duration of the
window, and varies from 16 slices to 29 slices.Z Then, we
take the mean value of samples in the slice, apply the scal-
ing and quantization step and use it as the quantized signal
level for CiM. Therefore, the event of ERP can be repre-
sented by an n-gram where n € [16, 29]. The last column in
Table 1 lists the exact size of n-gram used for each subject.
Please note that the n-gram size is the only parameter of
our encoder that we naturally set it per subject solely based
on the duration of ERP event. This is in sharp contrast with
other learning methods as we do not rely on inefficient or
biologically implausible algorithm for parameter tuning and
optimizations.

Our temporal encoder accepts the sequence of n quan-
tized signal levels from the ith electrode and computes
the n-gram hypervector G;. G; represents the temporal
activities of the signal levels of the ith electrode.

ZFor S4, we double the length of slices (16 samples in each) that results
in 19 slices to cover the window instead of 38.
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4.2 Temporal-spatial encoder: adding temporal
hypervectors of 64 electrodes

The 64 temporal hypervectors G; for the electrodes are
encoded into a single temporal-spatial hypervector E for
the event in a manner analogous to the holistic record of
[14]. The electrode name is treated as a field, and its sig-
nal is treated as a value for the field. The channel names
N1, Na, ..., Nes are hypervectors that reside in the item
memory, iM. They are random, independent, and approxi-
mately orthogonal to one another. The signal G; is bound to
its channel name N; with point-wise multiplication and is
represented by the hypervector

R = G; x N; (€]

and the entire event is represented by a hypervector E that
is the sum of 64 hypervectors for the field—value pairs:

64
E:}:& (5)
i=1
The structure of the encoder is shown in Fig. 2.
4.2.1 Class prototypes
The classifier construction is purely based on native oper-
ations of HD computing without the involvement of any

optimization procedure. The approach is based on the notion

Fig. 3 Constructing class
prototypes with the output of
temporal-spatial encoder

of a class prototype. The class prototype is a hypervector
representing the entire class. The number of class prototypes
equals the number of classes in ERP. Hence, we gener-
ate two hypervectors C and W as the class prototypes for
ERP: C represents the “correct” class and W represents
the “error” (wrong) class. The hypervector C is computed
by adding all the hypervectors produced by the temporal—
spatial encoder from the “correct” events of ERP. Hence, the
addition operation bundles E; observed in training trial j to
a single hypervector C as follows:

C +=Ej|cos(C, Ej) < 0.5 )

Before adding a new event E; to C, we check whether
this event is already in C. This checking forms a conditional
addition that adds E; to C when cos(C, E;) < 0.5. If C
has a high cosine similarity (> 0.5) with E, it means that
the event is already in C, hence there is no need to add the
redundant event. Similarly, the hypervector W is computed
for the “error” events. Figure 3 shows the procedure of gen-
erating the class prototypes. As shown, this procedure is
quite simple and can be reused in online learning, providing
a rule for enabling the class prototype updates.

4.3 Single-trial HD classification

After training, C and W hypervectors are stored in the asso-
ciative memory as the learned patterns of ERP. The same

02 - Fpl
} !
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Encoder

|
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“correct move” “wrong move”
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enable enable
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encoding algorithm is used for both training and testing
(i.e., classification). When testing, we call the output of the
temporal—spatial encoder a query hypervector (Q) since its
label is unknown. The query hypervector of a single-trial is
then sent to the associative memory to identify its source
class. Determining the class of an unknown trial is done
by comparing its Q hypervector to all learned hypervectors
(i.e., C and W) using the cosine similarity. Finally, the asso-
ciative memory selects the highest similarity among the two
measures and returns its associated label as the class that the
O hypervector has been generated from.

5 Experimental results

In this section, we present experimental results and sensi-
tivity analyzes for classification accuracy of our proposed
HD method. We compare it with the baseline method pre-
sented in [4] using their dataset available at [2]; session #1
is used for training, and session #2 is used for testing the
accuracy. The classification accuracy throughout this paper
is measured as macroaveraging that computes a simple aver-
age over classes. The macroaveraging gives equal weight
to each class, whereas microaveraging gives equal weight
to each per-event classification decision. The macroaverag-
ing is a better measure of effectiveness with small classes
(the size of “correct” class is & 4x of the “wrong” class).
Our HD encoding algorithm and classifier are developed in
MATLAB.

5.1 Fast and one-shot learning

Here, we assess how fast the HD training can be done while
maintaining high classification accuracy. As described in
Section 2.2, the training session is composed of 10 blocks of
recording that are shown by vertical dashed lines in Fig. 4.
These consecutive blocks provide a total number of ~ 640
trials for training per subject. We have observed that only
some of these training trials can produce a non-redundant
temporal—spatial hypervector for addition to the class proto-
type (i.e., meeting Eq. 6). For instance, as shown in Fig. 4,
the training session contains 191 and 348 non-redundant tri-
als for S3 and S5, respectively. Hence, during the training
session, every time that we encounter a new non-redundant
ERP event, we update the associative memory and measure
the classification accuracy for the entire test set.

Figure 4a shows the classification accuracy of both
classes for S3. For the very first trials the associative mem-
ory is almost empty, but as we encounter new trials it
will be lightly populated leading to an increase in the
microaveraged accuracy. Training with only the first five
non-redundant trials (2.6% of the total), the accuracy of
HD classifier reaches to 79.3% which is higher than the
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Fig. 4 Classification accuracy of both classes when we increase the
size of non-redundant training trials for two subjects: a S3 and b S5.
Dashed lines separate the 10 blocks of training session

baseline accuracy (75.9%) using all training trials. Similarly
but with a slower learning rate, the HD classifier achieves
the accuracy of 66.3% for S5 by using 183 non-redundant
trials (53% of the total) as shown in Fig. 4b.

We repeat the aforementioned experiment for all sub-
jects and the results are summarized in Fig. 5. We target
the classification accuracy of the baseline that is achieved
by using all available trials in the training session, one or
two electrode(s) (c.f. Table 1), and with the CAR prepro-
cessing technique. We provide the same conditions for the
HD classifier,3 but with fewer training trials, to assess how
fast it can reach to the target accuracy. As shown, the HD

3Equation 5 for the spatial encoder is limited to one or two electrode(s)
and the CAR filter is applied before the BPF.
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Fig.5 The percentage of non-redundant training trials that are used to
train the HD classier, with resulting accuracy, instead of using all trials
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classifier is able to learn faster: it uses only 0.3% of the non-
redundant training trials for S6, and up to 96% for S1. On
average, the HD classifier reaches the target classification
accuracy of 70.5% when trained with only 34% of non-
redundant training trials. This translates directly to &~ 3x
faster learning.

5.2 Algorithms for identifying meaningful electrodes

Here, we describe automatic methods to identify useful
electrodes. Using the domain expert knowledge, authors in
[4] selected FCz, Cz, or both electrodes for their baseline
classifier (see Table 1). We observe that these electrodes can
be identified as well by two algorithms that are described in
the following.

First, we use Fisher scoring algorithm to identify the
most important electrodes before mapping them into the

Subjects

HD space. Fisher score, as a filter-based approach, assesses
the correlations between features and the class labels to
find out features that are efficient for discrimination [9]. It
assigns the highest score to the feature on which the data
points of different classes are far from each other while
requiring data points of the same class to be close to each
other. For each electrode, we consider the values of » slices
in the time window that form a feature space of n x 64.
The electrodes are sorted based on the average Fisher score
of their features. Figure 6 (top) shows the top 32 elec-
trodes of the sorted list based on the average Fisher scores
of the subjects. As shown, over all the subjects, the elec-
trodes FCz and Cz are among the four most discriminative
electrodes.

The second algorithm shows the analyzability of the
learned HD code. It is inspired by the distribution of dis-
tances in HD space. For each electrode, we compute a score
that measures the distance between two class prototypes
that are generated solely by the electrode. In other words,
this score reflects how well a given electrode discriminates
between the two class prototypes: the larger, the better. Note
that if electrodes i and k receive identical input stimuli,
their encoded n-gram hypervectors in Eq. 3 are identical,
G; = Gy, because all 64 instances of CiM in Fig. 2 are
identical. We compute a hypervector Gl.c for every electrode

i by adding the n-gram hypervectors G{ over all the trials
Jj belonging to the “correct” class. Similarly, a hypervector
GZ.W is computed for the “error” class as shown in Eq. 7.

Gf= Y & G'= 3% ¢ ™

j€Correct Jj€Wrong

Fisher Score

FCz C1 FC1 Cz FC2CPz F3 F1 F2 FC3 Fz F4 FC4 C3 C2 CP1AF3 F5 AFz O1 AF7 Fpz AF8 Fp2 AF4 Pz F6 Fp1CP3 P7 P9 FC5

Sorted electrodes

Subjects

HD Score

0.25
0.2
0.15
0.1
- 0.05

FCz Cz FC1 C2 C1 CPzFC2 P9 CP1 C3 F1 O1 Fz F3 CP2FC3 Iz F2 F4 P10FC4PO8 C4 P7 F5 F8 FC5 Oz FC6 AFzAF4 F6
Sorted electrodes

Fig. 6 Sorted electrodes, the top 32, based on: Fisher score (Top); Score in HD space by analyzing the learned code using Eq. 8 (Bottom)
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For each electrode i, we can then assign a score by mea-
suring the distance between their Gl.C and GlW . Equation 8
shows how this score is computed.
score; = 1 — cos(Gl-C, GIW) ®)
Figure 6 (bottom) shows the scores for each electrode and
subject. The electrodes are sorted according to the aver-
age score over the subjects; only the top 32 electrodes are
shown. As shown, the FCz and Cz electrodes have the high-
est scores for the six subjects on average. However, all
subjects do not exhibit the same sensitivity to these two elec-
trodes. For example, S4 does not show a clear distinction
between electrodes.

5.3 Blindly using all electrodes without preprocessing

Although the discriminative electrodes can be identified by
a domain expert or algorithms, we want to assess the ability
of the HD classifier to operate with noisy inputs and elec-
trodes that do not carry meaningful information. Figure 7
compares the classification accuracy of the baseline method
with two instances of our HD classifier. The first one has
a setup equivalent of the baseline as aforesaid: uses one or
two electrode(s) depending on the subjects, applies the CAR
preprocessing filter on every electrode before the BPF step,
and uses all training trials. As shown in Fig. 7, this instance
of HD classifier surpasses the baseline accuracy across the
six subjects. The HD classifier exhibits 67.7-82.7% classi-
fication accuracy, with an average of 74.5%, which is 5%
higher than the baseline with the same conditions.

The second instance of our HD classifier operates with
the 64 electrodes and without the CAR preprocessing filter.
It is illustrated in Fig. 2 where the temporal—spatial encoder
accepts the inputs from the 64 electrodes; every electrode
signal is immediately passed through a BPF, and its mean is

Fig. 7 Comparison of
microaveraged accuracy of the

baseline [4] classifier with two 90% o
( 2
instance of our HD classifier: o SN
(1) Using 1 or 2 electrode(s) and 85% 3%
CAR preprocessing as in the _ 80%
baseline; (2) Using 64 electrodes X o
. . = 75%
without CAR preprocessing 2
8 70%
5
3 65%
<
60%
55%
50%
S1
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78.1%

computed over 8 samples followed by the scaling and quan-
tization step before mapping to the HD space by a CiM. As
shown, there is no CAR filter in the chain of data. Note that
the simple BPF cannot be removed since the ERPs are in the
frequency range of 1-10 Hz.

Despite using the 64 electrodes and no CAR filtering, the
HD classifier maintains almost the same range of classifi-
cation accuracy (i.e., 62.3-79.1%) across the six subjects
as shown in Fig. 7. This HD classifier shows on aver-
age 2.2% higher classification accuracy compared to the
baseline. Note that this has been accomplished while this
classifier blindly uses largely meaningless electrodes in the
encoder regardless of the subjects, while for the baseline
authors carefully selected a subset of electrodes per individ-
ual subject that can provide meaningful information for the
classifier. This also confirms the amenability of HD com-
puting to operate with raw data. In HD computing, the input
data is naturally clustered in HD space, and the noise gen-
erated by meaningless electrodes tends to cancel out. This
desirable property makes it possible to apply HD computing
for clustering data with little or no prior knowledge about
the nature of the data.

6 Discussion

We have earlier used HD computing to encode biosignals
from EMG electrodes for hand gesture recognition [21]. We
used a spatial-temporal encoder with small n-gram sizes
to deal with EMG recoding from four electrodes. How-
ever, encoding EEG data requires larger n-gram sizes which
brings up the following issue. In the spatial encoder, the
point-wise addition of bipolar hypervectors produces Os and
the point-wise multiplication in the temporal encoder makes
them contagious. After a certain size of n, this results in
generating an n-gram hypervector where all elements are 0.

mBaseline: 1-2 electrode(s) + CAR filter
mHD: 1-2 electrode(s) + CAR filter

o N
& HD: 64 electrodes + No CAR filter
o X2
2T
N3 S (-3 °
= il B 25 B
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We can start with bipolar hypervectors, meaning that a
sum hypervector can have 0s. We can leave the Os alone,
except that when we multiply two hypervectors, we check
for Os and turn them into a +1 or a —1 at random. This
introduces noise but keeps the hypervectors from eventually
turning into all Os. We will be able to make vectors for n-
grams of any length, but the amount of noise will increase
with the length of the n-gram. The noise grows as follows.
If the noise probabilities of two independent bipolar hyper-
vectors are pj and p», the noise probability of their product
is p1 + p2 — 2p1 p2. In contrast, if we let Os be, they grow
faster, at the rate of p1+p>(1—p1) = p1+p2—p1 p2. There-
fore, in this paper, we chose to change the order of encoders:
first doing the temporal encoding of each electrode that
produces a bipolar hypervector, and then doing the spatial
addition.

7 Conclusion

This paper presents an application of HD computing to the
classification of error-related potentials from EEG record-
ings. Very simple vector-space operations are used to
encode analog input signals from 64 electrodes for single-
trial classification. The proposed HD classifier requires nei-
ther prior knowledge about selecting the electrodes nor extra
preprocessing steps. Our HD algorithm blindly encodes the
electrical activity of error-related potentials into a temporal—
spatial hypervector representing a binary class of the sub-
ject’s intentions. The learned HD code can be analyzed to
identify the most discriminative electrodes. The classifica-
tion accuracy of our HD classifier for EEG error-related
potentials is comparable to a classifier crafted by a skilled
professional. Our HD classifier also achieves it with fewer
training data.
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