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Abstract—Circuit designers typically combat variations in hardware
and workload by increasing conservative guardbanding that leads to
operational inefficiency. Reducing this excessive guardband is highly
desirable, but causes timing errors in synchronous circuits. We propose
a methodology for supervised learning based models to predict timing
errors at bit-level. We show that a logistic regression based model
can effectively predict timing errors, for a given amount of guardband
reduction. The proposed methodology enables a model-based rule method
to reduce guardband subject to a required bit-level reliability specification.
For predicting timing errors at bit-level, the proposed model generation
automatically uses a binary classifier per output bit that captures the
circuit path sensitization. We train and test our model on gate-level
simulations with timing error information extracted from an ASIC
flow that considers physical details of placed-and-routed single-precision
pipelined floating-point units (FPUs) in 45nm TSMC technology. We
further assess the robustness of our modeling methodology by considering
various operating voltage and temperature corners. Our model predicts
timing errors with an average accuracy of 95% for unseen input
workload. This accuracy can be used to achieve a 0%–15% guardband
reduction for FPUs, while satisfying the reliability specification for four
error-tolerant applications.

I. INTRODUCTION

Variability in microelectronic circuits stems from different
sources, including workload variability, dynamic variations in the
operating conditions caused by temperature fluctuations and supply
voltage ripples, and static process variations that are amplified as
device dimensions shrink [6]. Designers typically handle variability
by adding a safety margin as guardband. This guardband is computed
from a multi-corner worst-case analysis at design time, which leads
to overly conservative designs. The most immediate manifestation of
reducing guardband is timing error that could lead to an invalid state
being stored in a sequential element.

Error-tolerant applications can tolerate some degree of errors
at the application-level, where multiple valid output values are
permitted [7], [8], [9], [11], [14]. Conceptually, such error-tolerant
programs have a possible set of ‘elastic outputs’, and if execution
is performed approximately (due to e.g., numerical imprecision or
timing errors), the program still appears to execute correctly from
the users’ perspective. For instance, Rely [7], is a language for
expressing approximate computation that allows developers to define
a reliability specification, which identifies the minimum required
probability with which a program must produce an exact result.
These relaxed specifications can be inferred from a domain expert
developer or through a profiling phase [9], [14], [11], and allow
departure from the overly conservative designs to enable more ef-
ficient execution. Chisel [11], further enhances the capabilities of
Rely by providing combined reliability and/or accuracy specification.
The accuracy specification determines a maximum acceptable dif-
ference between the approximate and exact result values, while the
reliability specification specifies the probability that a computation
will produce an acceptably accurate result. The former specification
can be guaranteed through unequal error protection methods [5], or
by careful partitioning the computation through reliable or unreliable

mediums [8]. However, meeting the latter specification is a challenge
for automatic model generation, since the model must provide reliable
information about the possibility of an error occurrence, i.e., accurate
error prediction.

We earlier used supervised learning for the error prediction
only under hardware variations [12]. This paper makes three main
contributions toward the error prediction for unseen variations in the
input workload. 1) We propose a methodology to construct automatic
models for bit-level timing error prediction using supervised learning.
A logistic regression based model can predict timing errors for
each output bit for a desired amount of reduced guardband. The
model uses a binary classifier for each output bit that captures
the circuit path sensitization resulting in a functional model of the
propagation of timing errors through the stages of the pipeline. 2) We
assess the robustness of our bit-level model for error prediction by
varying two sets of parameters that significantly reshape the circuit
under modeling. We vary structure and topology of the circuit by
considering three single-precision pipelined FPUs: adder, multiplier,
and square root (sqrt). We also change the electrical properties of the
modeled circuit for various voltage and temperature corners. Across
this space, considering a guardband reduction of {5%, 10%, 15%}
our modeling exhibits a minimum accuracy of {99%, 97%, 94%}
for the multiplier, {99%, 98%, 85%} for the adder, and {99%, 83%,
50%} for the sqrt. 3) We use the proposed model to derive guardband
reduction at the instruction-level for four error-tolerant applications
based on their reliability specifications. Subject to satisfying the reli-
ability specifications, the model provides a wide range of guardband
reduction due to accurate error prediction: 10%–15% for the adder in
matrix multiplication, 10%–15% for the multiplier in DCT, and 15%
for the sqrt in sobel filter.

II. TIMING ERROR ANALYSIS FRAMEWORK

In this section, we describe our framework for the timing error
analysis at the bit-level. Timing error information for a circuit is
collected during simulations for a given input workload, operating
voltage and temperature corners, and the clock speed. In the follow-
ing, we describe our circuit modeling and analysis flow for simulation
and modeling of the timing errors.

A. Floating-Point Pipelined Circuits

We focus on single-precision FPUs that provide complex circuits
and require deep pipelining compared to their integer counterparts.
These circuits are fully compatible with IEEE-754 standard and
described at the register transfer level (RTL). The output of the
pipelined FPUs is not only dependent on the current input data
but also depends on the previous inputs. This requires a workload-
dependent model to capture a notion of history to be able to track
the timing errors at the output bits. To capture the history impact,
we consider the current data input (xi[t]) and the previous data input
(xi[t − 1]) jointly as the features, {xi[t − 1], xi[t]} and directly978-1-4799-8893-8/15/$31.00 c©2015 IEEE
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Fig. 1: Timing error extraction and model validation flow.

use the final output as the labels for model training. This per-FPU
modeling leads to timing error prediction at the coarse granularity
of the entire FPU. However, we have also studied a finer granularity
of generating models per each stage, and then composing these per-
stage models to predict the timing errors at the output of the FPU.
This per-stage modeling exhibits a prediction accuracy as high as the
per-FPU modeling while imposing higher computational cost. Hence,
we focus on the coarse granularity of per-FPU modeling.

B. Timing Error Extraction

In order to extract and precisely characterize the circuit behavior
in the presence of the timing errors, we use a standard ASIC flow
to turn a RTL description of the FPUs into a post-layout netlist. We
utilize tight synthesis and physical optimizations for timing closure,
to ensure a well-optimized netlist for performance and power. The
standard ASIC design flow uses TSMC 45nm technology with the
Synopsys Design Compiler and the Synopsys IC Compiler as front-end
and back-end design tools, respectively. Synopsys PrimeTime is used
for voltage and temperature scaling. Next, we extract the optimized
netlist in conjunction with the standard delay format (SDF) file related
to the specific operating voltage and temperature corner. Finally,
we perform a post-layout simulation with the SDF back-annotation
in Mentor Graphics ModelSim to extract the bit-level timing error
information.

In every cycle, a random number generator provides two single-
precision numbers as the input for the FPUs, and the flow captures
the history of input values of the first pipeline stage to build the
training data {xi[t− 1], xi[t]} for modeling. The flow observes and
characterizes the timing error at the output (yi). When a timing error
is detected for an output bit during the simulation, we mark the output
bit position as 1, otherwise 0 meaning that there is no timing error.
The timing error comes from the flip-flop setup/hold timing violation.
Fig. 1 illustrates the overall flow for the timing error analysis.

C. Model Training and Testing

Training: For each output bit, we consider a single binary
classifier that takes in {xi[t − 1], xi[t]} as the input features, and
predicts whether the output bit will face a timing error or not.
Therefore, for a given circuit with K-bit output, a set of K binary
classifiers is required to determine the erroneous output bits for any
input data. We use supervised learning to train these binary classifiers.
For the training data, two sets of data will be generated, input training
data (xi) and target data as labels (yi). We use 50K random data – that
can maximize the generalization of the model – as the training data.
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Fig. 2: Model generation and utilization for predicting timing errors.

The 50K input vectors are inserted into the post-layout simulations
to generate the pipeline output (yi). The input feature data, and the
target data labels are presented as binary vectors, where a value of 1
indicates the position of the erroneous bit. At each bit position in the
output, the training process tries to combine all the input information
together to produce the output bit.

Testing: We use profiling to generate test data from real appli-
cations. We profile application execution and capture all the input
data for different FPUs activated during execution: multiplier, adder
and sqrt. These test data are inserted into the post-layout simulations
to compute the FPUs output as the golden data. The golden data
are compared with the output generated by the trained model for
computing the prediction accuracy. Fig. 2 illustrates the process for
model generation and model utilization. Based on the accuracy of
the timing error prediction, the model can be utilized to reduce the
guardband subject to the bit-level reliability specification provided by
the application.

Since the timing error prediction can be modeled by binary classi-
fiers, we evaluate different methods, including k-nearest neighbor (k-
NN), support vector machine (SVM) and logistic regression (LR) [4].
We observe through extensive experiments that the k-NN algorithm
cannot provide good prediction as its average accuracy is of less than
80%. The LR and the SVM reach almost the same high quality of the
prediction. However, we have selected the LR due to its efficacy in the
training time. In the LR, we learn weights (w) to compare the logic
functions that perform well on the training data D. In particular, for an
input x we predict 1, or the timing error, if the ratio of F (x)

1−F (x)
>= 1

where F (x) is given by

F (x) =
1

1 + e−w·x (1)

Since the timing errors are relatively rare, the accuracy of many
methods will be high and not illuminating. In particular, a trivial
classifier that always predicts “no error” will have a “high” accuracy.
To combat this, we evaluate the classifier using skill scores [10]. Skill
scores typically normalize for the base rate or performance of trivial
classifiers in different ways. That is, a skill score is of the form, skill
score = (accuracy of classifier - accuracy for the trivial classifier) /
(maximum achievable accuracy - accuracy for the trivial classifier).
The skill score must be positive.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

The synthesizable VHDL codes for the FPUs are generated
by FloPoCo [2], and then synthesized and placed-and-routed by
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Fig. 3: Reliability specification and prediction accuracy for sobel filter at (0.85V, 50◦C). The red circles refer to violations where accuracy of
prediction is less than the reliability specification.

the ASIC flow described in Section II-B. Afterwards, the static
timing analysis is done through Synopsys PrimeTime for SDF files
generation. The training data is randomly generated, while the test
data comes from the profiling of the application on Multi2Sim [3],
a cycle-accurate heterogeneous system simulator. Both training and
testing data sets are simulated using Mentor Graphics Modelsim in
gate-level simulations with the back-annotated delays to produce the
timing error information at the final outputs. The machine learning
module is provided by Scikit learning module [13] in Python, where
various learning approaches are included.

B. Bit-Level Reliability Specification

The error-tolerant applications exhibit enhanced error resilience at
the application-level when multiple valid output values are permitted.
Instead of a single output value, the output value is associated within
an application-specific quality metric, such as peak signal-to-noise
ratio (PSNR). Therefore, if execution is not numerically precise,
the application can still appear to execute correctly from the users’
perspective. We focus on error-tolerant applications mainly from
image processing domain, including sobel filter, gaussian filter, and
DCT. In image processing applications, a PSNR larger than 26dB is
generally considered as acceptable to users. For other computational
applications, we use the average relative error between the elements of
the outputs of the error-free and erroneous executions. In particular,
we set the desired quality of PSNR to a minimum 26dB and the
average relative error to a maximum of 10% which is commensurate
with other work on quality trade-offs [9], [14], [11].

We then compute a bit-level reliability specification through a
profiling phase [14]. This profiling is done through fault injection
testing using a modified version of Multi2Sim simulator to flip a
single bit among the 32-bit output for three frequently activated FPUs,
the multiplier, the adder, and the sqrt. For example, flipping the 20th
bit in the multiplier product with probability of 0.3 results a PSNR of
34dB. From this, we estimate that a reliability specification of 70% is
sufficient for the 20th bit. We increase the fault injection probability
until the PSNR drops to 26dB. This probability is referred as cutoff
fault injection probability. The reliability specification can then be
computed as 1-cutoff probability. Fig. 3(a) shows the reliability
specification requirement for the multiplier used for sobel filter at
operating condition of (0.85V, 50◦C) starting at 19th bit, since the
reliability specifications for the previous 18 bits are 0. Fig. 3(b) and
Fig. 3(c) illustrate the reliability specifications of the adder and the
sqrt respectively, starting from the bit position where the reliability
specification is higher than 0. As shown, and as expected, higher
significant bits require a larger reliability, when compared to the lower
significant bits.

C. Model Prediction Accuracy

We generate 50K random data for training while the test data is
collected from profiling the applications with real world input sets.
For the image processing applications we use images in Caltech-
UCSD Birds 200 vision dataset [1], and for matrix multiplication
and DCT we use 200K random input data. The data are placed into
the timing error extraction module, with ASIC flow at two operating
corners of (0.72V, 0◦C) and (0.85V, 50◦C). The gate-level simulation
is done at 5%, 10% and 15% guardband reduction to extract the timing
erroneous information. The flow generates the training data for LR
training and the test data will be used for computing the prediction
accuracy and the skill score. Finally, the golden output data from
the gate-level simulations is compared with the prediction results to
validate the robustness of model as well as the skill score. Fig 1
shows this overall flow. Table I summarizes the range of prediction
accuracy at two operating corners. The skill score range is positive,
indicating that our prediction is better than the trivial classifier.

We compare the reliability specification versus the prediction
accuracy, to assess whether our model can meet the bit-level reliability
specification. Fig. 3(b) shows that at (0.85V, 50◦C) the adder model
violates the reliability specification at 27th, 28th, 29th and 30th bit
position. The largest gap, 0.0011, between the reliability specification
and our model prediction accuracy occurs at bit position 30, where
reliability specification is 0.9998. No violation is shown in the
multiplier and the sqrt because our models can always exhibit a
prediction accuracy higher than the bit-level reliability specification.
The highest prediction accuracy among these three models is 0.9987.

D. Guardband Reduction Subject to Reliability Specification

1) Bit-Level Guardband Reduction: As shown in Fig. 2, our
model can be utilized to reduce the conservative guardband, while
guaranteeing the reliability specification therefore generating the
acceptable output result. The model is analyzed at two volt-
age/temperatute corners with three levels of guardband reduction
(GBR): 5%, 10% and 15%, meaning that we increase the clock
speed by 5%, 10% and 15%. Table II shows the possible GBR, as a
percentage, for the multiplier. This GBR is computed per bit position
subject to meeting the reliability specification of the applications as
described in Section III-B. For each bit position, the maximal GBR
is presented. For example, at 29th bit in Table II, 15/15 means 15%
GBR can be achieved for the bit position 29 at the corner (0.72V,
0◦C) as well as (0.85V, 50◦C). This is because our bit prediction
accuracy is higher than the particular bit reliability specification under
15% GBR. A pair of 10/10 means that we can only increase the



TABLE I: Prediction accuracy (minimum, average, maximum) at two corners.

(0.72V, 0◦C) (0.85V, 50◦C)
adder multiplier sqrt adder multiplier sqrt

Sobel filter (0.855,0.975,1) (0.952,0.994,1) (0.806,0.961,1) (0.875,0.990,1) (0.970,0.995,1) (0.501,0.914,1)
Gaussian filter (0.868,0.975,1) (0.977,0.996,1) (-,-,-) (0.850,0.993,1) (0.968,0.995,1) (-,-,-)

Matrix multiplication (0.873,0.934,1) (0.998,0.999,1) (-,-,-) (0.851,0.993,1) (0.987,0.997,1) (-,-,-)
DCT (0.854,0.957,1) (0.941,0.991,1) (-,-,-) (0.880,0.974,1) (0.947,0.990,1) (-,-,-)

TABLE II: Bit-level guardband reduction (%) for the multiplier at two corners: (0.72V, 0◦C)/(0.85V, 50◦C).

0 — 23 24 25 26 27 28 29 30 31
Sobel filter 15/15 — 15/15 15/15 15/15 15/15 15/15 15/15 10/10 0/5 15/15

Gaussian filter 15/15 — 15/15 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
Matrix multiplication 15/15 — 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15

DCT 15/15 — 15/15 15/15 10/15 15/15 15/15 15/15 15/15 15/15 15/15

TABLE III: Bit-level guardband reduction (%) for the adder at two corners: (0.72V, 0◦C)/(0.85V, 50◦C).

0 — 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Sobel filter 15/15 — 15/15 10/15 10/15 10/15 15/15 15/15 15/15 10/5 10/5 10/5 10/5 10/0 10/0 10/0 10/0 15/15

Gaussian filter 15/15 — 15/15 15/15 15/15 15/15 15/15 10/10 5/5 10/5 10/5 10/5 10/5 10/5 10/5 5/5 0/0 10/5
Matrix multiplication 15/15 — 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/10 15/10 15/10

DCT 15/15 — 15/15 15/15 15/15 15/15 15/15 15/15 10/10 15/10 15/10 10/10 15/5 15/5 10/5 10/10 0/5 15/15

clock speed by 10% maximally otherwise our prediction accuracy
becomes smaller than the bit reliability specification which leads to
the unacceptable output result. A GBR of 0 means we cannot provide
a prediction accuracy while satisfying the bit reliability specification.
From Table II, we can see that almost all the bits can achieve moderate
GBR using our model.

Table III shows the GBR for the adder. There are also some bit
positions where our model cannot meet the reliability specification at
any GBR. For example, no GBR can be applied at 30th bit position
for the adder in gaussian filter. The GBR for the sqrt reaches 15%
for its entire 32bits.

2) Instruction-Level Guardband Reduction: By analyzing GBR
at the bit-level, the instruction-level GBR can also be derived across
different FPUs. This is achieved by taking the minimal GBR across
all the bits. For example, a 5% GBR can be achieved for multiplier
in sobel filter at corner (0.85V, 50◦C) since the minimal GBR is
limited by the 30th bit. For gaussian filter, a better GBR of 10%, for
both corners is achieved for the multiplier. However, no GBR can
be achieved at corner (0.72V, 0◦C) for the multiplier in sobel filter
from Table II. Since the role played by multiplier in gaussian filter is
different from sobel filter and they receive statistically different input
data, their bit-level reliability specification is different.

TABLE IV: Instruction-level guardband reduction (%) at two corners:
(0.72V, 0◦C) / (0.85V, 50◦C).

multiplier adder sqrt
Sobel filter 0 /5 10 /0 15 /15

Gaussian filter 10 /10 0 /0 —
Matrix multiplication 15 /15 15 /10 —

DCT 10 /15 0 /5 —

Table IV can guide a guardband reduction mechanism at the
instruction-level during design time or runtime. For example, given a
sobel filter under the operating corner of (0.72V, 0◦C), we can reliably
reduce the guardband 0%, 10% and 15% for the multiplier, the adder,
and the sqrt, respectively. For a single instruction type across all the
applications and the operating corners, we can also benefit from the
GBR. For instance, the multiplier can achieve at least 5% and up to
15% GBR at (0.72V, 0◦C).

IV. CONCLUSION AND FUTURE WORK

Our proposed methodology generates a functional model for
predicting the timing errors at the bit-level for a given amount
of reduced guardband. The model is trained by logistic regression
method through random input sequences, while the testing data is
extracted from the actual execution of the applications to validate
the prediction accuracy of our model. The model exhibits an average
accuracy of 95% for the timing error prediction with positive skill
score for various voltage/temperature corners and unseen workload.
We verify the effectiveness of our model for reducing guardband
while satisfying the reliability specification for the error-tolerant
applications. Using this binary classifier-based model, the guardband
can be reduced in the range of 0%–15% during matrix multiplication
execution depending on the type of instructions and operating corner.
Sobel filter and DCT benefit from the same range of guardband
reduction, while gaussian filter limits it to maximum 10%. Our
ongoing work concerns efficiency of model building.
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