
24

Aging-Aware Compilation for GP-GPUs

ATIEH LOTFI and ABBAS RAHIMI, University of California, San Diego
LUCA BENINI, ETH Zurich and University of Bologna
RAJESH K. GUPTA, University of California, San Diego

General-purpose graphic processing units (GP-GPUs) offer high computational throughput using thousands
of integrated processing elements (PEs). These PEs are stressed during workload execution, and negative
bias temperature instability (NBTI) adversely affects their reliability by introducing new delay-induced
faults. However, the effect of these delay variations is not uniformly spread across the PEs: some are affected
more—hence less reliable—than others. This variation causes significant reduction in the lifetime of GP-GPU
parts. In this article, we address the problem of “wear leveling” across processing units to mitigate lifetime
uncertainty in GP-GPUs. We propose innovations in the static compiled code that can improve healing in PEs
and stream cores (SCs) based on their degradation status. PE healing is a fine-grained very long instruction
word (VLIW) slot assignment scheme that balances the stress of instructions across the PEs within an SC. SC
healing is a coarse-grained workload allocation scheme that distributes workload across SCs in GP-GPUs.
Both schemes share a common property: they adaptively shift workload from less reliable units to more
reliable units, either spatially or temporally. These software schemes are based on online calibration with
NBTI monitoring that equalizes the expected lifetime of PEs and SCs by regenerating adaptive compiled
codes to respond to the specific health state of the GP-GPUs. We evaluate the effectiveness of the proposed
schemes for various OpenCL kernels from the AMD APP SDK on Evergreen and Southern Island GPU
architectures. The aging-aware healthy kernels generated by the PE (or SC) healing scheme reduce NBTI-
induced voltage threshold shift by 30% (77% in the case of SCs), with no (moderate) performance penalty
compared to the naive kernels.

Categories and Subject Descriptors: B.8 [Performance and Reliability]; D.3.4 [Programming Lan-
guages]: Compilers; D.3.4 [Programming Languages]: Runtime Environments

General Terms: Reliability, Languages

Additional Key Words and Phrases: GP-GPUs, NBTI, aging-aware compilation, VLIW, adaptive kernel

ACM Reference Format:
Atieh Lotfi, Abbas Rahimi, Luca Benini, and Rajesh K. Gupta. 2015. Aging-aware compilation for GP-GPUs.
ACM Trans. Architec. Code Optim. 12, 2, Article 24 (July 2015), 20 pages.
DOI: http://dx.doi.org/10.1145/2778984

1. INTRODUCTION

Variability across manufactured parts and temporal device degradation are among
important challenges in integrated circuits [Bernstein et al. 2006; Gupta et al. 2013].

This work was supported by NSF Variability Expeditions (1029783), ERC-AdG MultiTherman (291125), and
FP7 P-SOCRATES (611016).
Authors’ addresses: A. Lotfi, A. Rahimi, and R. K. Gupta are with the Department of Computer Science
and Engineering, University of California, San Diego, La Jolla, CA 92093 USA; emails: {alotfi, abbas,
gupta}@cs.ucsd.edu; L. Benini is with the Department of Information Technology and Electrical Engineer-
ing, Swiss Federal Institute of Technology Zurich, 8092 Zurich, Switzerland, and also with the Department
of Electrical, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy; email:
lbenini@iis.ee.ethz.ch.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1544-3566/2015/07-ART24 $15.00

DOI: http://dx.doi.org/10.1145/2778984

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

http://dx.doi.org/10.1145/2778984
http://dx.doi.org/10.1145/2778984

24:2 A. Lotfi et al.

Static process variations manifest as die-to-die and within-die variations, whereas ag-
ing mechanisms cause slow temporal degradation in device reliability. Among various
aging mechanisms, the generation of interface traps under negative bias temperature
instability (NBTI) in PMOS transistors has become a critical reliability issue in deter-
mining the lifetime of CMOS devices [Chen et al. 2002]. NBTI effects can be significant:
its impact on circuit delay is about 15% on a 65nm technology node [Bernstein et al.
2006], and it gets worse in sub-65nm nodes [Chen et al. 2003]. To combat this degrada-
tion, designers use increasing guardbands (in design as well as operating frequency),
causing performance loss and increased costs in migration to newer processes. NBTI
is a device-level phenomenon.

When a PMOS transistor is negatively biased (Vgs = –Vdd), the dissociation of Si–H
bonds along the silicon oxide interface causes the generation of interface traps, whereas
removal of the bias (Vgs = 0) causes a reduction in the number of interface traps due
to annealing [Chen et al. 2002; Bernstein et al. 2006; Chen et al. 2003; Chakravarthi
et al. 2004]. The rate of generation of these traps is accelerated by temperature and the
time of applied stress. The threshold voltage (Vth) of the PMOS transistors increases as
more traps form, reducing the drive current, which in turn raises the propagation delay
of logic gates over time. Thus, the NBTI-induced performance degradation strongly
depends on the amount of time during which a PMOS transistor is stressed—that is,
when a logic “0” is applied to the gate. The increase in Vth is a logarithmic function of
the corresponding stress time [Kumar et al. 2006], which is distributed nonuniformly
across a logic circuit, leading two to five times difference in the degradation rate of Vth
[Wang et al. 2010] across a chip. When the stress condition is relaxed, aging can be
recovered partially, and the Vth decreases toward the nominal value [Wang et al. 2010;
Bhardwaj et al. 2006].

Static process variation also causes nonuniformity across devices: an Intel 80-core
processor in a single 65nm die exhibits up to 50% clock frequency variation across the
cores [Dighe et al. 2011]. This static source of delay variations in conjunction with
temporal degradation caused by nonuniform stress is a major reliability concern for
GP-GPUs with more than 2,000 stream cores (SCs) [Bautista Gomez et al. 2014]. To
ensure necessary observability for nonuniform aging degradation, in situ NBTI and
oxide degradation sensors with digital outputs have been proposed and validated on
silicon [Singh et al. 2011]. These sensors enable high-volume data collection to guide
dynamic management schemes and warn of impending device failure. Using NBTI
sensors, as well as other variability sensors, an adaptive guardbanding scheme has
been proposed to reduce the otherwise conservative guardbands for general-purpose
graphic processing units (GP-GPUs) [Rahimi et al. 2013b]. Paterna et al. [2009] propose
a dynamic workload allocation policy to mitigate aging-induced unbalanced lifetime of
multicore by means of core activity duty cycling.

Parallel execution in GP-GPUs provides an important ability to allocate workload
spatially or temporally in response to the aging effects. Accordingly, this article pro-
poses three main contributions:

(1) We propose innovations in the static compiled code by introducing the notion of in-
trospective kernels. An introspective kernel adaptively monitors the health of a GP-
GPU device and triggers runtime workload reallocation scheme to mitigate NBTI-
induced performance degradation. Detection of degraded processing elements (PEs)
or SCs, a just-in-time compilation process replaces the introspective kernel with
a healthy kernel that responds to the specific health state of the GP-GPU device.
This is accomplished through an NBTI-aware compiler that uses static workload
characterization and online NBTI sensors.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

Aging-Aware Compilation for GP-GPUs 24:3

(2) Our proposed compiler focuses on kernel optimizations at two distinct levels: fine-
grained PEs and coarse-grained SCs. To combat the aging across PEs within an SC,
the kernel’s code is optimized based on measured aging of very long instruction word
(VLIW) slots (i.e., PEs). This PE healing scheme spatially distributes the stress of
the instructions throughout various VLIW resource slots in a uniform manner. This
results in a healthy code generation that keeps the executions within an SC healthy.
To address aging across SCs, the healthy kernel is customized to seamlessly bypass
the workload from the degraded SCs (and keep them in a temporary recovery state)
by shifting the workload to the healthy counterparts. To reduce the performance
penalty due to the time multiplexing of the SCs, the generated healthy kernels can
be further tuned according to a specific number of degraded cores.

(3) Both schemes are software techniques compatible with OpenCL and the AMD
GPUs. The adaptive PE healing reduces NBTI-induced voltage threshold shift by
30%, and SC healing achieves an average 77% reduction compared to the naive
kernels. For PE healing, the throughput of our healthy kernel execution is the
same as the naive kernel execution, whereas SC healing incurs an average 12%
performance penalty on Southern Island GPUs.

The rest of the article is organized as follows. In Section 2, we survey prior work in this
area. Section 3 covers an overview of NBTI-induced performance degradation. Section 4
describes the OpenCL execution model and GP-GPU architectures used in this work.
Our aging-aware compilation schemes are presented in Section 5. In Section 6, we
present experimental results, followed by conclusions in Section 7.

2. RELATED WORK

Various techniques [Paterna et al. 2009; Tiwari and Torrellas 2008; Karpuzcu et al.
2009] have been proposed to slow down the aging of traditional coarse-grained mul-
ticore architectures. These techniques range from selective clock frequency scaling to
manage the aging process, dynamic control of the usage of processing units through
shutdown that together seeks to equalize the level of aging seen across the cores. A
brief review of important contributions follows.

Selective speed scaling. Chip-wide voltage scaling has been applied to switch the
processor from a slow-aging mode to a high-speed mode selectively over its lifetime
[Tiwari and Torrellas 2008]. This affects performance, and to combat the performance
loss, BubbleWrap [Karpuzcu et al. 2009] supports multiple modes based on Tiwari and
Torrellas [2008], for instance, by running the slow cores at a higher supply voltage
for a shorter service life until they entirely wear out and are discarded. For fine-
grained many-core architectures, this technique loses effectiveness because after the
early lifetime, the difference between the adaptive voltage and the overdesigned supply
voltage is small [Chan et al. 2011].

Selective shutdown. In coarse-grained multicore architecture, a centralized duty cy-
cling technique mitigates unbalanced aging among the cores [Paterna et al. 2009]. An-
other multicore architecture first groups healthy cores together to process task flows
and then changes the task scheduling to balance workload among active core groups
while relaxing stressed ones [Sun et al. 2010, 2014]. However, we propose a scalable
introspective technique applicable to fine-grained GP-GPUs. To combat the impact of
within-die core-to-core frequency variations on GP-GPU throughput, two techniques
are proposed in Lee et al. [2011]: (1) disabling the slowest cores and (2) running each
core at its maximum frequency independently. Both of these solutions impose a nonneg-
ligible performance penalty: the former directly diminishes the throughput of a cluster,
and the latter imposes extra latency for synchronization of cores with different clock fre-
quency domains. A recent work characterizes GPU application sensitivity to within-die

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

24:4 A. Lotfi et al.

frequency variations in the context of spatial multitasking [Aguilera et al. 2014]. The
sensitivity information partitions the workload and enables variation-aware allocation
of the resources to concurrently executing applications on a GPU. These techniques
only consider the effects of static process variation and do not cover aging, which is
dynamic in nature. A coarse-grained method for mitigating NBTI-induced degradation
for GP-GPUs is proposed in Chen et al. [2014] that performs power gating at the granu-
larity of stream multiprocessors. They use an online algorithm to find optimal number
of stream multiprocessors, which imposes extra time overhead to the execution time
of each kernel. Focusing on hard faults, two methods have been proposed to tolerate
faults in GP-GPU lanes [Dweik et al. 2014]. They perform intracluster and interclus-
ter thread shuffling that requires modifications in the pipeline and warp scheduler.
These methods incur inevitable area and performance overhead for intrusive hardware
modification.

Fine-grained tuning. Colt [Gunadi et al. 2010] equalizes the duty cycle ratio and the
usage frequency of the functional units through changes into microarchitecture of a
core. To mitigate the aging effects, Colt uses a number of measures, such as comple-
ment mode execution, cache set rotation, and operand identifier swapping schemes.
These measures are intrusive and fairly complicated: the complement mode is ap-
plied to the whole data path, control path, and storage hierarchy. In a similar vein,
a linear programming scheme is employed to find a new instruction to replace the
cores default NOP instruction for minimizing the NBTI effects [Firouzi et al. 2012].
This approach also requires intrusive architectural supports and pipeline modification.
Wearout-aware compiler-directed register assignment techniques have been proposed
in Ahmed et al. [2012] that attempt to distribute the stress-induced wearout through-
out the register file. Another aging-aware assignment of registers has been proposed
to balance the duty cycle ratio of the internal bits in a register file [Wang et al. 2012].
Even though Ahmed et al. [2012] and Wang et al. [2012] do not impose architectural
overheads and modification, their compiler strategies are limited to healing the regis-
ter file. We have earlier introduced an aging-aware compiler to heal fine-grained VLIW
slots [Rahimi et al. 2013a]. In this work, we extend the application of compilation-based
schemes to heal coarse-grained SCs.

3. NBTI-INDUCED PERFORMANCE DEGRADATION

NBTI is an aging mechanism that manifests itself as an increase in the PMOS tran-
sistor threshold voltage (Vth) and causes delay-induced failures. NBTI is best captured
by the reaction-diffusion (RD) model [Ogawa and Shiono 1995]. This model describes
NBTI in two stress and recovery phases. NBTI occurs due to the generation of the
interface traps at the Si–SiO2 interface when the PMOS transistor is negatively biased
(Vgs = –Vdd) (i.e., stress phase). In the stress condition, some holes in the channel in-
teract with the Si-H bonds in the interface, which causes disassociation of Si-H bonds.
The resulting hydrogen atom diffuses away and leaves positive traps in the interface.
As a result, the Vth of the transistor increases, which in turn slows down the device.
Equation (1) shows this increase in the Vth due to stress [Wang et al. 2010]:

�Vth−stress = (Kv

√
tstress + 2n

√
�Vth−t0)2n , (1)

where tstress is the amount of time that PMOS transistor is under stress; Kv has depen-
dence on electrical field, temperature (T), and Vdd; n is the time exponent parameter
which is 1/6 for H2 diffusion; and �Vth−t0 is the initial Vth variation of PMOS at time
zero.

Removing stress from the PMOS transistor (Vgs = 0) can eliminate some of the traps
by diffusing back dissociative H atoms, which partially recover the Vth shift. This is

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

Aging-Aware Compilation for GP-GPUs 24:5

known as the recovery phase:

�Vth−recov = �Vth−stress

(
1 − 2ξ1te + √

ξ2Ctrecov

(1 + δ)tox + √
Ct

)
, (2)

where trecov is the time under recovery; tox is the oxide thickness; te is the effective
oxide thickness; t is the total time; C has temperature dependence; and ξ1, ξ2, and δ are
constants [Wang et al. 2010].

Bhardwaj et al. [2006] derived a long-term cycle-to-cycle model as follows. In this
model, the stress and recovery cycles can be simulated for i cycles to find the Vth
degradation. �Vth−stress,i and �Vth−recov,i are temporal changes in Vth at the end of i-th
stress and recovery cycles, respectively:

�Vth−stress,i = (Kv

√
αTclk + 2n

√
�Vth−recov,i)2n (3)

�Vth−recov,i = �Vth−stress,i

(
1 − 2ξ1te +

√
ξ2C(1 − α)Tclk

(1 + δ)tox + √
CiTclk

)
, (4)

where α is duty cycle or the ratio of time spent in the stress to one period of stress
recovery, Tclk is the period of one stress-recovery cycle, and i = t/Tclk. The NBTI rate
depends on many factors, including process-related parameters, temperature, voltage,
and workload. Here we focus on the impact of workload or α in the preceding equations.
The duty cycle (α) is controlled by the software to reduce the NBTI-induced effects.

A transistor with a larger Vth than expected has lower drive current and higher delay
during a transition. The switching delay of a transistor can be roughly expressed as
the alpha-power law:

τ ∝ VddL
μ(Vdd − Vth)α′ , (5)

where μ is the mobility of carriers, α′ ≈ 1.3 is the velocity saturation index, and L is
the channel length. Therefore, the delay variation �τ/τ can be derived as follows:

�τ/τ = �L
L

+ �μ

μ
+ α′

Vdd − Vth
�Vth. (6)

Considering only the effect of �Vth shift and neglecting other terms, the delay degra-
dation �τ is shown in Equation (7):

�τ = α′�Vth

Vdd − Vth−t0
τ0, (7)

where Vth−t0 is the original transistor threshold voltage (at time t0), and τ0 is its cor-
responding delay before degradation. We consider the largest �Vth to calculate the
worst-case delay degradation [Tiwari and Torrellas 2008; Karpuzcu et al. 2009; Chan
et al. 2011; Oboril and Tahoori 2012] in a circuit to assess the potential benefits of pro-
posed NBTI mitigation techniques. In our analysis, we set all internal node states to
“0” during the stress mode to determine the worst-case circuit degradation that limits
the lifetime of a chip.

4. OPENCL EXECUTION MODEL AND GPU ARCHITECTURES

In this section, we describe the OpenCL execution model and two distinct GPU ar-
chitectures. OpenCL is a standard framework for developing parallel programs that
execute across heterogeneous platforms consisting of CPUs, GPUs, DSPs, and FPGAs.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

24:6 A. Lotfi et al.

Fig. 1. Block diagram of the Radeon HD 5870 architecture.

OpenCL applications typically have a host program executing on the CPU and a kernel
program executing on the GPU device. Each instance of the OpenCL kernel is called
a work-item. To launch a kernel, the programmer determines a group of work-items
to execute on the device, which is referred to as an ND-range. A group of work-items
(typically 256) form a work-group that shares a local memory space. Work-items from
one work-group cannot access the local memory of other work-groups. Work-items are
further grouped into a wavefront, which is composed of 64 work-items, as the unit
of scheduling. We have evaluated our techniques on the AMD Evergreen and AMD
graphics core next (GCN) architectures. However, our techniques are not limited to
AMD GPUs, as OpenCL kernels can be executed in Nvidia GPUs as well [OpenCL
2009]. In the following two sections, we briefly explain these two architectures.

4.1. AMD Evergreen Architecture

The Evergreen family of AMD GPUs (a.k.a. Radeon HD 5000 series) is designed to
target not only graphics applications but also general-purpose data-intensive applica-
tions. Radeon HD 5870 (Cypress), used in this work, consists of 20 compute units (CUs),
a global front-end ultrathread dispatcher, and a crossbar to connect the global memory
to the L1 caches [AMD 2013]. Every CU has access to a global memory, implemented
as a hierarchy of private 8KB L1 caches, and four shared 512KB L2 caches. Each CU
contains a set of 16 SCs that have access to a shared 32KB local data storage. Within
a CU, a shared instruction fetch unit provides the same machine instruction for all
SCs to execute in an SIMD fashion. Finally, each SC contains five PEs, labeled X, Y, Z,
W, and T, constituting an ALU engine to execute Evergreen machine instructions in a
vector-like fashion. The SC also has a general-purpose register file. The block diagram
of this architecture is shown in Figure 1. Every SC is a five-way VLIW processor capa-
ble of issuing up to five floating point scalar operations from a single VLIW consisting
primarily of five slots (slotX, slotY , slotZ, slotW , slotT). Each slot is related to its corre-
sponding PE. Four PEs (X, Y, Z, W) can perform up to four single-precision operations
separately and two double-precision operations together, whereas the remaining one
(T) has a special function unit for transcendental operations. In each cycle, VLIW slots
supply a bundle of data-independent instructions to be assigned to the related PEs
for simultaneous execution. In an N-way VLIW processor, up to N data-independent
instructions, available on N slots, can be assigned to the corresponding PEs and exe-
cuted simultaneously. Typically, this is not done in practice because the compiler may
fail to find sufficient instruction-level parallelism (ILP) to generate complete VLIW
instructions. On average, if M out of N slots are filled during an execution, then we

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

Aging-Aware Compilation for GP-GPUs 24:7

Fig. 2. Block diagram of the Radeon HD 7970 architecture.

call the achieved packing ratio M/N. The actual performance of a program running on
a VLIW processor largely depends on this packing ratio.

In Evergreen, 16 work-items are executed in SIMD fashion in a CU, and the whole
wavefront (64 work-items) is executed over four clock cycles. Therefore, a work-group
is composed of up to four wavefronts that share the execution resources in a CU. To
manage these resources, a wavefront scheduler dynamically selects wavefronts for
execution. For efficient hardware utilization, the work-item count should be an inte-
ger multiple of 64. Each CU executes one or more work-groups at a time. When the
CPU launches an OpenCL kernel into the GPU, the work-groups are mapped into the
CUs until all of them reach their maximum occupancy. When a work-group finishes
execution, the associated CU allocates a new waiting work-group, and this process is
repeated until the entire ND-range is executed.

4.2. AMD GCN Architecture

Southern Island (Radeon HD 7000 series) is based on the AMD GCN, which is a RISC
SIMD architecture that replaces the older VLIW SIMD architecture. From this family,
we target a Radeon HD 7970 (Tahiti) device that has 32 CUs. The block diagram of
this architecture is shown in Figure 2. Every CU has four SIMD units and a wavefront
scheduler. Each of the four SIMD units—also called vector units—can be scheduled
independently. The CU has its own hardware scheduler that is able to assign wave-
fronts to available SIMD units with limited out-of-order capability to avoid dependency
bottlenecks. Each SIMD unit has 16 SCs; therefore, it brings a total number of 64 SCs
per CU and 2,048 SCs per Tahiti device. The CU has also a scalar unit to improve
efficiency. For the Southern Islands series, the concept of scalar instructions is inte-
grated. This type of instruction not only is fetched in common for an entire wavefront
but also is only executed once for all of the work-items. The CU has 64kB of scratchpad
memory, where OpenCL local memory is allocated. In general, GCN architecture has
better performance than VLIW-based architecture, especially for computing purposes
mainly due to more resources, dynamic scheduling, easier register access, and better
loop management.

5. AGING-AWARE COMPILATION FOR KERNELS

As described in Section 3, the device lifetime is limited by the most aged component in
the chip. We propose two compilation methods here to increase the lifetime of a GP-GPU
device through adaptive workload shifting from the most degraded component to other
healthier components. In Section 5.1, we show how a collaborative hardware/software
sensing can expose the low-level hardware degradation to the software stack for

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

24:8 A. Lotfi et al.

Fig. 3. Aging-aware kernel adaptation flow.

adaptation. In Section 5.2, we describe a method that heals PEs within a SC. The
other method that focuses on healing across all SCs is described in Section 5.3.

5.1. Collaborative Hardware/Software Sensing

As mentioned earlier, NBTI and process variations lead to differences in threshold volt-
age shift (�Vth) across components and during early life of a chip, leading to different
aging characteristics. Using compact NBTI sensors [Singh et al. 2011] that provide
�Vth measurement with 3σ accuracy of 1.23mV for a wide range of temperature en-
ables large-scale data collection across all components. Test chips fabricated in 45nm
efficiently consider multiple sensors banks containing up to total 256 NBTI sensors,
and hence the power overhead of laying out thousands of these sensors would only be
a few hundred μW at maximum, which is a small fraction of power in our case [Singh
et al. 2011]. The compiler methods need to observe the current aging data (�Vth) of PEs
and SCs to be able to adapt the kernel code accordingly. The performance degradation
of every PE/SC can be reliably reported by these NBTI sensors. The sensors support
digital outputs [Singh et al. 2011] that are accessed through memory-mapped I/O.

The AMD compute abstraction layer provides a runtime device driver library that
supports code generation and kernel loading, and allows the host program to interact
with the hardware at the lowest level. We refactor the naive kernel code by insert-
ing a custom API, check_degradation_status(), to access the sensor measurements.
This new version of the naive kernel is called an introspective kernel, in which every
work-item investigates the degradation information of its corresponding SC and PEs.
The introspective kernel can query to check the memory-mapped sensors to find out
whether the SC (or any of the PEs) used by the kernel is degraded or not by call-
ing check_degradation_status(). Figure 3 illustrates the overall compilation flow for
adapting kernels. The introspective kernel identifies the reported amount of degrada-
tion, and consequently, PE or SC healing will be triggered. In the following sections,
these two methods are explained in detail.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

Aging-Aware Compilation for GP-GPUs 24:9

Fig. 4. Inter-PE ALU instructions distribution for various naive kernels on the HD 5870.

5.2. PE Healing

As mentioned in Section 3, the NBTI-induced degradation strongly depends on resource
utilization, which is a function of the workload. We monitor the utilization of various
resources on the Radeon HD 5870 described in Section 4.1. Different CUs in the de-
vice execute almost equal number of instructions, and there is a negligible workload
variation among them. This is mainly because of load balancing and uniform resource
arbitration algorithms of the ultrathread dispatcher. However, workload distribution
among PEs of an SC is nonuniform. Figure 4 shows the percentage of executed instruc-
tions of the ALU engine by various PEs during execution of different kernels. As shown,
PEX executes roughly half of the ALU engine instructions (50.7%) and PEZ executes
only 9% of the instructions during execution of the Reduction kernel. These kernels
execute more than 40% of the ALU engine instructions only on PEX. This nonuniform
workload variation causes nonuniform aging among PEs and shortens the lifetime
of some PEs, which are more exhausted. Unfortunately, this nonuniformity happens
within all CUs, as their workload is highly correlated; therefore, no PE throughout the
entire compute device is immune from this unbalanced utilization. The reason behind
this nonuniform aging among PEs is the frequent and nonuniform execution of VLIW
slots. In fact, the compiler does not uniformly assign the independent instructions
to various VLIW slots, mainly because the compiler only employs optimizations for
increasing the packing ratio through finding more ILP to fully pack the VLIW slots.

To heal the fatigued PEs, we propose a compiler-directed VLIW assignment that
assigns independent instructions uniformly to all slots: idling a fatigued PE and re-
assigning its instructions to a young PE through swapping the corresponding slots
during the VLIW bundle code generation. This basically exposes the inherent idle-
ness in VLIW slots and guides its distribution, which matters for aging. Thus, the
job of compiler for K-independent instructions is to find K-young slots, representing
K-young PEs, among all available N slots, and then assign instructions to those slots.
The compiler also estimates the future performance degradation of PEs through a
static code analysis technique. To reduce stresses, the compiler sorts the predicted per-
formance degradation of the PEs increasingly and the aging of the PEs decreasingly,
and then applies a permutation to assign fewer/more instructions to higher-/lower-
stressed PEs. In other words, this method slips the preassigned instructions from a
high-stressed PE; therefore, it will have more NOP instructions to execute instead of
the stress-full instructions. This generates a “healthy” code that balances workload
distribution through various VLIW slots, maximizing the lifetime of all PEs. Further,
this method does not incur any performance penalty, as it spatially reallocates the
VLIW slots within the same scheduling and order determined by the naive compiler.
The details of this technique can be found in Rahimi et al. [2013a].

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

24:10 A. Lotfi et al.

Fig. 5. Introspective kernel.

5.3. SC Healing

The PE healing technique is applicable as long as there is a spatial choice within a SC to
replace a fatigued PE with a young PE. However, in the case of a full SC degradation,
the preceding method cannot compensate for aging. The key idea of the SC healing
method is to generate aging-aware kernels by modifying the normal distribution of
stress so that the degraded SCs within a CU can be healed. This is done by adaptively
idling a set of degraded SCs and assigning its work-items to the other healthy SCs in
the same CU. For any given kernel, an introspective kernel is compiled and executed.
However, when any of the SCs is aged, the workload stress should be removed from it.
Therefore, for each naive kernel, a healthy version is generated in which all work-items
from those degraded SCs are moved to the other healthy SCs within the same CU. Since
in an OpenCL kernel there is no explicit mapping between a work-item and an SC, a
set of extra work-items are spawned that exactly perform the same task as those on
the degraded SCs. The work-items that have been assigned to any of the degraded SCs
will not perform any operation. This NOP execution is a self-healing mode that can
reduce the stress time of a degraded SC adequately. Moreover, the NOP itself can be
designed to highly minimize the NBTI effects [Firouzi et al. 2012].

Considering the adaptation flow in Figure 3, when the introspective kernel runs,
each work-item checks the register corresponding to the output of the NBTI sensor
for that SC after finishing its assigned function. Figure 5 shows the code snippet
for the introspective kernel. Besides the normal execution of the naive kernel, the
introspective kernel reports the required number of redundant work-items (RWIs)—
that is, the number of extra work-items that a work-group requires to bypass the
degraded SCs. If this number is more than zero, the just-in-time compiler compiles a
healthy version of the naive kernel. The healthy kernel is launched with a different
work-item count, which simply can be the default work-item count for the naive kernel
plus the reported redundant work-item count by the introspective kernel. In other
words, for every work-item that is mapped to the degraded SC, a new redundant work-
item should be generated to be mapped on another healthy SC. This is doable when the
naive work-item count plus the required redundant work-item count is less than 256
(which is the limit for work-item count per work-group in Cypress and Tahiti GPUs).
For cases in which the new work-item count is greater than 256, the work-item count is
decreased and the work-group count is increased instead in the healthy kernel. Further,
the compiler is able to tune the number of work-items of a healthy kernel based on a
specific degradation scenario described later in Section 6.2.2.

The healthy version of kernel takes the naive work-item count as an extra in-
put parameter as shown in Figure 6. OpenCL kernels are usually written in a way
that the work-item ID is used to index a memory location. To preserve functional-
ity, the redundant work-items should exactly imitate those work-items that are not
executed because they are mapped to the degraded SC. Therefore, every work-item
checks its corresponding register filled with the NBTI sensor information that forms its

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

Aging-Aware Compilation for GP-GPUs 24:11

Fig. 6. Healthy kernel.

“metadata.” If the corresponding SC is a degraded one, the work-item pushes its ID in
a queue1 and performs no other operation. Therefore, no work is done on the degraded
SC, and this way it can be healed. Other work-items that are mapped to a non-aged SC
execute normally. The redundant work-items, which have a local ID greater than the
naive work-item count, must be executed on behalf of the resting work-items. This is
done by a virtual ID redirection through a conditional code for ID assignment. Every
redundant work-item changes its local ID to the ID of one of the disabled work-items
by popping it from the queue, and then executes the kernel with the extracted virtual
work-item ID. Using virtual ID redirection, the redundant work-item can read the re-
quired data from the memory hierarchy in exactly the same way as the disabled naive
work-item, and there is no need to move any data. This forms a temporal aging-aware
workload shifting that combats the aging across all SCs while imposing a moderate
performance penalty discussed in Section 6.2.

6. EXPERIMENTAL SETUP AND RESULTS

We focus on the AMD accelerated parallel processing (APP) software ecosystem [AMD
APP SDK 2013], which is suitable for stream applications written in OpenCL. The
stream kernels are compiled into GPU device-specific binaries using the OpenCL com-
piler tool chain, which uses a standard off-the-shelf compiler front end (g++), as well as
the low-level virtual machine framework with extensions for OpenCL as the back end.
Table I lists the kernels, the work-item (WI) count per work-group (WG), the number
of work-groups, and number of wavefronts (WF) per each work-group for the naive
kernel. We have used the VLIW-based Evergreen Radeon HD 5870 GPU for the major
part of experiments in this work. We also performed a performance sensitivity analysis
on RISC-based Southern Island Radeon HD 7970 in Section 6.2.4.

6.1. Improvement in �Vth

We consider cycle-by-cycle architectural NBTI analysis [Bhardwaj et al. 2006] in the
65nm PTM technology with Vgs = 1.2V, T = 300K. The stress statistics of the kernels
execution were obtained from Multi2Sim simulator2 [Ubal et al. 2012]; it is common to

1This queue is a lightweight data structure protected with an atomic index and is shared within the work-
group. The queue has a local memory of size 128 (uchars) to store the local ID of degraded work-items. Since
every work-group has a maximum number of 256 work-items, this local memory queue is sufficient for a
50% failure rate for SCs in a CU. Given that a CU can run up to six simultaneous work-groups, the healthy
kernel consumes 6 × 128 = 768 bytes of 32K shared memory of the CU. This queue size does not impact
performance of any kernels thanks to its limited memory footprint.
2A cycle-accurate CPU-GPU simulation framework targeting Evergreen and Southern Island ISAs.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

24:12 A. Lotfi et al.

Table I. Parameters for the Naive Kernels

Kernel Abbreviation WIs per WG (#) WGs (#) WFs (#)
SobelFilter SF 256 1,024 4
SimpleConvolution SC 256 256 4
BlackScholes BSC 256 256 4
BinomialOptions BO 127 64 2
AtomicCounter AC 256 100 4
BitonicSort BS 256 64 4
FastWalshTransform FWT 256 32 4
FloydWarshal FW 256 16 4
QuasiRandomSequence QR 128 128 2
Reduction RDN 256 1 4

Fig. 7. Vth shift for RDN kernel on the HD 5870.

assume that all PMOS in a circuit degrade by the same amount [Tiwari and Torrellas
2008; Karpuzcu et al. 2009; Chan et al. 2011; Oboril and Tahoori 2012].

6.1.1. Improvement in �Vth Using PE Healing. We evaluate the effectiveness of the PE
healing method on reducing Vth. Figure 7(a) shows the NBTI-induced Vth degradation
when executing a healthy RDN kernel compared to the naive execution at time zero
and after 1 year. For this experiment, we consider a device that is not affected by the
process variability (initial inter-PE �Vth = 0mV). As shown in Figure 7(a), at time
zero, all PEs have the equal Vth since there was no stress, but after 1 year execution of
naive RDN, PEX has a maximum Vth of 435mV because of executing 50.7% of the total
ALU engine instructions. However, the healthy RDN kernel execution eliminates this
nonuniformity by adapting itself every hour and thus results in a 14mV lower Vth shift
after 1 year (for all PEs, Vth = 421mV).

We also evaluate the effectiveness of the PE healing method when executing the
healthy RDN kernel on a process variability-affected device (initial inter-PE �Vth =
10mV) compared to the naive execution. Figure 7(b) shows the Vth shift over time
due to the naive kernel execution, and at the end of 360 hours, there is an 8mV Vth
variation among PEs that limits the lifetime of PEX (Vth−x = 413mV). On the other
hand, Figure 7(c) shows that adapting the kernel periodically leads to a uniform Vth
shift among all PEs (Vth variation is ∼0.6mV), and the maximum Vth shift is 406mV.
Considering the initial Vth at time 0, execution of the healthy kernel reduces �Vth by
30% compared to the naive kernel at the end of 360 hours.

6.1.2. Improvement in �Vth Using SC Healing. We evaluate the effectiveness of the SC
healing approach on the same device as the aforementioned experiment but with one
degraded SC. Figure 8 shows the Vth shift at the end of 360 hours due to the naive
and healthy kernel execution for six different kernels and their average. This method
reduces �Vth an average of 77% after 360 hours of execution.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

Aging-Aware Compilation for GP-GPUs 24:13

Fig. 8. Vth shift for different kernels at the end of 360 hours on an HD 5870 with one degraded SC.

Fig. 9. Performance overhead of using a healthy kernel on an HD 5870 compared to the naive kernel when
the number of degraded SCs (deg SC) are increased from one to eight (all in a single CU) for different kernels
and their average.

6.2. Performance Overhead

Execution of all examined kernels for Evergreen shows that the average packing ratio
is 0.3, which means that there is a large fraction of empty slots in which PEs can
be relaxed during kernels execution. The PE healing method spatially exploits the
inherent idleness in VLIW slots, which does not incur performance penalty. However,
this is not the case for the SC healing method, as it requires bypassing the workload
from degraded SCs and executing them later in time by other SCs.

The number of degraded SCs is process-voltage-temperature-workload dependent
and changes from chip-to-chip and overtime. Therefore, we assess the performance
overhead of our SC healing for two distinct degradation scenarios:

(1) We measure the performance overhead when the number of degraded SCs is in-
creased from one to eight in a single CU. A CU with eight degraded SCs shows a
pessimistic aging scenario where 50% of its resources (the SCs) are degraded. This
tests the performance overhead of our technique in the worst case.

(2) We also measure the sensitivity of the performance overhead for different numbers
of degraded CUs (from 5% to 50% degraded CUs).

The result of these experiments for the Evergreen GPU is presented next.
Figure 9 measures the performance overhead of the SC healing method when the

number of degraded SCs is increased from one to eight and the degraded SCs are all

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

24:14 A. Lotfi et al.

Fig. 10. Performance overhead of using a healthy kernel on the HD 5870 compared to the naive kernel
when the number of degraded CUs is increased from 1 to 10 (one degraded SC per each CU) for four kernels
(the right-most column shows the average).

located in one CU. According to the parameters shown in Table I and our strategy
explained in Section 5, when there is one degraded SC, the number of redundant work-
items can fit in an extra wavefront in the healthy kernel. The performance overhead
ranges from 3% to 73% (38% on average) depending on the type of kernel when there
is one degraded SC. As the number of degraded SCs is increased from one to seven, the
performance overhead is almost the same for each of the kernels, mainly because the
redundant work-items can fit in one wavefront. However, eight or more degraded SCs
per CU results in adding an extra wavefront, which ends up with a larger performance
overhead: up to 108% and 59% on average.

If there is any degraded SC in any CU, the required number of redundant work-items
is generated for all work-groups.3 Consequently, this method heals the degraded SCs on
other CUs as well without extra performance penalty. Figure 10 shows the performance
overhead when the number of degraded CUs is increased from 1 to 10—each CU has
one degraded SC. Moving from one degraded CU to 10 CUs (50% of all available CUs
in the device), the method incurs 0.19% to 4.8% extra overhead depending on the type
of kernel.

Our approach is a fully software technique that does not impose any area/power
overhead of implementing NBTI-aware power gating for GPUs. However, our approach
has higher performance overhead compared to the power-gating method when there are
few numbers of degraded CUs. To compare the performance overhead of our approach
to the power-gating mechanism, we execute the naive kernels with fewer than the
maximum number of CUs using Multi2Sim Evergreen simulator. In our simulations,
we change the number of power-gated CUs from 1 to 10, similar to the degradation
scenario in Figure 10. When there is only one degraded SC, and therefore only one
power-gated CU, the average performance overhead of the power-gating method for
the four benchmarks shown in Figure 10 is 1.17%. As the number of degraded CUs
increases to 10, the performance overhead of the power-gating method becomes 60.8%,
whereas the average performance overhead of our SC healing method for the Evergreen
GPU is 52.3%, as shown in Figure 10.

The difference between the performance overhead of different kernels using the
SC healing approach comes from two factors. The first factor is the number of work-
groups, which is discussed in Section 6.2.1. The other factor is related to the intrinsic
characteristics of each kernel. The memory access pattern and location of barriers for

3The number of work-items and work-groups are only controllable from the clEnqueueNDRangeKernel API in
an OpenCL application.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

Aging-Aware Compilation for GP-GPUs 24:15

Fig. 11. Effect of changing number of work-groups (input size) on the HD 5870 for BlackScholes (a), Sim-
pleConvolution (b), and SobelFilter (c) as the number of degraded SCs is changed from one to eight in a
CU.

synchronization would affect the performance of the healthy kernel. As an example, if
the naive kernel only benefits from intrawavefront locality, then changing the order of
work-items within a work-group may hurt the performance of the healthy kernel due
to a higher cache miss rate.

In the following, we have performed a sensitivity analysis on the execution time of
the naive and healthy kernels considering different parameters: the number of work-
items, the number of work-groups, the compilation optimization options, and the target
GPU architecture.

6.2.1. Effect of Number of Work-Groups (Input Size). Figure 11 illustrates the effect of
changing the input size—that is, the number of work-groups on the performance over-
head of the SC healing method using the Evergreen GPU. First, with a small input
size (light workload) that utilizes all CUs only once in the naive version (with 20
work-groups, device utilization = 100%), the performance penalty is limited to approx-
imately 15%. Second, with a large input size (heavy workload) containing a number of
work-groups that is comparatively larger than the number of CUs (number of work-
groups = 1,024 for naive kernels), the performance penalty is more than 50%. The
side effect of temporal scheduling in SC healing is pronounced with a larger number of
work-groups, as more work-groups are mapped to the degraded SCs. As the number of
work-groups is more than the CU maximum occupancy, other work-groups will delay
until the previous ones finish their execution due to the lack of enough resources. In
both light and heavy workloads, when the number of degraded SCs is more than seven,
there is a sharp increase in the execution time of the healthy kernel. As explained
earlier in Section 6.2, this increase in overhead is because of increasing the number of
wavefronts from three to four—the number of redundant work-items exceeds 64, which
requires two extra wavefronts instead of one.

6.2.2. Effect of Number of Work-items for Performance Tuning. The SC healing method is
able to tune the number of work-items of a healthy kernel based on a specific degra-
dation scenario to boost performance. The method determines an optimal number of
work-items as a function of degraded SCs per CU for a healthy kernel such that its
performance penalty is minimum. To implement this feature, a lookup table (LUT) is
designed for each kernel that takes the number of degraded SCs—calculated using
the reported redundant work-items—and the number of naive work-items as the in-
puts and returns the best number of work-items suitable for the degradation scenario
such that the performance overhead is minimized. This LUT is constructed through
an offline preprocessing phase by measuring the performance using various possible
work-item counts for the kernel. The offline preprocessing is a one-off activity, and its
execution time for the selected kernels is in the order of seconds. After constructing
the LUT, the recompilation process is guided to further reshape the healthy kernel for
improved performance as shown in Figure 12. This is done as part of the aging-aware
kernel adaptation flow in Figure 3.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

24:16 A. Lotfi et al.

Fig. 12. Performance tuning for healthy kernels.

Fig. 13. Effect of changing (#WI, #WG) on the execution time of a healthy kernel for a synthetic kernel with
a fixed input size (1209600 integers) on an HD 5870.

Figure 13 shows the effect of changing work-item count and work-group count on
the execution time of a synthetic healthy kernel using an Evergreen GPU. This kernel
gets a number of integer inputs and performs arithmetic calculations on each entry
in the global memory. For a given fixed input size, the work-item count is changed
to all possible values between 64 and 256. The experiment is repeated for different
work-item counts when there are one, two, and three degraded SCs in a CU. As shown,
for each pair of degradation scenario and naive work-item count, there is an optimal
point in a close proximity that yields shorter execution time. This information is stored
in the LUT in a discretized manner to infer the best work-item count.

We show the effectiveness of leveraging this performance tuning knob. Figure 14
shows the speedup of a tuned healthy synthetic kernel (used in Figure 13) compared to
a normal healthy kernel that is unaware of tuning. These experiments are repeated for
three different degradation scenarios (one, two, and three degraded SCs in a CU) and
18 different input sizes with heavy workload, and the speedup of using a tuned healthy
kernel to a non-tuned healthy kernel is reported. The naive kernel has 256 work-items
per work-group; therefore, the non-tuned healthy kernel decreases its active work-item
count to 128 to have enough space in the wavefronts for the redundant work-items. As
shown, for any input size, the performance tuning method has a speedup range of 10%
to 20%.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

Aging-Aware Compilation for GP-GPUs 24:17

Fig. 14. Performance benefit of using a tuned healthy kernel over a healthy kernel that is unaware of tuning
on an HD 5870 (the benchmark is the same as in Figure 13).

Fig. 15. Effect of changing compiler options for SobelFilter on the HD 5870.

Fig. 16. Performance overhead comparison using Evergreen (HD 5870) and Southern Islands (HD 7970)
architectures for different degradation scenarios (the right-most column shows the average performance
overhead).

6.2.3. Effects of Compiler Optimization Options. We assess the effect of 11 different OpenCL
compiler optimization options for the kernel code. Results show that the compiler
optimizations have less or no impact on the execution time for both healthy and naive
kernels. Figure 15 summarizes the performance overhead results for the SobelFilter
application executed on an Evergreen GPU. Results for other applications are the same.

6.2.4. Effect of Architecture. We evaluate the performance overhead of the SC healing
method on two different GPU architectures. On top of the VLIW-based Evergreen
architecture (Cypress, Radeon HD 5870), we use the RISC-based Southern Islands
architecture (Tahiti, Radeon HD 7970) explained in Section 4. Figure 16 shows a
comparison between Evergreen and Southern Islands performance overhead for ker-
nels with different numbers of degraded SCs in each CU (one, four, or eight). These
healthy kernels on the Evergreen GPU with one degraded SC exhibit an average 42%

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

24:18 A. Lotfi et al.

performance overhead, whereas on the Southern Islands GPU, this overhead is reduced
to 11%. As shown, the overall performance overhead is lower using the Southern Is-
lands GPU, and this difference becomes larger as the number of degraded SCs per CU
increases. With eight degraded SCs, the Southern Islands GPU displays an average
(and up to) 12% (23%) performance penalty, whereas the Evergreen GPU displays 67%
(110%) overhead. This is mainly because of better thread divergence capability of the
Southern Islands GPU and its higher computational power (32*4*16=2,048 RISC SCs)
as opposed to the Evergreen counterpart with 20*16=320 VLIW-based SCs.

7. CONCLUSION

We propose innovations in the static compiled kernel code in conjunction with online
adaptive workload reallocation strategies to mitigate lifetime uncertainty and unbal-
ancing among PEs and SCs in GP-GPUs. These methods leverage a compiler-directed
scheme to generate healthy kernels that uniformly distribute the stress of workload
spatially among PEs, or temporally among SCs. The healthy kernels generated by the
PE healing method reduce the NBTI-induced voltage threshold shift by 30% without
any performance penalty. The SC healing method generates healthy kernels that alle-
viate the voltage threshold shift by 77% and incur an average 12% performance penalty.
Online monitoring and software calibrations schemes such as ours enhance benefits of
many-core accelerations in the presence of reliability issues.

REFERENCES

P. Aguilera, J. Lee, A. Farmahini-Farahani, K. Morrow, M. Schulte, and N. S. Kim. 2014. Process variation-
aware workload partitioning algorithms for GPUs Supporting Spatial-Multitasking. In Proceedings of
the Conference on Design, Automation, and Test in Europe (DATE’14). http://dl.acm.org/citation.cfm?
id=2616606.2616823

F. Ahmed, M. M. Sabry, D. Atienza, and L. Milor. 2012. Wearout-aware compiler-directed register assignment
for embedded systems. In Proceedings of the 2012 13th International Symposium on Quality Electronic
Design (ISQED’12). 33–40. DOI:http://dx.doi.org/10.1109/ISQED.2012.6187471

AMD. 2013. AMD Accelerated Parallel Processing OpenCL Programming Guide. Retrieved June 10,
2015, from http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_
OpenCL_Programming_Guide-rev-2.7.pdf.

AMD APP SDK. 2013. AMD APP SDK v2.9. Available at http://developer.amd.com/tools-and-sdks/
opencl-zone/amd-accelerated-parallel-processing-app-sdk/

L. Bautista Gomez, F. Cappello, L. Carro, N. Debardeleben, B. Fang, S. Gurumurthi, K. Pattabiraman, P.
Rech, and M. Sonza Reorda. 2014. GPGPUs: How to combine high computational power with high
reliability. In Proceedings of the Design, Automation, and Test in Europe Conference and Exhibition
(DATE’14). 1–9. DOI:http://dx.doi.org/10.7873/DATE.2014.354

K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R. Nassif, E. J. Nowak, D. J. Pearson, and
N. J. Rohrer. 2006. High-performance CMOS variability in the 65-nm regime and beyond. IBM Journal
of Research and Development 50, 4.5, 433–449. DOI:http://dx.doi.org/10.1147/rd.504.0433

S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula. 2006. Predictive modeling of the NBTI
effect for reliable design. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC’06).
189–192. DOI:http://dx.doi.org/10.1109/CICC.2006.320885

S. Chakravarthi, A. T. Krishnan, V. Reddy, C. F. Machala, and S. Krishnan. 2004. A comprehensive
framework for predictive modeling of negative bias temperature instability. In Proceedings of the
IEEE 42nd AnnualInternational Reliability Physics Symposium. 273–282. DOI:http://dx.doi.org/10.1109/
RELPHY.2004.1315337

T. B Chan, J. Sartori, P. Gupta, and R. Kumar. 2011. On the efficacy of NBTI mitigation techniques. In
Proceedings of the Design, Automation, and Test in Europe Conference Exhibition (DATE’11). 1–6.
DOI:http://dx.doi.org/10.1109/DATE.2011.5763151

G. Chen, K. Y. Chuah, M.-F. Li, D. S. H. Chan, C. H. Ang, J. Z. Zheng, Y. Jin, and D. L. Kwong. 2003. Dynamic
NBTI of PMOS transistors and its impact on device lifetime. In Proceedings of the IEEE 41st AnnualInter-
national Reliability Physics Symposium. 196–202. DOI:http://dx.doi.org/10.1109/RELPHY.2003.1197745

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

http://dl.acm.org/citation.cfm?id=2616606.2616823
http://dl.acm.org/citation.cfm?id=2616606.2616823
http://dx.doi.org/10.1109/ISQED.2012.6187471
http://developer.amd.com/wordpress/media/2013/07/AMDAcceleratedParallelProcessingOpenCLProgrammingGuide-rev-2.7.pdf
http://developer.amd.com/wordpress/media/2013/07/AMDAcceleratedParallelProcessingOpenCLProgrammingGuide-rev-2.7.pdf
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://dx.doi.org/10.7873/DATE.2014.354
http://dx.doi.org/10.1147/rd.504.0433
http://dx.doi.org/10.1109/CICC.2006.320885
http://dx.doi.org/10.1109/RELPHY.2004.1315337
http://dx.doi.org/10.1109/RELPHY.2004.1315337
http://dx.doi.org/10.1109/DATE.2011.5763151
http://dx.doi.org/10.1109/RELPHY.2003.1197745

Aging-Aware Compilation for GP-GPUs 24:19

G. Chen, M.-F. Li, C. H. Ang, J. Z. Zheng, and D.-L. Kwong. 2002. Dynamic NBTI of p-MOS
transistors and its impact on MOSFET scaling. IEEE Electron Device Letters 23, 12, 734–736.
DOI:http://dx.doi.org/10.1109/LED.2002.805750

X. Chen, Y. Wang, Y. Liang, Y. Xie, and H. Yang. 2014. Run-time technique for simultaneous aging and power
optimization in GPGPUs. In Proceedings of the 51st Annual Design Automation Conference (DAC’14).
ACM, New York, NY, Article No. 168.

S. Dighe, S. R. Vangal, P. Aseron, S. Kumar, T. Jacob, K. A. Bowman, J. Howard, J. Tschanz, V. Erraguntla,
N. Borkar, V. K. De, and S. Borkar. 2011. Within-die variation-aware dynamic-voltage-frequency-scaling
with optimal core allocation and thread hopping for the 80-core teraflops processor. IEEE Journal of
Solid-State Circuits 46, 1, 184–193. DOI:http://dx.doi.org/10.1109/JSSC.2010.2080550

W. Dweik, M. Abdel-Majeed, and M. Annavaram. 2014. Warped-shield: Tolerating hard faults in GPGPUs.
In Proceedings of the 44th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’14). 431–442. DOI:http://dx.doi.org/10.1109/DSN.2014.95

F. Firouzi, S. Kiamehr, and M. B. Tahoori. 2012. NBTI mitigation by optimized NOP assignment and insertion.
In Proceedings of the Design, Automation, and Test in Europe Conference Exhibition (DATE’12). 218–223.
DOI:http://dx.doi.org/10.1109/DATE.2012.6176465

E. Gunadi, A. A. Sinkar, N. S. Kim, and M. H. Lipasti. 2010. Combating aging with the Colt duty cycle
equalizer. In Proceedings of the 43rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-43). 103–114. DOI:http://dx.doi.org/10.1109/MICRO.2010.37

P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt, R. K. Gupta, R. Kumar, S. Mitra, A. Nicolau, T. S. Rosing,
M. B. Srivastava, S. Swanson, and D. Sylvester. 2013. Underdesigned and opportunistic computing in
presence of hardware variability. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 32, 1, 8–23. DOI:http://dx.doi.org/10.1109/TCAD.2012.2223467

U. R. Karpuzcu, B. Greskamp, and J. Torrellas. 2009. The bubblewrap many-core: Popping cores for se-
quential acceleration. In Proceedings of the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-42). 447–458.

S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. 2006. An analytical model for negative bias temperature insta-
bility. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD’06).
493–496. DOI:http://dx.doi.org/10.1109/ICCAD.2006.320163

J. Lee, P. P. Ajgaonkar, and N. S. Kim. 2011. Analyzing throughput of GPGPUs exploiting within-die core-to-
core frequency variation. In Proceedings of the IEEE International Symposium on Performance Analysis
and Systems Software (ISPASS’11). 237–246. DOI:http://dx.doi.org/10.1109/ISPASS.2011.5762740

F. Oboril and M.B. Tahoori. 2012. ExtraTime: Modeling and analysis of wearout due to transistor aging
at microarchitecture-level. In Proceedings of the 42nd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’12). 1–12. DOI:http://dx.doi.org/10.1109/DSN.2012.6263957

S. Ogawa and N. Shiono. 1995. Generalized diffusion-reaction model for the low-field charge-buildup insta-
bility at the Si-SiO2 interface. Physical Review 51, 7, 4218–4230.

OpenCL. 2009. OpenCL Programming Guide for the CUDA Architecture. Retrieved June 10, 2015, from
http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf.

F. Paterna, L. Benini, A. Acquaviva, F. Papariello, A. Acquaviva, and M. Olivieri. 2009. Adaptive idle-
ness distribution for non-uniform aging tolerance in multiprocessor systems-on-chip. In Proceed-
ings of the Design, Automation, and Test in Europe Conference Exhibition (DATE’09). 906–909.
DOI:http://dx.doi.org/10.1109/DATE.2009.5090793

A. Rahimi, L. Benini, and R. K. Gupta. 2013a. Aging-aware compiler-directed VLIW assignment for GPGPU
architectures. In Proceedings of the 50th Annual Design Automation Conference (DAC’13). ACM, New
York, NY, Article No. 16. DOI:http://dx.doi.org/10.1145/2463209.2488754

A. Rahimi, L. Benini, and R. K. Gupta. 2013b. Hierarchically focused guardbanding: An adaptive approach
to mitigate PVT variations and aging. In Proceedings of the Design, Automation, and Test in Europe
Conference Exhibition (DATE’13). 1695–1700. DOI:http://dx.doi.org/10.7873/DATE.2013.342

P. Singh, E. Karl, D. Sylvester, and D. Blaauw. 2011. Dynamic NBTI management using a 45 nm multi-
degradation sensor. IEEE Transactions on Circuits and Systems I: Regular Papers 58, 9, 2026–2037.
DOI:http://dx.doi.org/10.1109/TCSI.2011.2163894

J. Sun, R. Lysecky, K. Shankar, A. Kodi, A. Louri, and J. M. Wang. 2010. Workload capacity considering NBTI
degradation in multi-core systems. In Proceedings of the 15th Asia and South Pacific Design Automation
Conference (ASP-DAC’10). 450–455. DOI:http://dx.doi.org/10.1109/ASPDAC.2010.5419839

J. Sun, R. Lysecky, K. Shankar, A. Kodi, A. Louri, and J. Roveda. 2014. Workload assignment considering
NBTI degradationin multicore systems. ACM Journal on Emerging Technologies in Computing Systems
10, 1, Article No. 14.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

http://dx.doi.org/10.1109/LED.2002.805750
http://dx.doi.org/10.1109/JSSC.2010.2080550
http://dx.doi.org/10.1109/DSN.2014.95
http://dx.doi.org/10.1109/DATE.2012.6176465
http://dx.doi.org/10.1109/MICRO.2010.37
http://dx.doi.org/10.1109/TCAD.2012.2223467
http://dx.doi.org/10.1109/ICCAD.2006.320163
http://dx.doi.org/10.1109/ISPASS.2011.5762740
http://dx.doi.org/10.1109/DSN.2012.6263957
http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://dx.doi.org/10.1109/DATE.2009.5090793
http://dx.doi.org/10.1145/2463209.2488754
http://dx.doi.org/10.7873/DATE.2013.342
http://dx.doi.org/10.1109/TCSI.2011.2163894
http://dx.doi.org/10.1109/ASPDAC.2010.5419839

24:20 A. Lotfi et al.

A. Tiwari and J. Torrellas. 2008. Facelift: Hiding and slowing down aging in multicores. In Proceed-
ings of the 41st IEEE/ACM International Symposium on Microarchitecture (MICRO-41). 129–140.
DOI:http://dx.doi.org/10.1109/MICRO.2008.4771785

R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli. 2012. Multi2Sim: A simulation framework for CPU-
GPU computing . In Proceedings of the 21st International Conference on Parallel Architectures and
Compilation Techniques. 335–344.

S. Wang, T. Jin, C. Zheng, and G. Duan. 2012. Low power aging-aware register file design by duty cycle bal-
ancing. In Proceedings of the Design, Automation, and Test in Europe Conference Exhibition (DATE’12).
546–549. DOI:http://dx.doi.org/10.1109/DATE.2012.6176528

W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu, and Y. Cao. 2010. The impact of NBTI effect on combi-
national circuit: Modeling, simulation, and analysis. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 18, 2, 173–183. DOI:http://dx.doi.org/10.1109/TVLSI.2008.2008810

Received January 2015; revised March 2015; accepted May 2015

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 24, Publication date: July 2015.

http://dx.doi.org/10.1109/MICRO.2008.4771785
http://dx.doi.org/10.1109/DATE.2012.6176528
http://dx.doi.org/10.1109/TVLSI.2008.2008810

