
Application-Adaptive Guardbanding to Mitigate
Static and Dynamic Variability

Abbas Rahimi, Student Member, IEEE, Luca Benini, Fellow, IEEE, and Rajesh K. Gupta, Fellow, IEEE

Abstract—Traditional application execution assumes an error-free execution hardware and environment. Such guarantees in execution
are achieved by providing guardbands in the design of microelectronic processors. In reality, applications exhibit varying degrees of
tolerance to error in computations. This paper proposes an adaptive guardbanding technique to combatCMOSvariability for error-tolerant
(probabilistic) applications as well as traditional error-intolerant applications. The proposed technique leverages a combination of
accuratedesign timeanalysis and aminimally intrusive runtime technique tomitigateProcess, Voltage, andTemperature (PVT) variations
for a near-zero area overhead. We demonstrate our approach on a 32-bit in-order RISC processor with full post Placement and
Routing (P&R) layout results in TSMC 45 nm technology. The adaptive guardbanding technique eliminates traditional guardbands on
operating frequency using information from PVT variations and application-specific requirements on computational accuracy. For
error-intolerant applications, we introduce the notion of Sequence-Level Vulnerability (SLV) that utilizes circuit-level vulnerability for
constructing high-level software knowledge asmetadata. In effect, theSLVmetadata partitions sequences of integer SPARC instructions
into two equivalence classes to enable the adaptive guardbanding technique to adapt the frequency simultaneously for dynamic
voltage and temperature variations, as well as adapt to the different classes of the instruction sequences. The proposed technique
achieves on an average speedup for error-intolerant applications compared to recent work [33]. For probabilistic applications, the
adaptive technique guarantees the error-free operation of a set of paths of the processor that always require correct timing
(Vulnerable Paths) while reducing the cost of guardbanding for the rest of the paths (Invulnerable Paths). This increases the throughput of
probabilistic applications upto over the traditional worst-case design. The proposed technique has 0.022% area overhead, and
imposes only 0.034% and 0.031% total power overhead for intolerant and probabilistic applications respectively.

IndexTerms—Process, voltage, temperature (PVT)variations, timingerror, variation-tolerant processor, adaptiveguardbanding, resilient
design, computation accuracy

1 INTRODUCTION

PERFORMANCE and power uncertainty caused by variabili-
ty in the manufactured parts is a major design chal-

lenge in nanoscale CMOS technologies [1]. Variations arise
from different physical sources: (i) static inherent process
parameter variations in channel length and threshold volt-
age variations due to random dopant fluctuations and sub-
wavelength lithography; and (ii) dynamic environmental
variations in ambient conditions such as temperature
fluctuations and supply voltage droops. Such parameter
variations in device geometries in conjunction with unde-
sirable fluctuations in operating condition might prevent
circuit from meeting timing constraints thus degrading
parametric yield. These issues are expected to worsen with
technology scaling [2]. Designers commonly use conserva-
tive guardbands for the operating frequency and voltage to
ensure error-free operation for the worst-case variations
over circuit lifetime that leads to loss of operational

efficiency [3]. Therefore, accurate design time analysis
coupled with efficient runtime techniques are required to
overcome the variability challenges.

Indeed, several recent efforts have focused on measures to
mitigate variability through innovations in circuit-level
designs. Razor-style [4], [5] sequential circuit elements have
been widely researched to detect Process, Voltage, and Tem-
perature (PVT) variations coupled with adaptive recovery
methods for quick online error detection and compensation.
A recent 45 nm Intel in-order processor [6] replaces flip-flops
connected to the endpoints of the critical paths of pipeline
stages with Error-Detection Sequential (EDS) [7] circuits to
detect late timing transitions. For error recovery, theprocessor
supports two online techniques: (i) instruction replay at half
frequency, and (ii) multiple-issue instruction replay at the
same frequency. In a similar vein, BubbleRazor [8] leverages a
two-phase latch timing technique in conjunction with a local
replay mechanism on an ARM Cortex-M3 microprocessor.
Alternatively, low-overhead and less intrusive on-chip Criti-
cal Path Monitors (CPM) [9] measure the timing margin
available to circuits, and do not impose architectural modifi-
cation. IBM8-core POWER7 employsfiveCPMsper each core
to capture PVTvariations anddetect earlywearout conditions
which impose only 0.12% area overhead [10]. To ensure
recovery after error-detection, adaptive clock scaling is used
in resilient silicon implementations [6], [10], [11]. For instance,
fast single-cycle adaptive frequency technique to deal with
sudden changes in temperature and supply voltage variations

• A.Rahimi andR.K.Gupta arewith theDepartment of Computer Science and
Engineering,University of California at SanDiego, La Jolla, CA92093-0404
USA. E-mail: {abbas, gupta}@cs.ucsd.edu

• L. Benini is with the Dipartimento di Elettronica, Informatica e Sistemistica,
Università di Bologna, 40136 Bologna, Italy. E-mail: luca.benini@unibo.it

Manuscript received 22 July 2012; revised 06Mar. 2013; accepted 13Mar. 2013.
Date of publication 30 May 2013; date of current version 07 Aug. 2014.
Recommended for acceptance by S.W. Chung.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.72

2160 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

has been demonstrated for a 3.4 GHz commercial
processor [11].

Going further up on the hardware-software stack, several
efforts have tried to characterize and use variability related
information.We have earlier defined the notion of Instruction-
Level Vulnerability (ILV) to dynamic voltage and temperature
variations inorder to expose andusevariation inarchitectural/
compiler optimizations [12]. Furthermore, Maniatakos et al.
investigate correlation between (low-level) faults in the con-
trol logic of a microprocessor and their instruction-level
impact on the execution of a workload in order to classify
faults into instruction-level error types [13]. It has also been
shown that a micro-architecture and compiler collaborative
design can lead to a cost-effective solution for dynamic
voltage variations in commodity processors [14]. Online
procedure-level [15] and task-level [16] techniques have been
proposed for variation-tolerant embedded multiprocessor
SoCs. Finally, Cong et al. propose hybrid application-level
correctness techniques to mitigate soft-error through control
flow analysis for identifying critical program segments [17].
The static analysis phase identifies critical instructions and
minimizes the number of instructions that are duplicated and
checked at runtime, using a software-based fault detection
and recovery technique [18].

These methods strive to achieve instruction executions
exactly as specified by the application programs. In contrast,
probabilistic programs can exhibit enhanced error resilience
at the application-levelwhenmultiple valid output values are
permitted. Conceptually, such programs have a vector of
‘elastic outputs’, and if execution is not 100% numerically
correct, the program can still appear to execute correctly from
the user’s perspective [19]. Programs with elastic outputs
have application-dependent fidelity metrics (such as peak
signal to noise ratio) associated with them to mathematically
characterize the quality of the computational result. The
degradation of output quality for such applications (e.g.,
multimedia and compression [19]) is acceptable if the fidelity
metrics satisfy a certain threshold. Martinez et al. propose
dynamic tolerant region reuse [20], a method based on relax-
ing the conditions upon skipping regions of instructions by
caching results of previous equal and also similar inputs that
relies in the tolerance in the output precision of media algo-
rithms. An Error Resilient System Architecture (ERSA) [21]
presents a robust system that utilizes software optimizations
and error-resilient algorithms of the probabilistic applications
based on their classification as Recognition, Mining and
Synthesis (RMS) applications [22]. Identification of error
tolerant operations and the determination of the extent to
which errors can be tolerated in individual operations re-
mains an active area of research [23].

1.1 Contributions
We propose a near-zero area overhead adaptive guardband-
ing technique to meet application-specific requirements on
computational accuracy. This work makes the following
contributions:

I. We present a method to relate low-level hardware
vulnerability information obtained using accurate
and practical variation-aware analysis to high-level
knowledge in software. Our analysis flow considers

the dynamic voltage and temperature as well as static
process variations, and validates results on a full post
P&R layout of a 32-bit in-order RISC processor.

II. We propose an adaptive guardbanding technique to
dynamically adjust the cycle time to PVT variations
and application-level computation accuracy. For
probabilistic applications represented bymultimedia
benchmarks from MiBench [52] and MediaBench
[55], the technique achieves up to throughput
improvement in comparison to the traditional worst-
case design.

III. For error-intolerant applications, we introduce the
notion of Sequence-Level Vulnerability (SLV) to dy-
namic voltage and temperature variations. Our
experimental results and analysis show that SLV is
not uniform across sequences obtained from a large
set of general purpose benchmarks [52]–[57]. Effec-
tively, the SLV partitions sequences of integer
SPARC instructions into two classes: ClassI, which
only consists of the arithmetic/logical instructions;
and ClassII, a mixture of all types of instructions. We
also show the effectiveness of compiler technique to
achieve a favorable mix of sequences. Using SLV
enables the processor to achieve average speed-
up for intolerant applications, compared to [33], by
adapting the cycle time for dynamic variations and
different instruction sequences.

The minimally intrusive and parsimonious guardbanding
in software greatly reduces the hardware cost with respect to
the above-mentioned circuit techniques. Full layout results on
TSMC 45 nm technology show that the proposed guardband-
ing imposes only 0.031%and 0.034% total power overhead for
the probabilistic and the intolerant applications respectively.
The total area overhead is 0.022%.

The rest of the paper is organized as follows. Section 2
surveys prior work in this specific topic area. Section 3 de-
scribes the effects of PVT variations. Sections 4 and 5 cover
analysis of probabilistic and intolerant applications. The
adaptive guard-banding technique is presented in Section 6.
In Section 7, we explain our methodology for the characteri-
zation of SLV and present experimental results followed by
conclusions in Section 8.

2 RELATED WORK

There are threemain sources of relevant priorwork organized
as circuit-level, architecture-level, and software techniques.

The most immediate manifestations of variability are var-
iations in path delay and power. While path delay variations
have been addressed extensively by the test community as
delay fault testing problems, knowing the sources of path
delay variations enables the circuit designers a better focus on
measures to combat variability. For instance, amajor source of
variation is voltage droops and the fact that these errors
matter only when they lead to changes in state. Combining
these two observations have led the community to a rich
literature in recent years for handling variability induced
errors at the circuit-level. A common strategy is to detect
error, and expand the window of recoverability using
data-dependent path delays, time borrowing and/or tuning

RAHIMI ET AL.: APPLICATION-ADAPTIVE GUARDBANDING TO MITIGATE STATIC AND DYNAMIC VARIABILITY 2161

the supply voltage. Detection circuits typically use double
sampling using shadow latches whereas tunable replica cir-
cuits enable non-intrusive operations.

Circuit-level techniques seek to identify variability-caused
error conditions and correct for these errors through a variety
of circuit-levelmodifications.Double samplingwas originally
applied in Razor [4], updated in Razor II [5] with modifica-
tions for transition detection, double sampling with time
borrowing to EDS [7]. Recently, Intel has used EDS to build
a resilient core [6] to quickly observe and detect the timing
failure due to the fast dynamic variations as well as static
variations on a processor die. In addition, Razor, Razor II, and
Bubble Razor [8] have been used in ARM microprocessors.
A more systematic time borrowing flip-flop was presented in
[24] that uses clock shifter circuits to allow time borrowing on
critical paths, generate time-borrow signal to clock shifter to
stretch the clock period. Critical Path Isolation for Timing
Adaptiveness (CRISTA) [25] isolates the long critical paths of
the design and provides an extra clock cycle for those paths.
Trifecta [26], a variable latency processor based on CRISTA,
completes instructions that activate those long critical paths in
two cycles. Another hardware-implemented technique toler-
ates the delay variability on critical paths by enabling a
localized path-grained adaptation mechanism [27].

These techniques, while useful at the circuit-level, are
fundamentally limitedwhen it comes to their use in software.
In addition, the overhead of the intrusive pipeline modifica-
tions and circuit sensors for the error detection in conjunction
with the power-hungry error recovery techniques can be
large, e.g., 1–3% [4], [5], 3.8% [6], 9.5% [27], 18% [26], 21%
(same timing constraint) [8], and 30% [28] overheads in area,
and 8% [24] power overhead. Further, Razor-style designs are
shown to be not very effective in the face of aggressive voltage
over-scaling [29].

Architectural and software techniques focus on methods that
can be used by the computer architects, compiler writers to
mitigate variability effects. Prominent works to combat soft-
errors include the notion of architectural vulnerability factor
[30], design of ERSA [21] as a resilient architecture, software-
based error detection by duplicated instructions [18], and
application-level correctness [17]. A common challenge to
these approaches is that unlike the uniform soft-error models
[17], [18], [21], [30], delay variations caused by PVT are deeply
affected by the details of physical processor implementation,
and do not uniformly alter architectural registers (see Fig. 1).

Liang and Brooks propose a joint architectural and statis-
tical timing analysis method of selecting micro-architectural
parameters, e.g., selection of pipeline depth and size, to

mitigate the impact of frequency variations [31]. This is
limited to combating only process variations. Collaborative
architectures and compiler-based techniques have been pro-
posed in [32] to rearrange instructions such that dynamic
current fluctuations are suppressed. As a result, they enable
mapping the dynamic voltage droops to the original source
code. Similarly, a recent work makes the observation that the
sequence of instructions in an application can have a signifi-
cant impact on timing error rate and introduces code trans-
formations for improving timingspeculation [33]: e.g., (i)NOP
padding which enforces extra cycle penalty; (ii) ISA exten-
sions by adding a brinc instruction which requires intrusive
architectural modification. Ultra-Reduced Instruction Set
Co-processors (URISC) [28] extends a MIPS processor with
a co-processor that implements a new instruction called sub-
leq. URISC executes the sequences of subleq that are semanti-
cally equivalent to any faulty instruction. However, this
technique has a considerable impact on the performance,
e.g., up to performance penalty in case of a faulty
multiplication instruction.

These architectural and compiler techniques either consid-
er only process variations [31], or only dynamic variation [32].
Furthermore, [31], [33] use a superficially ‘generic’ variability
model on high-level architectural simulators that do not
consider the details of physical processor implementation
and constraints (more details in Section 7). This limits use of
software-assisted techniques that require highly-accurate de-
sign time analysis on the implemented cores with detailed and
validated variability models given by the semiconductor
fabrication process. We believe a combination of design time
and runtime techniques is essential to meet the application-
specific requirements on computational accuracy with
minimal impact on architectural and circuit modifications;
considering only one of them leads to unacceptable overhead.

3 PVT VARIATIONS

In this section,we analyze the delay variations caused by PVT
variations on thepaths of the 32-bit in-orderLEON3processor
compliant with the SPARCV8 architecture [34]. This choice is
keeping in view of the recent trends towards array processor
architectures containing many simple RISC cores, e.g., GPUs
[35], TILERA [36], and Platform 2012 [37]. More importantly,
the availability of an advanced open-source RISC core with
full back-end details is critical to accurate variation analysis.
Wenote that other efforts for complexhigh-performance cores
such as IBM POWER6 also confirm that vulnerability is not
uniform across the instructions set [38]. While different

Fig. 1. Non-uniform slack variation of the integer pipeline stages caused by PVT—cycle time is set at 0.83 ns.

2162 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

instruction sets will lead to different grouping of instructions
depending upon the processor architecture and implementa-
tion, our methodology can be applied as long as there is a
non-uniform vulnerability across the instructions.

Specifically, the effects of a full range of dynamic variations
(an industrial temperature range of –125 , and a
voltage range of –0 99 V) as well as static process
parameters variations (die-to-die and within-die) are ana-
lyzed on all paths throughout the entire integer pipeline of
LEON3. Fig. 1 illustrates the delayvariation in the six stages of
the pipeline that results in positive/negative slacks for the
flip-flops connected to the endpoints of the paths. The cycle
time is set at 0.83 ns to meet the timing requirement of the
typical-corner (0.9 V, 25 , TT). A higher voltage of 0.99 volts
results in shorter delay (positive slack), while the lower
temperature leads to a higher delay in the low-voltage region
below 0.9 volts, since MOSFET drain current decreases when
the temperature is decreased in nanometer CMOS technolo-
gies [39]. In addition to these dynamic operating conditions,
the static process variations exacerbate the delay variation
across various pipeline stages: Section 3.2 describes the details
of modeling the process variations.

Given such variations across operating conditions and
acrossdifferent parts of thedesign, anadaptive guardbanding
of the operating frequency is useful to ensure the error-free
operation. Such a guardband can be much less conservative
than a statically determined guardband. We divide pipeline
paths into twogroups: (a)Vulnerable Paths (): A set of paths
that always require correct timing and any delay variability
may result in catastrophic architectural failures and conse-
quently visible errors in the outputs of a program; and
(b) Invulnerable Paths (): A set of paths that do not require
100% timing correctness. The delay variation in does not
cause catastrophic architectural failures since it affects only
the vector of elastic outputs. The vector of elastic outputs does
not require the complete numerical correctness. Thus, the
delay variation in may degrade of the quality of fidelity
metrics of the probabilistic applications.

Specifically for LEON3 pipeline shown in Fig. 1, a 20%
voltage variation results in many negative slack values at
the endpoints of the fetch and decode stages which causes the
wrong instructions to be executed. Thus the paths that lie in
these stages are considered as andmust always meet the
setup time of flip-flops in PVT variation. On the other hand,
the scenario for is different. For example in the execution
stage, some endpoints do not suffer from delay variation at
all (those paths with a positive slack), and some endpoints
have negative slack when voltage variation occurs. The
execution stage has much more flexibility to deal with delay
variation as long as it can produce an acceptable fidelity
metric.

In Section 4.1, we present guardbanding technique that
seeks to guardband for error-free operation, and at the
same time effectively reduces the cost of guardbands on
against fidelity metric of programs that are tolerant to impre-
cise and approximate computations. The tolerance levels can
be specified based on algorithmic classifications such as RMS
[22], and multimedia [19]. Section 5 also covers another
adaptive guardbanding technique for intolerant applications
in the general case.

3.1 Conventional Static Timing Analysis
Conventional Static Timing Analysis (STA) calculates the
maximum delay variation using the worst-case corner, by
simply combining the absolute worst-case combination of the
process, voltage, and temperature parameters. The cycle time
is finely varied to observe the behavior of the pipeline stages.
The number of failed paths (i.e., pathswith negative slack) for
each stage using the STA in the worst-corner (0.72 V, 0 ,
Slow NMOS-Slow PMOS) is shown in Fig. 2. Increasing the
cycle time form 1.8 ns to 2.25 ns reduces the number of failed
path from hundreds of thousand paths to zero path for all
stages except the execution stagewhich has a higher delay. The
execution stage needs 10% more guardbanding, i.e., the clock
cycle of 2.5 ns. Further, [12] shows that the execution and
memory stages arehighlyvulnerable todynamic variations. By
setting the cycle time at 2.25 ns,we guarantee that no pathwill
fail within the fetch, decode, register access, memory, and write
back stages even in the worst-case process parameter varia-
tion. The paths in these stages are considered as because:
(i) any failure in fetch or decode stages may cause the wrong
instructions to be executed that cannot be masked even
within the probabilistic application; and (ii) any failure in
the register/memory/write back stages may cause an illegal
access/operation on the memory/registers. It is therefore
not surprising that both Intel resilient processor [6] and
relaxed-reliability cores in ERSA [21] consider sufficient
guardbanding in register stage, memory management unit,
and L1 instruction cache. By sufficient guardbanding on

through STA, the error-free operation of is guaran-
teed even if these paths display the worst-case process
characteristics.

Unlike the above mentioned stages, with the cycle time of
2.25 ns, the execution stage has few failed paths in the worst-
case process variation. If these paths are activated through the
pipeline, there is no guarantee for 100% timing correctness of
the execution stage. This lack of timing correctness causes
inaccuracies in the result of execution of some instructions,
which can bemasked by the error resilience at the application-
level of the probabilistic applications [19], [21], or proper
software-based instructionduplication technique. Thus, these
paths are considered as , since their violation might cause
only application-level derating which strictly depends to the
type of applications [38]. In Section 4, we examine the likeli-
hood of these violations, and the type of applications that can
accept or refuse this kind of inaccuracies.

Fig. 2. Number of failed paths of LEON3 pipeline using STA.

RAHIMI ET AL.: APPLICATION-ADAPTIVE GUARDBANDING TO MITIGATE STATIC AND DYNAMIC VARIABILITY 2163

To observe the behavior of and on other architec-
tures, we also consider a programmable Graphic Processing
Unit (GPU), THEIA [40]. THEIA features a multi-core archi-
tecture, and uses a ray casting approach for rendering. Every
core in THEIA runs a local copy of the shader code, and has
a pipelined SIMD unit, capable of performing fixed-point
arithmetic on 3D vectors. Each core includes instruction entry
point, fetch, decode, execute, and memory stages in conjunction
with a control unit. Similar to Fig. 2, the number of failedpaths
for each stage of a THEIA's core is shown in Fig. 3. As shown,

display no failure with a clock cycle of 3.2 ns, while the
execution stage faces high number of failed paths. In fact, the
execution stage needs 14% more guardbanding compared to
other stages. In comparison to LEON3, the execution stage of a
THEIA's core imposes higher guardbanding, since it performs
vector fixed-point operations which involve more complex
units than the scalar integer operation in LEON3.

Indeed, several researches show that execution stage is
critical not only for in-order or SIMD architectures, but also
for variousVLIWandout-of-order architectures [41]–[43]. For
instance, despite the prior-art assumption that the register file
defines the clock frequency of a clusteredVLIWprocessor, the
realistic physical layout experiments for an 8-issue-slot VLIW
pipeline show that it is the execution stage and its bypass
network that limits the clock speed [41]. Although a clock
frequency speedup is achieved by partitioning a single cluster
into two clusters (thus a shorter bypass network); in subse-
quent clustering there is a steady decrease of the bypass
network delay, hence the delay of functional units is a decid-
ing factor in clock frequency since it occupies up to 85% of the
clock period in an 8-cluster VLIWs [41]. M. Ozawa et al. [42]
also propose a cascade ALU architecture for out-of-order
processors, in which the critical path lies in the ALU. Simi-
larly, the ALU delay also determines the cycle time of a
low-power out-of-order design [43].

3.2 Variation-Aware Statistical STA
Unlike the traditional STA, variation-aware Statistical Static
Timing Analysis (SSTA) takes into account the actual distri-
bution of the physical parameters instead [47]. As a result, the
calculated slackdistributions accurately reflect the true results
obtained in silicon resulting in less pessimism in the analysis.
The variation-aware SSTA is suitable for analysis where
the processor does not need 100% timing correctness in case of

the worst process variation. Our results illustrate the value of
variation-aware SSTA. Fig. 4 distinguishes the data arrival
time of the execution stage of LEON3 for two operands using
the worst-case STA versus the variation-aware SSTA. The
operating condition is set for (0.81 V, 125), and the process
parameter for STA is set for the SlowNMOS-SlowPMOS (SS),
while this parameter for variation-aware SSTA varies based
on the process parameter variations supported by state-of-
the-art commercial tools.

To perform an accurate design time SSTA, we use the
variation-aware timing analysis engine of Synopsys PrimeTime
VX [47], leveraging characterized parameters of 45 nm varia-
tion-aware TSMC libraries [48] derived from first-level pro-
cess parameters by principal component analysis (PCA). PCA
is a mathematical procedure that simplifies a data set by
transforming a number of correlated parameters into a smal-
ler number of uncorrelated parameters. After parasitic extrac-
tion from the physical design data, the die-to-die (D2D) and
within-die (WID) process parameter variations are injected as
normal distributions with zero means and standard devia-
tions of and [49]. Therefore, we
change the variation components and analyze the delay
variations with a given set of accurate variability models
from commercial libraries [48], which are certainly more
accurate than commonly used ‘in-house model’ extracted
from predictive technology models [50]. As shown in Fig. 4,
the data arrival time of the operands in the execution stage
based on STA is upto 40% greater than the variation-aware
SSTA due to pessimistic process parameters. For the fixed
operating condition, STA results in 19% greater data arrival
time on average compared to the variation-aware SSTA
for the entire integer pipeline. These results set a baseline for
the improvements from adaptive guardbanding techniques
that raise the level of abstraction at which variability is
addressed.

4 PROBABILISTIC APPLICATIONS

In moving from circuits to applications, we find a greater
tolerance to failures simply because there is more contextual
information available for recovery mechanisms to use. Given
the increasing parallelism from hardware, the computer sys-
tems researchers have attempted to classify applications into
core algorithmic categories such as RMS [22] that not only
points to the structure of the computation but also a guidance
on the degree of tolerance to individual data or even

Fig. 4. Variation-aware SSTA versus the worst-case STA.

Fig. 3. Number of failed paths of THEIA pipeline using STA.

2164 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

computational errors. While a comprehensive framework for
classifying applications according to degree of data and
control tolerance to error and variation is still an area of active
research [23], adaptive guardbanding proposed here does
bring us a step closer to tie the mitigation of PVT guardbands
to the type of applications.

4.1 Analysis of Adaptive Guardbanding for
Probabilistic Applications

For probabilistic applications, the key idea is to guarantee the
error-free operations of the paths that are vital for ensuring
timing of the ,while reducing the cost of guardbanding for
the rest of the paths (). The adaptive guardbanding for the
probabilistic applications dynamically decides on the cycle
time based on the operating conditions, while guaranteeing
the accuracy of the fidelity metric above a user-defined
threshold () for the acceptable output. Timing error due
to the delay variation in may alter the vector of elastic
outputs ().Afidelitymetric of a probabilistic application ,

(,) is associatedwith its input and the corresponding
. The execution of application with input instance in the

presence of delay variation is acceptable iff . The
predicates (A)–(C) are defined as

<

<

Specifically, the cycle time, for every operating condition is
adjusted in such a way to satisfy that all paths in always
meet the setup timeofflip-flops even in theworst-case process
parameter variation using STA (B); and that the paths in
will not miss the setup time of any connected flip-flop, in a
statistical sense, using the variation-aware SSTA (C). These
two criteria guarantee the semantically correct execution of
application , e.g., an addition instruction is always executed
as an addition instruction but it might generate inaccurate
results, in case of large variations. To satisfy (A), the fidelity
metric has to be greater than the , thus guarantees the
acceptable accuracy form the applications’point of view. For a
given application , the application writer is responsible to
tune the acceptable threshold based on the end user’s require-
ments [17], [21].

The adaptive guardbanding dynamically sets the cycle
time tomeet (A)–(C) requirements tomitigate the inter-corner
variations for a given operating condition. The assigned cycle
time guarantees the error-free operation of even in the
worst-case process parameters variation, certified by STA.
However, the guardband provided by the adapted cycle time
cannot guarantee 100% timing correctness of within the
execution stage in case of absolute worst-case combination of
process parameters. This might cause inaccuracy in the result
of the executed instruction. If the executed instruction pro-
duces (thus affecting the fidelity metric), the predicate (A)
guarantees that the program can produce an acceptable
fidelity metric. On the other hand, if the executed instruction
is a critical instruction, the proper application-level correct-
ness techniques [17] is applied to identify the critical control

flow instructions. The critical instructions are statically dupli-
cated during compile time which guarantees the error-free
execution in a fix operating condition.

We use SSTA methodology (discussed in Section 3.2) to
analyze the effect of within-die and die-to-die process para-
meters variations. It dynamically sets the cycle time depends
to the operating conditions as shown in Table 1. For example,
as soon as detecting the operating condition at (0.99 V,

), the adaptive guardbanding decreases the cycle time
from 2.5 ns, calculated by the worst-case STA for (0.81 V, 0 ,
SS), to 0.8 ns. This cycle time of 0.8 ns meets all timing
requirements of , and at the same time provides positive
slack for the execution stage in a statistical sense. As shown in
the fourth column of Table 1, based on SSTA, the adaptive
guardbanding strategy works well even with die-to-die and
within-die process variation, while the paths are experiencing
a full swing for voltage and temperature, and provides the
positive slacks for the slowest path of the execution unit.
Furthermore, the 1st percentile (p01) values are quite far from
the zero slack, thus implying that the probability that actual
slack of the path in the execution stagewill be less than or equal
to p01 value is 0.01.

The probability density functions of the slack value of top
1,000 critical paths within the execution stage are analyzed, at
three operating conditions using the assigned cycle time in
Table 1. All slack values are always positive when pipeline
experience a full swing in voltage () and temper-
ature (). If an path in the execution stage is
facedwith theworst-case combination of process parameters,
and does not meet the timing requirement, the effects of such
variations maymanifest itself as an error in a bit of the output
vector. Depending upon the positional significance, a proba-
bilistic application may tolerate errors in low-order bits [21],
[19]; for the high-order bits of the execution stage, there is little
likelihood of having errors even in a full swing of the operat-
ing conditions, as the smallest p01 slack values are quite
positive: 0.22 ns/0.37 ns at (0.99 V,)/(0.81 V, 125).
The application writer can trade-off between the end user’s
accuracy requirements versus the cost of guardbanding using
profiling and tuning mechanisms, thus satisfying predicate
(A). The trade-off between the cycle time and the probability
of having a failure in the execution paths is shown in Fig. 5. As
shown, a higher cycle time results in lower probability of
failure and thus a lower timing error rate. Therefore, the
desired cycle time can be extracted tomatchwith the tolerable
error of the application. If the tolerable error of the application
changes over different phases of the application, the policy of
applying the adaptive guardbanding can be reprogrammed
accordingly during the execution of the application.

TABLE 1
Effectiveness of Adaptive Guardbanding for the Probabilistic

Applications under Dynamic Variations

RAHIMI ET AL.: APPLICATION-ADAPTIVE GUARDBANDING TO MITIGATE STATIC AND DYNAMIC VARIABILITY 2165

5 INTOLERANT APPLICATIONS

5.1 Sequence-Level Vulnerability (SLV)
Unlike the probabilistic applications, applications in general
do not have such inherent algorithmic and cognitive tolerance
thus even a single bit error in the execution unit could crash a
program. We consider this class of applications as intolerant
applications that require complete numerical correctness.
Intolerant applications cover most of the general purpose
applications, and even those probabilistic applications that
there is no domain expert to define and analyze their fidelity
metrics parameters. Therefore, the adaptive guardbanding
for the intolerant applications has to guarantee 100% timing
correctness for as well as . To alleviate such expensive
constraint imposed by the intolerant programs, we have
earlier defined the notion of Instruction-Level Vulnerability
(ILV [12]) to dynamic voltage and temperature variations in
order to expose and use variation in architectural/compiler
optimizations. Equation (1) defines ILV as a function of
current operating voltage and temperature (), and the
corresponding class of an instruction () determined by
partial function of . ILV is computed as the number of cycles
with a failed path over the total Monte Carlo simulated cycles
for the in [12]

I

In fact, ILV data in [12] partitions integer SPARC V8 ISA
(except control instructions) into three classes: ClassI consists
of ALU instructions; ClassII covers all memory (MEM) in-
structions; andClassIIIhas hardwaremultiply/divide (MUL/
DIV) instructions. As shown in Equation (2), ILV indicates
that the classes of instructions have different levels of vulner-
ability to dynamic variations depending on the way they
exercise the non-uniform critical paths across the various
pipeline stages. For instance, the hardware MUL/DIV in-
structions have a higher vulnerability in comparison to MEM
instructions

ILV does not cover the control instructions, because the
characterization of a control instruction itself is meaningless
unless it is considered within a sequence of instructions that
affect the control instruction. Hence, we extend the notion of
ILV; we introduce the notion of Sequence-Level Vulnerability
(SLV) to expose dynamic variation in Equation (3). Different
sequences of instructions exercise the critical paths of the
pipelinedifferently resulting invarious levels of vulnerability.
The vulnerability of a sequence of instructions () varies
based on the class of instructions that it contains. SLV is
also a function of current operating voltage and temperature
to capture inter-corner dynamic variations. Therefore, SLV
reflects the manifestation of variability-induced timing errors
in the specific software context which is a sequence of
instructions

I

5.2 SLV Characterization
To avoid an exponentially growing number of sequences for
evaluations of SLV, the high-frequency sequences are ex-
tracted from various type of applications. We have profiled
a large set of general purpose benchmarks containing 32
different applications, include MiBench [52], Parsec [53],
Scimark2 [54], MediaBench [55], and CoreMark [56] bench-
marks. The binaries of applications were dynamically instru-
mented. This allows us to extract the high-frequent sequences
of the instrumented instructions as well as their operands
distribution for the memory, and ALU instructions. This
operands distribution helps to create the realistic values for
the operands of the instructions. To distinguish sequences, a
window of three instructions is considered since there are
three stages before reaching the execution stage of LEON3.
Then, for the sake of illustration, the top 20 high-frequent
sequences are considered for the SLV analysis that are shown
in Table 2.1 After the sequence extraction, a sequence genera-
tor (see Fig. 8) appliedMonte Carlo method for each of top 20
sequences, utilizing the operands distribution instrumented
from the aforementioned benchmarks. Therefore, large sam-
ples of high-frequency sequences for SPARC ISA have been
generated, including ALU, MEM, and control instructions.2

Then, to accurately evaluate SLV under different operating
conditions, these sequences were fed to the post-layout simu-
lations where the delay of the layout implementation of the
processor is back-annotated. Therefore, SLV is calculated for

Fig. 5. Trade-off between the cycle time and the probability of having a
failure in the execution stage.

TABLE 2
Extracted High-Frequent Sequences of Instructions

1. We later show ourmethod is not limited to the top sequences and a
sequence with a length of three instructions ().

2. The rest of ISA needs the floating-point and coprocessor units
which are not available neither in our core nor in [6].

2166 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

every individual sequence under a full range of operating
conditions and cycle times to enableuse of dynamic variations
on sequences of instructions. To evaluate SLV, is run
through the pipeline while varying the operands of the
instructions using the following algorithm:

TheSLV for each at the operating condition ()with
Cycle_Time is quantified in Equation (4), where is the total
number of clock cycles inMonte Carlo simulation of with
random operands; and indicates if there is a vio-
lated stage at clock or not. In other terms, SLV is defined
as the total number of violated cycles over the total simulated
cycles for the . If any of the six stages have one or more
violated flip-flop at clock , we consider that stage as a
violated stage at since there is at least one activated
critical path for at that is slow enough to miss the
setup time of a flip-flop. Intuitively, if runs without any
violated path, SLV is zero; on the other hand, SLV is one if for
every cycle faces at least one violated path in any stage

1

0

Fig. 6 shows the SLV values of the top sequences under a
wide range of voltage and temperature variations while the
cycle time isfinely varied (steps of 10 ps). TheSLV values are 0
during the long cycle times, as the cycle time decreases the
SLV values increase towards 1 because the sequences experi-
ence higher timing violations. Let us first examine the behav-
ior of the sequences under the full range of temperature
variation (Fig. 6(b) and (c)). At the temperature of 125 , all
sequences have a SLV of 0 with clock cycle 1.35 ns. By
decreasing the cycle time beyond 1.33 ns, start
to incur the timing violation as their SLV values increase,
while is displaying a SLV of 0 until decreasing the cycle
time to 1.28 ns. This trend also persists under
temperaturefluctuationwith a shift in cycle time (Fig. 6(c)).As
shown, these sequences are partitioned into two classes based
on the SLV values. The have higherwithin-corner
SLV values, while the has lower within-corner SLV
values.

Let us nowexamine theSLVvalues under dynamic voltage
variations (Fig. 6(a) and (b)). A similar pattern of within-
corner SLV variations is observed: the show
higher SLV values compared to the at equal cycle times.
This classifies the into two classes of sequences:
ClassI and ClassII. As defined in Equation (5), ClassI is a
sequence of instructions of length inwhich every instruction
has an ILV class of ClassI. In other words, when a sequence of
instructions is composed of only ALU instructions, the se-
quence is classified as ClassI; otherwise it is classified as

ClassII. Therefore, an instruction within the sequence of
ClassII can be any instruction, including MEM, ,
and various control instructions. For every operation condi-
tion (), ClassI has a lower SLV (thus needs lower guard-
band) in comparison to ClassII

Based on our analysis for the high-frequent sequences, as
shown in Fig. 6, the is classified as ClassI, while the

are among ClassII. The has a lower SLV
compared to all sequences in ClassII; since its instructions do
not involve the critical paths of the memory and control
(integer code conditions) components. Thus, we see that the
SLV value of the two classes of the sequences at the same
corner andwith the same cycle time is not equal because their
instructions do not uniformly exercise the various critical

Fig. 6. Intra-corner SLV to dynamic variations (and
); a) (0.72 V, 125), b) (0.81 V, 125), c) (0.81 V,).

RAHIMI ET AL.: APPLICATION-ADAPTIVE GUARDBANDING TO MITIGATE STATIC AND DYNAMIC VARIABILITY 2167

paths of the pipeline. We know that the vulnerability of
instructions is not uniform [12]. Sequences in ClassII need
higher guardbands in comparisonwithClassI,mainly because
in addition of ALU's critical paths, the critical paths of mem-
ory are also activated for the load/store instructions aswell as
the critical paths of integer code conditions for the control
instructions. As a result, in the same corner, sequences in
ClassI run faster, thanks to their all ALU instructions which
only exercise critical paths of the ALU component.3 Fig. 7
summarizes ILV and SLV classification.

This intra-corner SLV enables the adaptive guardbanding
to set the cycle time for each class of sequences accordingly,
and thus eliminate the conservative guardbands across se-
quences up to 6%. Therefore, for intolerant applications, the
adaptive guardbanding adjusts the cycle time depending
upon the classes of the sequence, and the current operating
conditions to make sure that the processor runs at the fastest
speed compatible with both current hardware and software
conditions.We classify anynon-characterized sequence out of
the analyzed high-frequent sequences as ClassII, thus it will
have appropriate timing guardband in case of activation of
the critical paths of non-ALU components. Relaxing the
guardband can also be applied to any sequence of ClassIwith
a length of two ALU instructions () or more ()
ALU instructions stream (). These chains of ALU
instructions exercise the critical paths within only ALU com-
ponent, therefore, for a given operating condition as shown in
Equation (5), the SLV values of for are
equal. This classifies ALU sequences into the same class of the
sequences with consistency across a wide range of corners.

6 ADAPTIVE GUARDBANDING

We propose a guardbanding technique that dynamically
decides on the cycle time based on the Application's Type, the
Instruction Sequence, and the operating conditions (), to
maximize performance. To ensure necessary observability,
our approach employs on-chip low-overhead operating con-
dition monitors using CPM [9]. POWER7 results show that
five CPMs per each core are sufficient to finely capture PVT
variation [10]. For controllability, a fast adaptive clocking
circuit consisting of three Phase-Locked Loops (PLLs) is
leveraged. Each PLL is running at independent frequencies,
and a multiplexer quickly switches between them in a single
cycle [11], [44]; therefore ultra-fast frequency changes are
possible and PLL lock time is not an issue. This is well suited
to mitigate the inter-corner dynamic variations where the

timing guardbanding across corners are far apart. Tomitigate
the intra-corner guardband between the two classes of se-
quences, a finer clock speed adaptation is required which can
be supported by an all-digital PLL. For instance, [44] proposes
an all-digital PLL that provides multiple equally spaced clock
phases with a small tuning step size of a few picoseconds;
these phases are switched in a glitch-free reverse switching
scheme. A phase switching frequency division architecture is
also used to generate sub-integer division ratios and thus a
larger variety of output frequencies [45]. These circuits tech-
niques support very fast adaptation of the clock speed of the
processor in immediate response to changes in the operating
corners, various sequences of instructions, and the type of
applications. The adaptive guardbanding adjusts the Cycle_
Time as defined in Equation (6)

I

Where Application's Type is probabilistic or intolerant;
Instruction Sequence is the type of sequence which is either
ClassI or ClassII; and are discretized current operating
conditions reported by on-chipCPMsensors;F is represented
by a Programmable LookUp Table (PLUT) as shown in
Table 3. The PLUT is a fully combinational module in the
pipeline.4 It is programmable through the memory-mapped

in arbitrary epochs of the post-silicon stages. The PLUT is
connected to CPM (for monitoring the current operating
condition), the fetch stage (for monitoring the Instruction
Sequence), and the single-cycle adaptive clocking module (for
setting the). TheApplication's Type is also set at the
start of running the application via memory-mapped . The
adaptive guardbanding monitors these four parameters every
cycle, and then sends corresponding commands to the clock
speed adjustment circuit to make sure that processor always
runs at the fastest speed compatible with these conditions.

As shown in Table 3, there is no intra-corner cycle time
adaptation for the probabilistic application. The within-cor-
ner correct execution is guaranteed by static duplication of the
critical instructions which is the application-aware version of
the multiple-issue instruction replay [6]. Therefore, for the
probabilistic application we do not require an online hard-
ware recovery unit, and avoid the frequent changing of the
cycle time within an operating corner.

Fig. 7. ILV and SLV classification for integer SPARC V8 ISA.

TABLE 3
PLUT for Adaptive Guardbanding

3. ALU does not include the hardware multiply and divide units.

4. Note that PLU can be characterized and then optimized during
design time stage depending upon the range of operating conditions and
application's type.

2168 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

In our experiments, for characterization of the PLUT, we
have used six sign-off operating corners available on an
advanced real-life technology library [48]. PLUT conserva-
tively matches a surrounding operating condition if the dis-
cretized reported operating condition does not appear in the
PLUT. Note, this is conservative for few points in the PLUT,
but will converge to ideal, while still being safe, if semicon-
ductor fabrication process provides more characterized oper-
ating corners. Furthermore, for the intolerant applications, the
adaptive guardbanding considers the worst-case process
variation, and also considers a conservative guardband (as
safe as ClassII) on the non-characterized sequence of instruc-
tions (sequences out of), thus guarantees 100%
numerical correctness for the intolerant applications. As
shown in Table 3, the PLUT assigns different cycle times to
various types of applications at the same operating condition.
Inherent resiliency of the probabilistic applications indicates
that these can tolerate inaccuracies, while the intolerant ap-
plications do not accept such inaccuracies. Therefore, when
running an intolerant application the sufficient guardbanding
is guaranteed for as well.

7 EXPERIMENTAL RESULTS

The experimental methodology for STA, and the variation-
aware SSTA are described using Fig. 8 that shows both design
time and runtime flows. During the design time analysis, the
open-source synthesizable VHDL code of LEON3 [34] and
Verilog description of the PLUT module have been synthe-
sized with the TSMC 45 nm technology library, the general
purpose process. The synthesized core enables the variation
analysis of paths of the integer parallel pipeline unit, aswell as
theL1 instruction cache () and theL1data cache (), unlike
the resilient core [6] that only considers the integer unit. The
front-end flow with normal cells has been performed

using Synopsys Design Compiler with the topographical fea-
tures enabled, while Synopsys IC Compiler has been used for
the back-end. The design is optimized for performance with
the tight timing constraints, e.g., the clock period of 1.2 ns. For
SSTA, the sign-off stage has been made with variation-aware
timing analysis of Synopsys PrimeTime VX, leveraging char-
acterized parameters of TSMC 45 nm variation-aware librar-
ies discussed in Section 3.2. The dynamic variations are also
analyzed utilizing the six accessible TSMC characterized
sign-off corners [48]. Finally, for the post-layout simulations
Mentor Graphics ModelSim is employed.

At the runtime, in every cycle, the PLUTmodule sends the
desired cycle time to the adaptive clocking circuit utilizing the
characterized SLV of the current sequence and the operating
condition monitored by CPM. For detecting the current se-
quence, the PLUT looks at a window of three instructions
(available on , , stages), thus it detects the class of the
current instructions sequence before they reach the execution
stage (the stage that needs more guardbanding as shown in
Fig. 2). The previous stages (, ,) are in a safe guard-
band, thus they will not have any failure if a sequence of
ClassI/ClassII is runningwhile the cycle time is set for aClassII/
ClassI. If the pipeline architecture does not have enough stages
before the execution, the prefetch buffer [51] can be monitored
instead. By detecting changes in the class of sequences, the
single-cycle adaptive clocking circuit sets the core frequency
accordingly. If an adaptive clocking circuit has long-latency
clock switching, the PLUT can look ahead of a prefetch buffer
coupledwith phase prediction techniques to be able to decide
about the desired core frequency in advance. Note that the
core consists of the integer pipeline, L1 , and L1 that are
clocked by a single clock domain. Communication with L2
caches and uncore part can be done via globally asynchro-
nous, locally synchronous interconnection supporting syn-
chronization across multiple clock domains [37].

7.1 Effectiveness of Adaptive Guardbanding
In this section,we investigate the effectiveness of our adaptive
guardbanding technique when executing real word
applications.5

7.1.1 Probabilistic Applications
As probabilistic applications, we have selected multimedia
benchmarks fromMiBench andMediaBench suites: H264 is a
video decoder while Libmad is a MP3 decoder; Susan is an
image recognition program; DCT, Huffman coding and
Ycc2rgb are important kernels in the JPEG decoder; GSM
implements a decoder for the GSM communications
standard, and LDPC is a linear error correcting code. The
appropriate fidelity metric analysis and application-level
correctness technique based on [17] are performed to identify
the critical control flow instructions of these applications.
Then, the critical instructions are statically duplicated during
compile time. Finally, the adaptive guardbanding determines
the cycle time based on the given error probability 0.01%
which can guarantee the acceptable fidelity metrics [17].

In the traditional worst-case design, the maximum
throughput of applications is limited by 400 MIPS (million

Fig. 8. Methodology for the adaptive guardbanding.

5. For those applications that have encoder and decoder parts, we
consider their back-to-back executions.

RAHIMI ET AL.: APPLICATION-ADAPTIVE GUARDBANDING TO MITIGATE STATIC AND DYNAMIC VARIABILITY 2169

instructions per second), analyzed by the worst-case STA in
Section 3.1. Fig. 9 shows the normalized throughput of the
applications in various operating conditions, covering

dynamic voltage variation and
temperature variation. In comparison with the worst-case
design, the adaptive guardbanding changes the throughput
of these applications from to depends to the
current operating condition. Throughput of Rician is in-
creased up to at (0.81 V, 125). On the other hand,
throughput of Huffman coding at the operating condition of
(0.72 V, 125) is degraded by because 69% of its
instructions are the critical control flow instructions which
are duplicated, and cancel out the benefit of faster execution of
the total instructions. On average, the throughput of these
applications is enhanced by . This shows that utilizing
SSTA and adapting to the operating conditions highly sur-
passes the traditional worst-case STA, and also hides the
overhead of the critical instructions duplication.

7.1.2 Intolerant Applications
For the intolerant applications, we have selected applications
from six categories of MiBench, each suite targeting a specific
area of the embedded market, including automotive, con-
sumer devices, office automation, networking, security, and
telecommunications. In addition, we have also considered
EEMBC AutoBench [57] suite of benchmarks, suitable for
embedded processor in automotive, industrial, and gener-
al-purpose applications. Without loss of generality, every
probabilistic application can be considered as an intolerant
application and benefits from SLV utilization if there is no
domain expert to define and analyze its fidelitymetric. Fig. 10
shows the percentage of sequences of ClassI with various
lengths of ALU instructions, , during execution
of the intolerant applications. For instance,
shows the percentage of sequences that have exactly two
consecutive ALU instructions, represents se-
quences with just three consecutive ALU instructions, and so
on. The compiler6 optimizes the applications codes with -O3
optimization option; and then the applications are profiled
during execution using TSIM [58], a cycle-accurate instruc-
tion-level simulator. Fig. 10(a) shows on average 26% of the

total executed sequences belong toClassI, while the remaining
sequences belong to ClassII. Patricia has the maximum num-
ber of sequences of ClassI, 35%. The adaptive guardbanding
technique with the sequence detector of three instructions
benefits from the sequences ofClassIwith a length of 3 ormore
instructions.

Fig. 10(b) shows thepercentageof sequences ofClassIwhen
the compiler utilizes loopunrolling technique. Loopunrolling
is a loop transformation technique that attempts to increase
speed of a program by reducing instructions that control the
loop. It increases the number arithmetic instructions with
regard to the memory and control flow instructions, at the
expense of register pressure and program size. Therefore,
applying the loop unrolling produces a longer chain of ALU
instructions, and as a result the percentage of sequences of
ClassI is increased up to 41% and on average 31%. Hence, the
adaptive guardbanding benefits from this compiler transfor-
mation technique to further reduce the guardband for se-
quences of ClassI. Considering the sequence detection with a
length of three instructions, the adaptive guardbanding re-
duces the cycle time for 20% of the executed sequences on
average (up to 30% for Adpcm). Note that the adaptive
guardbanding technique also reduces the guardband for
the other sequences of ClassI with a longer length of three
instructions, since each sequence of ClassIwith instructions
is composed of two consecutive sequences with a length of
-1 instructions, considering the overlap between the two

sequences.
Table 4 lists the maximum and the average through-

put improvement of the adaptive guardbanding technique
utilizing the loop unrolling during compilation phase of the
intolerant applications. The throughput improvement is

Fig. 9. Normalized throughput improvement by utilizing SSTA compared
to the worst-case design for probabilistic applications.

Fig. 10. Percentage of sequences of ClassI during program execution:
a) without loop unrolling technique; b) using loop unrolling technique.

6. GNUCompiler Collection, version 3.4.4, with floating-point, mul/
div emulation.

2170 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

evaluated across various operating conditions. The second
and the third columns of Table 4 show the maximum and the
average throughput improvement of the applications utiliz-
ing SLV only within a fixed operating corner. Thus, the
applications benefit from the higher rate of execution of
the sequences of ClassI accomplished by the loop unrolling
method. The last two columns show the maximum and the
average normalized throughput (the worst-case design is the
baseline) improvements utilizing SLV and inter-corner adap-
tation. In comparisonwith theworst-casedesign, the adaptive
guardbanding enhances the throughput of these applications
by a factor of to depending upon the current
operating condition. This shows that utilizing the operating
corner monitors and the online SLV coupled with offline
compiler techniques can result in a significant throughput
improvement for general-purpose applicationswhere there is
strict requirement on computational accuracy.

We compare our SLV technique (without the loop unrol-
ling) with the code transformation technique proposed in [33]
which pads the instructions sequencewith aNOP instruction.
The NOP padding eliminates the critical path activation for
the forwarding paths of a processor for a Read-After-Write
(RAW) register dependency. In other words, the result is no
longer forwardeddirectly from the execution stage, it instead is
forwarded a cycle later from the pipeline register in the
memory stage. For comparison, we have identified the code
sequenceswith aRAWregister dependence andpadded them
with NOP instruction. Those NOP padded sequence are
clocked as fast as the ClassI. The authors in [33] assume that
they can clock that sequence faster than the typical
frequency of a processor,while Intel shows that in the resilient
processor the clock can increase up to in a fixed
operating corner [6]; our results in Section 5.2 also indicates
that intra-corner clock guardbanding for various sequences is
bounded by . Fig. 11 shows the normalized (baseline is
[33]) throughput of our adaptive guardbanding utilizing SLV
by adapting the cycle for dynamic operating conditions and
different classes of the sequences. On average, our technique
achieves higher throughput because [33] imposes one
extra cycle for executing the NOP instruction, and does not
adapt to the operating conditions. Fig. 12 shows the energy
overhead of the NOP padding across various operating cor-
ners. It imposes 74 nJ to 564 nJ energy overhead, depending
upon the number of NOP instructions and the current
operating condition.

Multi-instruction code substitution, as another code trans-
formation techniques in [33], is not applicable for an embed-
ded RISC machine where there are almost no alternatives
for representing an equivalent set of instructions, unless
paying the expenses of intrusive pipeline modification, ISA

extension, and leveraging co-processors. Nevertheless, there
is a considerable performance and energy penalty for repla-
cing a multi-instruction sequence with an equivalent set of
instructions [28].

The common strategy in circuit techniques [6], [7] is to allow
the timing errors to happen. Then, an extra cost is paid to
compensate errors through the error recovery technique: the
multiple-issue instruction replay imposes up to 28 extra recov-
ery cycles per error [7]. This cost of recovery has shown to be
high, thus leading to massive performance degradation if
processor blindly relies on the error recovery in face of frequent
timing errors, especially so in aggressive voltage over-scaling
and near-threshold computation [46]. However, our proposed
approach guarantees the correct execution at lower cost: (i) It
proactively prevent timing errors on by applying the
adaptive guardbanding across the operating corners and the
sequence of instructions. For the error intolerant applications,
even if some residual timing error probability remains mainly
because of usingMonte Carlomethod described in Section 5.2,
our approach relies on the processor with error recovery
capability that guarantees the correct execution with 100%
numerical correctness. In this way, our online adaptive
guardbanding implies that recovery actions will have to be
undertaken in an extremely small number of cases, hence the
recovery penalty is minimal. (ii) Our technique allows timing
errors to happen on while meeting the application-specific
requirements on computational accuracy for the error-tolerant
applications, hence no penalty of recovery.

TABLE 4
Throughput Improvement of the Intolerant Applications Utilizing

the Adaptive Guardbanding with Loop Unrolling.

Fig. 11. Normalized throughput improvement utilizing SLV compared to
[33] for the intolerant applications.

Fig. 12. Energy overhead of NOP padding [33] across corners.

RAHIMI ET AL.: APPLICATION-ADAPTIVE GUARDBANDING TO MITIGATE STATIC AND DYNAMIC VARIABILITY 2171

7.2 Overhead of Adaptive Guardbanding
Table 5 lists the overhead of hardware implementation of the
adaptive guardbanding technique. The area overhead in
comparison to LEON3 core (including and) is near-
zero (0.022%). Five CPMs, as PVT sensors, occupy 0.12% area
[10]. The adaptive guardbanding also imposes only 0.034%/
0.031% average total power overhead for the intolerant/
probabilistic applications, in the worst-case operating condi-
tion; the power leakage overhead is 0.012%. This coarse
grainedmonitoring and adaptation approach is less intrusive
and expensive and nicely complements the fine-grained
approaches such as Razor and EDS.

8 CONCLUSION

A variation-aware cross-layer approach is presented that
spans circuits, architectural pipeline to the applications. We
have proposed a design time analysis in conjunction with the
minimally intrusive runtime adaptive guardbanding tech-
nique to combat PVT variations while guaranteeing various
applications demands on computation accuracy. We
introduce the notion of Sequence-Level Vulnerability (SLV) to
capture variability characteristics that can be used by the
compiler, runtime systemor evenby the applicationprogram-
mer. The adaptive guardbanding technique enables an in-
order RISC processor to run at the fastest speed compatible
with the operating conditions, various sequences of instruc-
tions, and the type of applications. This increases the through-
put of probabilistic applications upto over the traditional
worst-casedesign.UtilizingSLV achieves on anaverage
speedup for the intolerant applications, compared to [33], by
adapting the cycle for dynamic variations and different in-
struction sequences. The concrete full layout results in TSMC
45 nm technology confirm that our technique incurs only
0.022%, 0.012%, and 0.034% overheads for the total area,
leakage power, and total power respectively.

Our ongoing work is focused on the creation of instruction
groups that can be run at higher frequency/lower power in
parallel execution context which could schedule instruction
from multiple streams trying to obtain a favorable sequence
mix in each execution hardware unit.

ACKNOWLEDGMENT

This material is based upon work supported by the NSF
Variability Expeditions under award n. CCF-1029783, and
FP7 ERC-AdG MultiTherman GA n. 291125.

REFERENCES

[1] S. Ghosh and K. Roy, “Parameter variation tolerance and error
resiliency: New design paradigm for the nanoscale era,” in Proc.
IEEE, vol. 98, no. 10, pp.1718–1751, Oct. 2010.

[2] ITRS [Online]. Available: http://public.itrs.net

[3] K. Jeong, A. B. Kahng, and K. Samadi, “Impact of guardband
reduction on design outcomes: A quantitative approach,” IEEE
Trans. Semicond. Manuf., vol. 22, no. 4, pp. 552–565, Nov. 2009.

[4] D. Ernst, et al., “Razor: A low-power pipeline based on circuit-level
timing speculation,” in Proc. IEEE/ACM Int. Symp. Microarchit.
(MICRO), 2003, pp. 7–18.

[5] S. Das, et al., “RazorII: In situ error detection and correction for
PVT and SER tolerance,” IEEE J. Solid-State Circuits, vol. 44, no. 1,
pp. 32–48, Jan. 2009.

[6] K. A. Bowman, et al., “A 45 nm resilient microprocessor core for
dynamic variation tolerance,” IEEE J. Solid-State Circuits, vol. 46,
no. 1, pp. 194–208, Jan. 2011.

[7] K. A. Bowman, et al., “Energy-efficient and metastability-immune
resilient circuits for dynamic variation tolerance,” IEEE J. Solid-State
Circuits, vol. 44, no. 1, pp. 49–63, 2009.

[8] M. Fojtik, et al., “Bubble razor: An architecture independent ap-
proach to timing error detection and correction,” in Proc. IEEE Int.
Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), 2012, pp. 488–490.

[9] A. Drake, et al., “A distributed critical-path timing monitor for
a 65 nm high-performance microprocessor,” in Proc. IEEE Int.
Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), 2007, pp. 398–399.

[10] C. R. Lefurgy, A. J. Drake, M. S. Floyd, M. Allen-Ware, B. Brock,
J. A. Tierno, and J. B. Carter, “Active management of timing guard-
band to save energy in POWER7,” in Proc. IEEE/ACM Int. Symp.
Microarchit. (MICRO), 2011, pp. 1–11.

[11] J. Tschanz, et al., “Adaptive frequency and biasing techniques for
tolerance to dynamic temperature-voltage variations and aging,” in
Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC),
2007, pp. 292–604.

[12] A. Rahimi, L. Benini, and R. K. Gupta “Analysis of instruction-level
vulnerability to dynamic voltage and temperature variations,” in
Proc. IEEE/ACM Des. Autom. Test Eur. Conf. Exhib. (DATE), 2012,
pp. 1102–1105.

[13] M. Maniatakos, N. Karimi, C. Tirumurti, A. Jas, and Y. Makris,
“Instruction-level impact analysis of low-level faults in a modern
microprocessor controller,” IEEE Trans. Comput., vol. 60, no. 9, pp.
1260–1273, Sept. 2011.

[14] V. J. Reddi and D. Brooks, “Resilient architectures via collaborative
design: Maximizing commodity processor performance in the pres-
ence of variations,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 30, no. 10, pp. 1429–1445, Oct. 2011.

[15] A. Rahimi, L. Benini, and R. K. Gupta, “Procedure hopping: a low
overhead solution to mitigate variability in shared-L1 processor
clusters,” in Proc. ACM/IEEE Int. Symp. Low-Power Electron. Des.
(ISLPED), 2012, pp. 415–420.

[16] A. Rahimi, A. Marongiu, P. Burgio, R. K. Gupta, and L. Benini,
“Variation-tolerant OpenMP tasking on tightly-coupled processor
clusters,” in Proc. IEEE/ACM Des. Autom. Test Eur. Conf. Exhib.
(DATE), 2013, pp. 541–546.

[17] J. Cong and K. Gururaj, “Assuring Application-level correctness
against soft errors,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des.
(ICCAD), 2011, pp. 150–157.

[18] N. Oh, P. Shirvani, and E. J. McCluskey, “Error detection by
duplicated instructions in super-scalar processors,” IEEETrans. Rel.,
vol. 51, no. 1, pp. 63–75, Mar. 2002.

[19] M. A. Breuer, “Multi-media Applications and Imprecise Com-
putation,” Proc. IEEE Euromicro Conf. Digital Syst. Des. (DSD),
2005, pp. 2–7.

[20] C.A.Martinez, J. C. Corbal SanAdrian, andM.V.Cortes, “Dynamic
tolerance region computing for multimedia,” IEEE Trans. Comput.,
vol. 61, no. 5, pp. 650–665, May 2012.

[21] L. Leem, H. Cho; J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA: Error
resilient system architecture for probabilistic applications,” in
Proc. IEEE/ACM Des. Autom. Test Eur. Conf. Exhib. (DATE), 2010,
pp. 1560–1565.

[22] P. Dubey, “Recognition, mining and synthesis moves computers to
the era of tera,” Technol. Intel. Mag., 2005.

[23] A. Leung, M. Gupta, Y. Agarwal, R. Gupta, R. Jhala, and S. Lerner,
“Verifying GPU kernels by test amplification,” in Proc. ACM Pro-
gramm. Language Des. Implementation (PLDI), Jun. 2012, pp. 383–394.

[24] K. Chae, S. Madhyay, C. Lee, and J. Laskar, “A dynamic timing
control technique utilizing time borrowing and clock stretching,” in
Proc. IEEE Custom Integr. Circuits Conf. (CICC), 2010, pp. 1–4.

[25] S. Ghosh, S. Bhunia, and K. Roy, “CRISTA: A new paradigm for
low-power, variation-tolerant, and adaptive circuit synthesis using
critical path isolation,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., pp. 1947–1956, Nov. 2007.

TABLE 5
Area and Power Overheads of Adaptive Guardbanding

2172 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

[26] P.Ndai,N.Rafique,M.Thottethodi, S.Ghosh, S. Bhunia, andK.Roy,
“Trifecta: A nonspeculative scheme to exploit common, data-
dependent subcritical paths,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 18, no. 1, pp. 53–65, Jan. 2010.

[27] G. Yan, Y. Han, and X. Li, “ReviveNet: A self-adaptive architecture
for improving lifetime reliability via localized timing adaptation,”
IEEE Trans. Comput., vol. 60, no. 9, pp. 1219–1232, Sept. 2011.

[28] A. Rajendiran, S. Ananthanarayanan,H. D. Patel,M. V. Tripunitara,
and S. Garg, “Reliable computing with ultra-reduced instruction set
co-processors,” in Proc. IEEE/ACM Des. Autom. Conf. (DAC), 2012,
pp. 697–702.

[29] J. Sartori and R. Kumar, “Alleviating the voltage-scaling limitations
of razor-based designs,” in Proc. IEEEWorkshop Logic Synth. (IWLS),
2009.

[30] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnera-
bility factors for a high-performancemicroprocessor,” in Proc. IEEE/
ACM Int. Symp. Microarchit. (MICRO), 2003, pp. 29–40.

[31] X. Liang and D. Brooks, “Microarchitecture Parameter Selection To
Optimize System Performance under Process Variation,” in Proc.
IEEE/ACMInt. Conf. Comput.-AidedDes. (ICCAD), 2006, pp. 429–436.

[32] K. Hazelwood andD. Brooks, “Eliminating voltage emergencies via
microarchitectural voltage control feedback and dynamic optimiza-
tion,” in Proc. ACM/IEEE Int. Symp. Low-Power Electron. Des.
(ISLPED), 2004, pp. 326–331.

[33] G. Hoang, R. B. Findler and R. Joseph, “Exploring circuit timing-
aware language and compilation,” in Proc. ACM Int. Conf. Architec-
tural Support Programm. Languages Operating Syst. (ASPLOS), 2011,
pp. 345–355.

[34] LEON3 [Online]. Available: http://www.gaisler.com/cms/
[35] NVIDIA's Next Generation CUDA Compute Architecture: Fermi,

Whitepaper, V1.1, 2009.
[36] S. Bell, et al., “TILE64—Processor: A 64-Core SoC with mesh inter-

connect,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers
(ISSCC), 2008, pp. 88–598.

[37] L. Benini, E. Flamand,D. Fuin, andD.Melpignano, “P2012: Building
an ecosystem for a scalable, modular and high-efficiency embedded
computing accelerator,” in Proc. IEEE/ACM Des. Autom. Test Eur.
Conf. Exhib. (DATE), 2012, pp. 983–987.

[38] P. N. Sanda, P. Kudva, R. Mata, V. Pokala, R. Haraden, and M.
Schallhorn, “Soft-error resilience of the IBM POWER6 processor,”
IBM J. Res. Develop., vol. 52, no. 3, pp. 275–284, May 2008.

[39] R. Kumar and V. Kursun, “Reversed temperature-dependent prop-
agation delay characteristics in nanometer CMOS circuits,” IEEE
Trans. Circuits Syst., vol. 53, no. 10, pp. 1078–1082, Oct. 2006.

[40] THEIA [Online]. Available: http://opencores.org/project,
theia_gpu

[41] A. Terechko, M. Garg, and H. Corporaal, “Evaluation of speed and
area of clustered VLIW processors,” in Proc. IEEE Int. Conf. VLSI
Des., 2005, pp. 557–563.

[42] M. Ozawa, M. Imai, Y. Ueno, H. Nakamura, and T. Nanya, “Perfor-
mance evaluation of Cascade ALU architecture for asynchronous
super-scalar processors,” in Proc. IEEE Int. Symp. Asynchronous
Circuits Syst. (ASYNC), 2001, pp. 162–172.

[43] E. Gunadi and M. Lipasti, “CRIB: Consolidated rename, issue, and
bypass,” in Proc. ACM/IEEE Int. Symp. Comput. Archit. (ISCA), 2011,
pp. 23–32.

[44] S. Hoppner, H. Eisenreich, S. Henker, D. Woalter, G. Ellguth,
and R. Schuffny, “A Compact Clock Generator for Heterogeneous
GALSMPSoCs in 65-nmCMOSTechnology,” IEEETrans.Very Large
Scale Integr. (VLSI) Syst., 2012.

[45] B. A. Floyd, “Sub-Integer Frequency Synthesis Using Phase-
Rotating Frequency Dividers,” IEEE Trans. Circuits Syst., vol. 55,
no. 7, pp. 1823–1833, Aug. 2008.

[46] R. Pawlowski, E. Krimer, J. Crop, J. Postman, N. Moezzi-Madani,
M. Erez, and P. Chiang, “A 530 mV 10-lane SIMD processor with
variation resiliency in 45 nm SOI, ” Proc. IEEE Int. Solid-State Circuits
Conf. Dig. Tech. Papers (ISSCC), 2012, pp. 492–494.

[47] PrimeTime® VX User Guide, Jun. 2011.
[48] TSMC 45 nm Standard Cell Library Release Note, TCBN45GSBWP,

version 120A, Nov. 2009.
[49] S. Herbert and D. Marculescu, “Characterizing chip-multiprocessor

variability-tolerance,” in Proc. IEEE/ACM Des. Autom. Conf. (DAC),
2008, pp. 313–318.

[50] Predictive Technology Model (PTM) [Online]. Available: http://ptm.
asu.edu/

[51] ARM Cortex-M3 Technical Reference Manual, rev. r1p1, 2006.

[52] MiBench [Online]. Available: http://www.eecs.umich.edu/
mibench/

[53] PARSEC Benchmark Suite [Online]. Available: http://parsec.cs.
princeton.edu/

[54] SciMark 2.0 Benchmark [Online]. Available: http://math.nist.gov/
scimark2/

[55] MediaBench [Online]. Available: http://euler.slu.edu/~fritts/
mediabench/

[56] CoreMark Benchmark [Online]. Available: http://www.coremark.
org/home.php

[57] EEMBC Benchmark Consortium [Online]. Available: http://www.
eembc.org

[58] TSIM ISS [Online]. Available: http://www.gaisler.com/index.
php/products/simulators/tsim

Abbas Rahimi received the BS degree in com-
puter engineering from the School of Electrical
and Computer Engineering at the University of
Tehran, Tehran, Iran, in March 2010. He is cur-
rently pursuing the PhD degree in the Department
of Computer Science and Engineering, the Uni-
versity of California, San Diego, La Jolla, CA,
USA. Since June 2010, he has also been with
the Microelectronic Group at the University of
Bologna, Bologna, Italy. His research interests
include the resilient system design, design for

robustness, and high-performance on-chip interconnections. He received
the Best Paper Candidate at 50th IEEE/ACM Design Automation
Conference.

LucaBenini received thePhDdegree in electrical
engineering from Stanford University, California,
in 1997. He is a Full Professor at the Department
of Electrical, Electronic and Information Engineer-
ing (DEI) of the University of Bologna. He also
holds a visiting faculty position at the Ecole Poly-
technique Federale de Lausanne (EPFL) and he
is currently serving as Chief Architect for the
Platform 2012 project in STmicroelectronics,
Grenoble. His research interests include energy-
efficientsystemdesignandMulti-CoreSoCdesign.

He is also active in the area of energy-efficient smart sensors and sensor
networks for biomedical and ambient intelligence applications. He has
published more than 600 papers in peer-reviewed international journals
and conferences, four books and several book chapters. He is amember of
the Academia Europaea.

Rajesh K. Gupta received the BTech degree in
electrical engineering from the Indian Institute of
Technology, Kanpur, Kalyanpur, India, in 1984,
the MS degree in electrical engineering and com-
puter science from the University of California,
Berkeley, in 1986, and the PhD degree in elec-
trical engineering from Stanford University,
California, in 1994. He is a Professor of computer
science and engineering at the University of
California, SanDiego (UCSD), La Jolla, and holds
the Qualcomm endowed chair. He directs the

smart buildings/smart grids task force at UCSD in his role as Associate
Director for the California Institute for Telecommunications and Informa-
tion Technology (CalIT2). His recent contributions include SystemC
modeling and SPARK parallelizing high-level synthesis, both of which
are publicly available and have been incorporated into industrial practice.
Earlier, he led or co-led DARPA-sponsored efforts under the Data Inten-
sive Systems (DIS) and Power Aware Computing and Communications
(PACC) programs that demonstrated architectural adaptation and com-
piler optimizations in building high-performance and energy-efficient
systemarchitectures. He currently leads theNational Science Foundation
Expedition on Variability.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

RAHIMI ET AL.: APPLICATION-ADAPTIVE GUARDBANDING TO MITIGATE STATIC AND DYNAMIC VARIABILITY 2173

