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Abstract—This brief proposes a novel technique to alleviate the
cost of timing error recovery, building upon the lockstep exe-
cution of single-instruction–multiple-data (SIMD) architectures.
To support spatial memoization at the instruction level, we pro-
pose a single-strong-lane–multiple-weak-lane (SSMW) architec-
ture. Spatial memoization exploits the value locality inside parallel
programs, memoizes the result of an error-free execution of an
instruction on the SS lane, and concurrently reuses the result to
spatially correct errant instructions across MW lanes. Experiment
results on Taiwan Semiconductor Manufacturing Company 45-nm
technology confirm that this technique avoids the recovery for
62% of the errant instructions on average, for both error-tolerant
and error-intolerant general-purpose applications.

Index Terms—Instruction reuse, memoization, recovery, re-
silience, timing error correction.

I. INTRODUCTION

A LTHOUGH scaling of physical dimensions in semicon-
ductor circuits opens the way to billion-transistor dies,

it also comes with the side effects of ever-increasing param-
eter variations [1]. Process, voltage, and temperature (PVT)
variations are expected to be worse in future technologies [2].
Saving power by operating at near-threshold regimes further
exacerbates these variations [3], [4]. The PVT variations may
prevent a circuit from meeting timing constraints, thus resulting
in timing errors. IC designers commonly use conservative guard
bands for the operating frequency or voltage to ensure error-
free operation for the worst-case variations. These guard bands
have been steadily increasing, leading to a loss of operational
efficiency and increased costs due to overdesign. An alternative
is to make a design resilient to errors and variations. In this
brief, we specifically focus on resilience to timing errors.

Resilient designs typically employ in situ or replica circuit
sensors to detect the timing error in both logic and memory. For
logic, error-detection sequential (EDS) [5] circuits have been
employed, whereas an eight-transistor static random access
memory array utilized tunable replica bits [6]. A common
strategy is to focus on detecting data that arrives shortly after the
clock edge and flagging it as a timing error. The timing failures
are corrected by replaying the errant operation with a greater
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guard band through various adaptation techniques. For instance,
recent 45-nm resilient integer–scalar core [7] places EDS
within the critical paths of the pipeline stages. Once a timing
error is detected during instruction execution, the core prevents
the errant instruction from corrupting the architectural state,
and a control unit initially flushes the pipeline and ensures error
recovery. These techniques impose a latency of up to 28 extra
recovery cycles per error with an energy overhead of 26 nJ [7].

The cost of these recovery mechanisms is high with fre-
quent timing errors in aggressive voltage overscaling and near-
threshold computation [3], [4]. Further, this cost is exacerbated
in complex pipelined architectures where the pipeline dimen-
sions are expanded both vertically (with wider parallel lanes)
and horizontally (with deeper stages). In vertically expanded
pipelines, recent work shows that there has been a significant
performance drop in the ten-lane SIMD architecture as single-
stage error probabilities increase [8]. In the lockstep execu-
tion, any error within any of the lanes will cause a global
stall and recovery of the entire SIMD pipeline. Similarly, in
horizontally expanded deeper pipelines, higher pipeline latency
causes a higher cost of recovery through flushing and replaying.
Floating-point (FP) pipelines have typically high latency where
an instruction spends, for instance, four cycles only on the
execution stage of a general-purpose graphics processing unit
(GPGPU, described in Section II) [9]. Thus, in SIMD FP
pipelines, the error rate is multiplied by the wider width, and
simultaneously, the recovery cycles per error are increasing, at
least linearly, with the longer pipeline length. This makes the
cost of recovery per single error quadratically expensive.

A. Contributions

Parallel execution in SIMD architectures provides an im-
portant ability to reuse computation and reduce the cost of
recovery from timing errors. Accordingly, we make three im-
portant contributions. First, we propose a novel technique, i.e.,
spatial memoization, to correct variation-induced timing errors
on the SIMD architectures for efficient recovery. We observe
that the entropy of data-level parallelism is low due to high
spatial locality of values. The spatial memoization leverages
this inherent value locality of applications by memoizing the
result of an error-free execution on an instance of data. Then,
it reuses this memoized result to exactly (or approximately)
correct any errant execution on other instances of the same (or
adjacent) data. Section III describes this technique in detail.
Second, we propose a SIMD architecture consisting of a sin-
gle strong lane and multiple weak lanes (SSMW) to support
memoization at the level of instruction. The SS lane memoizes
the output of an error-free FP instruction; therefore, if any MW
lane faces an error, it reuses the output of SS lane instead
of triggering recovery. Section IV details the design of the
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Fig. 1. Block diagram of the Radeon HD 5870 architecture.

SSMW architecture. Third, we demonstrate the effectiveness
of our technique on the GPGPU architecture for error-tolerant
image processing kernels and error-intolerant general-purpose
kernels. A high rate of instruction reuse is observed, which
avoids recovery on average for 62% of the errant instructions,
thus significantly reduces the total cost of recovery.

II. GPGPU ARCHITECTURES

We focus on the Evergreen family of AMD GPGPUs, partic-
ularly Radeon HD 5870 shown in Fig. 1, as a 16-wide SIMD
architecture. The Radeon HD 5870 GPU compute device con-
sists of 20 compute units (CUs), a global front-end ultrathread
dispatcher, and a crossbar to connect the memory hierarchy.
Each CU contains a set of 16 stream cores (SCs), i.e., 16 lanes.
Within a CU, a shared instruction fetch unit provides the same
machine instruction for all SCs to execute in a SIMD fashion.
Finally, each SC contains five processing elements (PEs), which
are labeled X , Y , Z, W , and T , constituting an arithmetic/logic
unit (ALU) engine to execute Evergreen machine instructions in
a vector-like fashion. Every SC is a five-way processor capable
of issuing up to five FP scalar operations from a single very
long instruction word (VLIW) consisting of five slots. Each
slot is related to its corresponding PE. Four PEs (PEX , PEY ,
PEZ , PEW ) can perform up to four single-precision typical
operations separately, while PET has a special function unit
capable of handling transcendental operations.

Instruction-level parallelism is exploited by packing data-
independent instructions into a VLIW bundle. Within an SC,
every VLIW slot supplies a parallel instruction (if available)
to be assigned to the related PE for simultaneous execution.
At the same time, the data-level parallelism is also exploited
by the SIMD execution model that causes the same machine
instruction to be executed concurrently by all 16 lanes in the
lockstep fashion. This exposed data-level parallelism naturally
facilitates the observation of availability of value locally across
the lanes of a CU.

III. SPATIAL MEMOIZATION AND INSTRUCTION REUSE

Sodani and Sohi [10] introduced the concept of instruction
reuse that comes from the observation that many instructions
can be skipped if another instance has already been executed
using the same input values. The instruction reuse memorizes
the outcome of an instruction on hardware tables; therefore,
a processor can reuse it temporally if the processor performs
the same instruction with the same input values. Although this
technique shows a high fraction of instruction reuse, particu-
larly on the multimedia domain, the temporal memoization is
fundamentally limited by: 1) the latency and energy overhead
of the reuse tables; and 2) the low hit rate of the tables.
Alvarez et al. [11] try to address the latter issue using a tolerant

region reuse technique that relies in the tolerance in the output
precision of multimedia algorithms to achieve high reuse rates.

In response to these deficiencies, we propose a spatial mem-
oization technique that does not require any table for saving and
searching. This technique seeks whether a single instruction can
be reused spatially, as opposed to temporally, across various
parallel lanes of the SIMD architecture. Our analysis shows that
the SIMD architecture explicitly exposes the value that is loc-
ally exhibited inside a parallelized program to all parallel lanes,
thus facilitating the concurrent instruction reuse (CIR) in close
proximity. We have examined error-tolerant image processing
applications and error-intolerant general-purpose applications
selected from AMD Accelerated Parallel Processing (APP)
SDK 2.5 [12]; both application groups display significant value
locality across the parallel lanes mainly because there is enough
redundant contextual information (i.e., low entropy).

To measure the exposed spatial value locality over the parallel
lanes, we have defined CIR as a metric for the entire kernel ex-
ecution. CIR is defined as the number of simultaneous instruc-
tions executed on the lane1 (L1) through L15 of the CUs that
satisfy a value locality constraint, which is divided by the total
number of instructions executed in all 16 lanes (L0 − L15). The
value locality constraint determines whether there is a value
locality between the input operands of the instruction executing
on L0 and the input operands of another instruction executing
on any of the neighbor lanes, i.e., Li, where i ∈ [1, 15]. Thus,
a tight (or relaxed) value locality constraint ensures that the
instructions of L0 and any of Li are working on the same (or ad-
jacent) instance of data, and consequently, their outputs are equi-
valent (or almost equivalent). This exchangeability allows the
instructions ofL0 to correct any errant output of instructions exe-
cuting on Li. In the Radeon HD 5870 with 16-wide SIMD pipe-
line, the maximum theoretical CIR rate is 93.75% (15 out of 16).

In the following, we consider the single-precision FP instruc-
tions. For image processing applications, we have examined
two filters: Sobel and Gaussian. Three value locality constraints
are considered. α is the tight constraint without masking, which
enforces full bit-by-bit matching of the input operands of the in-
structions. β and γ relax the criteria of α during the comparison
of the operands by masking the less significant 11, and 12 bits
of the fraction parts, respectively. The tight value locality con-
straint α requires the full precision matching between the input
operands of the pair of instructions, thus guaranteeing accurate
error correction. On the other hand, β and γ need similar input
operands, which yield approximate error correction. With this
approximation, the pair of instructions with two different input
operands will have the same output. As a result, the quality of
the output is degraded but is acceptable in multimedia applica-
tions within the constraints of application-specific peak signal-
to-noise ratio (PSNR). For the filter kernels, Fig. 2 shows the
CIR rate and the corresponding PSNR for various input pictures
while using different value locality constraints. As shown in
Fig. 2(c), applying the value locality constraint of α yields, on
an average, a CIR rate of 27%. This means that 27% of the
executed instructions on the whole SIMD can reuse the results
of the executed instructions on L0 for accurate error correction,
without any quality degradation. By relaxing the value locality
criteria from α toward γ, higher multiple data-parallel values
fuse into a single value, resulting in a higher CIR rate for
approximate error correction, e.g., up to 76% for Sobel. On
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Fig. 2. CIR of the FP with the corresponding PSNR for two kernels. (a) Sobel filter applying the value locality constraint of γ. (b) Gaussian filter value locality
constraint of γ. (c) Sobel and Gaussian filters with the three value locality constraints (α has no bitwise masking; thus, it does not generate any noise).

average, by applying γ, a CIR rate of 51% (32%) is achieved on
Sobel (Gaussian) with the acceptable PSNR of 29 dB (39 dB).

A. Concurrent Instruction Reuse for Error-Intolerant Kernels

To generalize the CIR concept, we have extended our analy-
sis to the error-intolerant applications that do not have inher-
ent algorithmic tolerance; thus, even a single bit error could
crash a program. We consider this class of applications as
error-intolerant applications that require complete numerical
correctness and cover most of the general-purpose applications.
We have examined three applications: binomial option pricing,
Haar wavelet transform, and eigenvalues of a symmetric matrix.
To evaluate the scalability of CIR, the size of the input data
of these applications are also enlarged. Option pricing is an
important problem in financial engineering. Binomial option
pricing is implemented for European-style options, and its input
data are the number of samples to be calculated. Haar wavelet
computes wavelet analysis on a 1-D input signal. The input data
for Eigenvalues algorithm is a symmetric tridiagonal matrix.

These applications require 100% numerical correctness;
thus, only the tight value locality constraint of α can be used.
It enables the instructions of Li to reuse the output of the
instruction of L0 while maintaining the full precision. The bars
in Fig. 3 show the FP instruction count of these applications as
a function of the input size, and the CIR of each instruction
type is also shown. The FP instructions of binomial option
pricing display high CIR rates: 60% for addition, 32% for
multiplication, 26% for multiplication and addition, and 61%
for the rest of FP instructions. By increasing the number of
sampling input from 5000 to 9000, the number of executed
FP instructions is almost doubled, whereas the rate of CIR is
constant, confirming its scalability across various input sizes.
For eigenvalues with an input matrix size of 100 × 100, a CIR

rate of 91% for the total FP instructions is observed. Expanding
the size of the input matrix by a factor of ∼6700× increases
the FP instructions count by a factor of ∼4200× and further
increases the CIR to 94%. The Haar wavelet transform also
reveal a high CIR of 36% for the total FP instructions across
various sizes of the input signal.

These high rates of CIR, across various application-specific
requirements on the computational accuracy, confirms that the
data-level parallelism exposed on the SIMD lanes is a promis-
ing observation point to exploit the inherent value locality
inside the parallelized programs.

IV. SSMW ARCHITECTURE

As aforementioned, the cost of recovery per single tim-
ing error on a FP SIMD architecture is very expensive.
Pawlowski et al. [8], [13] propose to decouple the SIMD lanes
through private queues that prevent error events in any single
lane from stalling all other lanes, thus enabling each lane to
recover errors independently. The decoupling queues cause slip
between lanes, which requires additional architectural mech-
anisms to ensure correct execution. Therefore, the lanes are
required to resynchronize when a microbarrier (e.g., load, store)
is reached, therefore incurring performance penalty [8].

In response to this deficiency, we exploit the inherent value
locality; therefore, the SIMD is designed to maintain the lock-
step integrity in the face of timing error, i.e., an SSMW archi-
tecture, which is a resilient SIMD architecture. The key idea,
for satisfying both resiliency and lockstep execution goals, is to
always guarantee error-free execution of a lane (SS). Then, the
rest of the lanes (MW) can reuse its output in the case of timing
errors. In other words, SSMW provides an architectural support
to leverage CIR for correcting the timing errors of MW lanes.
Note that, to achieve this goal, SSMW superposes resilient
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Fig. 3. FP instruction count and their CIR for three error-intolerant kernels
(constraint of α, thus no bitwise masking) with various input sizes.

circuit techniques on top of the baseline SIMD architecture
without changing the flow of execution. SSMW employs two
major resilient techniques. First, it guarantees the error-free
execution of the SS lane in the presence of the worst-case PVT
variations using voltage overdesign (VO). On the other hand,
the MW lanes employ EDS circuits to detect any timing error
and propagate an error bit toward the pipeline stages.

Second, SSMW also employs a CIR detector module for ev-
ery PE of the MW lanes, as shown in Fig. 4. This module checks
the value locality constraint, and if it is satisfied, the module
forwards the output result of the PE in the SS lane to the output
of the corresponding PE in the weak lane. The output result of
the SS lane is broadcast via a network across MW lanes. The
CIR detector module is a programmable combinational logic
working on parallel with the first stage of the PE execution;
since every PE executes one instruction per cycle, the module
is thus shared across all FP functional units of the PE. To
check the value locality constraint at the level of instruction, the
module compares bit by bit the two operands of its own PE with
the two operands of the PE on the SS lane. All the CIR detector
modules share a masking vector to ignore the differences of the
operands in the less significant N bits of the fraction part. The
masking vector is a memory-mapped 32-bit register that is set
by various application demands on the computation accuracy. If
the two sets of the operations, considering commutativity, meet
the value locality constraint, the module sets a reuse bit, which
will traverse alongside the corresponding instruction through

Fig. 4. FP SSMW execution unit.

the stages of the PE. At the last stage of the execution, the PE
takes three actions based on the {reuse bit, error bit}. In the
case of no timing error, i.e., {1/0, 0}, the PE sends out its own
computed result to the WRITE stage. If a timing error occurred
for the instruction during any of the stages, but it has a value
locality with the instruction on the SS lane, i.e., {1, 1}, the
PE sends out the computed result of the SS lane and avoids
the propagation of the error bit to the next stage. Finally, in the
case of an error and lack of the value locality, i.e., {0, 1}, the PE
triggers the recovery mechanism.

V. EXPERIMENTAL RESULTS

Our methodology is developed upon the AMD Evergreen
GPGPUs but can be applied to other SIMD architectures as
well. Multi2Sim [14], which is a cycle-accurate CPU–GPU
simulation framework, is modified to collect the statistics for
computing CIR. The Naïve binaries of AMD APP SDK 2.5
[12] kernels are run on the simulator, and the input values for
the kernels are generated by the default OpenCL host program.
We analyzed the effectiveness of the SSMW architecture in
the presence of timing errors on the Taiwan Semiconductor
Manufacturing Company 45-nm application-specific IC flow.
The fetch and decode stages display low criticality [15]. To
keep the focus on the processor architecture, we assume that the
memory components are resilient, e.g., by utilizing the tunable
replica bits [6]. We have partially implemented the FP execution
stage of the PE, consisting of three frequently exercised func-
tional units: ADD, MUL, and SQRT. On Evergreen GPGPUs,
every functional ALU has latency of four cycles and throughput
of one instruction per cycle [9]. Therefore, the VHDL code
of the three FP functional units are generated and optimized
using FloPoCo [16]. To achieve balanced pipelines with latency
of four cycles, the SQRT utilizes a fifth-degree polynomial
approximation to decrease its delay.

The front-end flow with multiple VTH cells has been per-
formed using Synopsys Design Compiler with the topographical
features, whereas Synopsys IC Compiler has been used for the
back-end flow. The design has been optimized for timing, for
the signoff frequency of 1 GHz at (SS/0.81V/125 ◦C), and
for power using high VTH cells. Next, the voltage–temperature
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Fig. 5. Gaussian filter energy efficiency comparison for three architectures.

Fig. 6. Effectiveness of CIR for kernels during 3% and 6% voltage droops.

scaling feature of Synopsys PrimeTime is employed to analyze
the delay variations under voltage droop. Finally, the variation-
induced delay is back annotated to the postlayout simulation,
which is coupled with Multi2Sim. To quantify the timing error,
we consider two global voltage droop scenarios, i.e., 3% and
6%, across all 16 lanes during the entire execution of the kernels.

We consider five architectures for comparison: the architec-
ture lane decoupling queues without VO [8], [13], the SIMD
baseline architecture with 10% (or 6%) VO across all 16 lanes,
and the SSMW architecture in which the SS lane, the CIR
detector modules, and the broadcast network are guard-banded
by 10% (or 6%) VO to guarantee error-free operations. Once
SSMW cannot exploit CIR for an error event recovery, it relies
on thesingle-cycle recoverymechanismpresented in[8]and[13].

Fig. 5 shows the energy efficiency of the FP execution stage
during Gaussian filter execution for a wide range of error rates.
At a low error rate, SSMW (10% VO) achieves up to 18% higher
GFLOPS per watt compared with the baseline (10% VO). The
energy efficiency gain of the decoupling queues disappears at
an error rate of 12% and higher, whereas SSMW surpasses both
architectures up to an error rate of 60%; SSMW achieves up to
16% higher GFLOPS per watt compared with the decoupling
queues. Increasing the error rate beyond 60% removes the
energy efficiency gain of SSMW. The CIR of Gaussian cannot
afford to efficiently correct all errant instructions at this high
error rate; thus, SSMW incurs the recovery cycles frequently.

Fig. 6 shows the effectiveness of SSMW, i.e., the percentage
of the corrected errant instructions by CIR for all kernels when
encountering 6% and 3% voltage droops during the execution.
The applications set α for the accurate error correction and γ for
the approximate error correction. On average, for all kernels,
SSMW avoids the recovery for 62% of the errant instructions,
confirming the effective utilization of the value locality.

Fig. 7 shows the total energy comparison of the kernels while
experiencing 6% voltage droops. On average, SSMW (10% VO)
reduces 8% of the total energy compared with its baseline
counterpart. The CIR detector modules increase the delay of the
baseline architectures up to 4.9% due to the SS-lane broadcast
network and impose a maximum of 5.7% total power overhead.
In comparison with decoupling queues, SSMW (10% VO)
has on average 12% lower energy consumption. The SSMW

Fig. 7. Energy consumption of kernels during 6% voltage droops.

(6% VO) has also 1% lower energy compared with the baseline
with 6% VO, optimistically assuming that the baseline does not
incur any timing error while operating at the edge of failure
with 6% voltage droops.

VI. CONCLUSION

The proposed SSMW architecture enables a spatial memoiza-
tion technique that seeks to reduce error recovery costs by reuse
of concurrent instructions while maintaining a lockstep execu-
tion of the SIMD architecture. The proposed memoization tech-
nique exploits the value locality in data-parallel applications
that is explicitly exposed to the parallel lanes. Error-tolerant and
error-intolerant applications exhibit up to 76% and 94% CIR
rate for the approximate and accurate error corrections, respec-
tively. On an average, the proposed SSMW eliminates the cost of
recovery for 62% of the voltage-droop-affected instructions and
reduces 12% of the total energy compared with recent work [8].
An ongoing work is focused on utilizing the spatial memoiza-
tion to spontaneously apply clock gating for MW lanes.
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