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Abstract—The Internet of Things significantly increases the amount of data generated, straining the processing capability of current
computing systems. Approximate computing is a promising solution to accelerate computation by trading off energy and accuracy. In
this paper, we propose a resistive content addressable memory (CAM) accelerator, called RCA, which exploits data locality to have an
approximate memory-based computation. RCA stores high frequency patterns and performs computation inside CAM without using
processing cores. During execution time, RCA searches an input operand among all prestored values on a CAM and returns the row
with the nearest distance. To manage accuracy, we use a distance metric which considers the impact of each bit indices on
computation accuracy. We evaluate an application of proposed RCA on CPU approximation, where RCA can be used as a stand-alone
or as a hybrid computing unit besides CPU cores for tunable CPU approximation. We evaluate the architecture of the proposed RCA
using HSPICE and multi2sim by testing our results on x86 CPU processor. Our evaluation shows that RCA can accelerate CPU
computation by 12.6× and improve the energy efficiency by 6.6× as compared to a traditional CPU architecture, while providing
acceptable quality of service.
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1 INTRODUCTION

I NTERNET of Things (IoT) increases the number of smart
devices around the world. This number is expected to double

by 2020 [1]. The rate of data generated by IoT the Internet
of Things will quickly overtake the capabilities of current
computing systems. Internet of Things applications (e.g. machine
learning, multimedia etc.) cause large energy and performance
inefficiencies when run on general purpose processors [2].
The need for computing systems that can efficiently handle
such large volumes of streaming data is undeniable [3], [4].
Approximate computing is an effective way of accelerating
computation by trading between performance and accuracy. Many
applications, such as machine learning, signal processing, speech
recognition, search, and graphics, can accept some inaccuracy
in computation [5], [6], [7], [8], [9] to gain both energy and
performance advantages. The capability of adaptively tuning the
level of accuracy is important for many applications.
Memory-based computing is an efficient way of data processing
without using processor cores. Associative memory, in the form of
a lookup table, stores commonly seen patterns and retrieves them
at runtime. In hardware, these memories can be implemented
using ternary content addressable memory (TCAM). TCAMs
search for an input data among all rows in parallel, within a
single cycle [10]. In CMOS technology, TCAMs are designed
with SRAM cells and consume a lot of energy for both store
and search operations. Non-volatile memories, such as Resistive
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RAMs (ReRAM), magnetic RAMs (MRAMs), Ferroelectric
RAMs (FeRAMs), and Phase change RAMs (PCRAMs) provide
a solution for area and energy efficient memory and logic [11],
[12], [13], [14]. NVM-based TCAMs can use voltage overscaling
(VoS) to inexactly match the input patterns with stored values
while controlling for hamming distance error as a function of
voltage [15]. Associative memories are typically used next to
processing cores for error-free execution, approximate computing,
or as a stand-alone memory for exact associative computing [15],
[16]. However, large data locality in several IoT applications,
alongside the low search energy consumption of NVM-based
TCAMs, motivates us to use associative memories directly as
efficient and approximate computation units.
In contrast to previous work, which used associative memory
primarily for computational reuse, we propose a Resistive CAM
Accelerator (RCA) which uses associative memories directly
as approximate computing units. For each application RCA
exploits data locality by storing high frequency patterns in content
addressable memories. In computing mode, RCA searches for
input operands among all prestored values on a CAM and returns
a row with the closest distance. We use proper distance metric
which: i) significantly reduces the search energy consumption of
RCA by sequential search and selectively activates the rows of the
CAM stages, and ii) ensures computation accuracy by considering
the impact of each bit indices on computation accuracy. We
enable RCA’s nearest distance search capability using the analog
characteristics of the memristive devices to find a row with the
maximum number of matched bits for input operands. RCA
can be implemented as a stand-alone commuting unit or as a
hybrid computing unit beside CPU computing cores. In hybrid
mode, the workload can run partially on RCA and CPU cores
using a threshold value which determines maximum acceptable
distance of the input operand with the stored value in a CAM.
Our experimental evaluation on x86 64-bit CPU architecture
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shows that using small size RCAs can provide 12.6× energy
saving and 6.6× speedup, while also providing sufficient accuracy.

2 BACKGROUND AND RELATED WORK

Associative memories are known as a promising solution
to reduce the energy consumption of parallel computation.
Associative memory consists of two main blocks: a TCAM
and a memory. A set of high frequency patterns and their
corresponding output are prestored on the TCAM and memory
respectively. In runtime, input operands are compared with the
stored values in CAM to enable computation reuse. In hardware,
these memories are implemented with TCAM blocks. TCAMs
based on CMOS technology are very energy consuming, limiting
their application [17]. The low leakage power and high density of
NVMs make them appropriate candidates to replace CMOS-based
memory [18], [19], [20] and logic [21], [22]. Resistive-based
TCAMs suffer from low endurance, limiting the number of
write operations on CAMs to 105 − 107 [23], [24]. Instead,
MTJ-based TCAMs show significantly higher endurance (1015),
high temprature stability [25], [26], but slower search operation
than resistive TCAMs [27]. In this work, we use a resistive
TCAM cell in our design and address the low endurance issue
by only updating it sporadically. Instead of doing energy hungry
processing, we design Resistive CAM Accelerator (RCA) which
learn to perform computations very efficiently using selective
row activation for low switching activity of content addressable
memories.
In the approximate computing domain, previous work focused on
using approximate processing units or enabling approximation
on existing computing units [5], [16], [28], [29], [30]. Putting
entire computing unit on approximation degrades computation
accuracy and requires a complex programing language [30], [31].
Architectures with both approximate and precise instructions
running can achieve higher benefits from approximation.
Reducing the number of running instruction on the processor
pipeline, using a neural network, is an effective way of applying
approximation [28], [29]. A neural processing unit (NPU)
accelerates both CPU and GPU computations by approximately
running applications on NPUs. However, running a large size
neural network on CPU/GPU or even CMOS-based ASIC design
is inefficient in terms of energy, performance and area.
Recently, NVM-based associative memories have been used
for enabling approximation of floating point units in GPU
architecture. The idea of voltage overscaling has been applied
on TCAM to enable approximate search operation [15], [32].
This technique reduces TCAM search energy and relaxes
processor computation by accepting 1-2 bits hamming distance
between input and prestored CAM values. However, for several
applications voltage relaxation on entire TCAM block increases
the computational inaccuracy below the acceptable range. Imani
et al. in [15] applied voltage overscaling on the selected CAM
rows/bits to enable tunable GPU approximation.
In contrast to previous work, we propose RCA, which can be used
as stand-alone computing unit or as a hybrid design to provide
tunable CPU approximation by partially running workloads on
CPU and RCA blocks. RCA not only improves computation
energy, but also significantly accelerates computation by avoiding
redundant computations.

 

Fig. 1. The input data distribution of Black Scholes application running
on CPU x86 core.

3 PROPOSED RCA DESIGN

3.1 Motivation
Approximate computing is one of the techniques to accelerate
computation by trading energy and accuracy. We observed a
large number of data similarities/locality in workloads. Figure 1
shows the data distribution of input operands when running
Black Scholes application on x86 CPU. As graph shows, 15%
of input operands have occurrence probability of more than
85%. This motivates us to design a block which can learn the
computation by storing the high frequency patterns and retrieving
them in runtime. This block should be a memory with the
capability of computation. Although associative memories have
this characteristic, they cannot be used directly as a computing
unit. To enable computation capability, they need to return the
nearest distance row at each search operation.

Resistive CAM accelerator can perform faster and more
energy efficient computations compared to general purpose
CPUs/GPUs. In order to have computation capability, RCA needs
to have the capability of searching for closest distance row.
However, conventional CAMs do not have the ability to search
for the nearest row. They can only determine a row which exactly
matches with the input pattern (if there is any). Implementing a
fully digital CMOS-based design, which can search for nearest
row, is very inefficient in term of power and area because it needs
(i) bit level comparison of the input pattern and store values, (ii)
to count the number of matches in each row, and (iii) finally
finding a row with the minimum distance. To enable the nearest
distance search capability, we design an Invert CAM (InvCAM)
and then exploit analog characteristic of the NVM-based CAM
to efficiently search for nearest data. It should be mentioned that,
similar to a neural network, the RCA returns the best output based
on the input’s similarity to trained values. Therefore the RCA
functionality for non-linear functions is not guaranteed.

3.2 InvCAM Cell
Figure 2 shows the structure of crossbar memristive CAM in
normal and inverse (InvCAM) functionalities. In a conventional
cell, the memristor devices and select lines are set such that the
ML stays charged during the exact matching. In a match, there is
no leakage current between the ML and ground, since the select
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Fig. 2. Conventional and InvCAM cell in match and mismatch operations.

line which stored 0 is connected to high resistance (H). The ML
current also cannot discharge from the cell with the select line
of 1 because of same voltage across the memristor devices (even
though the device is in low resistance mode). In the case of a
mismatch in conventional cells, the select lines bias with inverse
values, where the select line of a cell with low resistance (L)
connects to the 0 and the high resistance to 1. Therefore, the ML
discharges using the L resistance. We change functionality of
CAM such that the ML counts the number of discharging cells
in each row. InvCAM stores the opposite values on memristor
devices. In case of a match, a cell with low resistance discharges
the ML, while in case of mismatch the ML stays charged (as
shown in Figure 2).

In InvCAM rows (consisting of several InvCAM cells), each
matched cell adds a new discharging current component to the
ML. So, during the search operation in InvCAM, all rows start
discharging, except a row where all bits are mismatched with
input operands. However, all InvCAM rows do not discharge at
the same speed. In other word, in rows with more bit matches,
the cells will discharge ML faster. We exploit this analog
characteristic of memristor devices to design a CAM which
has the capability of searching for the nearest distance row.
For robustly detecting the closet row, InvCAM needs to have a
limited number of cells in the bitline, because a ML discharging
current/time does not change linearly with the number of matches
in a line. For example, in a 16-bit InCAM, rows with 15 or 16
matches have very similar discharging characteristics. In other
words, to distinguish a row with the fastest discharging time,
we require an ultra-fast sense circuitry (˜ps delay). To address
this issue, we limit the bitline size in each CAM to <8-bits and
use memristive devices with large ON resistances for search
operations. Short bitlines of InvCAMs help us to identify the
difference between the number of mismatches with reasonable
detector circuitry delay. Table 3.2 shows the ML discharging
current for a 4-bit InvCAM with different numbers of matching
bits and different InvCAM sizes. When all four cells match the
input operand, the ML has the maximum discharging current,
which means it has fastest discharging speed. Having a fewer
number of matches results in slower ML discharging current. In

TABLE 1
ML hit/sampling time in 4-bit InvCAM having different number of
mismatches/Hamming distances (HD) and different CAM sizes

.

InvCAM
Mode

Number
of Matches

128
rows

256
rows

512
rows

1024
rows

2048
rows

Exact 4 0.7ns 0.9ns 1.5ns 2.1ns 2.8ns
1-HD 3 0.9ns 1.1ns 1.8ns 2.4ns 3.4ns
2-HD 2 1.1ns 1.4ns 2.2ns 2.8ns 4.1ns
3-HD 1 1.4ns 1.7ns 2.6ns 3.3ns 4.6ns
4-HD 0 1.8ns 2.3ns 3.2ns 3.9ns 5.2ns

our design, rows with different number of matches have obvious
discharging time distances. We exploit this characteristic to design
a CAM with the capability of finding nearest hamming distance.
This functionality is not easily implementable on conventional
CAMs where ML stay charged in the case of a match. However,
here we could provide this functionality by designing a circuity
which can detect a row with the fastest discharging current.

3.3 InvCAM Architecture
To find an appropriate nearest neighbor row, we consider ham-
ming distance between input data and stored values on a CAM.
However, hamming distance metric is an aggressive metric for
finding the nearest row, since hamming distance does not consider
the impact of each bit indices in calculating the distance. In real
computation, the most significant bits (MSBs) usually have higher
impact on computation when compared to the least significant bits
(LSBs). We exploit this feature to design a RCA with lower power
consumption and better accuracy. Figure 3 shows the overview
of proposed RCA. In our design, we split the R-row*N-bit CAM
block to m small size stages (i.e. B1,B2,Bm) where each stage
contains N/m-bits. In RCA, partial blocks search for input data in
serial stages. The search operation starts from the block with the
most significant bit. Each block has the capability of configuring
as a CAM or memory block. In memory configuration, it uses
sense amplifiers at the tail of vertical bitline to read the memory
rows. In CAM mode, each stage can find the nearest hamming
distance row(s) using the sense circuitry in the horizontal MLs.
The sense amplifier finds the row with the fastest ML discharging
current. The nearest row corresponds to data with the maximum
matching bits with the input operand. After the sense amplifier,
we have analog detector circuitry which can sense the number of
active rows in each CAM. As soon as the detector block senses
an active row, it stops the search on the current CAM stage and
selectively activates the rows of the next stage CAM. During the
next cycle, a similar search on the second stage starts, but only
in the selected rows. This search operation continues until our
design reaches the last stage with a row with nearest distance to
input operand.
For applications with multiple input operands, the first RCA stage
stores the first m-bits corresponding to all input operands and then
uniformly searches for the stored data with the closest distance to
the input key. All existing bits in the first RCA stage have similar
weight in our nearest distance search. Based on the rows activated
by this first stage, the search on the next RCA stages continues
selectively.

Figure 4 shows peripheral circuitry which supports the nearest
distance search. For each CAM stage, we use three layers of
peripheral circuitry to support nearest distance search. First, the
sense amplifier reads the value of match lines (MLs) to find a row
which matches with the input data. Based on our cell design, a
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Fig. 3. The overview of RCA structure using InvCAM blocks.
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RCA block.

row with more matched cells will start discharging the ML first.
The matching results in a hit on the output of the sense amplifier.
A detector circuitry, shown in Figure 4, checks for hits in CAM
rows. In the case of any active rows, (i) it activates the access
transistors to selectively activate the rows of the next CAM stage,
and (ii) sends signals to the sense amplifier of the current CAM
stage to stop the search operation from hitting additional rows. As
our sense amplifier circuitry does not use a clock in its structure,
so the delay of the buffer stage has an important rule on the
correct functionality of our design. Because the detector circuitry
is not an ideal circuit, and has a long delay, it may not be able
to immediately sample the active rows. This delay can result in
several matched rows and missing the rows which do not have
minimum distance.
To better clarify the functionality of proposed multistage RCA,
Figure 5 shows an example of search operation on a 4 stage, 8
row RCA. The search operation starts from the first stage, which
is the most significant block, by searching for nearest Hamming
distance row. The hit rows on the first stage selectively activate
rows of the second RCA stage. The second TCAM searches for
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Fig. 5. Example to show RCA search functionality in 4 stage search.

the row nearest to 0010 on the three activated rows. The rows of
the next TCAM stage activate serially, such that the design has a
single active row in the final stage.

To guarantee the functionality of the proposed design, we add
a buffer stage which has two main rules: (i) The block needs to
delay the sense amplifier hits while the detector senses any active
rows. In order to have stable detection, the delay of the buffer
stage should be higher than the delay of the detector circuitry.
To set the size of the buffer and detector circuitry, we consider
10% process variation on the transistors size and threshold
voltage [33]. We designed our circuity for the worst-case scenario
where there is only a single hit row on the CAM rows (maximum
detector latency) and when CAM has a row with all matched cells
and a row with a single mismatch. As we explained before, the
ML discharging current starts saturating with an increase of the
matched cells in each row. A row with all matched cells and a row
with a single mismatch have fastest ML discharging speed. (ii)
The second rule of buffer is to sample the activated rows (output
of buffer stage) in case of a hit in detector circuitry.
The number of TCAM rows in the InvCAM structure depends
on the precision of the detector circuitry. The detector circuitry
should be able to identify a single activated row in CAM
architecture. TCAMs with many rows suffer from large amounts
of leakage currents through the sense circuitry output, resulting
in a wrongly identified matching row by the detector. To have
enough ratio between the leakage and matching currents, we
need to have IMatching >> N ∗ ILeakage, where the matching and
leakage currents are the ON and OFF currents of sense amplifier
output respectively. We use a diode connected transistor beside
the detector resistance to control the OFF current (ILeakage) of
different rows.
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3.4 Tunable RCA Approximation

RCA, as a stand-alone processing unit, can provide enough
accuracy for several applications. As we explained, there are
large amounts of redundant input operands in computation. For
example, in images, a large portion of background pixels are
usually similar. Processing these high frequency patterns provides
enough computation accuracy even using small sized and fast
RCA. However, uncommon/infrequent part of the workloads
(with low data locality) cannot run accurately using a small RCA.
To provide high computation accuracy for general workloads,
we need to store a large set of data on the RCA, which results
in high energy and performance overhead. To address this issue,
we use both the existing processor and the RCA partially for
each workload’s computation. For the majority of data, which
has close distance to stored values, our design uses RCA to
perform computation fast and approximately, while the other part
of input data with large distance to the stored values, can run on
a precise core. Our goal is to have a hybrid computation which
can set the level of accuracy by partially running the data on an
exact processor and an RCA. When the input data is far from the
stored values on RCA, the data is sent to CPU cores to process.
Meanwhile, the RCA stops computation until the CPU cores
process the assigned data. After getting the final result from the
CPU, the RCA starts processing the next input.
Therefore, the RCA should have the ability of detecting the
distance of input data to store values. As shown in Figure 6,
the first CAM stage uses different sense circuitry, compared to
the other stages, which can detect the ML discharging voltage
corresponding to h-bit matching. Based on the h value, we set
the sampling pulse of the sense circuitry (THR) to find the rows
which have less than h-bit distance with pre-stored value. A
detector circuitry checks the sense amplifier output of all rows
and activates the row driver of next CAM stage accordingly.
However, in case of missing data in detector circuitry, the EnL
signal sends a signal to start running this data on exact processor
instead. Based on desired accuracy, changing the clock time of the
sense circuitry gives us different THR values. Using a late THR
period, corresponds to deep approximation, while fast sampling
means precise computation on the existing processor.
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Fig. 7. Early search termination technique using analog comparator
block

3.5 Early search termination
Our evaluation shows that in several cases we do not need to
go through all CAM stages to find a nearest row. Instead, we
can stop the search operation when the number of active rows
in a block becomes one. Going further to InvCAM stages is
unnecessary when we already found the row with the minimum
distance, thus resulting in improved energy efficiency for the
proposed design. We also observed that this condition occurs
frequently. Even in a CAM with many rows, searching a few
stages of CAMs is enough to find the closest row. Therefore, our
design exploits Early Search Termination (EST) detector circuitry
(shown in Figure 7) which can identify a case that single CAM
row is activated. EST is designed using an analog comparator
circuitry [34], which samples the same current that the detector is
sampling and can identify the case that a single row of a CAM is
matched. Obviously, using ETS in more stages can accelerate the
search operation, however, it increases the energy and area of the
CAM. Therefore, for all tested applications in this paper we use
EST circuitry in one of the middle stages to check the number of
row activations once and then stop further search operations. The
best stage can be found based on the RCA configuration using
profiling results from training mode.

In summary, our design considers the impact of each bit
indices on the computation accuracy by searching for a closest
input data starting from most significant blocks. In addition, serial
search operation reduces the number of active rows in TCAM
block, since the rows of each can be activated by the hit of the
previous stage. This reduces the number of active rows stage
by stage, until we achieve a single row at the last stage. The
energy savings achieved by selective row activation depends on
the InvCAM block size. InvCAM with smaller blocks reduces the
overall number of active rows through CAM stages. However,
this requires a larger number of sense amplifier and detector
circuitries. The tradeoff between the size and energy consumption
also impacts the computation performance.

4 RCA FOR CPU APPROXIMATION

RCA can have application in different processing platforms such
as CPU, GPU, DSPs, or can be used as a stand-alone accelerator.
In this work we consider the application of RCA for tunable CPU
approximation. Figure 8 shows the overview of the CPU using
RCA blocks beside each core. The proposed enhanced CPU has
two types of execution units: i) fast and energy efficient RCA
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for approximate computing, and ii) conventional CMOS-based
cores to process precise computations. Based on the running
application and desired accuracy, the compiler can decide to
run the application on RCAs or CPU cores or partially on both.
Figure 8b shows how RCA using crossbar memories can be
implemented at the top of the CMOS logics and configured as
memory or CAM structure.

RCA is a configurable associative memory with the capability
of learning. In training/profiling mode, RCA learns to perform
specific memory-based computation and, as it trained, it
can perform approximate computation continually. The RCA
computation accuracy depends on training, nearest distance
metric, and RCA blocks size. In our design based on training,
we set the RCA size in order to provide less than 10% average
relative error as verified by [28]. At runtime, instead of running
applications on CPU, the RCA can perform the computation very
fast, energy efficiently and approximately. There are two key
advantages of the resistive hybrid CPU. First, RCA can process
the search operation much faster than CPU computation. Second,
energy and performance advantages are achieved by trading with
accuracy. Accuracy is tuned by using a sufficient number of rows
per TCAM block. Larger TCAM also has higher delay and energy
consumption. RCA as a stand-alone processing unit can provide
high energy savings for many CPU applications. However, it
suffers from a lack of accuracy tuning capability at runtime.

In order to generalize our design, we need to have an
architecture which can tune CPU approximation with fine-grained
granularity. This motivates us to use both CPU and RCA partially
for each workload computation. As we explained in section
III.D, for the majority of data which has close distance to stored
values, our design uses RCA to perform computation fast and
approximately, while the other part of input data with large
distance to the stored values, can run on a CPU core. To enable
this functionality, the input data first searches the RCA and in the
case of a hit within a threshold distance (THR) of RCA rows, it
continues running that on RCA. Otherwise, this input data is sent
to the CPU to process. This technique has several advantages:
i) we do not need to have large RCA block to provide enough
computation accuracy, because the RCA stores most frequency
data with large data locality. ii) For each application we can tune
computation accuracy by dynamically changing the THR value.

TABLE 2
CPU and RCA detailed parameters and tested benchmarks.

.CPU Core RCA
CPU Architecture x86 64-bit Number of RCA 8

L1 Cache 32k I/32KB D RCA block size 1-6 bits
L2 Cache 2MB Output Register 8×32-bit

Benchmarks

Name
InvCAM

input/output Input Dataset
Black Scholes 6 inputs, 1 output 200000 stock variables

FFT 1 input, 2 outputs 250000 random floating point values
Sobel 9 inputs 1 output 512*512-pixel color images

inversek2j 2 inputs 2 outputs 200000 random 2D coordinates

5 EXPERIMENTAL RESULTS

5.1 Experimental Setup

We evaluate the impact of proposed RCA on x86 64-bit CPU.
The detailed parameters of the processor are shown in Table 2.
We use Multi2sim, a cycle accurate CPU-GPU simulator for
architectural simulation [35]. We use McPAT [36] to estimate the
energy consumption of CPU. Four general applications, listed in
Table 2, are used to show the efficiency of the proposed design.
Each benchmark consists of small size building blocks with a few
number of input/outputs. The circuit level simulation of TCAM
design performs using HSPICE simulator on 45nm technology.
We use the Vdd=0.85V for RCA block without accepting any
computation error. To guarantee the impact of variation on circuit
level design, we consider 10% process variation on the size and
threshold voltage of transistors by running 10,000 Monte Carlo
simulations.

5.2 RCA Framework

Our framework executes in two modes: training mode (design
time) and execution (runtime). In training mode, we profile 10%
of the input data for each application. Table 2 shows the dataset
corresponding to each application. For non-image processing
applications, the inputs use random stream data. During profiling,
the system counts and ranks all operations based on the frequency
of their occurrence for each application. Then, the host code
chooses the top frequency patterns for each application to fill
RCA. To evaluate the computation accuracy in approximate mode,
our framework compares the output file of each application with
the golden output for exact matching. First, approximation starts
from the maximum level at each size, then it decreases until it can
accept accuracy corresponding to 10% of average relative error.

5.3 RCA CAM and block size

The two major parameters that impact computation accuracy
are number of CAM rows and block size. Figure 9 shows the
energy improvement, speedup, and computation accuracy of a
CPU using RCA with different CAM sizes and a 1-bit block
size. Large RCA improves computation accuracy by storing more
high frequency patterns in the CAM block. However, CAM with
many rows requires a large input buffer to distribute input data
among all rows simultaneously. This buffer is a dominant term of
CAM search energy in large sizes. In addition, as Figure 9 shows,
the computation speedup decreases in large CAM which is the
result of the slow search delay of RCA at these large sizes. The
result shows that using an RCA with 1024-rows, each application
can achieve 6.5x energy improvement and 3.9x speedup, while
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TABLE 3

RCA computation accuracy in different block sizes

.
Applications BlackScholes FFT Sobel Inversek2j

Number of rows 1024-row 256-row 512-row 1024-row
1-bit 3.4% 6.4% 9.3% 7.3%
2-bit 3.8% 6.6% 9.7% 8.3%
3-bit 4.2% 7.4% 10.0% 9.3%
4-bit 5.6% 9.2% 11.3% 10.4%
6-bit 7.2% 10.1% 12.5% 11.8%

TABLE 4
The best RCA stage to implement ETS in each configuration

.
1-bit 2-bit 3-bit 4-bit 6-bit

Number of stages 32 16 11 8 6
ETS Stage 10 7 5 4 4

ensuring 10% quality of loss.

Block size is another important aspect to consider CAMs when
ensuring computation accuracy. To accelerate computation, RCA
prefers to use larger block sizes. Hamming distance metric does
not consider the impact of each bit indices on the computation,
so it is not an adequate metric to find the best and closet CAM
row. In CAM with small blocks the hamming distance has less
impact on computation accuracy compared to CAM with larger
blocks. Table 5.3 shows the applications computation accuracy
using different block sizes. CAMs with large block size accelerate
RCA computation at the expense of lower computation accuracy.
Because each block searches for nearest row based on hamming
distance metric and the large CAM increases the probability of
inaccurate matching.
In this paper, we used ETS on different RCA stage depending on
RCA configuration. To find this RCA stage, in profiling we find
the best RCA stage using different RCA block size which results
in maximum energy saving. Table 4 shows the best number of
RCA stage has been chosen to provide maximum average energy
saving over all tested applications.

Figure 10 shows the energy improvement and speedup of
different applications using RCA in different block sizes. Small
blocks degrade the computation performance by increasing the
number of serial stages. On the other hand, using short bitlines
in RCA stages allows us to find more accuracy output when
searching for nearest distance row. As a result, RCA can process
most of input data. However, using very short block size reduces
computation tune-ability by decreasing the number of bits in
first RCA stage. From other side, RCA with large block size can
better assign inputs between RCA and CPU, but requires higher
switching activity and provides lower computation accuracy (due
to Hamming distance metric). Our evaluation shows that using
a middle size block (3-bit) is the best configuration to achieve
maximum CPU+RCA energy saving. The 3-bit block CAM is able
to provide 4.8× energy improvement and 8.3× speedup compare
to CPU architecture, while providing acceptable quality of service.

5.4 Tunable CPU Approximation
Although RCA as stand-alone computing unit could accelerate
the CPU computation, there is no way to tune the computation
accuracy at runtime, because the CAM and block sizes are fixed.

In order to have tunable CPU approximation, we use a design
which can partially run workloads on CPU and RCA based on
the distance of input data from the stored value in CAM. As we
explained in Section IV, the threshold value (THR) determines
the level of accuracy that the RCA will accept in the first block.
In the case of an input value with higher distance than h-bit
(can be tuned at runtime), our design runs the program on CPU.
Otherwise the RCA will handle all computations. Table 5 shows
the computation accuracy and percentage of time the CPU needs
to run the computation in different application types. For each
application, we use the CAM size obtained in section IV.D for our
evaluation. Then, we adjust block size and if there is enough error
in the first block it is counted as a miss and calculated on CPU.
As we expected, using a larger block size results in more misses,
which are run on CPU, increasing the computation accuracy.
The improved accuracy comes at the expense of lower energy
improvement and speedup.

Figure 11 shows the best energy improvement and speedup
that hybrid CPU can achieve for different block sizes, when it
satisfies the roughly 10% quality of service, while accepting
deterministic error in the first block. For each application, the
error is controlled by THR (h-bit) value resulting in the minimum
energy-delay point for a given block and CAM size using a hybrid
approach. Increasing the block size accelerates RCA computation
by reducing the number of sequential search cycles. In addition,
it allows us to use smaller CAMs for search operation resulting
in faster searches. However, the computation speedup saturates
in blocks larger than 4-bit, because our design requires a larger
portion of the data to run on CPU cores rather than RCA. Using
middle block sizes (˜3 bits) can provide maximum computation
speedup in hybrid design. Inversek2j and FFT benefit greatly
from the tunable system, as the error decreases sharply while still
running a majority of the application on CAM.
Block size also affects energy reduction by trading between the
portion of running workload on CPU and RCA.
RCA is usually faster than CPU, but to provide enough accuracy,
we need to increase the CAM size which degrades the energy
and speedup advantages of RCA. Our experimental evaluation
shows that using hybrid CPU can achieve 12.6× energy saving
and 6.6x computation acceleration while ensuring computation
accuracy. Table 6 compares the energy reduction and speedup of
RCA design with the result of state-of-the-art NPU [28] which
uses neural processing units for CPU approximation. The result
shows that the fast and energy efficient RCA can achieve 3.2x
higher energy reduction and 1.7× speedup compare to NPU in
average while they ensure the required accuracy.
Figure 12 shows the visual results of Sobel application using
the original computation (i.e., the golden image case) and
approximate computation, resulting in no perceivable change. Our
design can provide enough accuracy by selecting which portion
of application runs on CPU or RCA.

6 CONCLUSION

In this paper we propose Resistive CAM Accelerator (RCA),
which learns to accelerate computation approximately. RCA ex-
ploits the data locality by storing high frequency patterns inside
content addressable memory. In computation mode, RCA finds
a row which has the closest distance to input patterns while
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Fig. 9. Energy improvement and speedup of approximate CPU.

TABLE 5
Hybrid ratio of approximate CPU for different block sizes

.

Block size Blackscholes FFT Sobel Inversek2j

QoL
RCA

Activation RCA rows QoL
RCA

Activation RCA rows QoL
RCA

Activation RCA rows QoL
RCA

Activation RCA rows
1-bit 8.9% 100% 512 9.8% 97% 128 9.8% 97% 256 9.9% 100% 512
2-bit 9.8% 69% 256 9.4% 95% 128 9.6% 95% 256 9.4% 95% 512
3-bit 8.8% 67% 256 9.6% 95% 128 7.0% 80% 128 9.6% 92% 512
4-bit 2.5% 48% 256 9.4% 91% 128 4.8% 73% 128 9.6% 65% 256
6-bit 1.8% 43% 256 9.3% 89% 128 2.3% 64% 128 2.9% 25% 256
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Fig. 10. Energy improvement speedup of approximate CPU compare to
traditional CPU

TABLE 6
Energy and speedup comparison of RCA and NPU for CPU

approximation

.
Applications
Improvement Black Scholes FFT Sobel Inversek2j Geomean

RCA Energy 5.2× 13.5× 13.1× 27.7× 12.6×
Performance 4.2× 4.4× 7.9× 13.2× 6.6×

NPU [28] Energy 1.7× 3.1× 2.2× 21.1× 3.9×
Performance 2.4× 3.6× 2.2× 11.1× 3.8×

considering the impact of each bit index on the computation
accuracy. We show the application of RCA on CPU approximation
where our framework partially runs workloads on precise CPU
cores and RCA to achieve maximum energy-delay point. We
evaluate the architecture using HSPICE and multi2sim simulator
which shows that proposed RCA can accelerate CPU computation
by 12.6× and improve the energy efficiency by 6.6x compare to
CPU architecture while providing acceptable 10% quality loss.
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