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Variation in performance and power across manufactured parts and their operating

conditions is an accepted reality in modern microelectronic manufacturing processes

with geometries in nanometer scales. This dissertation covers challenges and opportu-

nities in identifying variations, their effects and methods to combat these variations for

improved microelectronic devices. We focus on timing errors caused by various sources

of variations at different levels. We devise methods to mitigate such errors by jointly

exposing hardware variations to the software and by exploiting parallel processing.

We investigate methods to predict and prevent, detect and correct, and finally
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conditions under which errors can be accepted. For each of these methods, our work

spans defining and measuring the notion of error tolerance at various levels, from ISA to

procedures to parallel programs. These measures essentially capture the likelihood of

errors and associated cost of error correction at different levels. The result is a design

platform that enables us to further combine these methods for a new joint method of

detecting and correcting with accepting errors across the hardware/software interface via

memoization (i.e., spatial or temporal reuse of computation). We accordingly devise an

arsenal of software techniques and microarchitecture optimizations for improving cost

and scale of these methods in massively parallel computing units, such as GP-GPUs and

clustered many-core accelerators. We find that parallel architectures and parallelism in

general provide the best means to combat and exploit variability to design resilient and

efficient systems. Using such programmable parallel accelerator architectures, we show

how system designers can coordinate propagation of error information and its effects

along with new techniques for memoization and memristive associative memory. This

discussion naturally leads to use of these techniques into emerging area of “approximate

computing”, and how these can be used in building resilient and efficient computing

systems.
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Chapter 1

Introduction

Variation in performance and power consumption is a common phenomenon

in semiconductor manufacturing. What makes it particularly challenging, however, is

its effect on manufacturing of devices as these scale down to near atomic scale feature

dimensions. Any variation in dimensions, doping, etc. has a large effect on the resulting

device and circuit behavior [40, 37]. To address this variation, designers resort to design

guardbands. These guardbands are increasing rapidly, accounting for nearly 40% of the

target performance, e.g., and eventually obliterating any gains due to device scaling [8].

As a consequence, reduction of design guardbands in design has become an important

research challenge with recent results that recover a part of these guardbands through

circuit-level changes [80]. We begin by examining sources of variability in integrated

circuits.

1.1 Sources of Variability

Broadly speaking, there are three physical types of variations: i) Spatial vari-

ability: Process variations cause static variations in critical dimension, channel length

(L) and threshold voltage (Vth) of devices due to dopant fluctuations and sub-wavelength

lithography. These variations manifest themselves as die-to-die (D2D) and within-die

(WID) variations [40]. D2D variations affect all devices on a die equally, whereas WID

1
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variations induce different characteristics for each device. ii) Temporal variability:

Aging and wearout mechanisms cause slow temporal degradation in devices reliability.

Device aging mechanisms are induced by negative bias temperature instability (NBTI),

positive bias temperature instability, electromigration, time dependent dielectric break-

down, gate oxide integrity, thermal cycling, and hot carrier injection [95]. iii) Dynamic

variability: Environmental variations in ambient condition are caused by fluctuations

in operating temperature and supply voltage droops. Voltage droops result from abrupt

changes in the switching activity, inducing large current transients in the power delivery

system (dI/dt voltage drops), and contain high-frequency and low-frequency components

which occur locally as well as globally across the die [39]. On the other hand, temperature

variations occur at a relatively slow time scale with local hot spots on the die, depending

on environmental, and workload conditions [102]. The origins of variability include

time-independent DC component (process variations), slow-varying low-frequency com-

ponents (aging and temperature), and fast-changing high-frequency components (voltage

droops). The variations are expected to be worse with technology scaling [8].

Spatial parameter variations in the device geometries in conjunction with tem-

poral degradation and undesirable fluctuations in the operating condition may prevent

circuit from meeting the performance and power constraints. The most immediate mani-

festations of variability are in path delay (therefore, performance) and power variations.

Sequential elements are connected at the end of the paths to hold the circuit state. Path

delay variations cause violation of timing specification resulting in circuit-level timing

errors that could lead to an invalid state being stored in the sequential element. This

could result in a malfunction of the digital system. Synchronous circuit designers com-

monly handle the timing errors by adding safety timing margins to the voltage and/or

the clock frequency as guardband. This practice leads to overly conservative designs.

Currently, the guardbands tend to accumulate as design closure is performed using a
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multi-corner analysis, with an increasing number of corners [28]. As a result, the impact

of guardbanding on the key design metrics (power, performance, and area) has been

steadily increasing with technology scaling [8], leading to loss of operational efficiency

and increased costs due to overdesign. Power variability is also challenging, for instance

13× variation in the sleep power across ten instances of ARM Cortex M3 core was

observed over a temperature range of 22–60◦C [144]. This thesis focuses instead on

the path delay variation and its manifestation as timing errors. We identify the timing

error as the most threatening manifestation of variability and investigate various means

to address it. We begin with a quantitative feel of the extent of variation currently seen in

manufactured devices. Section 1.2 covers the delay variation in details.

1.2 Delay Variation

For an Intel 80-core processor in 65nm, Figure 1.1 shows the WID core-to-core

maximum frequency (Fmax) variations for each of the 80 cores. The measurements

have been done at a fixed operating temperature of 50◦C with three operating voltages:

1.2V, 0.9V, and 0.8V. At the nominal voltage of 1.2V, the fastest core displays the

Fmax of 7.3GHz while in the same die the slowest core can work with the Fmax of

5.7GHz resulting in 28% WID clock frequency variation. Figure 1.2 illustrates the delay

distribution of the 80 cores for the same operating conditions [58]. The single die with 80

cores exhibits an increasing value of σ /µ for lower voltages: 5.93%, 6.37%, and 8.64%

for 1.2V, 0.9V, and 0.8V, respectively. Lowering the voltage from the nominal 1.2V to

0.8V, increases the critical paths variability (σ /µ) by 45% [58].
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Figure 1.1. WID core-to-core maximum clock frequency variation for 80 cores on a
single chip [58].

Figure 1.2. Critical path delay distribution and its coefficient of variation (σ /µ) for 80
cores on a single chip [58].
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Voltage overscaling (VOS) [79] and working at near-threshold (NT) voltage [148]

have become popular approaches for building energy-efficient digital circuits. Operating

at low voltages (VDD ≤ 0.5V) unfortunately exacerbates the effects of delay variations

[60, 130, 81, 110, 79]. This indicates the importance of variability awareness at lower

operating voltages where the delay uncertainty is further increased. The WID delay

measurement for a 45nm SIMD processor shows that reducing VDD from 1.0V to 0.53V

increases the delay variation by 6× [110]. Figure 1.3 shows the normalized gate delay

variation due to process variations as a function of VDD [60]. Working at near threshold

voltage of 400mV increases the performance variability by 5× compared to 1.3× at

the nominal operating voltage. It is then clear that for logic working at near-threshold

voltages, the statistical WID variation in the voltage threshold (Vth) plays an important

role in determining the path delay. Vth variations result mainly from random fluctuations

in the number of dopant atoms in the transistor channels [130]. Considering dynamic

sources of variations, including temperature fluctuations, and voltage droops results in a

total performance variability of 20× [60].

5X delay 

variation

NT

Figure 1.3. Impact of voltage scaling on gate delay variation due to process variation [60].
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Given such a growing increase in performance variability, design methods are

needed to make a design resilient to timing errors, especially for circuits operating at

low voltages where the effect of delay uncertainty is pronounced. The effects of the

static process variations can sometimes be mitigated through binning or by post-silicon

tuning during test time, while the dynamic variations manifest themselves on the field

as a function of time and environment, and therefore cannot be compensated by one-

time pre-silicon and post-silicon tuning techniques. Consequently, accurate design time

analysis coupled with efficient runtime techniques are required to overcome the variability

challenges.

1.3 Dissertation Organization and Contributions

This dissertation focuses on timing errors caused by various sources of variations

at different levels. We devise methods to mitigate such errors by jointly exposing hard-

ware variations to the software and by exploiting parallel processing. We investigate

methods to predict and prevent, detect and correct, and finally conditions under which

errors can be accepted. We classify our proposed methods into a conceptual Y-chart

shown in Figure 1.4.



7

Circuit

Architecture

Software

Detecting and Correcting
with Accepting Errors

Predicting and Preventing Errors Detecting and Correcting Errors

Accepting Errors

Spatial & Temporal Memoization

Hierarchical Guardbanding

Kernel-Level Tolerance

Procedure-Level Tolerance

Sequence-Level Tolerance

Instruction-Level Tolerance

Work-Unit Tolerance

Scalable Task-Level Tolerance

Task-Level Tolerance

Exact Memristive Associative Memory

Accuracy-Configurable OpenMP

Approximate Memristive Associative Memory

Figure 1.4. Taxonomy of timing error tolerance in this dissertation: abstractions versus
approaches.

The Y-chart in Figure 1.4 groups these methods to address variability into three

classes based on when and how the timing errors should be manipulated. These three

classes of the Y-chart are on radial axes. The first axis describes mainly design time

approaches for predicting and preventing timing errors. The second axis focuses on

runtime approaches for detecting and correcting timing errors, while the third axis accepts

timing errors if possible. Further, we combine these two axes to devise a new joint method

of detecting and correcting with accepting errors. Each class is divided into levels of

abstraction, using concentric rings. Every abstraction level determines at which level of

the computing stack the approaches can be applied: circuit, architecture, and software.

At the top level outer ring, we consider approaches applicable to software level; at

the lower levels inner rings, we refine approaches into finer architecture, and circuit

implementations.
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Thus, Figure 1.4 puts our work in perspective, with the four axes defining the

four separate methodological approaches. For each of these methods, our work spanned

defining and measuring the notion of error tolerance, from ISA to procedures to parallel

programs. These measures essentially capture the likelihood of errors and associated cost

of error correction at different levels.

Next natural step is to see the possibility and consequences of relaxing the notion

of accuracy and precision in computation. We focus on parallel programming and runtime

environment to support controlled “approximate computing”. That is, ensuring safety of

error mitigation methods through a set of rules verified by a combination of design-time

and runtime constraints. The goal is to deliver functionality within specified quality

guarantees. The result is a new joint method of detecting and correcting with accepting

errors across the hardware/software interface using memoization techniques spatially or

across time (i.e., spatial or temporal reuse of computation). We accordingly devise an

arsenal of software techniques and microarchitecture optimizations for improving cost

and scale of these methods in massively parallel computing units, such as GP-GPUs and

clustered many-core accelerators. We find that parallel architectures and parallelism in

general provide the best means to combat and exploit variability to design resilient and

efficient systems. Using such programmable parallel accelerator architectures, we show

how system designers can coordinate propagation of error information and its effects

along with new techniques for memoization and memristive associative memory. This

discussion naturally leads to use of these techniques into emerging area of approximate

computing, and how these can be used in building resilient and efficient computing

systems.

Table 1.1 illustrates the highlights of the proposed methods in this dissertation

organized in different chapters. In the following, we will describe them in details.
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Table 1.1. Chapter organization with the highlights of the proposed methods:
1- Predicting and Preventing Errors (P&P)
2- Detecting and Correcting Errors (D&C)
3- Accepting Errors (AE)
4- Detecting and Correcting with Accepting Errors (D&C+AE).
Notes: Process, Voltage, Temperature, Aging (PVTA); Guardband (GB); Voltage Overscaling (VOS).
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1.3.1 Predicting and Preventing Errors

We explored approaches to reduce the excessive guardband and enable better

than worst-case design while avoiding the timing errors [111, 114, 112, 113, 115].

These methods typically use characterization metrics for guardband reduction and error

prevention. We have sought ways to capture the effects of circuit level variability at

ISA and higher levels of software. We characterized instructions for the effect of circuit

timing errors on tolerance of individual (Chapter 2), or streams (Chapter 3) of instructions

when executing on a specific core. Raising further the level of abstraction, procedure-

level tolerance (Chapter 4) exposes the effect of dynamic variations for use in software

preventive actions among multiple cores in a cluster. This is even more challenging

in GP-GPUs and other many-core accelerators where the effect of these variations is

not uniformly spread across over thousands processing elements: some are affected

more (hence less reliable) than others. In this regard, we devised an adaptive compiler

in Chapter 5 scheme that equalizes the expected lifetime of each processing element

by regenerating aging-aware healthy kernels that respond to the specific health state

of GP-GPUs. This aging-aware compiler periodically exposes the inherent idleness in

VLIW slots and guides its distribution that does matter for the aging. This reallocation

mitigates the impacts on lifetime uncertainty and unbalancing among the processing

elements. Further, using a model based on supervised learning and PVTA monitoring

circuits, we propose hierarchically focused guardbanding, in Chapter 7, as a method to

adaptively avoid PVTA-induced timing errors. We demonstrate the effectiveness of HFG

on GPU architecture at two granularities of observation and adaptation: (i) fine-grained

instruction-level; and (ii) coarse-grained kernel-level.
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1.3.2 Detecting and Correcting Errors

The second group of approaches further reduces the guardband by operating

processing elements at the edge of failure [119, 124, 120, 122]. This guardband reduc-

tion causes timing errors as opposed to the earlier preventive methods. Typically, these

timing errors are corrected by error detection and recovery mechanisms at the circuit

level. In contrast, we proposed software methods for cost-effective countermeasures

against hardware timing errors in Chapter 6. This is implemented in a variability-aware

OpenMP (VOMP) [119, 124] programming environment, suitable for tightly-coupled

shared memory processor clusters. VOMP is available as an extension to the OpenMP

v3.0 programming model that covers various parallel constructs. Using the notion of

work-unit tolerance as descriptive metadata, we capture timing errors caused by circuit-

level variability as high-level software knowledge. As such, characterized metadata

provide a useful abstraction of hardware variability to efficiently allocate a given work-

unit to a suitable core for execution. VOMP enables hardware/software collaboration with

online variability monitors in hardware and runtime scheduling in software providing

17% faster execution and 27% lower energy for embedded benchmarks parallelized with

task directive. We further enhance proposed task scheduling strategies for simultane-

ous management of variability and workload by exploiting centralized and distributed

approaches to workload distribution [120].

We also devised circuit techniques in Chapter 8 as associative memristive memory

modules to reduce the cost of error recovery in GP-GPUs. These modules are coupled

with the processing elements, and recall an error-free result hence avoiding the recovery

in the event of timing errors at extremely low-cost. This techniques enables memory-

based computing to increase computational reuse using memristive nanodevices through

monolithic 3D integration with CMOS.
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1.3.3 Accepting Errors

This dissertation has also explored the possibility and consequences of accepting

timing errors [125, 121]. In other words, we seek ways for continued operation of a

computer system even in the presence of errors. We have proposed programming and

runtime environment to support controlled approximate computing in Chapter 9. It

provides OpenMP extensions as custom directives for floating-point computations to

specify parts of a program that can be executed “approximately”. Using the notions of

approximate and exact computing, we have built a compiler and architecture environment

to use approximate computations in a user- or algorithmically-controlled fashion. This

is achieved via design-time profiling, synthesis, and optimization in conjunction with

runtime characterization techniques. This approach eliminates the cost of error correction

for specific annotated regions of code if and only if the propagated error significance and

error rate meet application-specific constraints on quality of output. At design-time, these

code regions are profiled to identify acceptable error significance and error rate. This

application-specific information drives optimizations for approximate hardware synthesis

of floating-point units. At runtime, as different sequences of OpenMP directives are

dynamically encountered during program execution, the scheduler promotes the floating-

point unit to exact mode, or demotes them to approximate mode depending upon the

code region requirements.

As a follow up to our earlier use of memristive associative memory modules to

reduce the cost of error recovery and speed up computations, we also seek its use in

approximate computing in Chapter 10. These memristive modules provide an average

energy saving of 32% by operating at low-voltages and approximately recalling the

frequent computations, hence avoiding re-executions. The modules accept a Hamming

distance range of 0–2 during approximate matches that leads to a controllable approximate



14

computing suitable for GPU applications.

1.3.4 Detecting and Correcting with Accepting Errors

We further combined the approaches in detecting and correcting errors with the

approaches in accepting errors to devise a new class of hybrid approaches [116, 118, 117].

We focused on memoization-based optimization in standard CMOS technology. We

proposed spatial and temporal memoization-based optimizations to improve the cost and

speed of error recovery in Chapter 11. Memoization is a form of computational reuse and

refers to methods that normally use pre-computed results in place of actual computation

at runtime. Spatial memoization is built upon the lockstep execution of single-instruction-

multiple-data architectures in GP-GPUs. A novel architecture is proposed to support

it: single-strong-lane-multiple-weak-lane (SSMW) architecture. Spatial memoization

exploits the value locality and similarity inside parallel programs, memoizes the result of

an error-free execution of an instruction on the strong lane, and concurrently reuses the

result to spatially correct errant instructions across multiple-weak lanes. These temporal

and spatial memorized contexts are reused to exactly, or approximately, correct errant

instructions subject to the application requirements on computational accuracy. This

significantly enhances the scope of timing error handling and its efficiency.

We conclude with an outlook for the emerging field in Chapter 12.



Chapter 2

Instruction-Level Tolerance

Microprocessors manufactured in nanometer processes are beginning to see vari-

ation in timing performance of individual instructions. This chapter considers challenges

and opportunities in identifying this variation and methods to combat it for improved

computing systems. We introduce the notion of instruction-level vulnerability (ILV)

to parameterize this variation and use it for architectural and compiler optimizations.

To compute ILV, we quantify the effect of voltage and temperature variations on the

performance and power of a 32-bit RISC in-order processor in 65nm TSMC technology

at the level of individual instructions. Results show 3.4ns (68 fanout of 4 or 68FO4) delay

variation and 26.7× power variation among instructions, and across extreme corners.

Our analysis shows that ILV is not uniform across the instruction set. In fact, ILV data

partitions instructions into three equivalence classes. Based on this classification, we

show how a low-overhead robustness enhancement techniques can be used to enhance

performance by a factor of 1.1×–5.5×. This chapter provides a method for predicting

and preventing the timing errors in single-core architectures.

2.1 Introduction

Designers commonly use conservative guardbands into the operating frequency

and voltage to handle these variations to ensure error-free operation within the presence

15
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of worse case dynamic variations over circuit lifetime that leads to loss of operational

efficiency. An alternative is to use sensor circuits to detect dynamic variations coupled

with an adaptive recovery methods for quick on-line error detection and compensation.

Further progress in this area requires a careful analysis of the effect of variations

on individual instructions. Here we advance the state of the art through following three

means:

1. We analyze the effect of a full range of voltage and temperature variations on

the performance and power of the 32-bit in-order RISC LEON-3 [10] processor

(Section 2.2).

2. We introduce the notion of instruction-level vulnerability (ILV) to characterize

tolerance of individual instruction to dynamic variations. ILV exposes variation

and its effects to the software stack for use in architectural/compiler optimizations.

Our results show that ILV is not uniform across the instruction set (Section 2.3 and

Section 2.4).

3. Using ILV data, we show the effectiveness of a minimally intrusive and cost-

effective fine-grained technique to mitigate the dynamic variations that achieves

up to 5.5× performance improvement in comparison to the traditional worst-case

design.

2.2 Effect of Operating Conditions

We analyze the effect of operating conditions on the performance and power of

the LEON-3 [10] processor compliant with the SPARC V8 architecture. Specifically, we

used a temperature range of -40◦C–125◦C, and a voltage range of 0.72V–1.1V. Figure 2.1

shows how the critical path of the processor varies across corners. The higher voltage
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results in the shorter critical path, while the lower temperature leads to a higher delay

in the low-voltage region (voltage ≤ 0.9V), since MOSFET drain current decreases

when the temperature is decreased in the deep submicron technologies [89]. These

operating condition (hence dynamic) variations cause the critical path delay to increase

by a factor of 6.1× when the operating condition is varied from the one corner to the

other. Consequently, a large conservative guardband into the operating frequency is

needed to ensure the error-free operation in presence of the dynamic variations.

 

Figure 2.1. Effect of voltage and temperature variations on the critical path (ns).

2.3 Delay Variation among Pipeline Stages

We now evaluate the critical paths of each pipeline stage for a given cycle time,

while changing the operating conditions. Figure 2.2 shows the number of failed paths

with a negative slack for each parallel pipeline stages across three corners. The cycle time

is set at 0.85ns, and voltage varies from 0.72V to 0.88V, and then to 1.10V at a constant

temperature of 125◦C. As shown in Figure 2.2, most of the failed paths lie in the execute

and memory stages in all three operating voltages. On the other hand, each of the fetch,
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decode, and register access stages contains less than 40K failed paths. Furthermore, there

is a relatively small fluctuation in their number of critical paths across voltage variations

for these stages. Quantitatively, the memory stage at operating voltage of 0.72V has 1.3×,

1.8×, 3.8× more critical paths in comparison to the execute, write back, and decode

stages, respectively. Memory stage at operating voltage of 1.10V also faces 1.4×, 1.9×

more critical paths when the voltage drops to 0.88V, 0.72V, respectively.
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Figure 2.2. Effect of voltage variation on the pipeline stages at 125◦C.

Similarly, in Figure 2.3 the temperature of processor is varied from -40◦C to

125◦C at a constant voltage of 1.1V. As a result, there are no failed paths in the fetch stage

when the temperature is varied, and only a small number of failed paths are found in the

write back stage at the highest temperature. On the other hand, similar to Figure 2.2,

many paths fail within the execute and memory stages. The execute and memory parts of

the processor are not only very sensitive to voltage and temperature variations, but also

exhibit a large number of critical paths in comparison to the rest of processor. Therefore,

we would anticipate that the instructions that significantly exercise the execute and

memory stages are likely to be more vulnerable to voltage and temperature variations.

Let us now examine the situation of all paths through the processor under different
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Figure 2.3. Effect of temperature variation on the number of failed paths among the
pipeline stages at 1.10V.

operating condition and frequency. The Y-axis of Figure 2.4 shows the proportion of

failed paths to non-failed paths for three corners. We observe that this proportion of

failed paths suddenly drops below a certain threshold while the clock is finely scaled

with a resolution of 0.01ns. For instance, the proportion falls below 0.5 with only 0.06ns

clock scaling at (1.10V, 0◦C); in the other words, the number of non-failed paths is twice

as many as those which fail. Alternatively, the number of non-failed paths is doubled

when the cycle time is increased for 0.3ns at (0.9V, 125◦C). These provide an opportunity

for an error-free running of some instructions that will not activate those failed paths.

From the previous analysis, we see that instructions will have different levels

of vulnerability to variations depending on the way they exercise the non-uniform crit-

ical paths across the various pipeline stages. To capture this phenomenon, we define

the concept of instruction-level vulnerability to dynamic variations. The classification

of instructions is a valuable mechanism to alleviate the guardbanding and improving

performance: (i) within a fixed corner, by acquiring the knowledge about which class of

instructions is running, the processor can adapt the guardbanding accordingly, without
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Figure 2.4. The proportion of failed paths to non-failed paths versus clock.

any need for the intrusive variability sensor/observer; (ii) across every corner, processor

can adjust its guardbanding for all class of instructions by using a low-overhead variability

observer, e.g., phase locked loop (PLL) [82], and ring oscillators (RO) [36].

2.4 Instruction Characterization Methodology and
Experimental Results

We use integer pipeline of LEON-3 processor with hardware multiplier/divider

units as well as the instruction/data caches to characterize instructions. First, we synthe-

sized the open-source VHDL code of LEON-3 with the TSMC 65nm technology library

(general purpose process) to generate gate-level netlist. The signoff stage for accurate

analysis of the operating conditions has been made with Synopsys PrimeTime, using

its voltage-temperature scaling features for the composite current source approach of

modeling cell behavior. Mentor Graphics’ ModelSim is also used for detail gate-level
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simulations.

2.4.1 Gate-Level Simulation

In the gate-level simulation, for each individual instruction, we apply the Monte

Carlo method to observe instruction behavior. To accurately exercise each instruction,

we use a normal distribution for the sources, destination, and immediate operands. A

large sample of the SPARC ISA is evaluated, including the logical/arithmetic instructions,

memory access instructions (load/store), multiply/divide instructions. To quantify the

ILV to voltage and temperature variations, we define the probability of failure (PoF)

for each instructioni in Equation 2.1, where Ni is the total number of clock cycles in

Monte Carlo simulation which takes to execute instructioni with random operands; and

Violation j indicates whether there is a violated stage at clock cycle j or not.

 N

1

1
PoF Violation

If any stage violates at cycle
Violation

otherwise

i

i j
i
j

j

j

N

1

0

=




= 


= ∑

(2.1)

In other words, PoFi defines as the total number of violated cycles over the total simulated

cycles for the instructioni. If any of the analyzed stages have one or more violated flip-

flop at clock cycle j, we consider that stage as a violated stage at cycle j. Intuitively, if

instructioni runs without any violated path, PoFi is 0; on the other hand, PoFi is 1 if

instructioni faces at least one violated path in any stage, in every cycle.
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2.4.2 Instruction-Level Delay Variability

Table 2.1 and Table 2.2 summarize the PoF of each evaluated instruction across

various corners. We finely change the clock cycle to observe the paths failure for every

exercised instruction, and then consequently evaluate its PoF. As shown, instructions

exhibit a very wide range of delay under different operating conditions ranges from

0.76ns to 4.16ns. More precisely, the PoF values shown in tables evidence two important

facts. First, for their vulnerability to variations, instructions are partitioned into three

main classes: (i) the logical/arithmetic instructions, (ii) the memory instructions, and

(iii) the multiply/divide instructions. The 1st class shows an abrupt behavior when the

clock cycle is slightly varied. Its PoF switches from 1 to 0 with a slight increase in the

cycle time (0.02ns) for every corner, mainly because the path distribution of the exercised

part by this class is such that most of the paths have the same length, then we have a

all-or-nothing effect, which implies that either all instructions within this class fail or

all make it. The 2nd class, the memory instructions, needs much more relaxed cycle

time to be able to survive across conditions. For instance, as shown in Table 2.2, only

0.04ns more guardbanding on the cycle time of the 1st class instruction can guarantee

the error-free execution of the memory instructions while they are experiencing 40◦C

temperature fluctuation. The 3rd class is the multiply/divide instructions which need

higher guardbanding in comparison to the 1st class instruction, ranges from 0.02ns at

(1.1V, -40◦C) to 0.30ns at (0.72V, 125◦C). Since this class highly exercises the execution

unit1, it has a higher PoF in comparison with the rest of classes in the same clock cycle,

for every corner.

Further, based on these results, we can define an adaptive clock cycle for each

class of instructions to mitigate the conservative guardbanding, not only within a fixed

1Moreover, 64%–82% (depends on the corner) of the failed paths in the execution stage lie in the
hardware multiplier and divider units.
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Table 2.1. Probability of failure of ISA at 1.1V and 1.0V, while varying temperature and
frequency.

Corners (1.1V, -40°C) (1.1V, 0°C) (1.1V, 125°C) (1.0V, 25°C) 

Cycle time (ns) 0.74 0.76 0.78 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 1.08 1.10 1.12 1.14 1.22 

L
o
g

ic
al

 &
 A

ri
th

m
et

ic
 add 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

and 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

or 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

sll 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

sra 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

srl 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

sub 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

xnor 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

xor 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

M
em

 

load 1 0 0 1 0 0 1 0 0 0 0 0 1 0.786 0 0 0 

store 1 0 0 1 0 0 1 0 0 0 0 0 1 0.814 0 0 0 

M
u
l.

&
D

iv

. mul 1 0 0 1 0.967 0 1 0.042 0.015 0.012 0.002 0 1 0.998 0.976 0.074 0 

div 1 0.837 0 1 0.948 0 1 0.991 0.991 0.984 0.984 0 1 0.964 0.993 0.990 0 

 

Table 2.2. Probability of failure of ISA at constant voltage 0.72V, while varying temper-
ature and frequency.

Corners (0.72V, -40°C) (0.72V, 0°C) (0.72V, 125°C) 

Cycle time (ns) 4.10 4.12 4.14 4.16 3.58 3.60 3.62 3.64 3.66 2.88 2.90 2.92 2.94 2.98 3.00 3.20 

L
o
g

ic
al

 &
 A

ri
th

m
et

ic
 add 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

and 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

or 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

sll 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

sra 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

srl 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

sub 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

xnor 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

xor 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

M
em

 

load 1 0.823 0.823 0 1 0.823 0.823 0 0 1 0.823 0.823 0.823 0.796 0.796 0 

store 1 0.847 0.847 0 1 0.847 0.847 0 0 1 0.847 0.847 0.847 0.823 0.823 0 

M
u
l.

&
D

iv
 

mul 1 0.995 0.995 0 1 0.996 0.994 0 0 1 0.998 0.997 0.996 0.996 0.996 0 

div 1 0.995 0.995 0 1 0.995 0.995 0.812 0 1 0.994 0.994 0.993 0.991 0.991 0 

 



24

process corner, but also across corners. All instruction classes act similarly across

the wide range of operating conditions: as the cycle time increases gradually, the PoF

becomes 0, firstly for the 1st class, then for the 2nd class, and finally for the 3rd class. A

processor can benefit from this classification by adapting its guardbanding for each class

of instruction by acquiring the knowledge about which class of instructions is/will be

running.

2.4.3 Less Intrusive Variation-Tolerant Technique

All intrusive techniques [62, 42, 45] try to avoid timing failure for instructions

that activate the critical paths by dynamically switching to two-cycle operation. These

expensive, instruction by instruction timing adjustment techniques do not expose oppor-

tunity for further software-level optimizations especially for sequences and classes of

instructions. Therefore, we could have an advanced dynamic clock speed adaptation

technique, possibly compiler driven, which can quickly decide on the clock speed of the

processor at a very fine-grained [141], just looking at the fetched instructions and keeping

track of their entry into the stages, and at the same time monitoring the current corner

with a low-overhead monitoring hardware [82, 36]. This technique not only provides

great performance enhancement for processor, but also is a step forward toward a less

intrusive circuit monitoring and cost-effective robust design.

Table 2.3 shows how a program consisting of various classes of instructions can

benefit by this technique under different operating conditions: the performance improve-

ment when processor runs a program only consists of specific classes, in comparison to

the traditional worst-case design. For instance, at the typical operating condition (1.0V,

25◦C) processor can decrease the cycle time form 4.16ns (Table 2.2) to 1.22ns (Table 2.1),

and consequently achieves 3.4× speed improvement, when its running program consists

of all three classes. It can further reduce the cycle time to 1.12ns (3.7× speedup) when
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Table 2.3. Performance improvement for different classes of instructions.

Vol. (V) Temp. (°C) 1st and 2nd class 1st, 2nd, 3rd class 

1.10 -40 5.5x 5.3x 

1.10 0 5.5x 5.3x 

1.10 125 5.1x 4.6x 

1.00 25 3.7x 3.4x 

0.88 -40 3.9x 3.7x 

0.88 0 3.9x 3.7x 

0.88 125 3.9x 3.5x 

0.72 0 1.1x 1.1x 

0.72 125 1.3x 1.3x 

 

only the 1st, and 2nd classes of instructions are used in its program. As shown, the

proposed solution can greatly achieve 1.1×–5.5× performance improvement depends on

the type of instruction and the operating condition.

2.4.4 Power Variability

 

Figure 2.5. Intera- and inter-corner total power (W) variability of the instruction classes.

From delay variability of instructions, we examine now variation of power con-
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sumption across and within process corners. The total power consumption of the instruc-

tion classes under four operating conditions is shown in Figure 2.5, when the cycle time

is adjusted for each class accordingly, i.e., the best frequency for each class is applied. As

a result, all three classes of instructions experience a wide range of total power variability

(0.1mW–2.6mW), 1.15× intra-corner power variation (across the three classes) due to ex-

ercising various parts of processor, and 26.7× inter-corner power variation, at maximum.

This implies that ILV could potentially expose opportunity for further software-level

optimizations for both performance and power.

2.5 Chapter Summary

The concept of instruction-level vulnerability to dynamic voltage and temperature

variations is defined. Based on that, all exercised instruction in the integer pipeline of

LEON-3 are partitioned into three classes for the full range of operating condition: (i) the

logical and arithmetic instructions, (ii) the memory instructions, and (iii) the multiply and

divide instructions. Using this classification in conjunction with less intrusive variability

observers provides architectural/compiler optimizations a great opportunity to enhance

processor performance by 1.1×–5.5×, in TSMC 65nm technology. It is also a step

forward toward a low-overhead, efficient, and cost-effective robust design.

This chapter contains material taken from “Analysis of Instruction-level Vulnera-

bility to Dynamic Voltage and Temperature Variations,” by Abbas Rahimi, Luca Benini,

and Rajesh K. Gupta, which appears in ACM/IEEE Design, Automation, and Test in

Europe (DATE) Conference, 2012. The dissertation author was the primary investigator

and author of this paper.



Chapter 3

Sequence-Level Tolerance

Traditional application execution assumes an error-free execution hardware and

environment. Such guarantees in execution are achieved by providing guardbands in

the design of microelectronic processors. In reality, applications exhibit varying degrees

of tolerance to error in computations. This chapter proposes an adaptive guardbanding

technique to combat CMOS variability for error-tolerant (probabilistic) applications as

well as conventional error-intolerant applications. The proposed technique leverages a

combination of accurate design time analysis and a minimally intrusive runtime technique

to mitigate process, voltage, and temperature (PVT) variations for a near-zero area over-

head. We demonstrate our approach on a 32-bit in-order RISC processor with full post

placement and routing (P&R) layout results in TSMC 45nm technology. The adaptive

guardbanding technique eliminates traditional guardbands on operating frequency using

information from PVT variations and application-specific requirements on computational

accuracy. For error-intolerant applications, we introduce the notion of sequence-level

vulnerability (SLV) that utilizes circuit-level vulnerability for constructing high-level

software knowledge as metadata. In effect, the SLV metadata partitions sequences of inte-

ger SPARC instructions into two equivalence classes to enable the adaptive guardbanding

technique to adapt the frequency simultaneously for dynamic voltage and temperature

variations, as well as adapting to the different classes of the instruction sequences. The

27
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proposed technique achieves on an average 1.6× speedup for error-intolerant applications

compared to recent work [76]. For probabilistic applications, the adaptive technique

guarantees the error-free operation of a set of paths of the processor that always require

correct timing (vulnerable paths) while reducing the cost of guardbanding for the rest of

the paths (invulnerable paths). This increases the throughput of probabilistic applications

upto 1.9× over the traditional worst-case design. The proposed technique has 0.022%

area overhead, and imposes only 0.034% and 0.031% total power overhead for intolerant

and probabilistic applications respectively. This chapter presents a method for predicting

and preventing the timing errors in single-core architectures.

3.1 Introduction

Several recent efforts have focused on measures to mitigate variability through

innovations in circuit-level designs. These methods strive to achieve instruction ex-

ecutions exactly as specified by the application programs. In contrast, probabilistic

programs can exhibit enhanced error resilience at the application-level when multiple

valid output values are permitted. Accurate design-time analysis coupled with efficient

runtime techniques are required to overcome the variability challenges. We propose a

near-zero area overhead adaptive guardbanding technique to meet application-specific

requirements on computational accuracy. This chapter makes the following contributions:

1. We present a method to relate low-level hardware vulnerability information ob-

tained using accurate and practical variation-aware analysis to high-level knowl-

edge in software. Our analysis flow considers the dynamic voltage and temperature

as well as static process variations, and validates results on a full post P&R layout

of a 32-bit in-order RISC processor.

2. We propose an adaptive guardbanding technique to dynamically adjust the cycle



29

time to PVT variations and application-level computation accuracy. For probabilis-

tic applications represented by multimedia benchmarks from MiBench [12] and

MediaBench [11], the technique achieves up to 1.9× throughput improvement in

comparison to the traditional worst-case design.

3. For error-intolerant applications, we introduce the notion of Sequence-Level Vul-

nerability (SLV) to dynamic voltage and temperature variations. Our experimental

results and analysis show that SLV is not uniform across sequences obtained from

a large set of general purpose benchmarks [12, 11, 5, 4, 15]. Effectively, the SLV

partitions sequences of integer SPARC instructions into two classes: ClassI, which

only consists of the arithmetic/logical instructions; and ClassII, a mixture of all

types of instructions. We also show the effectiveness of compiler technique to

achieve a favorable mix of sequences. Using SLV enables the processor to achieve

1.6× average speedup for intolerant applications, compared to [76], by adapting

the cycle time for dynamic variations and different instruction sequences. The

minimally intrusive and cost-effective guardbanding in software greatly reduces

the hardware cost with respect to the above-mentioned circuit techniques. Full

layout results on TSMC 45nm technology show that the proposed guardbanding

imposes only 0.031% and 0.034% total power overhead for the probabilistic and

the intolerant applications respectively. The total area overhead is 0.022%.

3.2 PVT Variations

In this section, we analyze the delay variations caused by PVT variations on the

paths of the 32-bit in-order LEON3 processor compliant with the SPARC V8 architecture

. This choice is keeping in view of the recent trends towards array processor architectures

containing many simple RISC cores, e.g., GPUs [146], TILERA [32], and Platform
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2012 [98, 33]. More importantly, the availability of an advanced open-source RISC core

with full back-end details is critical to accurate variation analysis. We note that other

efforts for complex high-performance cores such as IBM POWER6 also confirm that vul-

nerability is not uniform across the instructions set [132]. While different instruction sets

will lead to different grouping of instructions depending upon the processor architecture

and implementation, our methodology can be applied as long as there is a non-uniform

vulnerability across the instructions.

Specifically, the effects of a full range of dynamic variations (an industrial temper-

ature range of -40◦C–125◦C, and a volt-age range of 0.72V–0.99V) as well as static pro-

cess parameters variations (die-to-die and within-die) are analyzed on all paths throughout

the entire integer pipeline of LEON3. Figure 3.1 illustrates the delay variation in the six

stages of the pipeline that results in positive/negative slacks for the flip-flops connected

to the endpoints of the paths. The cycle time is set at 0.83ns to meet the timing require-

ment of the typical-corner (0.9V, 25◦C, TT). A higher voltage of 0.99 volts results in

shorter delay (positive slack), while the lower temperature leads to a higher delay in the

low-voltage region below 0.9 volts, since MOSFET drain current decreases when the

temperature is decreased in nanometer CMOS technologies [89]. In addition to these

dynamic operating conditions, the static process variations exacerbate the delay variation

across various pipeline stages: Section 3.2.2 describes the details of modeling the process

variations. Given such variations across operating conditions and across different parts of

the design, an adaptive guardbanding of the operating frequency is useful to ensure the

error-free operation. Such a guardband can be much less conservative than a statically

determined guardband. We divide pipeline paths into two groups: (a) Vulnerable Paths

(VP): A set of paths that always require correct timing and any delay variability may

result in catastrophic architectural failures and con-sequently visible errors in the outputs

of a program; and (b) Invulnerable Paths (IP): A set of paths that do not require 100%
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timing correctness. The delay variation in IP does not cause catastrophic architectural

failures since it affects only the vector of elastic outputs. The vector of elastic outputs

does not require the complete numerical correctness. Thus, the delay variation in IP may

degrade of the quality of fidelity metrics of the probabilistic applications. Specifically for

LEON3 pipeline shown in Figure 3.1, a 20% voltage variation results in many negative

slack values at the endpoints of the fetch and decode stages which causes the wrong

instructions to be executed. Thus the paths that lie in these stages are considered as VP

and must always meet the setup time of flip-flops in PVT variation. On the other hand,

the scenario for IP is different. For example in the execution stage, some endpoints do not

suffer from delay variation at all (those paths with a positive slack), and some endpoints

have negative slack when voltage variation occurs. The execution stage has much more

flexibility to deal with delay variation as long as it can produce an acceptable fidelity

metric.

In Section 3.3.1, we present guardbanding technique that seeks to guardband VP

for error-free operation, and at the same time effectively reduces the cost of guardbands

on IP against fidelity metric of programs that are tolerant to imprecise and approximate

computations. The tolerance levels can be specified based on algorithmic classifications

such as RMS [61]. Section 3.4 also covers another adaptive guardbanding technique for

intolerant applications in the general case.

Figure 3.1. Non-uniform slack variation of the integer pipeline stages caused by PVT
with cycle time at 0.83ns.
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3.2.1 Conventional Static Timing Analysis

Conventional Static Timing Analysis (STA) calculates the maximum delay vari-

ation using the worst-case corner, by simply combining the absolute worst-case com-

bination of the process, voltage, and temperature parameters. The cycle time is finely

varied to observe the behavior of the pipeline stages. The number of failed paths (i.e.,

paths with negative slack) for each stage using the STA in the worst-corner (0.72V, 0◦C,

Slow NMOS-Slow PMOS) is shown in Figure 3.2. Increasing the cycle time from 1.8ns

to 2.25ns reduces the number of failed path from hundreds of thousand paths to zero

path for all stages except the execution stage which has a higher delay. The execution

stage needs 10% more guardbanding, i.e., the clock cycle of 2.5ns. Further, our earlier

analysis [111] shows that the execution and memory stages are highly vulnerable to

dynamic variations. By setting the cycle time at 2.25ns, we guarantee that no path will

fail within the fetch, decode, register access, memory, and write back stages even in the

worst-case process parameter variation. The paths in these stages are considered as VP

because: (i) any failure in fetch or decode stages may cause the wrong instructions to be

executed that cannot be masked even within the probabilistic application; and (ii) any

failure in the register/memory/write back stages may cause an illegal access/operation on

the memory/registers. It is therefore not surprising that both Intel resilient processor [42]

and relaxed-reliability cores in ERSA [54] consider sufficient guardbanding in register

stage, memory management unit, and L1 instruction cache. By sufficient guardbanding

on VP through STA, the error-free operation of VP is guaranteed even if these paths

display the worst-case process characteristics.

Unlike the above mentioned stages, with the cycle time of 2.25ns, the execution

stage has few failed paths in the worst-case process variation. If these paths are activated

through the pipeline, there is no guarantee for 100% timing correctness of the execution
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Figure 3.2. Number of failed paths of LEON3 pipeline using STA.

stage. This lack of timing correctness causes inaccuracies in the result of execution of

some instructions, which can be masked by the error resilience at the application-level

of the probabilistic applications [61], or proper software-based instruction duplication

technique. Thus, these paths are considered as IP, since their violation might cause

only application-level derating which strictly depends to the type of applications. In

Section 3.3, we examine the likelihood of these violations, and the type of applications

that can accept or refuse this kind of inaccuracies.

To observe the behavior of VP and IP on other architectures, we also consider a

programmable graphic processing unit (GPU), THEIA [20]. THEIA features a multi-core

architecture, and uses a ray casting approach for rendering. Every core in THEIA runs a

local copy of the shader code, and has a pipelined SIMD unit, capable of performing fixed-

point arithmetic on 3D vectors. Each core includes instruction entry point, fetch, decode,

execute, and memory stages in conjunction with a control unit. Similar to Figure 3.2,

the number of failed paths for each stage of a THEIA’s core is shown in Figure 3.3. As

shown, VP display no failure with a clock cycle of 3.2ns, while the execution stage faces

high number of failed paths. In fact, the execution stage needs 14% more guardbanding
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compared to other stages. In comparison to LEON3, the execution stage of a THE-IA’s

core imposes higher guardbanding, since it performs vector fixed-point operations which

involve more complex units than the scalar integer operation in LEON3.

Figure 3.3. Number of failed paths of THEIA pipeline using STA.

Indeed, several researches show that execution stage is critical not only for

in-order or SIMD architectures, but also for various VLIW and out-of-order architec-

tures [137, 71, 105]. For instance, despite the prior-art assumption that the register file

defines the clock frequency of a clustered VLIW processor, the realistic physical layout

experiments for an 8-issue-slot VLIW pipeline show that it is the execution stage and its

by-pass network that limits the clock speed [137]. Although a clock frequency speedup is

achieved by partitioning a single cluster into two clusters (thus a shorter bypass network);

in subsequent clustering there is a steady decrease of the bypass network delay, hence

the delay of functional units is a deciding factor in clock frequency since it occupies up

to 85% of the clock period in an 8-cluster VLIWs [137]. M. Ozawa et. al. [105] also

propose a cascade ALU architecture for out-of-order processors, in which the critical path

lies in the ALU. Similarly, the ALU delay also determines the cycle time of a low-power

out-of-order design [71].
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3.2.2 Variation-Aware Statistical STA

Unlike the traditional STA, variation-aware statistical static timing analysis

(SSTA) takes into account the actual distribution of the physical parameters instead [25].

As a result, the calculated slack distributions accurately reflect the true results obtained in

silicon resulting in less pessimism in the analysis. The variation-aware SSTA is suitable

for IP analysis where the processor does not need 100% timing correctness in case of

the worst process variation. Our results illustrate the value of variation-aware SSTA.

Figure 3.4 distinguishes the data arrival time of the execution stage of LEON3 for two

operands using the worst-case STA versus the variation-aware SSTA. The operating

condition is set for (0.81V, 125◦C), and the process parameter for STA is set for the Slow

NMOS-Slow PMOS (SS), while this parameter for variation-aware SSTA varies based

on the process parameter variations supported by state-of-the-art commercial tools.

Figure 3.4. Variation-aware SSTA versus the worst-case STA.

To perform an accurate design time SSTA, we use the variation-aware timing

analysis engine of Synopsys PrimeTime VX [25], leveraging characterized parameters of

45nm variation-aware TSMC libraries [23] derived from first-level process parameters

by principal component analysis (PCA). PCA is a mathematical procedure that simplifies

a data set by transforming a number of correlated parameters into a smaller number of
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uncorrelated parameters. After parasitic extraction from the physical design data, the die-

to-die (D2D) and with-in-die (WID) process parameter variations are injected as normal

distributions with zero means and standard deviations of σD2D=5% and σWID=6.4% [75].

Therefore, we change the variation components and analyze the delay variations with

a given set of accurate variability models from commercial libraries [23], which are

certainly more accurate than commonly used ‘in-house model’ extracted from predictive

technology models [17]. As shown in Figure 3.4, the data arrival time of the operands in

the execution stage based on STA is upto 40% greater than the variation-aware SSTA

due to pessimistic process parameters. For the fixed operating condition, STA results

in 19% greater data arrival time on average compared to the variation-aware SSTA

for the entire integer pipeline. These results set a baseline for the improvements from

adaptive guardbanding techniques that raise the level of abstraction at which variability

is addressed.

3.3 Error-Tolerant Applications

In moving from circuits to applications, we find a greater tolerance to failures

simply because there is more contextual information available for recovery mechanisms

to use. Given the increasing parallelism from hardware, the computer systems researchers

have attempted to classify applications into core algorithmic categories such as RMS [61]

that not only points to the structure of the computation but also a guidance on the degree

of tolerance to individual data or even computational errors. While a comprehensive

framework for classifying applications according to degree of data and control tolerance

to error and variation is still an area of active research, adaptive guardbanding proposed

here does bring us a step closer to tie the mitigation of PVT guardbands to the type of

applications.
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3.3.1 Analysis of Adaptive Guardbanding for Probabilistic Appli-
cations

For error-tolerant, or probabilistic, applications, the key idea is to guarantee

the error-free operations of the paths that are vital for ensuring timing of the VP, while

reducing the cost of guardbanding for the rest of the paths (IP). The adaptive guardbanding

for the probabilistic applications dynamically decides on the cycle time based on the

operating conditions, while guaranteeing the accuracy of the fidelity metric above a user-

defined threshold (UT ) for the acceptable output. Timing error due to the delay variation

in IP may alter the vector of elastic outputs (OE). A fidelity metric of a probabilistic

application P, FP (I, OE) is associated with its input I and the corresponding OE . The

execution of application P with input instance I in the presence of delay variation is

acceptable iff (A)∧(B)∧(C). The predicates (A)–(C) are defined as:

 T

STA

SSTA

(A) F U   

(B)   | Slack   < 0  

(C)   | Slack   < 0

P E

j j

k k

 (I, O )

path VP (path )

path IP (path )

≥

¬∃ ∈

¬∃ ∈ (3.1)

Specifically, the cycle time, for every operating condition is adjusted in such a

way to satisfy that all paths in VP always meet the setup time of flip-flops even in the

worst-case process parameter variation using STA (B); and that the paths in IP will not

miss the setup time of any connected flip-flop, in a statistical sense, using the variation-

aware SSTA (C). These two criteria guarantee the semantically correct execution of

application P, e.g., an addition instruction is always executed as an addition instruction

but it might generate inaccurate results, in case of large variations. To satisfy (A), the

fidelity metric has to be greater than the UT, thus guarantees the acceptable accuracy

from the applications’ point of view. For a given application P, the application writer is
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responsible to tune the acceptable threshold based on the end user’s requirements [55].

The adaptive guardbanding dynamically sets the cycle time to meet (A)–(C)

requirements to mitigate the inter-corner variations for a given operating condition. The

assigned cycle time guarantees the error-free operation of VP even in the worst-case

process parameters variation, certified by STA. However, the guardband provided by the

adapted cycle time cannot guarantee 100% timing correctness of IP within the execution

stage in case of absolute worst-case combination of process parameters. This might cause

inaccuracy in the result of the executed instruction. If the executed instruction produces

OE (thus affecting the fidelity metric), the predicate (A) guarantees that the program can

produce an acceptable fidelity metric. On the other hand, if the executed instruction is a

critical instruction, the proper application-level correctness techniques [55] is applied

to identify the critical control flow instructions. The critical instructions are statically

duplicated during compile time which guarantees the error-free execution in a fixed

operating condition.

We use SSTA methodology to analyze the effect of within-die and die-to-die

process parameters variations. It dynamically sets the cycle time depends to the operating

conditions as shown in Table 3.1. For example, as soon as detecting the operating

condition at (0.99V,-40◦C), the adaptive guardbanding decreases the cycle time from

2.5ns, calculated by the worst-case STA for (0.81V, 0◦C, SS), to 0.8ns. This cycle time of

0.8ns meets all timing requirements of VP, and at the same time provides positive slack

for the execution stage in a statistical sense. As shown in the fourth column of Table 3.1,

based on SSTA, the adaptive guardbanding strategy works well even with die-to-die and

within-die process variation, while the paths are experiencing a full swing for voltage

and temperature, and provides the positive slacks for the slowest path of the execution

unit. Further-more, the 1st percentile (p01) values are quite far from the zero slack, thus

implying that the probability that actual slack of the path in the execution stage will be
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Table 3.1. Effectiveness of adaptive guardbanding for the probabilistic applications under
dynamic variations

Volt. 
(V) 

Temp. 
(°C) 

Cycle 
Time (ns) 

The worst slack of execution (ns) 

mean std-dev p99 p01 

0.99 -40 0.80 0.247 0.028 0.325 0.196 

0.81 -40 1.35 0.400 0.057 0.565 0.302 

0.81 125 1.32 0.451 0.076 0.638 0.281 

... ... ... ... ... ... ... 

 

less than or equal to p01 value is 0.01.

The probability density functions of the slack value of top 1,000 critical paths

within the execution stage are analyzed, at three operating conditions using the assigned

cycle time in Table 3.1. All slack values are always positive when pipeline experiences

a full swing in voltage (∆V=0.18V) and temperature (∆◦C=165◦C). If an IP path in the

execution stage is faced with the worst-case combination of process parameters, and

does not meet the timing requirement, the effects of such variations may manifest itself

as an error in a bit of the output vector. Depending upon the positional significance, a

probabilistic application may tolerate errors in low-order bits; for the high-order bits of

the execution stage, there is little likelihood of having errors even in a full swing of the

operating conditions, as the smallest p01 slack values are quite positive: 0.22ns/0.37ns

at (0.99V, -40◦C)/(0.81V, 125◦C). The application writer can trade-off between the end

user’s accuracy requirements versus the cost of guardbanding using profiling and tuning

mechanisms, thus satisfying predicate (A). The trade-off between the cycle time and the

probability of having a failure in the execution paths is shown in Figure 3.5. As shown, a

higher cycle time results in lower probability of failure and thus a lower timing error rate.

Therefore, the desired cycle time can be extracted to match with the tolerable error of

the application. If the tolerable error of the application changes over different phases of

the application, the policy of applying the adaptive guardbanding can be reprogrammed

accordingly during the execution of the application.
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Figure 3.5. Trade-off between the cycle time and the probability of having a failure in
the execution stage.

3.4 Error-Intolerant Applications

3.4.1 Sequence-Level Vulnerability (SLV)

Unlike the probabilistic applications, applications in general do not have such

inherent algorithmic and cognitive tolerance thus even a single bit error in the execution

unit could crash a program. We consider this class of applications as intolerant appli-

cations that require complete numerical correctness. Intolerant applications cover most

of the general purpose applications, and even those probabilistic applications that there

is no domain expert to define and analyze their fidelity metrics parameters. Therefore,

the adaptive guardbanding for the intolerant applications has to guarantee 100% timing

correctness for VP as well as IP. To alleviate such expensive constraint imposed by the

intolerant programs, we have earlier defined the notion of instruction-level vulnerability

(ILV [111]) to dynamic voltage and temperature variations in order to expose and use

variation in architectural/compiler optimizations. Equation 3.2 defines ILV as a function

of current operating voltage and temperature (V,T), and the corresponding class of an

instruction (insti) determined by partial function of φ . ILV is computed as the number of

cycles with a failed path over the total Monte Carlo simulated cycles for the insti in [111].
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In fact, ILV data in [111] partitions integer SPARC V8 ISA (except control

instructions) into three classes: ClassI consists of ALU instructions; ClassII covers all

memory (MEM) instructions; and ClassIII has hardware multiply/divide (MUL/DIV)

instructions. As shown in Equation 3.3, ILV indicates that the classes of instructions

have different levels of vulnerability to dynamic variations depending on the way they

exercise the non-uniform critical paths across the various pipeline stages. For instance,

the hardware MUL/DIV instructions have a higher vulnerability in comparison to MEM

instructions.

 ( , ) :

( , , ) ( , , ) ( , , )

V T

ILV ClassI V T ILV ClassII V T ILV ClassIII V T

∀

≤ ≤ (3.3)

ILV does not cover the control instructions, because the characterization of a

control instruction itself is meaningless unless it is considered within a sequence of

instructions that affect the control instruction. Hence, we extend the notion of ILV; we

introduce the notion of sequence-level vulnerability (SLV) to expose dynamic variation in

Equation 3.4. Different sequences of instructions exercise the critical paths of the pipeline

differently resulting in various levels of vulnerability. The vulnerability of a sequence of

instructions (seqi) varies based on the class of instructions that it contains. SLV is also a

function of current operating voltage and temperature to capture inter-corner dynamic

variations. Therefore, SLV reflects the manifestation of variability-induced timing errors
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in the specific software context which is a sequence of instructions.

 ( (seq ), , )SLV V T
i

ϕ=ℑ
(3.4)

3.4.2 SLV Characterization

To avoid an exponentially growing number of sequences for evaluations of SLV,

the highly frequent sequences are extracted from various type of applications. We have

profiled a large set of general purpose benchmarks containing 32 different applications,

include MiBench [12], Parsec [15], Scimark2 [19], MediaBench [11], and CoreMark [4]

benchmarks. The binaries of applications were dynamically instrumented. This allows us

to extract the highly frequent sequences of the instrumented instructions as well as their

operands distribution for the memory, and ALU instructions. This operands distribution

helps to create the realistic values for the operands of the instructions. To distinguish

sequences, a window of three instructions is considered since there are three stages

before reaching the execution stage of LEON3. Then, for the sake of illustration, the

top 20 highly frequent sequences are considered for the SLV analysis that are shown in

Table 3.21. After the sequence extraction, a sequence generator applied Monte Carlo

method for each of top 20 sequences, utilizing the operands distribution instrumented

from the aforementioned benchmarks. Therefore, large samples of highly frequent

sequences for SPARC ISA have been generated, including ALU, MEM, and control

instructions2.

Then, to accurately evaluate SLV under different operating conditions, these

sequences were fed to the post-layout simulations where the delay of the layout imple-

mentation of the processor is back-annotated. Therefore, SLV is calculated for every

1We later show our method is not limited to the top sequences and a sequence with a length of three
instructions (L=3).

2The rest of ISA needs the floating-point and coprocessor units which are not available neither in our
core nor in [42]
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Table 3.2. Extracted highly frequent sequences of instructions.

Seq. # 1 2 3 4 5 6 7 8 9 10 

Inst. i ld st ld ld ld st ld call ld call 

Inst. i+1 ld st bz bz st ld ld st ld st 

Inst. i+2 ld st sub and ld st bz st sub ld 

Seq. # 11 12 13 14 15 16 17 18 19 20 

Inst. i bz ld sub and sub and and sub sub ALU 

Inst. i+1 st and bz bz add add sub sub and ALU 

Inst. i+2 ld st bnz bnz bz bz bz bz bz ALU 

 

individual sequence under a full range of operating conditions and cycle times to enable

use of dynamic variations on sequences of instructions. To evaluate SLV, seqi is run

through the pipeline while varying the operands of the instructions using the following

algorithm:

 For seq list of high-frequent sequences

  For {(0.72V, -40°C), ..., (0.99V, 125°C)}  

    For C {1.0ns, ..., 3.0ns}

      For list of operands

        Compute  (seq , , , C

i

(V,T)

ycle_Time

operands

SLV V T yci

∈

∈

∈

∈

_ ) le Time

The SLV for each seqi at the operating condition (V,T) with Cycle-Time is

quantified in Equation 3.5, where Ni is the total number of clock cycles in Monte Carlo

simulation of seqi with random operands; and Violation j indicates if there is a violated

stage at clock cycle j or not. In other terms, SLV is defined as the total number of violated

cycles over the total simulated cycles for the seqi. If any of the six stages have one or

more violated flip-flop at clock cycle j, we consider that stage as a violated stage at cycle j

since there is at least one activated critical path for seqi at cycle j that is slow enough to

miss the setup time of a flip-flop. Intuitively, if seqi runs without any violated path, SLV

is zero; on the other hand, SLV is one if for every cycle seqi faces at least one violated
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path in any stage.

 N
1

(seq , , , _ ) Violation
N 1

If any stage violates at cycle
Violation

otherwise
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SLV V T Cycle Timei j

ji

1 j
j

0

= ∑
=


= 
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Figure 3.6 shows the SLV values of the top sequences under a wide range of

voltage and temperature variations while the cycle time is finely varied (steps of 10ps).

The SLV values are 0 during the long cycle times, as the cycle time decreases the SLV

values increase towards 1 because the sequences experience higher timing violations.

Let us first examine the behavior of the sequences under the full range of temperature

variation (Figure 3.6.b and Figure 3.6.c). At the temperature of 125◦C, all sequences

have a SLV of 0 with clock cycle 1.35ns. By decreasing the cycle time beyond 1.33ns,

seq1–seq19 start to incur the timing violation as their SLV values increase, while seq20 is

displaying a SLV of 0 until decreasing the cycle time to 1.28ns. This trend also persists

under ∆T=165◦C temperature fluctuation with a shift in cycle time (Figure 3.6.c). As

shown, these sequences are partitioned into two classes based on the SLV values. The

seq1–seq19 have higher within-corner SLV values, while the seq20 has lower within-corner

SLV values.

Let us now examine the SLV values under dynamic voltage variations (Fig-

ure 3.6.a and Figure 3.6.b). A similar pattern of within-corner SLV variations is observed:

the seq1–seq19 show higher SLV values compared to the seq20 at equal cycle times.

This classifies the seq1–seq20 into two classes of sequences: ClassI and ClassII. As

defined in Equation 3.6, ClassI is a sequence of instructions of length L in which every

instruction has an ILV class of ClassI. In other words, when a sequence of instructions
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Figure 3.6. Intra-corner SLV to dynamic variations (∆T=165◦C and V=0.09V); a:
(0.72V,125◦C), b: (0.81V,125◦C), c: (0.81V,-40◦C).
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is composed of only ALU instructions, the sequence is classified as ClassI; otherwise

it is classified as ClassII. Therefore, an instruction within the sequence of ClassII can

be any instruction, including MEM, MUL/DIV, and various control instructions. For

every operation condition (V,T), ClassI has a lower SLV (thus needs lower guardband) in

comparison to ClassII.

 ( , ,seq ) : ( , , ) ( , , ), s.t.

inst seq | (inst ) , 2
(seq )

otherwise

V T SLV ClassI V T SLV ClassII V Ti

ClassI ClassI j Lj i j
i

ClassII

φ
ϕ

∀ ≤

∀ ∈ = ≤ ≤
= 
 (3.6)

Based on our analysis for the highly frequent sequences, as shown in Figure 3.6,

the seq20 is classified as ClassI, while the seq1–seq19 are among ClassII. The seq20 has a

lower SLV compared to all sequences in ClassII; since its instructions do not involve the

critical paths of the memory and control (integer code conditions) components. Thus,

we see that the SLV value of the two classes of the sequences at the same corner and

with the same cycle time is not equal because their instructions do not uniformly exercise

the various critical paths of the pipeline. We know that the vulnerability of instructions

is not uniform [111]. Sequences in ClassII need higher guardbands in comparison with

ClassI, mainly because in addition of ALU’s critical paths, the critical paths of memory

are also activated for the load/store instructions as well as the critical paths of integer

code conditions for the control instructions. As a result, in the same corner, sequences in

ClassI run faster, thanks to their all ALU instructions which only exercise critical paths

of the ALU component3. Figure 3.7 summarizes ILV and SLV classification.

This intra-corner SLV enables the adaptive guardbanding to set the cycle time

for each class of sequences accordingly, and thus eliminate the conservative guardbands

across sequences up to 6%. Therefore, for intolerant applications, the adaptive guardband-

3ALU does not include the hardware multiply and divide units.
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Figure 3.7. ILV and SLV classification for integer SPARC V8 ISA.

ing adjusts the cycle time depending upon the classes of the sequence, and the current

operating conditions to make sure that the processor runs at the fastest speed compatible

with both current hardware and software conditions. We classify any non-characterized

sequence out of the analyzed highly frequent sequences as ClassII, thus it will have

appropriate timing guardband in case of activation of the critical paths of non-ALU

components. Relaxing the guardband can also be applied to any sequence of ClassI

with a length of two ALU instructions (ClassIL=2) or more (N) ALU instructions stream

(ClassIL=N). These chains of ALU instructions exercise the critical paths within only

ALU component, therefore, for a given operating condition as shown in Equation 3.6, the

SLV values of ClassIL for L∈ {2,3,...,N} are equal. This classifies ALU sequences into

the same class of the sequences with consistency across a wide range of corners.

3.5 Adaptive Guardbanding

We propose a guardbanding technique that dynamically decides on the cycle

time based on the Application’s Type, the Instruction Sequence, and the operating

conditions (V,T), to maximize performance. To ensure necessary observability, our

approach employs on-chip low-overhead operating condition monitors using CPM [59].

POWER7 results show that five CPMs per each core are sufficient to finely capture PVT
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variation [67]. For controllability, a fast adaptive clocking circuit consisting of three

phase-locked loops (PLLs) is leveraged. Each PLL is running at independent frequencies,

and a multiplexer quickly switches between them in a single cycle [141, 78]; therefore

ultra-fast frequency changes are possible and PLL lock time is not an issue. This is well

suited to mitigate the inter-corner dynamic variations where the timing guardbanding

across corners are far apart. To mitigate the intra-corner guardband between the two

classes of sequences, a finer clock speed adaptation is required which can be supported

by an all-digital PLL. For instance, [78] proposes an all-digital PLL that provides

multiple equally spaced clock phases with a small tuning step size of a few picoseconds;

these phases are switched in a glitch-free reverse switching scheme. A phase switching

frequency division architecture is also used to generate sub-integer division ratios and

thus a larger variety of output frequencies [45]. These circuits techniques support very

fast adaptation of the clock speed of the processor in immediate response to changes in

the operating corners, various sequences of instructions, and the type of applications.

The adaptive guardbanding adjusts the Cycle-Time as defined in Equation 3.7.

 _  = ( , , , )Cycle Time Application's Type Instruction Sequence V Tℑ (3.7)

Where Application’s Type is probabilistic or intolerant; Instruction Sequence is

the type of sequence which is either ClassI or ClassII; V and T are discretized current

operating conditions reported by on-chip CPM sensors; the function is represented by

a programmable lookup table (PLUT) as shown in Table 3.3. The PLUT is a fully

combinational module in the pipeline4. It is programmable through the memory-mapped

I/O in arbitrary epochs of the post-silicon stages. The PLUT is connected to CPM (for

monitoring the current operating condition (V,T)), the fetch stage (for monitoring the

4Note that PLU can be characterized and then optimized during design time stage depending upon the
range of operating conditions and application’s type.
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Table 3.3. PLUT for adaptive guardbanding.

Application's 

Type 

Instruction 

Sequence 

Voltage 

(V) 

Temperature 

(°C) 

Cycle 

Time (ns) 

Probabilistic ─ 0.99 0 0.78 

Probabilistic ─ 0.81 125 1.32 

Probabilistic ─ 0.72 125 1.55 

Intolerant ClassII 0.81 -40 1.44 

Intolerant ClassI 0.81 -40 1.36 

Intolerant ClassI 0.72 125 1.80 

… … … … … 

 

Instruction Sequence), and the single-cycle adaptive clocking module (for setting the

Cycle-Time). The Application’s Type is also set at the start of running the application

via memory-mapped I/O. The adaptive guardbanding monitors these four parameters

every cycle, and then sends corresponding commands to the clock speed adjustment

circuit to make sure that processor always runs at the fastest speed compatible with these

conditions.

As shown in Table 3.3, there is no intra-corner cycle time adaptation for the

probabilistic application. The within-corner correct execution is guaranteed by static

duplication of the critical instructions which is the application-aware version of the

multiple-issue instruction replay [42]. Therefore, for the probabilistic application we

do not require an online hardware recovery unit, and avoid the frequent changing of the

cycle time within an operating corner.

In our experiments, for characterization of the PLUT, we have used six sign-off

operating corners available on an advanced real-life technology library [23]. PLUT

conservatively matches a surrounding operating condition if the discretized reported

operating condition does not appear in the PLUT. Note, this is conservative for few points

in the PLUT, but will converge to ideal, while still being safe, if semiconductor fabrication

process provides more characterized operating corners. Furthermore, for the intolerant
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applications, the adaptive guardbanding considers the worst-case process variation, and

also considers a conservative guardband (as safe as ClassII) on the non-characterized

sequence of instructions (sequences out of seq1–seq20), thus guarantees 100% numerical

correctness for the intolerant applications. As shown in Table 3.3, the PLUT assigns

different cycle times to various types of applications at the same operating condition.

Inherent resiliency of the probabilistic applications indicates that these can tolerate

inaccuracies, while the intolerant applications do not accept such inaccuracies. Therefore,

when running an intolerant application the sufficient guardbanding is guaranteed for IP

as well.

3.6 Experimental Results

The experimental methodology for STA, and the variation-aware SSTA are de-

scribed using Figure 3.8 that shows both design time and runtime flows. During the

design time analysis, the open-source synthesizable VHDL code of LEON3 [10] and

Verilog description of the PLUT module have been synthesized with the TSMC 45nm

technology library, the general purpose process. The synthesized core enables the varia-

tion analysis of paths of the integer parallel pipeline unit, as well as the L1 instruction

cache (I$) and the L1 data cache (D$), unlike the resilient core [42] that only considers

the integer unit. The front-end flow with normal VTH cells has been performed using

Synopsys Design Compiler with the topographical features enabled, while Synopsys

IC Compiler has been used for the back-end. The design is optimized for performance

with the tight timing constraints, e.g., the clock period of 1.2ns. For SSTA, the sign-off

stage has been made with variation-aware timing analysis of Synopsys PrimeTime VX,

leveraging characterized parameters of TSMC 45nm variation-aware libraries discussed.

The dynamic variations are also analyzed utilizing the six accessible TSMC characterized

sign-off corners. Finally, for the post-layout simulations Mentor Graphics ModelSim is
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employed.

Figure 3.8. Methodology for the adaptive guardbanding.

At the runtime, in every cycle, the PLUT module sends the desired cycle time

to the adaptive clocking circuit utilizing the characterized SLV of the current sequence

and the operating condition monitored by CPM. For detecting the current sequence, the

PLUT looks at a window of three instructions (available on IF, ID, RA stages), thus it

detects the class of the current instructions sequence before they reach the execution

stage (the stage that needs more guardbanding as shown in Figure 3.2. The previous

stages (IF, ID, RA) are in a safe guardband, thus they will not have any failure if a

sequence of ClassI/ClassII is running while the cycle time is set for a ClassII/ClassI. If

the pipeline architecture does not have enough stages before the execution, the prefetch

buffer [22] can be monitored instead. By detecting changes in the class of sequences, the

single-cycle adaptive clocking circuit sets the core frequency accordingly. If an adaptive

clocking circuit has long-latency clock switching, the PLUT can look ahead of a prefetch



52

buffer coupled with phase prediction techniques to be able to decide about the desired

core frequency in advance. Note that the core consists of the integer pipeline, L1 I$, and

L1 D$ that are clocked by a single clock domain. Communication with L2 caches and

uncore part can be done via globally asynchronous, locally synchronous interconnection

supporting synchronization across multiple clock domains [98].

3.6.1 Effectiveness of Adaptive Guardbanding

Here, we investigate the effectiveness of our adaptive guardbanding technique

when executing real word applications5.

Error-Tolerant Applications

As error-tolerant probabilistic applications, we have selected multimedia bench-

marks from MiBench and MediaBench suites: H264 is a video decoder while Libmad

is a MP3 decoder; Susan is an image recognition program; DCT, Huffman coding and

Ycc2rgb are important kernels in the JPEG decoder; GSM implements a decoder for

the GSM communications standard, and LDPC is a linear error correcting code. The

appropriate fidelity metric analysis and application-level correctness technique based

on [55] are performed to identify the critical control flow instructions of these applica-

tions. Then, the critical instructions are statically duplicated during compile time. Finally,

the adaptive guardbanding determines the cycle time based on the given error probability

0.01% which can guarantee the acceptable fidelity metrics [55].

In the traditional worst-case design, the maximum throughput of applications

is limited by 400 MIPS (million instructions per second), analyzed by the worst-case

STA. Figure 3.9 shows the normalized throughput of the applications in various operating

conditions, covering ∆V=0.09V dynamic voltage variation and ∆T=125◦C temperature

variation. In comparison with the worst-case design, the adaptive guardbanding changes
5For those applications that have encoder and decoder parts, we consider their back-to-back executions.
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the throughput of these applications from 0.95× to 1.9× depends to the current operating

condition. Throughput of Rician is increased up to 1.9× at (0.81V, 125◦C). On the other

hand, throughput of Huffman coding at the operating condition of (0.72V, 125◦C) is

degraded by 0.95× because 69% of its instructions are the critical control flow instructions

which are duplicated, and cancel out the benefit of faster execution of the total instructions.

On average, the throughput of these applications is enhanced by 1.52×. This shows that

utilizing SSTA and adapting to the operating conditions highly surpasses the traditional

worst-case STA, and also hides the overhead of the critical instructions duplication.

Figure 3.9. Normalized throughput improvement by utilizing SSTA compared to the
worst-case design for probabilistic applications.

Intolerant Applications

For the intolerant applications, we have selected applications from six categories

of MiBench, each suite targeting a specific area of the embedded market, including

automotive, consumer devices, office automation, networking, security, and telecom-

munications. In addition, we have also considered EEMBC AutoBench [5] suite of

benchmarks, suitable for embedded processor in automotive, industrial, and general-

purpose applications. Without loss of generality, every probabilistic application can be
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considered as an intolerant application and benefits from SLV utilization if there is no

domain expert to define and analyze its fidelity metric. Figure 3.10 shows the percentage

of sequences of ClassI with various lengths of ALU instructions, L∈ {2,3,..., 7}, during

execution of the intolerant applications. For instance, ClassIL=2 shows the percentage

of sequences that have exactly two consecutive ALU instructions, ClassIL=3 represents

sequences with just three consecutive ALU instructions, and so on. The compiler6 opti-

mizes the applications codes with -O3 optimization option; and then the applications are

profiled during execution using TSIM [21], a cycle-accurate instruction-level simulator.

Figure 3.10.a shows on average 26% of the total executed sequences belong to ClassI,

while the remaining sequences belong to ClassII. Patricia has the maximum number

of sequences of ClassI, 35%. The adaptive guardbanding technique with the sequence

detector of three instructions benefits from the sequences of ClassI with a length of 3 or

more instructions.

Figure 3.10.b shows the percentage of sequences of ClassI when the compiler

utilizes loop unrolling technique. Loop unrolling is a loop transformation technique

that attempts to increase speed of a program by reducing instructions that control the

loop. It increases the number arithmetic instructions with regard to the memory and

control flow instructions, at the expense of register pressure and program size. Therefore,

applying the loop unrolling produces a longer chain of ALU instructions, and as a result

the percentage of sequences of ClassI is increased up to 41% and on average 31%. Hence,

the adaptive guardbanding benefits from this compiler trans-formation technique to

further reduce the guardband for sequences of ClassI. Considering the sequence detection

with a length of three instructions, the adaptive guardbanding reduces the cycle time

for 20% of the executed sequences on aver-age (up to 30% for Adpcm). Note that the

adaptive guardbanding technique also reduces the guardband for the other sequences of

6GNU Compiler Collection, version 3.4.4, with floating-point, mul/div emulation
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Figure 3.10. Percentage of sequences of ClassI during program execution: a) without
loop unrolling technique; b) using loop unrolling technique.
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Table 3.4. Throughput improvement of the intolerant applications utilizing the adaptive
guardbanding with loop unrolling.

Throughput  

improvement 

(×) 

only SLV  

(intra-corner) 

SLV +  

inter-corner 

max average max average 

(0.72V,125°) 1.04 1.03 1.36 1.35 

(0.81V,0°) 1.06 1.05 1.80 1.78 

(0.81V,125°) 1.05 1.05 1.88 1.87 

 

ClassI with a longer length of three instructions, since each sequence of ClassI with L

instructions is composed of two consecutive sequences with a length of L-1 instructions,

considering the overlap between the two sequences.

Table 3.4 lists the maximum and the average throughput improvement of the

adaptive guardbanding technique utilizing the loop unrolling during compilation phase of

the intolerant applications. The throughput improvement is evaluated across various oper-

ating conditions. The second and the third columns of Table 3.4 show the maximum and

the average throughput improvement of the applications utilizing SLV only within a fixed

operating corner. Thus, the applications benefit from the higher rate of execution of the

sequences of ClassI accomplished by the loop unrolling method. The last two columns

show the maximum and the average normalized throughput (the worst-case design is

the baseline) improvements utilizing SLV and inter-corner adaptation. In comparison

with the worst-case design, the adaptive guardbanding enhances the throughput of these

applications by a factor of 1.35× to 1.88× depending upon the current operating condi-

tion. This shows that utilizing the operating corner monitors and the online SLV coupled

with offline compiler techniques can result in a significant throughput improvement for

general-purpose applications where there is strict requirement on computational accuracy.

We compare our SLV technique (without the loop unrolling) with the code



57

transformation technique proposed in [76] which pads the instructions sequence with

a NOP instruction. The NOP padding eliminates the critical path activation for the

forwarding paths of a processor for a read-after-write (RAW) register dependency. In

other words, the result is no longer forwarded directly from the execution stage, it instead

is forwarded a cycle later from the pipeline register in the memory stage. For comparison,

we have identified the code sequences with a RAW register dependence and padded

them with NOP instruction. Those NOP padded sequence are clocked as fast as the

ClassI. The authors in [76] assume that they can clock that sequence 2.15× faster than the

typical frequency of a processor, while Intel shows that in the resilient processor the clock

can increase up to 0.16× in a fixed operating corner [42]; our results in Section 3.4.2

also indicates that intra-corner clock guardbanding for various sequences is bounded by

0.06×. Figure 3.11 shows the normalized (baseline is [76]) throughput of our adaptive

guardbanding utilizing SLV by adapting the cycle for dynamic operating conditions and

different classes of the sequences. On average, our technique achieves 1.65× higher

throughput because [76] imposes one extra cycle for executing the NOP instruction,

and does not adapt to the operating conditions. Figure 3.12 shows the energy overhead

of the NOP padding across various operating corners. It imposes 74nJ to 564nJ energy

overhead, depending upon the number of NOP instructions and the current operating

condition.

Multi-instruction code substitution, as another code transformation techniques

in [76], is not applicable for an embedded RISC machine where there are almost

no alternatives for representing an equivalent set of instructions, unless paying the

expenses of intrusive pipeline modification, ISA extension, and leveraging co-processors.

Nevertheless, there is a considerable performance and energy penalty for replacing a

multi-instruction sequence with an equivalent set of instructions [126].

The common strategy in circuit techniques [42, 41] is to allow the timing errors
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Figure 3.11. Normalized throughput improvement utilizing SLV compared to [76] for
the intolerant applications.

Figure 3.12. Energy overhead of NOP padding[76] across corners.
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to happen. Then, an extra cost is paid to compensate errors through the error recovery

technique: the multiple-issue instruction replay imposes up to 28 extra recovery cycles

per error [42]. This cost of recovery has shown to be high, thus leading to massive

performance degradation if processor blindly relies on the error recovery in face of

frequent timing errors, especially so in aggressive voltage over-scaling and near-threshold

computation. However, our proposed approach guarantees the correct execution at

lower cost: (i) It proactively prevent timing errors on VP by applying the adaptive

guardbanding across the operating corners and the sequence of instructions. For the error

intolerant applications, even if some residual timing error probability remains mainly

because of using Monte Carlo method described in Section 3.4.1, our approach relies

on the processor with error recovery capability that guarantees the correct execution

with 100% numerical correctness. In this way, our online adaptive guardbanding implies

that recovery actions will have to be under-taken in an extremely small number of cases,

hence the recovery penalty is minimal. (ii) Our technique allows timing errors to happen

on IP while meeting the application-specific requirements on computational accuracy for

the error-tolerant applications, hence no penalty of recovery.

3.6.2 Overhead of Adaptive Guardbanding

Table 3.5 lists the overhead of hardware implementation of the adaptive guard-

banding technique. The area overhead in comparison to LEON3 core (including I$

and D$) is near-zero (0.022%). Five CPMs, as PVT sensors, occupy 0.12% area [67].

The adaptive guardbanding also imposes only 0.034%/0.031% average total power over-

head for the intolerant/probabilistic applications, in the worst-case operating condition;

the power leakage overhead is 0.012%. This coarse grained monitoring and adapta-

tion approach is less intrusive and expensive and nicely complements the fine-grained

approaches such as Razor and EDS.
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Table 3.5. Area and power overheads of adaptive guardbanding.

 LEON3  Intolerant  Probabilistic 

Total power (W) 2.00E-01 6.79E-05 6.20E-05 

Leakage power (W) 1.04E-02 1.24E-06 1.20E-06 

Total area (cell) 744018 164 164 

 

3.7 Chapter Summary

A variation-aware cross-layer approach is presented that spans circuits, architec-

tural pipeline to the applications. We have proposed a design time analysis in conjunction

with the minimally intrusive runtime adaptive guardbanding technique to combat PVT

variations while guaranteeing various applications demands on computation accuracy.

We introduce the notion of sequence-level vulnerability (SLV) to capture variability

characteristics that can be used by the compiler, runtime system or even by the appli-

cation programmer. The adaptive guardbanding technique enables an in-order RISC

processor to run at the fastest speed compatible with the operating conditions, various

sequences of instructions, and the type of applications. This increases the throughput of

probabilistic applications upto 1.9× over the traditional worst-case design. Utilizing SLV

achieves on an average 1.6× speedup for the intolerant applications, compared to [76],

by adapting the cycle for dynamic variations and different instruction sequences. The

concrete full layout results in TSMC 45nm technology confirm that our technique incurs

only 0.022%, 0.012%, and 0.034% overheads for the total area, leakage power, and total

power respectively.

This chapter contains material taken from “Application-Adaptive Guardbanding

to Mitigate Static and Dynamic Variability,” by Abbas Rahimi, Luca Benini, and Rajesh

K. Gupta, which appears in IEEE Transactions on Computers (TC), 63(9), 2014. The

dissertation author was the primary investigator and author of this paper.



Chapter 4

Procedure-Level Tolerance

Variation in performance and power across manufactured parts and their operating

conditions is a well-known issue in advanced CMOS processes. This chapter proposes a

resilient hardware/softwate (HW/SW) architecture for shared-L1 processor clusters to

combat both static and dynamic variations. We first introduce the notion of procedure-

level vulnerability (PLV) to expose fast dynamic voltage variation and its effects to

the software stack for use in runtime compensation. To assess PLV, we quantify the

effect of full operating conditions on the dynamic voltage variation of a post-layout

processor in 45nm TSMC technology. Based on our analysis, PLV shows a range of

18mV–63mV inter-corner variation among the maximum voltage droop of procedures.

To exploit this variation we propose a low-cost procedure hopping technique within the

processor clusters, utilizing compile time characterized metadata related to PLV. Our

results show that procedure hopping avoids critical voltage droops during the execution

of all procedures while incurring less than 1% latency penalty. This chapter provides a

method for predicting and preventing the timing errors in shared-L1 processor clusters.

4.1 Introduction

Given the close relationship between power and temperature, and the increased

importance of variability in the future, treatment of variability during pre-silicon and

61
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post-silicon design stages is crucially important. Resilient circuit techniques suffer from

power-hungry error recovery which is expensive for a many core fabric. In contrast, our

approach is applicable to clusters of simple processors and exploits the opportunity given

by tightly coupled architecture to dynamically shift work from one core to another with

minimal overhead. In this chapter, we proposes a resilient HW/SW method for shared-L1

processor clusters to combat both static and dynamic variations:

1. We introduce the notion of procedure-level vulnerability (PLV) to capture the

effects of dynamic IR-drop. Using characterized PLV, we enable a software

preventive methods that build upon well-known hardware detection/correction

techniques for process variability and aging.

2. We propose a low-cost runtime procedure hopping that facilitates migration of

procedures within a processor cluster, utilizing compile time characterization

(captured as metadata) of PLV.

3. An accurate gate-level analysis flow which leverages industrial design implemen-

tation tools and libraries to characterize IR-drop of individual procedures in the

presence of variability is developed. We demonstrate our approach on a tightly-

coupled shared-L1 multi-core cluster, representative of a large class of multi-core

architectures (e.g. GP-GPUs, programmable multimedia accelerators). Full post

place-and-route (P&R) results in 45nm TSMC technology confirm that the pro-

cedure hopping technique avoids the critical IR-drop during the execution of all

procedures while incurring less than 1% latency penalty.

4.2 Variation-Tolerant Processor Clusters Architecture

% In this section, we describe the architectural detail of proposed variation-

tolerant processing cluster. These clusters are the essential parallel components of many
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core fabrics, e.g., NVIDIA Fermi [145] features 512 CUDA processors organized into 16

groups of processing cluster. In our implementation, each cluster consists of sixteen 32-bit

in-order RISC cores compliant with the SPARC V8 architecture, an intra-cluster shared

level-one instruction cache (shared-L1 I$) [109], an on-chip tightly coupled data memory

(TCDM), two fast logarithmic interconnections [123] for both instruction and data sides,

and a hardware synchronization handler module (SHM). The shared-L1 I$ for the MIMD

cluster can achieve better performance, up to 60%, than the private I$ per core [109].

On the data side, a multi-ported, multi-banked, level-one TCDM is directly connected

to the interconnect. The number of memory ports is equal to the number of banks to

have concurrent access to different memory locations. The logarithmic interconnection is

composed of mesh-of-trees networks to support single cycle communication between

processors and memories in L1-coupled processor clusters [123]. When a read/write

request is brought to the memory interface, the data is available on the negative edge of

the same clock cycle, leading to two clock cycles latency for a conflict-free TCDM access.

The SHM acts as an extra slave device of the logarithmic interconnect to coordinate and

synchronize cores for accessing shared data on TCDM [109].

All components of the cluster work with the same frequency (memories with

a 180◦ phase shift) decided by DFS, while only the voltage of cores is isolated by the

fast level shifters thus enabling core-level dynamic VDD-hopping [48, 99]. The VDD-

hopping uses three voltages provided by external DC-DC converters (no need of on-chip

inductor and charge pump) to control the local voltage of the core based on the core’s

delay variation. To hop between three supply voltages, a device called power supply

selector (PSS) is necessary. The VDD-hopping utilizes an efficient voltage transition

which allows changing the supply voltage following a controlled ramp, limiting wide

current variations, avoiding any supply voltage under- or over-shoot and current flowing

from one source to another [99]. Silicon results of a 65nm test-chip indicate that the core
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does not need to be stopped during VDD-hopping thanks to smooth, and fast voltage

transitions (less than 100ns), with no under-shoot or over-shoot [31]. The hopping unit

and its power switches are fully integrated and are 20× smaller than the integrated buck-

boost DC-DC converter [31]. As shown in Figure 4.1, the level shifter standard cells

are utilized in the back-end with a fine-grain multi-VDD design flow; each the high-to-

low/low-to-high level shifter imposes only 12ps/42ps delay [23] (262nW/43nW average

leakage power) for a load of fan-out-of-4, thus enabling single-cycle communications

between cores and TCDM/shared-L1 I$.
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Figure 4.1. Variation-tolerant processor cluster.

4.2.1 Variation-Aware VDD-Hopping

To observe the effect of process parameters variation on frequency of individual

cores within a cluster, we have accurately analyzed how critical paths of each core are

affected, considering the back-end details implementation of cores. Each core has been
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optimized during synthesis and P&R individually with a target frequency constraint

of 830MHz, then a bottom-up synthesis approach is leveraged to form the physical

implementation of the cluster. After parasitic extraction, in the sign-off stage, the

process parameters are varied based on die-to-die and within-die characterized process

parameters variations of 45nm TSMC models, derived from the first-level process created

by principal component analysis. These standard industrial libraries and design process

are supported by the state-of-the art commercial tools [23], thus the calculated cores’

frequency accurately reflect the true results obtained in silicon. The maximum frequency

variation of every core under different operating voltages is shown in Figure 4.2. Within

a cluster, each cores maximum frequency varies significantly due to increasing within-die

variations. For instance, at 0.81V, three cores (f4, f8, f9) of out of 16-core cannot meet

the design time target frequency of 830MHz.
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Figure 4.2. Frequency (MHz) variation of a 16-core cluster due to the process parameters
variations under different voltages.

To cope with this frequency variation problem there are three solutions: (i)

limiting the frequency of cluster by the slowest core (f8=820MHz); (ii) disabling the

slowest cores and clocking the cluster with the next slowest core (f4=826MHz); (iii)

running each core at its maximum frequency independently. All these solutions impose

non-negligible performance penalty; the first and second solutions directly diminish the

throughput of cluster, and the last solution needs extra latency for synchronization of

cores with different clock frequencies. Synchronization across multiple clock frequency
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islands increases the latency of interconnection which its performance impact can be as

high as the cache miss.

On the other hand, we consider a core-level VDD-hopping [13] for tuning the

voltage of each core individually to compensate the impact of process variation. For

instance, Figure 4.2 shows that all cores of the same cluster meet the target frequency

of 830MHz when a higher VDD (0.99V) is applied. Therefore, every core can have its

own voltage domain, while all cores can work with the target frequency utilizing the fast

level shifters. The critical paths delay of every core are measured in real-time by the

less intrusive and low-overhead CPMs [59], hence the variation-aware VDD-hopping

(VA-VDD-hopping) can accordingly tune the cores’ voltage periodically at arbitrary

post-silicon stages. It mitigates both process variation and even aging slows down.

Consequently, the cores which are fabricated on a fast piece of silicon will work on a

lower voltage than the boosted “high VDD” voltage; this not only lowers their power but

delays their aging. On the contrary, slow cores will supply at higher voltages to be able

to meet the target frequency. As shown in Figure 4.2, the VA-VDD-hopping elevates the

voltage of slow cores (f4, f8, f9) to 0.99V, while the rest of cores are supplying at 0.81V,

therefore enabling the whole cluster to clock at the target frequency of 830MHz. Note

that the VA-VDD-hopping technique mitigates the within-cluster delay variations, but

imposes voltage supply changes at the core-level that can affect core’s aging. Therefore,

to extend service life of the slow cores the ratio of stress to recovery time can be changed

using core activity duty cycling techniques [108].

4.3 Procedure Hopping for Dynamic IR-Drop

In the previous section, we have shown that the variability-affected cluster can

combat delay variation caused by the process parameter variations and aging, leveraging

the real-time observers and voltage as the control knob. CPMs observe the available
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slack on paths, and VA-VDD-hopping controls the voltage accordingly, this detec-

tion/correction control loop is a well-suited for those variations that: (i) have a slow time

constant since compensation requires several clock cycles; (ii) contain low-frequency

components to avoid the frequent cost of rollback and calibration. On the other hand,

fast dynamic variations, like IR-drop, that contains high-frequency component cannot

be countered by a reactive detection/correction loop. They need to be anticipated and

prevented.

For this type of variations, we propose a technique consisting of two major phases:

design time characterization of metadata related to PLV, and runtime preventive procedure

hopping. During characterization, the probability of voltage droop/rise versus various

voltage (V) and temperature (T) is characterized at the level of procedures, where the

problematic sequences of instructions [73, 129] exist. Therefore, the PLV is calculated

for every procedure on different combinations of (V,T) of the core, then the metadata is

generated as the result. The characterized metadata is attached to each procedure at the

compile time, to be able to use for runtime decisions about finding the best location to

run the procedure among the available (V,T)-islands within a cluster.

During runtime, the core can evaluate the PLV of every procedure just looking

at the characterized metadata, and at the same time monitoring its current (V,T) using

CPMs. If the calculated PLV is greater than a predefined threshold (PLV threshold), this

means that running procedure on the original core (caller) would likely cause critical

IR-drops, thus the procedure hops to another core (callee) where its (V,T) is suitable for

the procedure execution. As discussed in the next subsection, procedure hopping can

be done remarkably fast and proactively enough thanks to the tightly coupled shared

resources within a cluster.
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4.3.1 Supporting Intra-Cluster Procedure Hopping

Here, we describe the architectural HW/SW design to support the procedure

hopping within a cluster. The goal is to facilitate fast and proactive migration of proce-

dures from a caller core to the rest of cores, without special compiler support, minimal

impact on the normal execution, and reasonable memory overhead. Figure 4.3 shows

the HW/SW interactions, and steps of procedure hopping of the cluster. It is shown that

accessing both data and instruction is facilitated by shared TCDM and L1 I$. The shared

TCDM has four regions: (i) shared local: maintains variables explicitly defined to be

shared at compile time; (ii) shared stack: maintains the parameters for passing among

cores; (iii) stacks: region is defined to maintain the normal stack of all 16 cores; (iv)

heap: is used for dynamically allocated structures.

 

…
ProcX@Callee:
if (calculate_PLV ≤ PLV_threshold)

set_statusX_PHIT = running
load_contex&param_from_SSPX

set_all_param&pointers
call ProcX

store_contex_to_SSPX

set_statusX_PHIT = done
send_broadcast_ack

else 
resume_normal_execution

…

Broadcast_req_ISR:
ProcX@Callee = search_in_PHIT

call ProcX@Callee

…
call ProcX //conventional compile 

Call ProcX@Caller //VA-compile

…
ProcX@Caller:

If (calculate_PLV ≤ PLV_threshold)
call ProcX

else 

create_shared_stack_layout
set_PHIT_for_ProcX

send_broadcast_req
set_timer
wait_on_ack_or_timer

…
Broadcast_ack_ISR:

if (statusX_PHIT == done)
load_context&return_from_SSPX
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Figure 4.3. HW/SW collaborative architecture to support intra-cluster procedure hop-
ping.

For every procedure e.g. ProcX, two variation-aware procedures, ProcX@Caller

and ProcX@Callee, are considered to enable runtime accesses to the characterized

metadata of ProcX in the caller and callee cores respectively. The only compiler trans-
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formation is to transform “call ProcX” to “call ProcX@Caller”, as shown in the code

of the caller core in Figure 4.3. Therefore, the ProcX@Caller will first run on behalf of

ProcX to decide whether current (V,T) of the caller core is suitable for running ProcX

or not, utilizing the metadata and reading the operating condition monitors to calculate

PLV. If PLV is less than/equal to the PLV threshold, then “call ProcX” will be executed;

otherwise the procedure hopping will be applied to trigger migration of ProcX to a favor

core. Once a procedure hops from the caller core to a callee core, its code is easily

accessible via the shared-L1 I$ (without paying the penalty of filling a private cache),

but its parameters also needed to be visible for the callee core. Therefore, a shared stack

layout is created on the stack region of TCDM which is accessible via a shared stack

pointer (SSP). This 36-byte shared stack layout covers the eight out registers of SPARC

for passing six 32-bit parameters (%o0-%o5), a pointer to extra parameters (%o6), a

return address (%o7) as well as a pointer to the return data structure. The caller core

needs to copy-out the out registers and extra parameters (if available) to TCDM before

migration of procedure, and then copy-in the return value or structure form TCDM to

the registers after finishing execution of the migrated procedure. In our implementation,

we assume that procedures do not have any global variables, and all inter-procedure

communications are done through parameters passing; otherwise the caller core needs to

copy-out/in all context registers (32 current registers window) to/from TCDM.

To enable the callee core to access to the data and code of a migrated procedure,

a procedure hopping information table (PHIT) is considered in the shared local area of

TCDM. This table simply keeps the information of a migrated procedure, including its

SSP, address, and status. Every core can have up to eight nested procedure calls (the

window pointer is synthesized as a 3-bit register), and only one of them can migrate,

since the in-order core is a single thread core, and needs to wait for returning the result of

the migrated procedure. Therefore, the 192-byte PHIT has an entry for every core which
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keeps the following information for a migrated ProcX: the shared stack pointer (SSPX),

the address of ProcX@Callee (ADDRX), status of ProcX (STX) ={empty, waiting,

running, done}.

As shown in the code of the caller core in Figure 4.3, after filling the shared

stack and PHIT, the core does a broadcast req to inform the rest of cores about a waiting

procedure for service. This broad-cast triggers an interrupt for all cores except the caller

core, as potential callee candidates, which can service the waiting procedure based on

their programmable priorities – the core can be programmed to ignore this interrupt or

trigger it only when the core is idle. In the corresponding interrupt service routine (ISR),

the callee core resumes its normal execution, and then walks through PHIT circularly,

starting from its neighbor core for minimizing contention, picks up a waiting procedure to

assess it. For instance, if the callee core picks up the waiting ProcX for the service, it will

jump to the ADDRX, the address of ProcX@Callee. The philosophy of ProcX@Callee

is like ProcX@Caller, it essentially enables the callee core to assess PLV of the ProcX

based on the current operating condition of the callee core. If PLV is less than/equal to

the threshold, then the callee core will access to the code and data of ProcX for executing

on behalf of the caller core; otherwise the callee will resume its normal execution.

Particularly, the callee core changes the STX at PHIT from waiting to running, thus

the rest of cores will not pick ProcX up for the assessment – SHM device coordinates

multiple concurrent accesses to PHIT. The callee core then copies-in the procedure’s

parameters from the shared stack via SSPX, and calls ProcX for its execution. After

executing the procedure, the core copies-out the return value from register to the shared

stack, sets the corresponding pointer to the return data structure (if any), sets the STX to

done, and does a broad-cast ack to inform the caller about finishing execution of ProcX.

The caller core, in the corresponding interrupt service routine of broadcast ack,

checks the STX, if it is equal to done, it then copies-in the return value and structure (if
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any) from the shared stack to the caller core’s registers. In the time between sending a

broadcast req until receiving a broadcast ack, the caller core can service another waiting

procedure available on PHIT, or can switch to an idle mode. If the caller core does not

get any ack response after a programmable timer value (e.g. 100µs which is long enough

to executing a procedure), this means that there is no better (V,T)-island (no favor core)

within the cluster to prevent the voltage emergency during execution of the procedure.

Therefore, the caller core sends a request to cluster’s DFS controller to decrease the

frequency of the whole cluster, thus lower the power density and temperature.

4.4 Characterization of PLV to Dynamic Operating
Conditions

In this section, we demonstrate an advanced CAD flow and methodology to ad-

dress variation awareness for characterization of PLV to dynamic IR-drop (we separately

consider both voltage droops on VDD and voltage rises on VSS power domains), under

a full range of operating conditions. It consists of two stages as shown in Figure 4.4:

(i) the design time stage which accurately analyzes the dynamic voltage droops/rises

for individual procedures under full operating conditions; (ii) the compile time stage

which generates PLV metadata and corresponding variation-aware procedures. Finally,

the cluster benefits from the characterized PLV at the runtime stage.

Each core of the cluster is an open-source 32-bit in-order RISC LEON3 [10]

processor which is synthesized with the normal VT H cells of 45nm TSMC technology,

the general purpose process. The back-end optimization is performed using Synopsys IC

Compiler, and then the finalized net-list and parasitics are extracted for accurate power

analysis. To generate the accurate gate-level switching activity factor for the vector-based

power analysis, the procedure is simulated on top of the back-end extracted net-list with

timing back-annotation using Mentor Graphics ModelSim. The instantaneous power
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of the procedure is then analyzed under four TSMC operating conditions [23] using

Synopsys PrimeTime. Providing the signoff corner-based instantaneous power as well as

the switching activity factor enables Synopsys PrimeRail for a fine-grain, time-based rail

analysis of all resistive, capacitive and inductive components of the post-P&R processor.

Consequently, the inter-corner dynamic voltage droop/rise of the power rails is analyzed

as the output of the design time stage.

The quantification of the PLVX (PLV of ProcX) to dynamic IR-drops defined

in Equation 4.1, where NX is the total number of clock cycles which takes to execute

ProcX, and VolEmergi indicates whether there is at least a voltage emergency at the

clock cyclei or not. The voltage fluctuations of greater than 4% are viewed as voltage

emergencies [73, 129] that can result in a malfunction within the processor, therefore

the voltage droops/rises on VDD/VSS power rails are sampled k times during one clock

cycle. The average signal activity is 70ps, so the k=15 for the target cycle time (1.2ns),

while [73, 129] sampled a second-order linear system as a model of power supply only

once per cycle. The VolEmergi is one if the maximum sampled voltage droop/rise is

greater than 4% of VDD during the clock cyclei. In other words, PLVX defines as the

total number of cycles that have at least one voltage emergency over the total cycles for

the ProcX. Intuitively, if ProcX runs without any voltage emergency, PLVX is zero; on

the other hand, PLVX is one if ProcX faces at least one voltage emergency in every cycle.
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PLVX is characterized for the assigned voltages of VA-VDD-hopping to various

cores, {0.81V, 0.90V, 0.99V} representing {fast, typical, slow} cores on a variability-
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affected cluster. At design time, the slow cores and fast cores are distinguished based

on their maximum frequency distribution as described in Section 4.2, then their voltage

is tuned accordingly to meet the target cluster frequency. At compile time, the charac-

terized PLV metadata of every ProcX is attached to the two variation-aware procedures,

ProcX@Caller and ProcX@Callee, to be able to runtime access to the metadata on the

caller and callee cores respectively. During runtime, the discretized (V,T) operating

conditions are reported by sensors thus enabling ProcX@Caller/Callee to point to the

corresponding characterized PLV metadata to assess the vulnerability of ProcX at the

current (V,T).
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4.5 Experimental Results

This section shows the experimental results for embedded micro-processor Au-

toBench suite of benchmarks [5] characterized at the design time flow of Figure 4.4.

This section also evaluates the effectiveness of the procedure hopping technique to avoid

voltage emergencies, and quantifies its latency overhead as well as the voltage droop/rise

during the runtime stage. Every benchmark is a program consists of a “run” procedure

for its major computation which is selected for characterization1 and can be run on every

core – the cluster is a multi-programmed environment. The inter-corner and intra-corner

variations in the peak power of procedures are shown in Figure 4.5. The corner with

higher (V,T) has higher power density which imposes higher peak power. It is shown that

the maximum inter-corner peak power variation is 3.5× for FIR, while the maximum of

1.28× intra-corner peak power variation occurs between IFFT and tblook procedures at

(0.81V,125◦C). Furthermore, the maximum of 4.1× peak power variation is observed

across corners and procedures, a2time at (0.81V,-40◦C), and IFFT at (0.99V,125◦C).

We should point out that LEON3 is a simple in-order RISC processor, thus for fast and

complex cores where the stress on the power grid is much higher, we expect to see even

higher power variation. Increasing the (V,T) increases the power density as well as the

peak power, consequently the power network of the core highly experiences the voltage

emergencies in the high-power corner. The voltage droops of running FIR on the same

core but various operating corners are shown in Figure 4.6. The core at the high-power

corner (0.99V,125◦C) faces the maximum voltage droop of 44mV and 41mV as the

average of top-100 dynamic voltage droops, which are greater than 4% of VDD (990mV),

thus these voltage droops are considered as the voltage emergencies. As opposed to

the high-power corner (0.99V,125◦C), FIR does not face any voltage emergency at the

1PLV threshold is set at zero, since we assume that the procedures are not inherently resilient to any
timing error and even a single IR-drop may cause a wrong result.
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Figure 4.5. Intra-procedure peak power variation.

corners with voltages of 0.90V/0.81V thanks to their lower power densities. The core

has various power densities across the corners of Figure 4.6 (left to right): 0.66µW/µm2,

0.21µW/µm2, 0.18µW/µm2, 0.16µW/µm2.

 

 

Figure 4.6. Voltage droop of FIR across corners: (0.99V,125◦C), (0.90V,25◦C),
(0.81V,125◦C), (0.81V,-40◦C), left to right.

Figure 4.7 illustrates the maximum voltage droop/rise that occurs during the

execution of the procedures under the four characterized operating conditions. All

procedures running at cores with 0.81V have the maximum voltage droop/rise less than

4% of VDD. In-creasing the power density by switching to (0.90V,25◦C) causes only four

procedures (IFFT, IDCT, matrix, ttsprk) to face the volt-age emergencies. At the highest
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power corner, (0.99V,125◦C), most of the procedures except tblook will face either voltage

droop or voltage rise greater than 4% of VDD. These results show that the procedure

hopping technique can avoid the voltage emergency for all procedures by hopping them

form a high-voltage (0.99V) core to a low-voltage (0.81V) core. Experimental results

from the layout of variability-affected cluster, show that 13 low-power cores lie within a

cluster of 16-core, thus providing enough callee cores to service the migrated procedures.

4.5.1 Cost of Procedure Hopping

Table 4.1 lists the latency overhead of involving the procedure hopping both in

the caller and the callee cores. The total roundtrip overhead of the hopping a procedure

from the caller core and returning the results from the callee core is 793 cycles; this is

less than 1% of the total cycles needed to execute any of the characterized procedures

in [5], while [58] has at least a migration overhead of transferring 1280 flits only to

transfer the instructions and data from one core to another. In particular, if a procedure

has a runtime of 35K cycles, the amortized cost is only 2% and 0.2% latency penalty, in

case of hopping procedure to another core, or keep running procedure on the same core

respectively. This is accomplished through the advantage of shared-L1 I$ and TCDM

that eliminates the penalty of filling a private storage.

Moreover, during the procedure hopping no voltage emergency can occur even at

(0.99V,125◦C), neither in the caller nor the callee core, since the copy-in/out parameters

from/to registers/TCDM does not cause any burst of activity. Consequently, the procedure

hopping guarantees the voltage emergency-free migration of all procedures, fast and

proactively enough.
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Table 4.1. Latency overhead and IR-drops of procedure hopping

Caller 

hopping 

Caller  

not hopping 

Callee 

service 

Callee 

no service 

Latency  218 cycles 88 cycles 575 cycles 342 cycles 

Max droop 1.3% 0.6% 2.9% 1.8% 

 

4.6 Chapter Summary

This chapter presents a method for predicting and preventing timing errors at

the interface of procedure calls. Accordingly, we define a notion of procedure-level

vulnerability (PLV) to capture fast dynamic voltage variations. Based on PLV metadata,

a fully-software low-cost procedure hopping technique is proposed which facilitates

fast and proactive migration of procedures within a shared-L1 processor cluster. Full

post-P&R results in 45nm TSMC technology confirms that the procedure hopping avoids

the voltage emergency across a variability-affected cluster, while imposing only an

amortized cost of less than 1% latency for any of the characterized embedded procedures.

Furthermore, the effectiveness of the variation-aware VDD-hopping technique to combat

intra-cluster static variation has been demonstrated.

This chapter contains material taken from “Procedure Hopping: a Low Overhead

Solution to Mitigate Variability in Shared-L1 Processor Clusters,” by Abbas Rahimi, Luca

Benini, and Rajesh K. Gupta, which appears in ACM/IEEE International Symposium on

Low-Power Electronics and Design (ISLPED), 2012. The dissertation author was the

primary investigator and author of this paper.



Chapter 5

Kernel-Level Tolerance

Negative bias temperature instability (NBTI) adversely affects the reliability of a

processor by introducing new delay-induced faults. However, the effect of these delay

variations is not uniformly spread across functional units and instructions: some are

affected more (hence less reliable) than others. This chapter proposes a NBTI-aware

compiler-directed very long instruction word (VLIW) assignment scheme that uniformly

distributes the stress of instructions with the aim of minimizing aging of GP-GPU

architecture without any performance penalty. The proposed solution is an entirely

software technique based on static workload characterization and online execution with

NBTI monitoring that equalizes the expected lifetime of each processing element by

regenerating aging-aware healthy kernels that respond to the specific health state of

GPGPU. We demonstrate our approach on AMD Evergreen architecture where iso-

throughput executions of the healthy kernels r-duce NBTI-induced voltage threshold

shift up to 49% (11%) compared to naive kernel executions, with (without) architectural

support for power-gating. The kernel adaption flow takes average of 13 millisecond

on a typical host machine thus making it suitable for practical implementation. This

chapter provides a method for predicting and preventing the NBTI-induced timing errors

in GP-GPUs.
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5.1 Introduction

Among various aging mechanisms, the generation of interface traps under NBTI

in PMOS transistors has become a critical reliability issue in determining the lifetime of

CMOS devices [53]. NBTI effects can be significant: its impact on circuit delay is about

15% on a 65nm technology node and it gets worse in sub-65nm nodes [34]. Non-uniform

NBTI-induced performance degradation is a major concern for many-core GP-GPUs

with up to 320 five-way VLIW processors. To address this issue:

1. We propose an online adaptive reallocation strategy to mitigate NBTI-induced

performance degradation in GP-GPU machines. This is accomplished through

a NBTI-aware compiler that uses a dynamic binary optimizer. During dynamic

recompilation, the binary is optimized by customizing the kernels code with respect

to specific health state of GP-GPU. This technique leverages a compiler-directed

scheme that uniformly distributes the stress of instructions throughout various

VLIW resource slots, results in a healthy code generation that keeps the underlying

GP-GPU hardware healthy.

2. We propose a fully software solution that uses static (offline) workload character-

ization and online availability of NBTI sensors. The dynamic binary optimizer

correlates the device stress time with instructions distribution, and equalizes the ex-

pected lifetime of each processing element without any architectural modification.

3. We demonstrate our approach on AMD Evergreen GP-GPU architecture and its

tool-chain to adapt kernels to the health state of GP-GPU. The throughput of our

healthy kernel execution is the same as naive kernel execution (iso-throughput).

In comparison with the naive kernels, our healthy kernels execution achieves a

maximum 49% reduction in NBTI-induced Vth shift over five years if GP-GPU
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supports power-gating during idle states. Power-gating is intrinsically protective

against NBTI by providing sleep states that spare gates from stress that produces

NBTI effects. In the absence of power-gating, our uniform self-healing NOP

execution technique mitigates the Vth shift by 11%. On average, the total execution

time of the entire adaptation process is 13 millisecond on an Intel i5 CPU 2.67GHz.

5.2 Device-Level NBTI Model

NBTI is an aging mechanism which manifests itself as an increase in the PMOS

transistor threshold voltage (Vth) and causes delay-induced failures. NBTI is best

captured by the Reaction-Diffusion (RD) model [104]. This model describes NBTI

in two stress and recovery phases. NBTI occurs due to the generation of the interface

traps at the Si-SiO2 interface when the PMOS transistor is negatively biased (Vgs = -Vdd)

(i.e., stress phase). In the stress condition, some holes in the channel interact with the

Si-H bonds in the interface which causes disassociation of Si-H bonds. The resulting

hydrogen atom diffuses away and leaves positive traps in the interface. As a result, the

Vth of the transistor increases which in turn slows down the device. Equation 5.1 shows

this increase in the Vth due to stress [143]:

∆Vth−stress = (Kv
√

tstress +
2n
√

∆Vth−t0)
2n (5.1)

where tstress is the amount of time that PMOS transistor is under stress; Kv has dependence

on electrical field, temperature (T), and Vdd; n is the time exponent parameter which is

1/6 for H2 diffusion; and ∆Vth−t0 is the initial Vth variation of PMOS at time zero.

Removing stress from the PMOS transistor (Vgs = 0) can eliminate some of the

traps by diffusing back dissociative H atoms, which partially recover the Vth shift. This
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is known as the recovery phase:

∆Vth−recov = ∆Vth−stress(1−
2ξ1te +

√
ξ2Ctrecov

(1+δ )tox +
√

Ct
) (5.2)

where trecov is the time under recovery; tox is the oxide thickness; te is the effective oxide

thickness; t is the total time; C has temperature dependence; ξ1, ξ2, and δ are constants

[143].

[35] derived a long-term cycle-to-cycle model as follows. In this model, the stress

and recovery cycles can be simulated for i cycles to find the Vth degradation. ∆Vth−stress,i

and ∆Vth−recov,i are temporal changes in Vth at the end of i-th stress and recovery cycles,

respectively:

∆Vth−stress,i = (Kv
√

αTclk +
2n
√

∆Vth−recov,i)
2n (5.3)

∆Vth−recov,i = ∆Vth−stress,i(1−
2ξ1te +

√
ξ2C(1−α)Tclk

(1+δ )tox +
√

CiTclk
) (5.4)

where α is duty cycle or the ratio of time spent in the stress to one period of stress-

recovery; Tclk is the period of one stress-recovery cycle; and i = t/Tclk. The NBTI rate

depends on many factors including process-related parameters, temperature, voltage, and

workload. Here we focus on the impact of workload or α in the above equations. The

duty cycle (α) is controlled by the software to reduce the NBTI-induced effects.

A transistor with a larger Vth than expected has lower drive current, and higher

delay during a transition. The switching delay of a transistor can be roughly expressed as

the alpha-power law:

τ ∝
VddL

µ(Vdd−Vth)α ′
(5.5)

where µ is the mobility of carriers; α ′ ≈ 1.3 is the velocity saturation index; and L is the
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channel length. Therefore, the delay variation ∆τ/τ can be derived as follows:

∆τ/τ =
∆L
L

+
∆µ

µ
+

α ′

Vdd−Vth
∆Vth (5.6)

Considering only the effect of ∆Vth shift and neglecting other terms, the delay degradation

∆τ is shown in Equation 5.7:

∆τ =
α ′∆Vth

Vdd−Vth−t0
τ0 (5.7)

where Vth−t0 is the original transistor threshold voltage (at time t0), and τ0 is its corre-

sponding delay before degradation. We consider the largest ∆Vth to calculate the worst

case delay degradation [138, 84, 50, 103] in a circuit to assess the potential benefits of

proposed NBTI mitigation techniques. In our analysis, we set all the internal node states

to ‘0’ during the stress mode to determine the worst case circuit degradation that limits

the lifetime of a chip.

5.3 GP-GPU Architecture

We focus on the Evergreen family of AMD GP-GPUs (a.k.a. Radeon HD 5000

series), designed to target not only graphics applications but also general-purpose data-

intensive applications. The Radeon HD 5870 GP-GPU compute device consists of

20 compute units (CUs), a global front-end ultra-thread dispatcher, and a crossbar

to connect the global memory to the L1-caches. Every CU has access to a global

memory, implemented as a hierarchy of private 8KB L1-caches, and 4 shared 512KB

L2-caches. Each CU contains a set of 16 Stream Cores (SCs) that have access to a

shared 32KB local data storage. Within a CU, a shared instruction fetch unit provides

the same machine instruction for all SCs to execute in a SIMD fashion. Finally, each SC
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contains five processing elements (PEs), labeled X, Y, Z, W, and T constituting an ALU

engine to execute Evergreen machine instructions in a vector-like fashion. The SC has

also a general-purpose registers file to support private memory. The block diagram of

architecture is shown in Figure 5.1.a.

Every SC is a five-way VLIW processor capable of issuing up to five floating

point scalar operations from a single very long instruction word consists primarily of

five slots (slotX , slotY , slotZ , slotW , slotT ). Each slot is related to its corresponding PE.

Four PEs (X, Y, Z, W) can perform up to four single-precision operations separately and

perform two double-precision operations together, while the remaining one (T) has a

special function unit for transcendental operations. In each cycle, VLIW slots supply a

bundle of data-independent instructions to be assigned to the related PEs for simultaneous

execution. In an N-way VLIW processor, up to N data-independent instructions, available

on N slots, can be assigned to the corresponding PEs and be executed simultaneously.

Typically, this is not done in practice because the compiler may fail to find sufficient

instruction-level parallelism (ILP) to generate complete VLIW instructions. On average,

if M out of N slots are filled during an execution, we call the achieved packing ratio

is M/N. The actual performance of a program running on a VLIW processor largely

depends on the packing ratio.

5.3.1 GP-GPU Workload Distribution

In this subsection, we analyze the workload distribution on the Radeon HD GPUs

architecture, where there are many PEs to carry out computations. As it is mentioned

in Section 5.2, NBTI-induced degradation strongly depends on the resource utilization,

which depends on the execution characteristics of the workload. Thus, it is essential to

analyze how often the PEs are exercised during the runtime execution of the workload.

To this end, we first monitor the utilization of various CUs (inter-CU), and then the
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utilization of PEs within a CU (intra-CU).

To examine the inter-CU workload variation, the total number of executed instruc-

tions by each CU is collected during a kernel execution as per a methodology described

in Section 5.5. Figure 5.1.b shows that the CUs execute almost equal number of instruc-

tions, and there is a negligible workload variation among them. We have configured six

compute devices with different number of CUs, {2, 4,..., 64}, to finely examine the effect

of the workload variation on a variety of GP-GPU architecture (The latest Radeon HD

5000 series, HD 5970, has 40 CUs featuring 4.3 billion transistors in 40nm). During

DCT kernel execution, the workload variation between CUs ranges from 0% to 0.26%

depends to the number of physical CUs on the computation device. The DCT input

kernel parameters are fixed for all configured compute devices, thus they carry out the

same amount of workload – note that the total number of executed instructions per CU is

inversely proportional to the number of available CUs on the compute device. Execution

of all kernels listed in Section 5.5 confirms that the inter-CU workload variation is less

than 3%, when running on the device with 20 CUs (HD 5870). This nearly uniform

inter-CU workload distribution is accomplished by load balancing and uniform resource

arbitration algorithms of the ultra-thread dispatcher.
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Figure 5.1. (a) Block diagram of the Radeon HD 5870 architecture. (b) Inter-CU
workload variations for six configured compute devices. (c) Inter-PE ALU instructions
distribution for various naive kernels in the HD 5870 compute device (#CUs = 20).

Next, we examine the workload distribution among the PEs. Figure 5.1.c shows
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the percentage of the executed instructions of ALU engine by various PEs during exe-

cution of different kernels. ALU engine here refers to four PEs (PEX , PEY , PEZ , PEW )

which are identical in their functions [24]; they differ only in the vector elements to

which they write their result at the end of the VLIW. As shown, the instructions are not

uniformly distributed among PEs. For instance, the PEX executes roughly half of the

ALU engine instructions (50.7%) during Rdn kernel execution, while only about one

quarter of the ALU engine instructions (27.1%) are executed by PEX during SF kernel

execution. Execution of all kernels listed in Section 6 shows that seven kernels execute

more than 40% of the ALU engine instructions only on PEX . This non-uniform workload

variation causes non-uniform aging among PEs, and exhausts some PEs more than others

and shortening their lifetime. Unfortunately, this non-uniformity happens within all CUs

since their workload is highly correlated together, therefore no PE throughout the entire

compute device is immune from this unbalanced utilization.

Thus, root cause of non-uniform aging among PEs is the frequent and non-

uniform execution of VLIW slots. For example, higher utilization of PEX implies that

slotX of VLIW is occupied more frequently than the other slots. This substantiates that

the compiler does not uniformly assign the independent instructions to various VLIW

slots, mainly because the compiler only employs optimizations for increasing the packing

ratio through finding more ILP to fully pack the VLIW slots. The VLIW processors

are designed to give the compiler tight control over program execution; however, the

flexibility afforded by such compilers, for instance to tune the order of instructions

packing, is rarely used towards reliability improvement.

5.4 Aging-Aware Compilation

The key idea of an aging-aware compilation is to assign independent instructions

uniformly to all slots: idling a fatigued PE and reassigning its instructions to a young
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PE through swapping the corresponding slots during the VLIW bundle code generation.

This basically exposes the inherent idleness in VLIW slots and guides its distribution

that does matter for aging. Thus, the job of dynamic binary optimizer, for K-independent

instructions, is to find K-young slots, representing K-young PEs, among all available

N slots, and then assign instructions to those slots. Therefore, the generated code is a

“healthy” code that balances workload distribution through various slots maximizing the

life time of all PEs. In this section, we describe how these statistics can be obtained

from silicon, and how compiler can predict and thus control the non-uniform aging. The

adaptation flow is illustrated in Figure 5.2 through four steps: 1) reading aging sensors;

2) kernel disassembler, static code analysis, and calibration of predictions; 3) uniform

slot assignment; 4) healthy code generation.

5.4.1 Observability: Aging Sensors

The compiler needs to access the current aging data (∆Vth) of PEs to be able to

adapt the code accordingly. The ∆Vth is caused by the temporal degradation due to NBTI

and/or the intrinsic process variation, thus PEs even during early life of a chip might have

different aging. Employing the compact per-PE NBTI sensors [134] which provide ∆Vth

measurement with 3σ accuracy of 1.23 mV for a wide range of temperature, enables

large scale data-collection across all PEs. The performance degradation of every PE

can be reliably reported by a per-PE NBTI sensor, thanks to the small overhead of these

sensors. Test chips efficiently consider multiple sensors banks containing up to total 256

NBTI sensors (in 45nm), hence the power overhead of laying out thousands of sensors

would only be a few hundreds of µW at maximum, which is a small fraction of power

relative to a PE [133]. The sensors support digital frequency outputs that are accessed

through memory-mapped I/O by the dynamic binary optimizer in arbitrary epochs of the

post-silicon measurement.
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5.4.2 Prediction: Wearout Estimation Module

As described, the dynamic binary optimizer accesses to the ∆Vth of various PEs,

and evaluates their current performance (τ{X ,...,W}[t]) using Equation 5.7. In addition to

the current aging data, the compiler needs to have an estimate regarding the impact of

future workload stress on the various PEs. This is accomplished by wearout estimation

module shown in Figure 5.2. Since every naive kernel binary can be considered as the

future workload, code analysis techniques are required to predict the future workload in

presence of branches. A just-in-time disassembler disassembles the desired naive kernel

binary to a device-dependent assembly code in which the assignment of instructions

to the various slots (corresponding PEs) are explicitly defined, and thus observable

by the dynamic binary optimizer. Then, a static code analysis technique is applied

that estimates the percentage of instructions that will be carried out on every PE in a

static sense. It extracts the future stress profile, and thus the utilization of various PEs

using the device-dependent assembly code. Then, the static code analysis technique

predicts the future ∆Vth shift of PEs (Pred-∆Vth−{X ,...,W}[t+1]). If the predicted ∆Vth of

a PE is overestimated or underestimated, mainly due to the static analysis of the branch

conditions of the kernel’s assembly code, a linear calibration module fits the predicted

∆Vth shift to the observed ∆Vth shift, in the next adaptation period. For every PE, e.g.

PEX , the linear calibration module uses the simple linear regression with an explanatory

variable (Pred-∆Vth−X [t+1]), and a dependent variable (∆Vth−X [t+1]). The simple linear

regression fits a straight line through the set of m points (each kernel execution) in such a

way that makes the sum of squared residuals of the model as small as possible. The model

is developed during online measurement by observing the actual ∆Vth shift reported by

NBTI sensors (∆Vth−X [t]) after each kernel execution. Therefore, the linear calibration

for every PE determines the curve that best describes the relationship between expected



90

and observed sets of ∆Vth data; it projects the future ∆Vth of PEs (∆Vth−{X ,...,W}[t+1]) by

minimizing the sums of the squares of devia-tion between observed and expected values.

Finally, ∆Vth−{X ,...,W}[t+1] is used to calculated the future NBTI-induced performance

degradation (∆τ{X ,...,W}[t+1]).

5.4.3 Controllability: Uniform Slot Assignment

Thus far, we have described how the dynamic binary optimizer evaluates the

current performance degradation (aging) of every PE (τ{X ,...,W}[t]), and their future per-

formance degradation (∆τ{X ,...,W}[t+1]) due to the naive kernel execution. Then, the

compiler uses that information to perform code transformations with the goal of improv-

ing reliability, without any penalty in the throughput of code execution (maintaining the

same ILP). To minimize stresses, the compiler sorts the predicted performance degra-

dation of the slots increasingly and the aging of the slots decreasingly, and then applies

a permutation to assign fewer/more instructions to higher/lower stressed slots. This

algorithm for every period of adaptation [t] is shown below:

 1, 2, 3, 4 X,Y, Z,W

1, 2, 3, 4 X,Y, Z,W

i 1 4

i i

τ

τ

∆

←

[ ] { }

[ ] { }

Degrad = Rank_degrada!on_increasingly ( [t+1])

Age = Rank_aging_decreasingly ( [t]) 

For  =  to 

     Reallocate (slot (Age[ ])  slot (Degrad[ ]))

where slot(Degrad[1]) is the slot that will have the minimum number of instructions during

the future execution of the kernel, and slot(Age[1]) is the slot that its corresponding PE

has the highest aging. To take into account both initial and temporal degradations, our

algorithm considers the highest aging value across the same type of PE since the lifetime

of the chip is limited by the most aged component. Moreover, there is no means in the

assembly code to distinguish the same type of PEs spread out among all CUs, unless the

hardware architectural scheduler provides support. As a result of the slot reallocation,

the minimum/maximum number of instructions is assigned to the highest/lowest stressed
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slot for the future kernel execution, thus uniforming the lifetime of PEs.

Execution of all examined kernels shows that the average packing ratio is 0.3

which means there is a large fraction of empty slots in which PEs can be relaxed during

kernels execution. Evergreen ISA states that when a slot is empty, i.e. no instruction

is specified for that slot in a VLIW bundle, the corresponding PE implicitly execute

a NOP instruction [24]. Overall, our solution slips the preassigned instructions from

high stressed slot, thus they will have more NOP instructions to execute instead of the

stress-full instructions. This reduces their total stress time and effectively decreases and

thus ∆Vth. We can assume that during a NOP execution the PE is power-gated as it

invalidates the written result in the corresponding vector elements at the end of NOP

execution [24]. The feasibility of single-cycle power-gating is validated by Intel through

a fine-grained power-gating for a 45nm SIMD tile [85]. Nevertheless, even in the absence

of power-gating, the NOP instruction execution is self-healing that can reduce the stress

time of the PE adequately. More-over, the NOP instruction itself can be designed to

highly minimize the NBTI effect [66]. We compare the benefit of a GP-GPU architecture

with and without power-gating for our approach in Section 5.5.

Among the available software knobs to mitigate NBTI, our algorithm aims to

equalize the duty cycle (α) across all the slots. Another knob is the input pattern which

is impractical to predict both in the complex workloads and circuits, thus our wearout

estimation module relies on the online NBTI-induced measurement feedback through

the linear calibration module for better adaptation. The proposed compiler-directed

reliability approach superposes on top of all optimization performed by naive compiler

and does not incur any performance penalty, since it only reallocates the VLIW slots

(slips the scheduled instructions from one slot to another) within the same scheduling and

order determined by the naive compiler. In other words, this dynamic binary optimizer

guarantees the iso-throughput execution of the healthy kernel. It also runs fully in parallel
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with GP-GPU on a host CPU, thus there will be no penalty for GP-GPU kernel execution

if dynamic compilation of one kernel can be overlapped with the execution of another

kernel.

5.5 Experimental Results

Our methodology is based on AMD accelerated parallel processing (APP) soft-

ware ecosystem suitable for stream applications written in OpenCL. The stream kernels

are compiled into GP-GPU device-specific binaries using the OpenCL compiler tool-chain

which uses a standard off-the-shelf compiler front-end (g++), as well as the low-level

virtual machine framework with extensions for OpenCL as the back-end. We have

implemented our dynamic binary optimizer tool using C++ leveraging AMD compute

abstraction layer (CAL) APIs. CAL provides a runtime device driver library that supports

code generation, kernel loading and execution, and allows applications to interact with the

stream cores at the low-est-level. Multi2Sim [14] cycle-accurate simulation framework –

a CPU-GPU model for heterogeneous computing targeting Ever-green ISA – is modified

to collect the ALU engines statistics. We have also equipped the simulator with the NBTI

sensors where our tool has access to them; in a GP-GPU chip those digitally-output

memory-mapped sensors can be accessed by the device management part of CAL.

The following naive binaries of AMD APP SDK 2.5 [1] kernels are run on the

simulator: Reduction (Rdn), Binary Search (BSe), Haar1D (DH1D), Bitonic Sort (BSo),

Fast Walsh Transform (FWT), Floyd Warshall (FW), Binomial Option (BO), Discrete

Cosine Transform (DCT), Matrix Transpose/Multiplication (MT/M), Sobel Filter (SF),

Uniform Random Noise Generator (URNG). Before invoking the kernel, our adaptation

flow is triggered: the assembly code of the kernel using CAL APIs runtime library

(aticalrt) in conjunction with NBTI sensors data is passed to the wearout estimation

module, and a new code is generated that adapts the binary to the specific health state of
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GP-GPU. In our experiments, to keep track of aging, this flow of adaptation is also run

periodically in parallel on a host CPU every hour so as to impose negligible overhead.

We consider cycle-by-cycle architectural NBTI analysis [8] in the 65nm PTM

technology with Vgs=1.2V, T=300K, and the stress statistics of the kernels execution

obtained from the simulator; it is common to assume that all PMOS in a circuit degrade

by the same amount [138, 84, 50]. Figure 5.3.a shows the NBTI-induced Vth degradation

when executing a healthy Rdn kernel compared to the naive execution at time zero, and

after one year. For this experiment, we consider a HD 5870 which is not affected by the

process variability (initial inter-PE ∆Vth=0mV), and without power-gating support. As

shown in Figure 5.3.a, at time 0, all PEs have the equal Vth since there was no stress,

but after one year execution of naive Rdn, PEX has a maximum Vth of 435mV, because

of executing 50.7% of the total ALU engine instructions (see Figure 5.1.c). However,

the healthy Rdn kernel execution eliminates this non-uniformity by adapting itself every

hour, and thus results in 14mV lower Vth shift after one year (for all PEs, Vth=421mV).
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Figure 1. Vth shift for Rdn kernel: (a) NBTI-induced for 1 year; (b) Process variation and NBTI-induced for 360 hours.  

Figure 5.3. Vth shift for Rdn kernel: (a) NBTI-induced for 1 year; (b) Process variation
and NBTI-induced for 360 hours.

We also evaluate the effectiveness of the proposed approach when executing

the healthy Rdn kernel on a process variability-affected HD 5870 (initial inter-PE

∆Vth=10mV) and without power-gating support compared to the naive execution. Fig-

ure 5.3.b shows the Vth shift over time due to the naive kernel execution, and at the
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end of 360hr, there is an 8mV Vth variation among PEs which limits the lifetime of

PEX (Vth−X =413mV). On the other hand, Figure 5.3.c shows that adapting the kernel

periodically leads to a uniform Vth shift among all PEs (Vth variation is about 0.6mV),

and the maximum Vth shift is 406mV at the end of 360hr – with power-gating support it

further reduces to 402mV.

Indeed, the benefit of our technique is further pronounced for a larger time scale.

Figure 5.4 shows the reduction in ∆Vth over five years execution of healthy kernels with

and without power-gating support of GP-GPU architecture. In comparison with the naive

execution of kernels, GP-GPU with power-gating achieves a maximum 49% reduction in

∆Vth, while without power-gating the self-healing NOP execution provides a maximum

of 11% reduction in ∆Vth. Since during power-gating the circuits are in the sleep state

their aging mechanism are recovered quickly as derived in [49]. On average, compared

to the naive kernels, the execution of healthy kernels reduces ∆Vth by 34% and 6% in the

presence and absence of power-gating supports respectively. Furthermore, the impact of

our technique is higher if we consider the local temperature reduction due to idleness and

power-gating.
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The total execution time of the proposed adaptation flow is measured. Figure 5.5

shows the average execution time of the entire process, starting from disassembler up to

the healthy code generation. It also shows the fastest and slowest execution we measure,
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as error bars. More than 95% of execution time is spent through the kernel disassembly

using online CAL APIs, so the assembly code can be cached for faster iterations in future

adaptation. The uniform slot assignment algorithm always runs below 2K cycles for all

kernels, and the static code analysis is done between 220K–900K cycles depend to the

size of kernel. Overall, the total execution time is bounded by 35 millisecond, and on

average 13 millisecond on a host machine with an Intel i5 CPU 2.67GHz.
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Figure 5.5. Total execution time of adaptation process.

5.6 Chapter Summary

This chapter presents a method for predicting and preventing the NBTI-induced

timing errors at the highest level of a GP-GPU kernel. Although the workload distribution

among Compute Units (CUs) of GP-GPU is nearly uniform, its Processing Elements

(PEs) suffer from non-uniform VLIW distribution. To mitigate the impacts on lifetime

uncertainty and unbalancing among the PEs, an online adaptive VLIW reallocation

strategy is proposed that leverages a compiler-directed scheme to uniformly distribute

the stress of instructions throughout various VLIW slots. This technique periodically

regenerates healthy codes that heal over GP-GPU aging. Compared to the naive kernels,

the execution of healthy kernels not only imposes 0% throughput penalty but also reduces

∆Vth: up to 49%(11%) and on average 34%(6%) in presence(absence) of architectural

power-gating supports. On average, the total execution time of the adaption process is 13

millisecond.
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VLIW Assignment for GPU Architectures,” by Abbas Rahimi, Luca Benini, and Rajesh

K. Gupta, which appears in ACM/IEEE Design Automation Conference (DAC), 2013.

The dissertation author was the primary investigator and author of this paper.



Chapter 6

Work-Unit Tolerance

Manufacturing and environmental variations cause timing errors in microelec-

tronic processors that are typically avoided by ultra-conservative multi-corner design

margins or corrected by error detection and recovery mechanisms at the circuit-level.

In contrast, we present in this chapter runtime software support for cost-effective coun-

termeasures against hardware timing failures during system operation. We propose

a variability-aware OpenMP (VOMP) programming environment, suitable for tightly-

coupled shared memory processor clusters, that relies upon modeling across the hard-

ware/software interface. VOMP is implemented as an extension to the OpenMP v3.0

programming model that covers various parallel constructs, including task, sections,

and for. Using the notion of work-unit vulnerability (WUV) proposed here, we capture

timing errors caused by circuit-level variability as high-level software knowledge. WUV

consists of descriptive metadata to characterize the impact of variability on different

work-unit types running on various cores. As such, WUV provides a useful abstraction

of hardware variability to efficiently allocate a given work-unit to a suitable core for exe-

cution. VOMP enables hardware/software collaboration with online variability monitors

in hardware and runtime scheduling in software. The hardware provides online per-core

characterization of WUV metadata. This metadata is made available by carefully placing

key data structures in a shared L1 memory and is used by VOMP schedulerss. Our results

97
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show that VOMP greatly reduces the cost of timing error recovery compared to the

baseline schedulers of OpenMP, yielding speedup of 3%–36% for tasks, and 26%–49%

for sections. Further, VOMP reaches energy saving of 2%–46% and 15%–50% for tasks,

and sections, respectively. This chapter provides a method for detecting and correcting

the timing errors in tightly-coupled processor clusters.

6.1 Introduction

The most immediate manifestation of variability is in path delay variations.

Path delay variations cause violation of timing specification resulting in circuit-level

timing errors. Timing errors can result in an errant instruction leading to a malfunction

within the computing core. Hence, robust system design needs to ensure that systems

perform correctly despite increasing timing failures caused by variability in many-core

processor chips [98]. To ensure correct functionality in the presence of timing error,

some approaches rely upon error recovery mechanism that guarantee correct program

execution eventually. The timing failures are typically corrected by either adaptive

tuning of CMOS control knobs to provide better-than-worst case guardband for error-free

instruction execution [57], or by replaying the errant instruction [42]. For instance, a

45nm Intel resilient core [42] places EDS sensors [41] at the endpoints of the critical

paths of the pipeline stages. Once a timing error is detected during instruction execution,

the core prevents the errant instruction from corrupting the architectural state and an

error control unit (ECU) triggers proper actions to ensure error recovery. The ECU first

flushes the pipeline to resolve any complex bypass register issues, and then triggers

one of the two recovery mechanisms: 1) instruction replay at half clock frequency; 2)

multiple-issue instruction replay at the same clock frequency. These mechanisms impose

energy overhead and latency penalty of up to 28 extra recovery cycles per error [42]

which can adversely affect both performance and energy [147].
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To achieve the required robustness while reducing these overheads, the variability-

induced timing errors can be addressed through a combined hardware-software ap-

proach [72, 83, 93] that allows to evaluate the impact of a timing error on the overall

system. We have shown in the previous chapters that a holistic cross-layer variability

management can abstract the circuit-level timing error information into the vulnerability

of individual (Chapter 2) or streams (Chapter 3) of instructions when executed on a

particular core. For multi-core processors, this knowledge can be used by the runtime

system to implement variability-tolerant parallel workload deployment for reducing the

cost of timing error failure correction [124]. We have earlier defined a set of hierarchi-

cally organized vulnerability measures – from instruction set architecture to a parallel

programming model – to expose variations and their effects to the software stack. These

measures include instruction-level vulnerability (ILV) [111], sequence-level vulnerability

(SLV) [114], procedure-level vulnerability (PLV) [112], and finally task-level vulnera-

bility (TLV) [124]. ILV characterizes individual instructions as the most fine-grained

abstraction of the processor’s functionality, while SLV determines streams of instruc-

tions that have a significant impact on the timing error rate. Raising further the level of

abstraction, PLV exposes the effect of dynamic voltage variations for use in software

preventive actions. Within a shared-memory multi-core computing cluster, PLV enables

a runtime procedure hopping technique to mitigate the effect of variations by means of

low-cost subroutine (procedure) migration to a less vulnerable core [112]. TLV is an

extension to the OpenMP v3.0 tasking programming model to dynamically characterize

the vulnerability of tasks. Here, the runtime system reduces the cost of error recovery by

matching the characteristics of different variability-affected cores to the vulnerability of

individual parallel tasks.

In this chapter, we extend the definition of TLV to that of work-unit vulnerability

(WUV), where the notion of a parallel work-unit (WU) is specialized into any of three
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OpenMP constructs to specify work-sharing among parallel threads: task, sections

and for. Our goal is to provide runtime software support to increase cost-effective

countermeasures against timing errors in hardware. We pursue this goal by exposing

variability and its effect to the OpenMP programming model, thus enabling holistic

variability management. Accordingly, we make three contributions:

1. We devise a variation-aware synergistic hardware/software approach. It enhances

robustness of cluster-based processors through cost-effective software countermea-

sures against timing failures in hardware during system operation. On the hardware

side, our multi-core cluster is equipped with circuit sensors for online measurement

of variability and per-core introspective metadata characterization for a given work-

load. Fast access to metadata for each type of OpenMP work-sharing construct is

guaranteed by carefully placing the key data structures on fast shared-L1 memory.

2. On the software side, we propose a fully variation-aware OpenMP (VOMP) en-

vironment, which supports task, sections and for. VOMP provides online

characterization of descriptive metadata for these constructs. Characterized WUV,

or work-unit vulnerability, abstracts hardware variability that reflects the manifes-

tation of circuit-level timing errors during the execution of an instance of a specific

OpenMP construct. We also propose a set of scheduling algorithms, that imple-

ment software-only countermeasure schemes, one for each work-sharing construct.

Hence, the OpenMP runtime scheduler utilizes WUV metadata during scheduling

to efficiently mitigate the variability-induced timing errors at the level tasks, and

sections. This leads to a holistic runtime management system that strives to

reduce the cost of error recovery caused by execution of various work-sharing

constructs.

3. We demonstrate the effectiveness of our approach on a variability-affected tightly-
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coupled processor cluster with accurate ILV models in 45-nm TSMC technology.

Our experimental results indicate that (i) the entire cost of online software char-

acterization and countermeasures is paid off for a variability-affected fabric. (ii)

the proposed VOMP environment is able to save both energy and total execution

time for a wide range of parallelized applications. VOMP reduces the execution

time by 3%–36% and energy by 2%–46% for applications parallelized with task

directives. VOMP also reaches to energy saving of 15%–50% and faster execution

of 26%–49% for applications using sections directives. Further, we evaluate the

robustness of our approach across 80◦C temperature variations.

The rest of this chapter is organized as follows. Section 6.2 covers the architectural

details to support VOMP. Section 6.3 describes characterization of WUV metadata

for every type of work-unit under a full range of dynamic voltage (∆V=0.22V) and

temperature (∆T=140◦C) variations. The proposed runtime scheduling algorithms for

each work-sharing construct are presented in Section 6.4. In Section 6.5, we explain our

methodology to capture variations, framework setup, and present experimental results

followed by conclusions in Section 6.6.

6.2 Architectural Support for VOMP

We now describe the architectural details of the variation-tolerant processing

cluster, shown in Figure 6.1. The architecture is inspired by STMicroelectronics Platform

2012 (P2012) [98, 33] as a programmable many-core accelerator for next-generation data-

intensive embedded applications. The P2012 computing fabric is modular and scalable,

since it is based on multiple processor clusters such as those found in GP-GPUs [145]

and clustered accelerators like HyperCore architecture line processors from Plurality

[16], and Kalray multi-purpose processor array [9]. Every cluster has independent power
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and clock domain, therefore enabling fine-grained power and variability management

[98]. The clusters are connected via a fully-asynchronous network-on-chip that enables

them to work with different clock frequencies decided by a cluster controller for the

power/variability management [98]. In our implementation, we focus on a single cluster

consisting of sixteen tightly-coupled 32-bit in-order RISC cores, a level-one (L1) tightly

coupled data memory (TCDM) and a low-latency 16×32 logarithmic interconnection

[123]. The TCDM is a software-managed scratchpad memory, configured as a shared,

multi-ported, multi-banked L1 memory that is directly connected to the logarithmic

interconnection for fast accesses. The number of TCDM ports is equal to the number of

banks (32) to enable concurrent access to different memory locations. Note that a range

of addresses mapped on the TCDM space provides test-and-set read operations, which

we use to implement basic synchronization primitives, e.g., locks.
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Figure 6.1. Variation-tolerant tightly-coupled processor cluster for VOMP. The right
part shows a resilient core with EDS and ECU to correct timing errors by the replica
instructions; ΣI is the number of error-free instructions, and ΣRI is the number of replayed
instructions.

The logarithmic interconnection is composed of mesh-of-trees networks to sup-

port single cycle communication between the cores and TCDM banks (see the left part

of Figure 6.1). When a read/write request is brought to the memory interface, the data

is available on the negative edge of the same clock cycle, leading to two clock cycles

latency for a conflict-free TCDM access. The cores have direct access into the off-cluster
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L2 memory, also mapped in the global address space. Transactions to the L2 are routed

to a logarithmic peripheral interconnect through a de-multiplexer stage. From there,

they are conveyed to the L2 via the system interconnection which is based on the AHB

bus. Since the TCDM has a small size (256KB) the software must explicitly orchestrate

continuous data transfers from L2 to L1, to ensure locality of computation. To allow for

performance- and energy- efficient transfers, the cluster has a DMA engine. This can be

controlled via memory-mapped registers, accessible through the peripheral interconnect.

In the embedded tightly-couple processor cluster, it is essential that all the cores

within a cluster work with the same clock frequency to avoid the latency of the syn-

chronization [98]. Synchronization across multiple frequencies increases the latency of

the interconnection, and has a performance penalty as high as a L1 cache miss1 [123].

Therefore, the cores within the cluster are equipped with two circuit-level resiliency

techniques. First, each core relies on the EDS [41] circuit sensors to detect any timing

error due to dynamic delay variation. To recover the errant instruction without changing

the clock frequency, the core employs the multiple-issue instruction replay mechanism

[42] in its error recovery unit (ECU). It issues seven replica instructions (equal to the

number of pipeline stages) followed by a valid instruction. Second, the cluster supports a

VDD-hopping technique [99] that discretely tunes the voltage of slow cores– the cores

that are affected by static process variation. The VDD-hopping improves the clock speed

of the slow cores, thus enables all the components of the variability-affected cluster to

work at same frequency (with memories at a 180◦ phase shift). This technique avoids the

inter-core synchronization that would significantly increase L1 TCDM latency. The core-

level VDD-hopping has been already employed in a variability-tolerant tightly-coupled

cluster [112]. However, a core with higher vulnerability will impose extra cycles to

18 cycles are required for synchronization between multiple clock domains for a read/write operation,
while performance of the architecture relies on the fact that we have 2 cycles access to L1 memory.
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#pragma omp parallel 

{ 
#pragma omp for 

for (i=0; i<N; i++) 

loop_A(); 

 

#pragma omp sections 

{ 

#pragma omp section 

section_A(); 

#pragma omp section 

section_B(); 

} 

 

for (i=0; i<N; i++) 
#pragma omp task 

loop_B(); 

} 

WU type 1 

WU type 2 

WU type 3 

WU type 4 

Figure 6.2. Outlined WU types in a OpenMP program: task, sections, for.

correct the errant instructions.

6.3 Work-Unit Vulnerability and VOMP Work-Sharing

OpenMP [7] consists of a set of compiler directives and library routines to specify

parallel execution within a sequential code. Enclosing a code block within a #pragma

omp parallel directive has the effect of launching multiple instances of that code over

the available processors. Differentiating the actual work done by different processors in

OpenMP is achieved by means of work-sharing constructs: #pragma omp for, #pragma

omp sections and #pragma omp task. The for directive can only be associated to a

loop nest, and distributes loop iterations over available processors. Within a sections

directive multiple section blocks can be specified, each containing a different parallel

work-unit. Sections have limited expressiveness for describing task parallelism. For this
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reason, the latest OpenMP specifications have included the new task directive, which

supports sophisticated forms of task parallelism. However, task implies significant

overheads, which makes sections more convenient to outline few coarse grained tasks

in a program. In addition, it is easy to describe software pipeline parallelism with

sections, by just adding point-to-point synchronization to enforce dependencies within

parallel tasks. The latter is the main use we make of sections in this chapter.

As discussed earlier in the introduction, to enable software-driven policies for

variability-tolerant parallel workload scheduling we need to characterize parallel work-

units, WU, in terms of vulnerability to timing errors2. Each OpenMP work-sharing

construct outlines an execution unit which runs a sequence of instructions. Enclosing

portions of code within any of these constructs allows the programmer to statically

identify several WU types in the program, as every directive syntactically delimits a

unique stream of instructions. While at runtime the same stream may be dynamically

instantiated several times (e.g., a work-sharing directive nested within a loop), from the

point of view of our characterization it uniquely identifies a single WU type. As a direct

consequence, there are as many types of WUs in a program as there are work-sharing

directives in its code, as shown in Figure 6.2.

Intuitively, the closer we can associate information on variability-induced timing

errors (metadata) to software abstractions of a parallel WU, the better we can schedule

WUs to cores in a variation-tolerant manner. From this perspective, task-level vulnera-

bility, or TLV, is an important metadata to address variability-tolerance within standard

parallel programming models. The main limitation of TLV as described in [124] is that

its implementation is specific to the task OpenMP construct. While this construct allows

to express very flexible and sophisticated forms of dynamic parallelism, it is also true that

2Our platform does not have control over the errors happening while executing library code. The
functionality is preserved as each core is equipped with the replay mechanism.
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several embedded workloads focus on more regular forms of parallelism, at the loop- or

procedure-level [29]. Until the specification v2.5 OpenMP used to be focused on exactly

those types of parallelism, through the for and sections constructs.

In our previous work [111] we have introduced ILV or instruction-level vulnerabil-

ity as a metric to expose to the software stack the effect of variations on the performance

of a processing core, at the level of individual instructions. In a variability-affected core

ILV is not uniform across the instruction set. In fact, ILV partitions instructions into three

classes: (i) logical/arithmetic, (ii) memory, (iii) hardware multiply/divide. Instructions

belonging to different classes have different vulnerability to variations depending on the

way they exercise the non-uniform critical paths across the various pipeline stages. For

instance, in an in-order RISC core the execution and memory stages are highly vulnerable

to dynamic variations, and the memory class has a higher vulnerability in comparison

to the logical/arithmetic class. We note that complex out-of-order core such as IBM

POWER6 also confirms that vulnerability is not uniform across the instructions set [132].

Here we extend the notion of ILV to a more coarse-grained (in terms of software

execution units) metric: parallel work-unit vulnerability (WUV). WUV is a metric to

estimate execution time of each WU type per each core, under variability. This metric

is quite useful for the purpose of simultaneous vulnerability measurement and load

balancing. The vulnerability of a WU type varies based on the class of instructions that

it executes. WUV is clearly a per-core metric since the amount of variation affecting

different classes of instructions changes from one core to another. Therefore, different

dynamic instances of the same WU type can face different degrees of variability-induced

timing errors.

While the identification of WU types can be done statically (i.e., at compile time),

WUV characterization has to be done online due to two main reasons. First, dynamic

instances of the same WU type may exercise the processor pipeline in a non-identical
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manner due to data-dependent control flow that results in the execution of different

(classes of) instructions. Second, the characterization must reflect the variability-affected

characteristic of every core (not known a priori) on every WU type. WUV is defined as

follows:

WUV(i, j) = ∑ I +∑RI | ∀corei,∀WUtype j (6.1)

where ΣI is the number of error-free executed instructions; ΣRI is the number of replayed

instructions3 during execution of WU type j on core i, as reported by the ECU. Intuitively,

for a given WU type if all the instructions run without any timing error, the corresponding

WUV is equal to ΣI as the total error-free dynamic instruction count. In the event of

timing errors, WUV also accounts for the additional replica instructions. The lower the

WUV, the lower number of recovery cycles, the lower the dynamic instruction count,

and thus the higher throughput and energy efficiency. WUV dynamically characterizes

both vulnerability and execution time of WU types. Hence based on WUV values,

VOMP runtime schedulers can optimize the system performance or energy efficiency by

matching variability-affected core characteristics to WU types.

6.3.1 Intra- and Inter-Corner WUV

For Equation 6.1 WUV is the dynamic instruction count, including the replica

instructions, for a given WU type. Similar to ILV, WUV is also not uniform across

different variability-affected cores, which may exhibit different vulnerability to specific

instruction classes. To demonstrate how this effect is propagated to the programming

model level, we measure WUV across different WU types. More specifically, we use

OpenMP constructs to outline software execution units, or WUs, which iterate several

times over an identical instruction. We build four WU types each stressing a different

instruction, as shown in Figure 6.3.

3proportional to the number of errant instructions
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#define OP_MUL  1 
#define OP_ADD  2 
#define OP_DIV  3 
#define OP_SHIFT 4 
int A[][][], B[][][], C[][][]; 
void WU_run (int z, int OP) 
{ 
for (int y = 0; y < N; y++) 

  for (int x = 0; x < N; x++) 
  { 
   switch(OP) 
   { 
    case OP_MUL:   C[x][y][z] =  

A[x][y][z] *  B[x][y][z]; 
break; 
 

    case OP_ADD:   C[x][y][z] =  

A[x][y][z] +  B[x][y][z]; 
break; 

 
    case OP_DIV:   C[x][y][z] =  

A[x][y][z] /  B[x][y][z]; 
break; 

 
    case OP_SHIFT: C[x][y][z] =  

A[x][y][z] (� B[x][y][z]; 
break; 

   }  
  } 
} 

Figure 6.3. WU types each stressing a different class of instructions.

In the following, we repeat the same experiment with different OpenMP work-

sharing constructs. This synthetic experiment allows to stress a use case where we can

estimate the variations in WUV among the software execution units. Figure 6.4 illustrates

the synthetic benchmark parallelized with the #pragma omp task construct, while the

synthetic benchmark in Figure 6.5 uses the #pragma omp sections construct. For

the sake of clarity we organize the presentation of this experiment in following three

consecutive subsections, one per each OpenMP construct. Section 6.5.1 provides details

of our simulation setup.

task-Level WUV

Figure 6.4 shows the synthetic benchmark parallelized using the #pragma omp

task construct. We measure WUV for different WU (here, task) types when executing

on fixed and variable operating corners (current voltage and temperature). Specifically,

we analyze the effects of a full range of operating corners, a temperature range of 0◦C–
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#pragma omp parallel  
{ 
 #pragma omp master  
{ 

  for (int z = 0; z < N; z++) 
   #pragma omp task  
    WU_run (z, OP_MUL); 
   
  for (int z = 0; z < N; z++) 
   #pragma omp task  
    WU_run (z, OP_ADD); 
 
  for (int z = 0; z < N; z++) 
   #pragma omp task  
    WU_run (z, OP_DIV); 
 
  for (int z = 0; z < N; z++) 
   #pragma omp task  
    WU_run (z, OP_SHIFT); 
 } 
}  

Figure 6.4. Synthetic benchmark using OpenMP task.

 

 

#pragma omp parallel 
{ 
 for (int z = 0; z < N; z++)  
{ 

  #pragma omp sections nowait  
{ 

   #pragma omp section 
{ 

    WU_run(z, OP_MUL); 
    synch(); 
   } 
   #pragma omp section { 
    synch(); 
    WU_run(z, OP_ADD); 
    synch(); 
   } 
   #pragma omp section { 
    synch(); 
    WU_run(z, OP_DIV); 
    synch(); 
   } 
   #pragma omp section { 
    synch(); 
    WU_run(z, OP_SHIFT); 
   }  
  } 
 } 
}  

Figure 6.5. Software pipelined synthetic benchmark using OpenMP sections.
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140◦C, and a voltage range of 0.88V–1.1V. For sake of simplicity, in this section we

illustrate a normalized WUV (thereafter called NWUV) as a metric which divides WUV

value to its ΣI, therefore this normalized metric will have a range of values greater than

or equal to 1. For instance, if NWUV displays a value of 1, it indicates that there is no

replica instructions (ΣRI=0).

Figure 6.6 shows the task-level WUV for a core that works at fixed voltage

supply of 1.1V, while the environmental temperature is varied. As shown, the task-level

vulnerability is an increasing function of temperature; for instance, the execution of

task type one (task1) at a temperature of 0◦C results in an NWUV value of 1.0017,

while executing the same task at 140◦C causes an NWUV of 1.09 that increases the

vulnerability of task1 by 9%. This inter-corner WUV variation is the direct manifestation

of dynamic temperature fluctuation. At supply voltage of 1.1V, higher temperature leads

to a higher timing error rate that increases the number of errant instructions, as mirrored

by the WUV values.

Apart from the inter-corner WUV variation, for a given (fixed) temperature point

there is an intra-corner WUV variation among the four types of WUs (tasks). As shown

in Figure 6.6, at the fixed temperature of 0◦C, the WUV value of task3 is 6% higher than

the WUV of task2, indicating a considerable variation across task types. WUV of each

task type is different, even within the fixed operating conditions and in the absence of

environmental variations, since each task type executes distinct classes of instructions

experiencing different rates of the errant instructions.

Figure 6.7 shows the task-level WUV for the core operating at a fixed temper-

ature of 10◦C, while voltage is dynamically varied. As shown by the plot, NWUV is

a decreasing function of voltage. Higher voltages result in shorter critical path delay,

thus lower error rate and finally lower NWUV values. Similar to Figure 6.6, intra-corner

WUV variation can also be observed: WUV for different task types at the same operating
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Figure 6.6. Normalized WUV (NWUV) to temperature variations for task types.
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Figure 6.7. Normalized WUV to voltage variations for task types.

corner is not equal because their instructions do not uniformly exercise the various critical

paths of the pipeline. We have already seen that the vulnerability of instructions is not

uniform [111] resulting in different levels of vulnerability for task types.

sections-Level WUV

Figure 6.5 shows the code for the synthetic software pipeline implemented using

parallel sections. Each WU type (here indicated as section1, section2, section3 and

section4) is mapped on a different core. Synchronization between the pipeline stages is

accomplished via simple point-to-point synchronization primitives that we implement on

top of test-and-set semaphores. This guarantees that once computation of one pipeline
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stage is finished we can start the following stages. The sections construct is nested

within a loop, which models the repetitions of the pipeline. It outlines four WUs, each

dependent from the previous one. Note however that there is no dependence between the

last stage of one iteration and the first stage of the next iteration.

In this parallel pattern, representative of image processing kernels where a set of

filters is applied in sequence to independent image blocks (e.g., JPEG macro-blocks),

there are Nsec stages, such that Nsec < Ncore, where Ncore is the number of available

cores (16 cores in our platform). Normally, at the end of any work-sharing construct

it is implied a barrier synchronization operation among all processors. However, we

specify the nowait clause to skip this and allow the idle cores to start execution of the

next pipeline iteration.

We now examine the sections-level WUV for different section types when

executing on fixed and variable operating corners. Figure 6.8 shows NWUV values for

a core operating at fixed supply voltage of 1.1V with a variable temperature range of

0◦C–140◦C, while Figure 6.9 shows NWUV values for a fixed temperature of 10◦C with

a supply voltage variation range of 0.22V. Akin to the task-level WUV, the sections-

level WUV is an increasing function of temperature and a decreasing function of voltage.

A temperature fluctuation of 140◦C increases the sections-level WUV by an average

of 9%, and the voltage variation of 0.22V increases the sections-level WUV by an

average of 50%. Among the different section types, a maximum of 16% intra-corner

WUV variation is observed at (10◦C,1.09V).

for-Level WUV

Applications running on multi-core systems often focus on a very common data

parallel scenario where each core works on a portion of a data structure (e.g., array

or matrix) and must synchronize with the others on a barrier. Similar parallelization
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Figure 6.8. Normalized WUV to temperature variations for sections types.
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Figure 6.9. Normalized WUV to voltage variations for sections types.

schemes are typically focused on parallel loops, whose iterations are spread among

several concurrent threads. Data-level parallelism, for instance parallel loops, can be

exploited to distribute workload within a cluster. OpenMP v3.0 provides dynamic loop

scheduling as another work-sharing construct based on the notion of a work queue to

parallelize loops locally inside a cluster. A parallel for directive describes a loop as a

set of identical work-units; therefore the parallel for directive statically identifies one

type of work-unit in the program. For every loop iteration, the work-unit is dynamically

instantiated but it uniquely identifies a single type from our characterization point of

view. In other words, the work-units generated from the parallel for directive are

equivalent hence forming a homogeneous workload across all cores. This limits the

capability of VOMP to schedule a single type work-unit to an appropriate core given that

maintaining all cores busy.
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Conclusion for WUV

The main conclusion that we can draw from the experiments presented in the

aforementioned subsections is that WUV varies significantly: i) among WU types; and

ii) among the operating conditions. On one hand this is due to how different instruction

streams exercise the variability-affected critical paths in the processor pipelines, which

is the typical case for programs parallelized with sections or task directives, that

outline several parallel tasks (i.e., WU types). This confirms the previous observation

that executing different streams of instructions may result in various error rates [76]. For

example, for any given operating condition the WUV of simple arithmetic operations

(e.g., addition/shift) is lower than or equal to the WUV of complex arithmetic operations

(e.g., MUL/DIV). Detailed sensitivity analysis of a sequence of instructions to changes in

voltage and temperature is provided in [114]. On the other hand, even identical instruction

streams behave differently on different cores in presence of dynamic temperature and

voltage variations. This is particularly evident for the #pragma omp for construct,

which always distributes among processors an identical work-unit type (i.e., the same

instruction stream). Yet, WUV across cores varies significantly, because of the different

vulnerability to specific instruction classes and to operating conditions.

This motivates the need to specialize WUV for different WU types and for

online characterization. In the following section we describe how we augment the

VOPM runtime support for each of the work-sharing constructs to support online WUV

characterization.

6.3.2 Online WUV Characterization

In the proposed VOMP, each core performs online characterization while exe-

cuting a given WU type. To quantify WUV, the core collects ΣI and ΣRI statistics for

Equation 6.1 through a set of available counters in the ECU. The online characterization
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mechanism is distributed among all the cores in the cluster, thus enables full parallel WU

execution monitoring and characterization. WUV is represented as a two-dimensional

lookup table (LUT) for different WU types and cores. This lookup table is physically

distributed across all the banks of the L1 TCDM for fast parallel read/write operations.

Since each entry of the LUT consists of 32-bit integer data, and since each application

includes a bounded4 number (NWU ) of work-sharing directives, the LUT has a footprint

of NWU×4×Ncore Bytes, Ncore being the number of cores in the cluster. We provide two

simple functions for reading and writing the LUT, namely:

int LUT_rd (int WUtype, int coreID);

void LUT_wr (int WUtype, int coreID,

int WUV);

In addition, we implement two functions for retrieving the calculated WUV of a task

running on a core.

int read_WUV (int coreID);

void reset_WUV (int coreID);

The former function (read WUV) reads the WUV value from per-core hardware counters,

identified via the coreID parameter. These counters implement Equation 6.1, accumulat-

ing instruction count and replica instruction count for the target core since the last reset.

The second function (reset WUV) resets the counter for the target core (coreID).

Based on these low-level APIs, we modify the OpenMP runtime schedulers to en-

able online WUV characterization as illustrated in Figure 6.10 (our additions in bold font).

While this pseudo-code explicitly refers to the task scheduler, we modify in an equivalent

manner also the scheduler for sections. For what concerns loops the implementation is

slightly more complicated. OpenMP allows to couple the schedule(static|dynamic)
4up to a few tens, for large programs
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clause to the #pragma omp for directive. Choosing dynamic scheduling, chunks of

iterations of user-defined size are scheduled to parallel cores in a first-come, first-served

manner. This allows for better load balancing at runtime, but is implemented through

calls to a runtime scheduler and implies higher over-head. For those cases where loop

iterations contain identical amount of works it is often better to use static scheduling,

which is implemented by statically inlining the code that pre-computes the assigned itera-

tions to any cores. Thus, for dynamic scheduling we instrument the runtime scheduler

similar to Figure 6.10. For static scheduling we modify the OpenMP compiler to inline

the additional WUV characterization code during the loop expansion pass.

Note that in principle it would be strictly necessary to characterize a couple

<WUtype, coreID> only once. Once a WU type is characterized for a given core the

online characterization could be stopped. However, we rather keep the characterization

active at every scheduling event and apply a history-based weighted average calculation

between the new characterized WUV value and the previously WUV value stored in the

LUT. This has been used to estimate power and time for a given interval [27]; and also

better captures recent effects of dynamic variations on the cores, conditional code within

WUs, and future workload. At each scheduling point, the encountering core incurs only

a fixed negligible overhead for WU characterization. This is achieved by distributing the

LUT in the multi-banked TCDM that enables not only predictable accesses, as opposed

to cache-based hierarchical memories, but also fast parallel read/write operations among

the cores.

From the observation point of view, our online characterization can reflect any

changes in dynamic behavior of a core and the environment in which the core is used.

More specifically, in our cluster each core can be powered at a different voltage (that

could lead to different temperature points due to self-heating), but all the 16 cores have

to work with a fixed clock frequency. Figure 6.6, 6.7, 6.8, 6.9 show the sensitivity
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When taskj is scheduled on corei: 
begin 

EXTRACT_TASK (taskj) 
WUVold = LUT_rd (taskj, corei) 
reset_WUV (corei) 
EXECUTE_TASK (taskj) 
WUVnew = read_WUV (corei) 

WUVwrite = (WUVnew-(WUVnew(3))+(WUVold(3) 
LUT_wr (taskj, corei, WUVwrite) 

end 

 

Figure 6.10. Pseudo-code for task-level WUV characterization.

of WUV to changes in the operating voltage and temperature. These figures illustrate

that a wide range of dynamic variations can be reflected by WUV metric. From the

controllability point of view, the cluster as an accelerator operate under the control of

a main host processor, capable of running full-fledged operating systems (OS). The

cluster itself, on the other hand, typically does not have all the necessary support to run

unmodified OS. Resource management is demanded to custom lightweight middleware.

In this respect, the OpenMP implementation that we leverage in this work [97] as a

baseline to demonstrate our techniques is designed to operate on bare metal, as it is

built directly on top of the hardware abstraction layer (HAL). The HAL provides the

lowest-level software services for processor (thread) and memory management, as well

as the power control APIs.

6.4 VOMP Schedulers

6.4.1 Variation-Aware Task Scheduling (VATS)

In this subsection we first explain our OpenMP tasking implementation followed

by our specific variation-aware scheduling policy. OpenMP tasking has already been

considered as a convenient programming abstraction for embedded multi- and many-cores
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[47, 26, 136, 124]. Typically in these approaches the task scheduler is implemented using

a centralized queue which collects the task descriptors. The central FIFO design reduces

the overhead for task management, which is usually a relevant design choice for energy-

and resource-constrained systems. This design choice works well for homogeneous

systems, but places limitations on applying efficient scheduling policies in presence of

variability-induced heterogeneity across computational resources.

Our OpenMP implementation leverages distributed task queues (private queue

per each core), where all the threads5 involved in parallel computation can actively push

and pop job descriptors. Figure 6.11 shows the design of our OpenMP tasking framework

based on a distributed queue system. Every thread can access a queue using two basic

operations: insert and extract, which are translated into lock-protected operations on

a queue descriptor (stored in TCDM for minimal access time). Queue descriptors are

statically instantiated during the initialization of the run-time to avoid the time overheads

for dynamic memory management. Since threads with an empty queue are set to a low-

power IDLE mode, the insertion of a task in a queue wakes up the associated core. This

is achieved by inspecting an additional flag of the queue descriptor, where the destination

core operating mode is annotated (executing, sleeping). The core that inserts the task

in a remote queue is responsible for checking the flag and waking up the destination

core to resume execution of the newly inserted task. In addition, the queue descriptor

holds synchronization flags used for the taskwait directive. Extracting a task from a

queue updates the queue descriptor in the dual manner. Note that also in this case we

use lock-protected operations, since we allow all threads to extract work from any queue.

Extracting tasks always occurs from the head of the queue, while insertion can be done

at the head and tail. Insert operations at the head are useful to prioritize the execution of

5There is a 1:1 correspondence between threads and cores, thus we will use the two terms interchange-
ably.
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Figure 6.11. Distributed queues for OpenMP tasking.

non-characterized tasks (in terms of vulnerability to errors). Stealing tasks occurs from

the head of the queue.

As a baseline policy we implement a simple round-robin scheduler (RRS) [7].

This policy aims at balancing the number of tasks assigned among all cores, and intro-

duces minimal runtime overhead due to a very lightweight implementation. To account

for tasks of different durations, RRS is enhanced with a task stealing algorithm, which

searches remote queues in a round-robin fashion for work to steal.

We propose a reactive policy for variability-aware task scheduling (VATS) shown

in Algorithm 6.4.1. This scheduler leverages the characterized WUV metadata to allocate
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tasks to cores so as to minimize both overall number of instruction replays and unbalanced

loads. The main goal of this scheduler is to prevent allocation of tasks to unreliable

cores, which is representative of a policy adopted in a system where task failure has

critical consequences. At system startup, when there is no WUV available, the scheduler

operates in round-robin mode. Since the OpenMP tasking model assumes completely

independent tasks, it is allowed to execute them in any order. We leverage this property

to insert tasks for which WUV is not available yet at the head of the queue (out-of-order

task characterization). This will give higher priority to non-characterized task types, thus

speeding up the “system warm-up”.

Algorithm 6.4.1: VATS (task j)

for i← 1 to Ncore

do

loadi← loadQueuei +WUV (corei, task j)

min← f indMinimum(loadi)

Queuemin← insert(task j)

return (min)

VATS scheduling policy strives to minimize the number of replayed instructions

utilizing characterized WUV metadata. VATS also extends its awareness of the load

on each queue, thus avoids heavily unbalanced situations that could increase the total

execution time. Each queue descriptor is enhanced with a status register that estimates

the overall load (loadQueue), in terms of dynamic instructions count, of all tasks present

into that queue. This is a better metric for workload-awareness than just the total task

count, because different task types present in the queue may have various computational

weight.

To account for imbalance effects due to non-homogeneous task durations and
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other system-level issues, VATS is further enhanced with a most loaded queue-first

stealing algorithm. An additional array structure is used to keep the sorted workload

over the various queues. This array is then traversed to steal work from the most loaded

queues first. Note that after the execution of a stolen task we always check if in the

meantime some tasks have been inserted in the local queue. It this case, we switch to

the execution of the tasks with better WUV values, otherwise we continue executing the

stealing algorithm until there is no task left in the system.

6.4.2 Variation-Aware Section Scheduling (VASS)

The default OpenMP section scheduling policy is to allocate a section to an

available thread in a first-come, first-served (FCFS) fashion. When sections are used in

a traditional manner to outline parallel tasks with no dependencies among each other

Algorithm 6.4.1 cab be applied. However, when sections are used to model software

pipeline parallelism we have an additional constraint: avoiding the variability-induced

errors (hence their instruction replays) that lengthen in an uncontrolled manner one or

more sections. This effect dominates the overall pipeline duration. Since in a variability-

affected computing cluster, there might be a set of cores that display poor performance –

depending upon their software and hardware context – causing bottlenecks in the entire

pipeline execution.

For these cases, we propose a variation-aware section scheduling (VASS) policy

shown in Algorithm 6.4.2. VASS has a warm-up phase which assigns execution of

different section types to all cores for a constant6 number of iterations. After execution

of each section, the characterization process updates the corresponding WUV matadata

in LUT using the mechanisms described in Section 6.3.2. When the warm-up phase is

completed, the WUV metadata in the LUT are ready and can be inspected by the runtime

6in our applications, it is selected as 2 iterations.
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environment to take decisions on workload distribution. Accordingly, VASS assigns the

execution of each section to a set of suitable cores.

In this way, VASS strives to maintain all cores in the executing operating mode,

while reducing the instruction replays and the overall pipeline duration. VASS sorts each

section types based on their average WUV decreasingly. The first section type in the

sorted list has either high instruction count (ΣI) or high replica instruction count (ΣRI).

Therefore it should be executed on a set of suitable cores that display fewer error rate

during its execution. Basically, every core has a private tag vector that lists the types

of permissible sections for executing on this particular core. This constraint limits the

participation of worse cores for executing long or high vulnerable types of sections. The

worse cores instead may execute shorter sections or sections with lower vulnerability;

therefore avoiding the latency penalty for the synchronization between the unbalanced

stages and effectively utilizing all the resources in the variability-affected cluster.

As shown in Algorithm 6.4.2, VASS assigns the execution of the longest section

type to the best set of cores (those that display lower WUV values), then the execution of

the second longest section type to the next best set of cores, and so on. In other words,

VASS performs a one-to-many dynamic pipeline mapping between the section types

(i.e., the stages) and the cores such that the overall execution time is reduced. After

the section-to-core assignment, once a corei encounters a section j, VASS checks the

condition to decide whether section j is assigned for the execution on top of corei. If

section j is assigned for corei, it means that there is a match between the characteristics

of corei and section j, therefore the execution will be performed. Otherwise VASS does

not allocate the section j to the corei. Thanks to the nowait statement, for a parallel

sections consists of Nsec sections, VASS replicates the entire parallel sections

for R=Ncore/Nsec times to maintain all Ncore cores active while reducing overall pipeline
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Table 6.1. Architectural parameters for VOMP cluster.

ARM v6 core 16 TCDM banks 16
I$ size 16KB per core TCDM latency 2 cycles
I$ line 4 words TCDM size 256KB
Latency hit 1 cycle L2 latency > 60 cycles
Latency miss > 59 cycles L2 size 256MB

duration.

Algorithm 6.4.2: VASS (sec0 : secNsec)

sortedSecList← SortSectionsWUV (sec0 : secNsec)

while sortedSecList 6= EMPTY

do


secID← extractTopList(sortedSecList)

{coreIDs}← f indBestSetCores(secID)

tag[{coreIDs}]← tag[{coreIDs}]
⋃

secID

return (tag[core0 : coreNcore])

6.5 Experimental Results

6.5.1 Framework Setup

We demonstrate our approach on an OpenMP-enabled SystemC-based virtual

platform [38] modeling the tightly-coupled cluster described in Section 6.2. The virtual

platform supports tasking on top of a runtime [97] optimized for the target platform.

Table 6.1 summarizes the main architectural parameters, a typical setup for the consid-

ered platform template (see [98]). To emulate variations on the virtual platform, we

have integrated variations models at the level of individual instructions using the ILV

characterization methodology presented in [111]. Integration of ILV models for every
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core enables online assessment of presence or absence of errant instructions at the certain

amount of dynamic voltage and temperature variations. We re-characterized ILV models

of an in-order RISC LEON-3 [10] core for 45-nm, for which an advanced open-source

RISC core with back-end details for variation analysis is available. First, we synthesized

the VHDL code of LEON-3 with the 45-nm TSMC technology library, general-purpose

process. The frontend flow with normal VT H cells has been performed using Synopsys

DesignCompiler, while Synopsys IC Compiler has been used for the back-end where the

core is optimized for performance.

To observe the effects of a full range of dynamic voltage and temperature varia-

tions, we analyze the delay variability on the individual instructions, leveraging voltage-

temperature scaling features of Synopsys PrimeTime for the composite current source

approach of modeling cell behavior. Finally, delay variability is annotated to the gate-

level simulations for creating ILV models. To utilize ILV models on the virtual platform,

each core maps ARM v6 instructions to the corresponding ILV models in an instruction-

by-instruction fashion during execution of tasks. Therefore, every core will face the errant

instructions during work-units execution based on the available amount of variations on

the variability-affected cluster. From the same flow we also extract energy models for

our cluster architecture.

For the following experiments we consider the cluster with 16 cores. To observe

the effect of static process variation on the clock frequency of individual cores within

the cluster, we analyze how critical paths of each core are affected due to die-to-die and

within-die process parameters variation, following the methodology presented in [112].

Each core maximum frequency varies significantly due to the process variation. As a

result, six cores for 16-core cluster cannot meet the design time target clock frequency.

To compensate this core-to-core frequency variation, the VDD-hopping technique [99]

uses the measured delay variation of each core and then selects one of available three
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Figure 6.12. Execution time for VATS normalized to RRS under temperature variation.
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Figure 6.13. Energy consumption for VATS normalized to RRS under temperature
variation.

discrete voltage modes: VDD-high, VDD-medium, VDD-low. This technique mitigates

the core-to-core frequency variations within the variability-affected cluster: six cores are

powered up with VDD-high, four cores with VDD-medium, and six cores with VDD-low.

This ensures all cores work with the design time target frequency, but they face different

error rate based on the instruction type and the operating condition.

6.5.2 VOMP Results for Tasking

We use nine widely adopted computational kernels mainly from the image process-

ing domain, that we parallelize using task directives. These kernels include RGB-to-HSV

and XYZ-to-RGB for colormap conversions, Integral image and Sobel for filter opera-

tions, FAST for corner detection, Color Tracking, Strassen matrix multiplication, and
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Blowfish for encryption/decryption. Each kernel has one task type, therefore there is

no task dependency during execution. We compare the total execution time and energy

consumption of VATS, our variability-aware task scheduler, to the baseline RRS policy.

Figure 6.12 shows the execution time for all the kernels for three operating corners with

temperature of 0◦C, 40◦C, and 80◦C. VATS aims at reducing the instruction replays by

allocating tasks on reliable cores while taking into account the load of every queue. As a

result, at an operating temperature of 0◦C, VATS achieves up to 30% better performance

than RRS, and 13% on average. This clearly indicates that the entire overhead of the

variation-tolerant technique is paid off, including the online task characterization, reading

and updating WUV metadata, and cost of execution of Algorithm 6.4.1. As shown, VATS

displays a robust behavior across a wide range of temperature variations thanks to the re-

flection by the always-on characterizations. At higher temperature, VATS achieves better

average performance gain of 17% (at 40◦C) and 21% (80◦C), since WUV is increased at

higher temperature.

Figure 6.13 shows the energy consumption of the kernels for VATS normalized to

RRS. VATS achieves on average 21% and up to 38% better energy efficiency than RRS

at the temperature of 0◦C. VATS further reaches to an average energy saving of 31% at

the operating temperature of 80◦C.

We also compare the TLV technique with the centralized queue proposed in [124].

TLV, which has variation-agnostic task insertion operations displays on average 75%

slower execution than RRS. TLV is on average 100% less energy efficient than RRS.

This lack of efficient utilization of resources under variability is mainly because of TLV

characterization that does not consider the overall system workload. Its single tasking

queue also limits the potentials of task scheduling policies: a core can utilize TLV to only

decide whether to proceed to the execution of a task or leave it in the single queue for

other cores that leads to an imbalanced system.
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Figure 6.14. Execution time for VASS normalized to FCFS under temperature variation.
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Figure 6.15. Energy consumption for VASS normalized to FCFS under temperature
variation.

6.5.3 VOMP Results for Sections

For evaluating VOMP in the parallel sections, we used seven computational

intensive kernels amenable to software pipelining. Pitch extractor algorithm (PEA), and

FFT with covariance matrix factorization (DFT-COV) are embedded signal processing

kernels extracted from [77, 96]. Sobel and Prewitt are filter operations useful in the edge

detection algorithms. N-body is a simulation of a large number of particles under the

influence of physical forces. Mersenne twister is a pseudorandom number generator.

Synthetic is a microkernel implementing a 4-stage parallel pipeline (see Figure 6.5), rep-

resentative of streaming applications [101]. We evaluate the effectiveness and robustness

of our approach across a wide temperature range of 80◦C.
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Figure 6.14 shows the normalized performance (execution time) of VASS to FCFS

for three operating corners with temperature of 0◦C, 40◦C, and 80◦C. At an operating

temperature of 0◦C, the total execution time is reduced on average by 31% (and up

to 40%) thanks to proper assignment of sections to those cores that avoid unbalanced

pipelines. This is accomplished by preventing the worst cores from executing a section

type that leads to the highest WUV. At the temperature of 80◦C, VASS reaches on average

39% performance improvement, thanks to the online WUV metadata characterization

which reflects the latest temperature variations, thus enabling the scheduler to react

accordingly.

Moreover, as shown in Figure6.15, VASS simultaneously reduces the total dy-

namic instruction count that yields an average of 28% (up to 35%) reduction in energy

consumption at an operating temperature of 0◦C. A similar pattern for energy saving

is observed under temperature fluctuations, confirming the robustness of our approach.

VASS reduces energy consumption on average by 37% for high operating temperatures

of 80◦C.

6.6 Chapter Summary

Circuit failures due to timing errors are considered an important concern in the

design of reliable circuits. In this chapter, we show that processing cores can be made

robust against an important class of such errors, caused by manufacturing and environ-

mental variabilities, by raising the visibility of such failures across the hardware/software

boundary. This is achieved by attaching metadata that captures work-unit vulnerability

(WUV) from hardware sensing circuits to the runtime system via the software stack. We

specifically address its implementation in a parallel execution environment that asso-

ciates WUV metadata to OpenMP parallel constructs: task, sections, and for. WUV

metadata is characterized during work-unit execution on individual cores, and is used to
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efficiently schedule new instances of the same work-unit type. We have implemented our

approach in VOMP, a variability-aware OpenMP execution environment. With VOMP,

we propose scheduling algorithms for tasks and sections that use WUV metadata for

countermeasures against variability-induced timing errors. This matches the characteris-

tics of different variability-affected cores to the error-vulnerability of different work-unit

types in the program, minimizing the need for timing error recovery and the associated

costs. Across a wide operating temperature of 80◦C, VOMP effectively eliminates the

timing error recovery in the 16-core cluster resulting in average 17% and 36% faster

execution for tasks and sections, respectively. VOMP achieves an average energy

saving of 27% for tasks and 33% for sections.

This chapter contains material taken from “Improving Resilience to Timing Errors

by Exposing Variability Effects to Software in Tightly-Coupled Processor Clusters,” by

Abbas Rahimi, Daniele Cesarini, Andrea Marongiu, Rajesh K. Gupta, and Luca Benini,

which appears in IEEE Journal on Emerging and Selected Topics in Circuits and Systems

(JETCAS), 4(2), 2014. The dissertation author was the primary investigator and author of

this paper.



Chapter 7

Hierarchically Focused Guardbanding

This chapter proposes a new model of functional units, based on supervised learn-

ing methods, for variation-induced timing errors due to PVT variations and device Aging

(PVTA). The model takes into account PVTA parameter variations, clock frequency, and

the physical details of placed-and-routed (P&R) functional units in 45nm TSMC analysis

flow. Using this model and PVTA monitoring circuits, we propose hierarchically focused

guardbanding (HFG) as a method to adaptively prevent PVTA-induced timing errors.

We demonstrate the effectiveness of HFG on GPU architecture at two granularities of

observation and adaptation: (i) fine-grained instruction-level; and (ii) coarse-grained

kernel-level. Using coarse-grained PVTA monitors with kernel-level adaptation, the

throughput increases by 70% on average. By comparison, the instruction-by-instruction

monitoring and adaptation enhances throughput by a factor of 1.8×–2.1× depending on

the configuration of PVTA monitors and the type of instructions executed in the kernels.

This chapter present our last method for predicting and preventing the timing errors using

advanced machine learning methods. We show a use case of this modeling approach in

GPUs for reducing guardband.

130



131

7.1 Introduction

Several efforts focused on online error detection and correction [41, 42, 56, 68].

These detection and correction mechanisms do not tie to any characterized modeling, thus

suffer from lack of correlation between the occurred errors and the sources of variations.

This limits their usage for prediction of the timing errors and their root causes at the

upper layers for better decision and appropriate adjustment. Thus, improve modeling is

needed to connect the timing errors with the sources of variability for better prediction.

The model should be coupled with adaptive resource management to proactively prevent

the timing error by applying a focused guardbanding. This chapter makes the following

contributions in this regard:

1. We provide a new high-level model for timing error rate (TER) of various integer

as well as floating-point functional units that is derived using accurate industrial-

strength tools and calibration flows validated in real silicon. This model yields the

TER of microarchitectural functional units as a function of clock frequency and

the amount of PVT variations and Aging (PVTA). Section 7.2 describes the model

that can be used both online and offline. Online, it provides a model-based rule

to derive guardband from the PVTA sensor readings. Offline, it enables design

time analysis to identify vulnerable functional units at a given amount of PVTA

variations. The model is publicly available for download at [18].

2. We introduce the notion of hierarchically focused guardbanding (HFG) in Section

IV to adaptively mitigate PVTA variations. HFG is guided by online utilization

of the model, and enables a focused adaptive guardbanding in view of monitors,

observation granularity, and reaction times.

3. We demonstrate the effectiveness of HFG using the proposed model on GPU
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pipeline at two distinct granularities. HFG enhances the throughput of kernels, on

average by 70%, employing coarse-grained PVTA monitors and applying adaptive

guardbanding at granularity of kernel-level. The finer granularity of instruction-

level monitoring and adaptation achieves 1.8×–2.1× throughput improvements

depending on the PVTA monitors configuration and the type of instructions exe-

cuted within the kernels. Section 7.4 details the results.

7.2 Timing Error Model for PVTA

7.2.1 Analysis Flow for Timing Error Extraction

To build a parametric model for timing errors, we rely up-on design time analysis

that yields the TER of individual Functional Units (FUs) as a function of clock period

(tclk) and the amount of PVTA variations. We have analyzed a wide range of FUs, listed

in [18], that are being used in a rich GPU pipeline, including 10 32-bit integer FUs as well

as 15 single precision floating-point FUs fully compatible with the IEEE 754 floating-

point standard. The floating-point FUs also cover the transcendental operations, thus

act as the special FUs in the GPU pipeline to support sin, cosine, reciprocal, and square

root instructions. FUs are selected from Synopsys DesignWare, a library of functions

for computational circuits in high end ASICs. The speed optimized architectures have

been selected for FUs in conjunction with tight synthesis and physical optimizations for

timing closure. FUs have been synthesized for TSMC 45nm target, the general purpose

process. The front-end flow with normal Vth cells uses Synopsys Design Compiler with

the topographical features enabled and Synopsys IC Compiler for the backend as shown

in Figure 7.1 and Table 7.1.

For each FUi working with tclk and a given PVTA variations, timing error rate
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Figure 7.1. Timing error analysis flow for model extraction.

Table 7.1. Analysis flow: tools and parameters.

Stage Tools/Libs Version/Details 

Front-end 

Design 

Compiler E-2010.12-SP5 

Back-end IC Compiler E-2010.12-ICC-SP5 

Sign-off PrimeTime VX F-2011.06-SP3 

Libraries 

45nm GS 

TSMC Variation Aware (v. 110d) 

Linear 
Classifier MATLAB 

Discriminant Analysis (v. 
R2011b) 
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(TER) is defined in Equation 7.1:

 i clk

i clk

i

CriticalPaths (FU ,t ,V,T,P,A)
TER (FU ,t ,V,T,P,A) 100

Paths (FU )
= ×
∑

∑ (7.1)

where CriticalPaths are those paths with a negative slack that cannot meet the setup-time

of flip-flops with the clock period of tclk under certain PVTA variations, and ΣPaths is

the total number of paths in FUi. After the back-end optimizations, during the sign-off,

we calculate TER by analysis of FU PVTA parameter variations as follows:

Dynamic variations: The full industrial temperature range of 0◦C–120◦C, and

voltage range of 0.88V–1.1V are considered by utilizing six 45nm TSMC characterized

sign-off corners by changing these parameters at the resolution of 10◦C and 0.01V

respectively. To do this, we use the voltage-temperature scaling features of Synopsys

PrimeTime for the composite current source approach of modeling cell behavior. Then, at

each pair of the voltage and temperature, we use static timing analysis (STA) to analyze

the critical paths.

Process variation: The device parameters are varied from die-to-die (D2D) as

well as within-die (WID), and then Statistical STA (SSTA) is used to report delay variation

of each path. To perform an accurate design time SSTA, we employ the variation-aware

timing analysis engine of Synopsys Prime-Time VX [], using process parameters of

45nm variation-aware TSMC libraries [23] derived from first-level process parameters

by principal component analysis (PCA). PCA is a mathematical procedure that simplifies

a data set by trans-forming a number of correlated parameters into a smaller number of

uncorrelated parameters. Based on [75], the process parameters are varied as normal

distributions with zero mean and standard deviations of σD2D=5% and σWID ∈ [0%,

9.6%]. Therefore, we change the process variation compo-nents and examine its induced
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Table 7.2. PVTA and clock parameters.

 Start Point End Point Step # of Points 

Voltage 0.88V 1.10V 0.01V 23 

Temperature 0°C 120°C 10°C 13 

Process (σWID) 0% 9.6% 3.2% 4 

Aging (∆Vth) 0mV 100mV 25mV 5 

tclk 0.2ns 5.0ns 0.2ns 25 

 

delay variation with a given set of accurate variability models from commercial libraries.

These are more accurate and realistic than commonly used ‘in-house models’ extracted

from predictive technology models.

Aging: Two major mechanisms that induce progressive slowdown are NBTI and

HCI, these effects manifest as voltage threshold (Vth) shift and gradually slower the

critical paths. The delay of critical paths under various dynamic and process parameter

variations is reported by STA and SSTA. To analyze the effect of aging on those paths,

their Vth is increased, and then their aging-induced delay variation is calculated using the

alpha-power law. The Vth is increased with steps of 25mV and up to 100mV which can

occur over years of stress [133].

Considering the full permutation of PVTA parameters variations, the effects of

variability on the delay of a FU is finely captured for its entire lifetime. To observe how

this variability can be compensated by adaptive clocking, the tclk is changed from 0.2ns

to 5.0ns. Then, TER Analysis module (Figure 7.1) calculates TER based on tclk and

the amount of PVTA variations using Equation 7.1. Consequently, the calculated TER

function of the five variables (summarized in Table 7.2) is input to a parametric linear

classifier for model generation.
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7.2.2 Parametric Model Fitting

We present a parametric model at the level of FU that relates PVTA parameters

variation and tclk to TER, thus enables higher level simulation and adaptiveness. To

quantify the impact of timing error on the quality of service at the application-level, we

define four classes based on the magnitude of TER shown in Table 7.3. A higher TER

implies higher number of violated critical paths, thus lower application-level quality

of service. If a TER is classified as C0, it means that all paths of FU meet the timing

requirement; on the contrary, more than 66% of the paths (and up to 100%) are failed

if a TER is classified as CH . Hence, this classification covers various application-

specific requirements on computational accuracy: C0 for error-intolerant applications

(e.g., general purpose applications), and CL, CM, CH for error-tolerant applications

(e.g., probabilistic applications [61]) where the acceptance threshold of TER is specified

according to the target quality of service of applications. We define X as a matrix of

Table 7.3. Classes of TER

TER=0% 33%>= TER >0% 66%>= TER >33% 100%>= TER >66% 

Class0 (C0) ClassLow (CL) ClassMedium (CM) ClassHigh (CH) 

 

numeric predictor values [tclk V T P A]. Each column of X represents one variable, and

each row represents one observation. Y is defined as a numeric vector, and each row of Y

represents the classification of the corresponding row of X. A linear parametric classifier,

called discriminant analysis, is used to create a discriminant classification based on the

input variables (predictors) X and output (response) Y. Thus, the model enables mapping

of the five input variables to one of the four defined classes. The discriminant analysis

assumes X has a Gaussian mixture distribution. To train the classifier, the fitting function

estimates the parameters of a multivariate Gaussian normal distribution for each class.

After training, the classifier produces the following:
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• Mµ is a matrix of class means of size K-by-P, where K is the number of classes,

and P is the number of predictors. Each row of Mµ represents the mean of the

multivariate normal distribution of the corresponding class.

• Mσ is a P-by-P matrix, the between-class covariance, where P is the number of

predictors.

• Mp represents the prior probabilities for each class. Mp is a numeric positive vector

of size 1-by-K representing the frequency with which each element occurs.

For each FU, the matrix of numeric predictor values, X, has a size of 149,500

(25×23×13×4×5)-by-5, as each row represents one permutation of the parameters sum-

marized in Table 7.2. Every row of Y depicts the characterized class of the corresponding

row of X, determined by the TER Analysis module. The space of X values divides

into regions where a classification Y is a particular value. The regions are separated by

straight lines for the linear discriminant analysis. Feeding X and Y to the classifier Mµ ,

Mσ , and Mp are generated. The matrices for the floating-point adder (FPadd) are shown

below:

 

μ

1.15E+00 9.97E-01 5.85E+01 4.67E+00 3.48E+01

8.38E-01 9.84E-01 6.49E+01 5.04E+00 4.09E+01
M

8.36E-01 9.71E-01 6.15E+01 4.85E+00 3.89E+01

4.65E-01 9.83E-01 6.13E+01 4.92E+00 4.00E+01

 
 
 =  
  
 

  4.31E-02 -2.37E-03 4.83E-01   4.37E-02   8.81E-01

-2.37E-03 4.35E-03 1.03E-02    9.07E-04  1.83E-02

M  4.83E-01 1.03E-02 1.60E+03  -1.91E-01 -3.80E-00

 4.37E-02 9.07E-04 -1.91E-01   1.28E+01 -3.37E-01

 8.81E-01 1

σ =

.83E-02  -3.80E+00   -3.37E-01  7.75E+02

 
 
 
 
 
 
 
 

 [ ]pM 4.80E-01   8.10E-03   5.27E-03   5.07E-01=

Providing these parametric matrices, a prediction method discussed in the next

section can accurately classify a given set of variations and a tclk value to the correspond-

ing class of timing error rate. The parametric models for the rest of FUs are detailed
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in [18] due to the lack space; the prefix ‘FP’ stands for floating-point FUs and ‘INT’

stands for integer FUs.

7.2.3 TER Classification

A classification algorithm seeks to minimize the expected classification cost:

 K

1,...,K 1

ˆ ( | ) ( | )argmin
y k

y P k x C y k
= =

′= ∑
(7.2)

ŷ is the predicted classification; K is the number of classes; Ṕ(k|x) is the posterior

probability of class k for observation x; C(y|k) is the cost of classifying an observation as

y when its true class is k. By default, C(y|k)=1 if y≈k, and C(y|k)=0 if y=k: the cost is 0

for correct classification, else it is 1.

The posterior probability that a point x belongs to class k is the product of the prior

probability and the multivariate normal density. The density function of the multivariate

normal with mean µk (k-th row of Mµ) and covariance Mσ at a point x is

 
1

σ
0.5

σ

1 1
( )( | ) exp( M ( ))
2(2 M )

T

xP x k x
k k
µ µ

π

−−= − −

(7.3)

where |Mσ | is the determinant of Mσ , and Mσ -1 is the inverse matrix. Let P(k) represent

the prior probability of class k (k-th element of Mp vector). Then the posterior probability

that an observation x is of class k is

 ( | ) ( )
( | )

( )

P k x P k
P k x

P x
′ =

(7.4)
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where P(x) is a normalization constant, the sum over k of P(x|k)P(k). Therefore, we

can quantify the expected misclassification cost per observation. Suppose we have an

observation, x=[tclk V T P A], to classify with the trained discriminant analysis classifier.

The expected (average) cost of classifying the observation into class k of K classes is

 K

1

cost( ) ( | ) ( | )
i

k P i x C k i

=

′=∑
(7.5)

Ṕ(i|x)is the posterior probability defined in Equation 7.4; and C(k|i) is the cost of

classification as described in Equation 7.2. Therefore, x belongs to the class k that has

the lowest cost (k).

7.2.4 Robustness of Classification

To ensure the robustness of our method, we calculate resubstitution error as the

difference between the response training data and the predictions the classifier makes of

the response based on the input training data. If the resubstitution error is high, we cannot

expect the predictions of the classifier to be good. The resubstitution error is 0.02 (the

fraction of the training data X that classifier misclassifies) for the FPadd . On average, for

all FUs the resubstitution error is 0.036 which is very low, meaning the models classify

nearly all data correctly.

The sampling data for prediction is almost always a subset of the training data

set, since the resolution of the training data, depicted in Table 7.2, is much finer than

the resolution of sampling sensors. In case of any out-of-sample data, for instance a

temperature sensor with resolution of 1◦C, the data can be conservatively matched to

a surrounding point. However, we have obtained a full range of extra characterization

points for temperature which are not used for training the model, and use these points
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to check if the model makes reasonable estimates for out-of-sample data. For extra

characterization points with temperature range of 1◦C–120◦C (steps of 1◦C) and with

two distinct operating voltages (1.0V, 1.1V), the model makes correct estimates for 97%

of out-of-sample data. The remaining 3% is misclassified to the high-error rate class

(thus will have safe guardband). Note that we cannot go beyond the min/max range of

the characterized points in the provided libraries [23].

7.3 Runtime Hierarchically Focused Guardbanding

We now describe how this model for TER can guide a control system for runtime

variation-aware resource management. At design time, to ensure numerical correctness

for the computed result, we need to take the worst-case variations that could display

for any combination of values of PVTA parameters. Thus, TER can be conservatively

computed with significant uncertainty over the big cloud of possible post-silicon results.

With the support of variability measurements at post-silicon fabrication, the PVTA param-

eters can be continuously monitored during the lifetime of the device, and consequently

eliminate the conservativeness. For instance, the table in Figure 7.2 shows that during

design time the delay of the FPadd has a large uncertainty of [0.73ns,1.32ns], since the

actual values of PVTA parameters are unknown. But, immediately after fabrication this

delay uncertainty is reduced to [0.73ns,1.25ns] if a process sensor reports that the adder is

fabricated in a part of die with negligible WID variations. Even more, if the adder is moni-

tored by an aging sensor, the delay uncertainty is further reduced to [0.73ns,1.07ns] when

the device is fresh (∆Vth=0mV). Having set the tclk=0.8ns, each curve in Figure 7.2 shows

how TER can change when voltage and temperature are varying at minimum/maximum

process and aging conditions.

Thus, hierarchically focused fuardbanding (HFG) adaptively eliminates the con-

servative guardband due to PVTA variations during lifetime of device. It finely focuses
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Figure 7.2. Delay variation and TER across extreme corners of PVTA.
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on a FU and reduces its timing guardband depending upon the availability of distinct

observers, in a hierarchical manner, started immediately after post-silicon fabrication

(to compensate P), to during runtime execution (to compensate VT), and finally the

entire of lifetime (to compensate A). This model-based use of PVTA readings provides a

systematic way to reduce guard-bands.

7.3.1 Observability

The sensor instrumentation is required as delay variation changes across extreme

corners of PVTA parameters. The question is that what mix of monitors would be useful?

External non-intrusive monitors reside on the same die can measure distinct parameters

like voltage droop [106], and temperature fluctuation [141]. In a similar vein, CPM [59]

and TRC [139, 140] monitors whole PVT variations. On the other hand, internal in situ

monitors like EDS [41], Razor [63], and NBTI sensors [133] can measure the actual delay

variation of device due to PVT and aging. Figure 7.3 shows the minimum affordable

tclk (i.e., 1/FrequencyMax) in presence/absence of various sensors for three FUs with a

TER target of 0%. The sensors are sorted based on the time constant of the measured

parameter, PATV: from DC component to high-frequency components. For instance, tclk

of FPadd can be reduced from 1.32ns to 1.26ns (a 0.06ns guardband reduction) depends

to the actual value of WID process variation reported by a process monitor (Psensor).

It can be further reduced to 1.08ns if FPadd is equipped with the aging as well as the

process sensor (PAsensors). Adding thermal sensor enables even 0.06ns more reduction

to 1.02ns (PATsensors). Finally, considering the full set of sensors enables decreasing tclk

from 1.32ns to 0.74ns (a great guardband reduction of 0.58ns) based on the measured

values of variations reported by PATVsensors. The more sensors we provide for a FU, the

better conservative guardband reduction for that FU: the guardband can be re-duced up

to 8%, 24%, 28%, 44%, if we equip FPadd only with Psensor, PAsensors, PATsensors, and



143

PATVsensors, respectively.
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Figure 7.3. Hierarchical sensors for reducing guardband on tclk.

As shown, this benefit is consistent across different FUs – with a shift in the

worst-case guardband – even with better reduction for FP FUs (e.g., up to 47% for FPexp

with PATVsensor case) due to the higher complexity of the circuit topology. Internal PVT

sensors impose 1–3% area overhead [41], whereas five replica PVT sensors increase area

of each POWER7 core by 0.2% [59, 67]. The banks of 96 NBTI aging sensors occupy

less than 0.01% of the core’s area [133].

7.3.2 Controllability

Employing any combination of PATV sensors provides on-line measurement

of the actual parameters variations, and thus a control system can adaptively apply an

appropriate guardbanding utilizing the characterized models for FUs. Among available

control knobs, adaptive clock scaling using phase-locked loop (PLL) is widely utilized in

resilient implementations [10, 67, 141]. Therefore, the control system tunes the clock

frequency through an online model-based rule. To support fast controller’s computation,

the parametric model (as the outcome of the analysis flow in Figure 7.1) generates distinct
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lookup tables (LUTs) for every FUs. LUTs are generated during design time for specific

configuration of sensors, their resolution, and the desire target TER for FUs (target TER).

Figure 7.4 shows a full configuration of PATVsensors with resolutions of (3.2%, 25mV,

20◦C, 0.04V) that support the range of variations summarized in Table 7.1. Therefore, in

total 980 (4×5×7×7) rows are required within a LUT. The parametric model fills every

row of a LUT for FUi with the minimum tclk such that TER (FUi, tclk, Vrow, Trow, Prow,

Arow) < target TER. Every LUT is stored in a dedicated 1KB SRAM to enable fast return

of the 5-bit tclk for the corresponding values of PATVsensors. The clock control changes

the frequency based on the returned tclk, thus reduces the guardbanding. Note that, since

TER characterization in Equation 7.1 considers the static critical paths (which might not

be activated during execution of certain dynamic inputs), the model always returns an

upper bound of the actual TER, thus returned tclk of LUTs guarantees the target TER.
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The next question to address is what type of monitoring observation granularity

and what type of reacting time we need, e.g., cycle-by-cycle or tens of cycles or hundred

of cycles? To analyze the effect of this choice of granularity, we apply HFG to GPU

architecture at two granularities:

1. Fine-grained granularity of instruction-by-instruction monitoring and adaptation



145

that signals of PATV sensors come from individual FUs that reside in the execution

stage of GPU. The LUTs return the minimum tclk depending on the actual value of

PATV sensors and the chain of FUs that will be activated by the fetched instruction.

To support single-cycle adaptation, a fast adaptive clocking circuit [141] consisting

of three PLLs is use. Each PLL is running at independent frequencies, and a

multiplexer quickly switches between them in a single-cycle. Therefore, the clock

controller selects the highest tclk (safe across all activated FUs) and reduces guard-

band that is compatible with PATV parameters and the demands of instructions, as

shown in the following algorithm:

 

clk

clk 1 clk 1 clk N

fetchedinstruction

N = #of activated FUsbyinstruction

for =1 to N 

t =LUTs(FU , V, T, P, A) 

set_clock max{t ,t ,..., t }

k

k

i i

i

−

− − −

∀

2. Coarse-grained granularity of kernel-level monitoring uses a representative PATV

sensors for the entire execution stage of GPU pipeline. The clock adaptation is

applied periodically before kernel execution. The controller selects tclk based on

current value of PATV sensors of the execution units and the chain of FUs that

potentially will be activated during kernel execution (in a static sense). Since the

adaptation of clock during kernel execution is prohibited, the controller considers

a 5% extra margin on the reported voltage and temperature values to recover

intra-kernel dynamic variations.
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7.4 A Case Study of HFG on GPUs

We examine the effectiveness HFG on GPU architecture with the fine-grained

instruction-by-instruction as well as the coarse-grained kernel-level monitoring and

adaptation. We demonstrate our approach in an Evergreen-like GPU pipeline where

our FUs reside in the execution stages of a processing element (PE) and benefit from

the adaptive clock scaling decided by the controller of HFG. The rest of pipeline stages

are assumed to support resilient circuit techniques, as both resilient processor [42] and

relaxed-reliability cores [54] consider sufficient guardband in the register stage, the

memory management unit, L1 instruction cache, and the interconnect. We note that the

instruction fetch and decode stages are not strongly vulnerable to variations [111], thus

low-cost to protect.

For GPU kernel benchmarks, we use AMD APP SDK 2.5 [1] kernels suitable for

stream applications written in OpenCL. Their device-specific assembly code is extracted

by AMD APP KernelAnalyzer tool for applying the instruction-by-instruction and kernel-

level HFG. Figure 7.5 (right) shows the maximum throughput (GIPS for a PE) of each

kernel, when applying the coarse-grained kernel-level monitoring and adaptation with

support of the four scenarios of PATV sensors. The results highlight two points: (a) more

sensors in a PE result in a greater reduction in the guardband, and thus higher throughput

for all kernels. On average, the throughput increases from 1.04 GIPS to 1.77 GIPS (70%),

when the PE moves from only Psensor to PATVsensors scenario; (b) the throughput of

kernel-level adaptation is limited by the slowest FU activated during the execution of

the kernel. For instance, the throughput of MatrixMult, DCT, and EigenValue kernels is

limited to 1.2 GIPS (with PATVsensors), since those kernels activate FPmac as the slowest

FU.

Figure 7.5 (left) shows the maximum throughput improvement in the instruction-
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by-instruction method. This method not only benefits from more sensors (60% in

average), but also exploits the within-kernel opportunities for further reduction of inter-FU

guardband. For example in PAsensor case, the throughput of AESEncr kernel is increased

up to 3.4 GIPS (93% higher than MatrixMult), thanks to all its integer instructions that

only activate fast INT FUs. In comparison with the kernel-level method, the instruction-

by-instruction monitoring and adaptation improves the throughput by a factor of 1.8×–

2.1× depends to the PATV sensors configuration and kernel’s instructions. Of course,

this fine-grained instrumentation and adaptation has a higher cost in the area.
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Figure 7.5. Maximum throughput benefit of HFG: (i) at instruction-level monitoring, the
left figure; (i) at kernel-level monitoring, the right figure.

7.5 Chapter Summary

This chapter presents a model and its usage for runtime variation-aware resource

management as well as design time analysis of vulnerable functional units. The model

takes into account process parameters, temperature and voltage operating conditions,

aging, and the physical details of P&R functional units using an accurate 45nm TSMC

design and analysis flow. The model is used in a guardbanding scheme as an adaptive

resource management technique to proactively pre-vent timing error by applying a

focused guardbanding. HFG enhances the throughput of GPU kernels by 70% employing
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coarse-grained PVTA monitors and by applying adaptive guardbands at kernel-level.

The finer granularity of instruction-by-instruction monitoring and adaptation achieves

1.8×–2.1× throughput improvements depends to the PVTA monitors configuration and

the type of instructions executed within the kernels.

This chapter contains material taken from “Hierarchically Focused Guardbanding:

An Adaptive Approach to Mitigate PVT Variations and Aging,” by Abbas Rahimi, Luca

Benini, and Rajesh K. Gupta, which appears in ACM/IEEE Design, Automation, and Test

in Europe (DATE) Conference, 2013. The dissertation author was the primary investigator

and author of this paper.



Chapter 8

Exact Memristive Associative Memory

Thousands of deep and wide pipelines working concurrently make GP-GPU

high power consuming parts. Energy-efficiency techniques employ voltage overscaling

that increases timing sensitivity to variations and hence aggravating the energy use

issues. This chapter proposes a method to increase spatiotemporal reuse of computational

effort by a combination of compilation and micro-architectural design. An associative

memristive memory (AMM) module is integrated with the floating point units (FPUs)

for exact computing. Together, we enable fine-grained partitioning of values and find

high-frequency sets of values for the FPUs by searching the space of possible inputs,

with the help of application-specific profile feedback. For every kernel execution, the

compiler pre-stores these high-frequent sets of values in AMM modules – representing

partial functionality of the associated FPU– that are concurrently evaluated over two

clock cycles. Our simulation results show high hit rates with 32-entry AMM modules that

enable 36% reduction in average energy use by the kernel codes. Compared to voltage

overscaling, this technique enhances robustness against timing errors with 39% average

energy saving.

Our present work not only reduces energy in the error-free circumstances but

also enhances the scope of ‘detect-then-correct’ approaches in a GP-GPU context. It is

accomplished through an ultra-low power error recovery via memristive-based computing,

149
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thus offering both scalability and low-cost self-resiliency in the face of high timing error

rates. Further, our framework leverages memristor technology in the right angle by

limiting the stress of write to finite number of write operations only at the start of kernel

execution, therefore extending the lifetime of AMM modules. This chapter enhances

methods for detecting and correcting the timing errors in GP-GPUs using memristor

technology.

8.1 Introduction

The scaling of physical dimensions in semiconductor circuits opens the way

to an astonishing over 7 billion transistors on a 28nm process which gives a grand

total of 2,880 CUDA cores in recent GP-GPU chips enforcing energy efficiency as a

primary concern [146]. Near-threshold computing (NTC) and supply voltage overscaling

(VOS) are primary approaches to build energy-efficient circuits [79]. These techniques

achieve energy efficiency at a cost to performance. To compensate this performance

loss, microarchitectural approach [110] has been proposed to apply these low-power

techniques to single instruction multiple data (SIMD) architectures that exploit data-

parallelism.

Unfortunately, technology scaling also comes with the side effect of ever-increasing

parametric variations across process, voltage and temperature (PVT) [37], which are

expected to worsen in future technologies [8]. The most common effect of variability is

delay variation that causes circuit-level timing errors. Both NTC and VOS exacerbate the

effects of timing errors. Clearly, design methods are needed to make a design resilient to

timing errors. Low-voltage resilient technique applies to both logic and memory blocks.

For logic, Razor [56] circuit sensors have been employed in the critical paths of the

pipeline stages to reduce voltage guardbanding close to edge-of-failure. A common

strategy is to detect variability-induced delays by sampling and comparing signals near
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the clock edge to detect the timing errors. The timing errors are then corrected by a

recovery mechanism [42]. This recovery process imposes energy overhead and latency

penalty of up to 28 extra recovery cycles per error for the 7-stage integer pipeline [42].

In non-volatile memory area, resistive RAM (ReRAM/memristor) is a promising

candidate with fast write speed and low-power operation [51]. To avoid its read distur-

bance challenge, reliable read operation techniques are proposed including a process-

temperature-aware dynamic bitline bias scheme on a 4-Mb memristor fabricated chip

[51]. Li et al. demonstrate a 1-Mb ternary content addressable memory (TCAM) test

chip using 2-transistor/2-resistive-phase-change-storage (2T-2R) cells [94]. It achieves

> 10× smaller cell size than SRAM-based TCAMs, and ensures reliable low-voltage

search operation in the presence of PVT variations thanks to a clocked self-referenced

sensing scheme [94].

For our GP-GPU targets, floating point (FP) pipelines consume higher energy-per-

instruction than their integer counterparts and typically have high latency for instance over

100 cycles to execute on a GP-GPU [13]. As energy becomes the dominant design metric,

aggressive VOS and NTC increase the rate of timing errors and correspondingly the costs

(in energy, performance) of the recovery mechanisms [79, 110]. This cost is exacerbated

in FP SIMD architectures where there are wide parallel lanes with deep pipelined stages.

This makes the cost of recovery per single error quadratically more expensive relative to

scalar functional units [118]. Effectively, the energy-hungry high-latency FP pipelines

are prone to inefficiencies under the timing errors.

Parallel execution in the GP-GPU architectures provides an important ability to

reuse computation for reducing energy. This chapter exploits this opportunity to make

three main contributions:

1. We propose compiler analysis and resistive memory-based computing microarchi-

tectural design to identify frequent redundant computations, carefully pre-store
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these key computations in appropriate associative memory modules, and reuse

them to avoid re-executions.

2. To enable spatiotemporal hardware reconfigurability, we tightly integrate an asso-

ciative memory module, AMM, using memristive parts to every FPU in GP-GPUs.

The AMM is a software programmable module composed of a TCAM and a

crossbar-based memristive memory block that together represent the pre-stored

computations as partial functionality of the associated FPU. The AMM module

here performs an exact matching during comparisons, hence does not produce

any intentional error into the program and maintains 100% numerical correctness.

The framework applies a fine-grained value partitioning, and finds high-frequent

sets of values for FPUs by searching the space of possible inputs, with the help

of application-specific profile feedback described in Section 8.3. For every ker-

nel execution, compiler pre-stores these high-frequency sets of values in AMM

modules that are concurrently evaluated over two clock cycles, thus creating a

spatiotemporal computing model.

3. We demonstrate the effectiveness and robustness of our technique on the Evergreen

GP-GPUs. Our experimental results in Section 8.4 show that the AMM modules

with 32-entry exhibit high hit rate that avoids redundant re-execution by FPUs,

therefore resulting in 36% reduction in average energy. Moreover, given that the

AMM modules have ample time margins, upon a hit event the likelihood of error

recovery is reduced that further improves the energy efficiency. This enhances

robustness in VOS scenario with frequent timing errors.
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Figure 8.1. Block diagram of the Radeon HD 5870 GP-GPU with AMM modules.

8.2 Energy-Efficient GP-GPUs

We focus on the Evergreen family of AMD GP-GPUs (a.k.a. Radeon HD 5000

series), that targets general-purpose data-intensive applications. The Radeon HD 5870

GP-GPU consists of 20 compute units, a global front-end ultra-thread dispatcher, and a

crossbar to connect the memory hierarchy. Each compute unit contains a set of 16 Stream

Cores (SCs), i.e., 16 parallel lanes. Within a compute unit, a shared instruction fetch unit

provides the same machine instruction for all SCs to execute in a SIMD fashion. Each

SC contains five Processing Elements (PEs) – labeled X, Y, Z, W, and T – forming an

ALU engine to execute Evergreen machine instructions in a vector-like fashion. Finally,

the ALU engine has a pool of pipelined integer and FP units. The block diagram of the

architecture is shown in Figure 8.1.

The device kernel is written in OpenCL which runs on a GP-GPU device. An

instance of the OpenCL kernel is called a work-item. Each SC is devoted to the execution

of one work-item. In the Radeon HD 5870, a wavefront is defined as the total number

of 64 work-items virtually executing at the same time on a compute unit. To manage
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64 work-items in a wavefront on 16 SCs of the compute unit, a wavefront is split into

subwavefronts at the execute stage, where each subwavefront contains as many work-

items as available SCs. In other words, SCs execute the instructions from the wavefront

mapped to the SIMD unit in a 4-slot time-multiplexed manner using the integer units and

FPUs. The time-multiplexing at the cycle granularity relies on the functional units to be

fully pipelined.

Evergreen assembly code uses a clause-based format classified in three categories:

ALU clause, TEX clause, and control-flow instructions. The control-flow instructions

triggering ALU clauses will be placed in the input queue at the ALU engine. There is

only one wavefront associated with the ALU engine. After fetch and decode stages, the

source operands for each instruction are read that can come from the register file or local

memory. For higher throughput, buffers are attached to SCs to read the registers ahead of

time. The core stage of a GP-GPU is the execute stage, where arithmetic instructions are

carried out in each SC. When the source operands for all work-items in the wavefront are

ready, the execution stage starts to issue the operations into the SCs. Finally, the result of

the computation is written back to the destination operands.

8.2.1 Associative Memristive-Based Computing

In this subsection we present microarchitectural design of an associative memory

module, using memristive parts, that enables partial memory-based computing by lever-

aging pre-stored high-frequency computations. For every type of FPU, we accordingly

designed an AMM module that is tightly integrated to the FPU providing fast local data

communication. The key idea is to pre-calculate the output results of a FPU for a partial

set of input values and store them before execution on the corresponding AMM module

connected to the FPU. In this way, during execution when there is a match between the

input values of the FPU and the pre-calculated values, the AMM module returns the
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pre-stored results on behalf of the FPU at extremely lower energy cost. Therefore the

FPU avoids re-execution and saves energy. The AMM module has a standard interface

as it mimics the partial functionality of the associated FPU: as the inputs, it accepts the

input operands of the FPU, and as the output it returns the result as well as a hit signal.

The AMM module is composed of two pipelined stages. In the first stage, a

TCAM searches the input operands and determines whether there is a match (i.e., hit)

between the input operands and the content of TCAM. In the second stage, a 1T-1R

memristive memory is used to return the pre-stored output result in case of a match. For

TCAM design, we use a memristive 2T-2R cell structure proposed in [94]. Each line in

the TCAM stores one set of the frequent input operands, and each bit-cell consists of two

memristive element to store the pattern and two access transistors, as shown in Figure 8.2.

To program the TCAM, the write voltages are applied on the match lines (ML), and

access-transistors of select devices are connected via the search line (SL) to perform the

write operation. In order to search the TCAM, match lines are precharged during the

precharge phase while all the SLs are inactive to disconnect the access transistors. In

the evaluation phase, based on the pattern-under-search, one of two access transistors

in each bit-cell is ON, connecting the corresponding memristor to the ML. In case of a

bit-mismatch, ML will be connected to the ground through a low-resistance memristive

device. Thus even one bit of mismatch can quickly discharge the ML. In case of a

match for a line, the ML is not connected to the ground because of the high-resistance

memristive devices and stays at the precharged value for a longer time, providing a clear

margin. A clocked self-referenced sensing scheme as well a 2-bit encoding is also applied

to further increase the noise margin [94], and provide digital match/mismatch outputs

that are fed to the next stage as the enable lines (EnL) which display a one-hot encoding;

therefore the hit signal is the logical OR of EnLs.

In case of a match, the hit signal alongside with the previously-computed result
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(QAMM) are propagated toward the end of the pipeline. TCAM raises the hit signal that

squashes the remaining stages of the FPU to avoid the redundant computation by clock-

gating; the clock-gating signal is forwarded to the rest of FPU stages, cycle by cycle.

Given that the first stage of the FPU is concurrently working with TCAM, considerable

energy is saved by spontaneously clock-gating the remaining stages. Instead, the pre-

stored result is read from the memristive memory at negligible energy cost. Figure 8.2

shows the structure of such 1T-1R memory that is used to store the output patterns. To

program the memory, write voltage is applied on the bit-lines, while the enable lines are

used to select the target cell. For read operation, the enable lines are derived by the EnL

values of TCAM, thus either none or only one of the enable lines are active at any given

clock cycle, connecting a memristive cell to the bit-line. The bit-lines that are precharged

during a precharge phase will discharge/remain charged based on the resistance of the

connected memristive cell. The same sense circuitry as TCAM is utilized to enhance

the noise margins and read the value.The stored value is then propagated toward the

end of pipeline for the reuse purpose. The hit signal selects the propagated output of

the memory (QAMM) as the output of the pipeline; further, it disables the propagation

of timing error signal (if any) occurred during execution of any FPU stages to the ECU,

thus avoids the recovery penalty. In case of a TCAM miss, the FPU works normally, and

its result (QFPU ) is selected as the pipeline output.

8.3 Collaborative Compilation

We briefly describe proposed collaborative compiler analysis followed by an

evaluation of how memristive-based computing can increase the energy efficiency of

GP-GPUs. Figure 8.3 illustrates the collaborative compilation flow. In the profiling stage,

we have an OpenCL kernel with a training input dataset. We focus on the individual

FPUs to observe the dispersion of the input operands at the finest granularity. To expose
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Figure 8.3. Collaborative compilation framework and memristive-based computing flow.

high-frequent set of operands for each FP operation, we individually profile every type

of FP operation and keep the distinct sets of the input operands and the related result.

The kernel is instrumented on the Evergreen functional simulator– this can also be done

by proper emission of instrumentation APIs in the naive kernel code. The output of this

stage for every FP operation is high-frequent computations: a list of top sets of values, i.e.

the operands and the related result, that are sorted based on their frequency of occurrence.

This profiling stage is a one-off activity whose cost is amortized across all future usage

of the kernel.

In the next step, the compiler generates codes to store a subset of these high-

frequent computations as the content of AMM modules. To do so, the compiler leverages

AMD compute abstraction layer (CAL) APIs that facilitate programming AMM modules

that are addressable by software. CAL provides a runtime device driver library that

supports code generation, kernel loading and execution, and allows the host program to

interact with the stream cores at the lowest-level. Right before lunching kernel execution,
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compiler inserts codes for programming AMM modules: for every type of FP operation

executed during the kernel, a custom version of “clCreateBuffer” writes the AMM

contents (up to few hundred bytes) to the AMM modules accordingly. In this way, we

concurrently program all AMM modules integrated to a type of FPU across all PEs in

GP-GPUs since their content is equivalent.

8.3.1 FPU Memristive-based Computing

We evaluate the memristive-based computing at the fine-grained instruction-level

across all types of the FPUs activated during the execution of two kernels: Sobel filter

from image processing applications and Haar wavelet transform from signal processing

applications – more kernels are evaluated in Section 8.4.2. Figure 8.4 shows the train

and test images for Sobel filter. To identify the high-frequent computations, the compiler

profiles Sobel kernel with the train input image. Four types of FP operations, including

addition, multiplication, square root, and multiplication-addition are activated during the

kernel execution; profiler sorts each type and stores top-32 sets with highest frequency of

occurrence as AMM contents. Later, for the consecutive kernel executions, the compiler

first programs the AMM modules with the stored AMM contents, and then starts kernel

execution. Figure 8.5 shows the AMM hit rates for the activated FP operations during

Sobel execution with the test images. As shown, the hit rate depends on the FPU

operations, but all AMM modules display a hit rate of greater than 25% with a tiny

TCAM of 32 lines. The AMM modules for MUL and SQRT exhibit a significant hit rate

of up to 49% and 35%, respectively. Overall, an average hit rate of 25%, 46%, 31%,

and 31% is observed for ADD, MUL, SQRT, and MULADD respectively. This means

significant number of operands are matched with the stored computation in the AMM

modules, therefore there is no need for re-executing those values.

To evaluate Haar kernel, we use a random signal as the training input and then
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six different signals having various correlations with the trained input signal. Figure 8.5

shows that the AMM modules display a hit rate in range of 7%–11% for ADD, and

39%–41% for MUL. We also evaluate the tradeoff between the hit rate and energy when

the AMMs utilizing larger TCAM and memory with 64, 128, and 256 lines. The hit

rate of the kernels increases less than 10% when the number of lines is increased from

32 to 256. On the other hand, the AMMs with 32-line display higher energy efficiency

(7× higher hit rate per power compared to the AMMs with 256 lines). Therefore, we

have used the AMMs with 32-line for our proposed framework, and we also measured its

energy efficiency in Section 8.4.2. Please note that the AMM content per each kernel

occupies few kilobytes, for instance 32×48=1.5KB for Sobel, and 32×24=0.75KB for

Haar.

train test1 

test2 

test3 

test4 

Figure 8.4. Train and test images for Sobel filter.
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Figure 8.5. AMM (32-line) hit rates for: i) Sobel with the test images; ii) Haar with
various signals.

8.4 Experimental Results

Our methodology uses the AMD Evergreen GP-GPUs, but can be applied to

other GP-GPUs as well. We have selected applications from AMD APP SDK v2.5 [1] in

OpenCL. We have examined three image processing filters: Sobel, Gaussian, and URNG;

as well as one-dimension Haar wavelet transform, FastWalsh transform, Prefixsum,

and Eigenvalues of a symmetric matrix. Multi2Sim [14], a cycle-accurate CPU-GPU

simulation framework, is used for profiling. The naive binaries of the kernels are run on

the simulator; the input values for the kernels are generated by the default OpenCL host

program. We analyzed the effectiveness of the proposed technique in the presence of

timing errors and VOS in TSMC 45-nm.

8.4.1 FPUs with AMM Modules

Since the fetch and decode stages display a low criticality [111], we focus on the

execution stage consisting of six frequently exercised FPUs: ADD, MUL, SQRT, RECIP,

MULADD, FP2FIX. On Evergreen, every ALU functional unit has a latency of four

cycles and a throughput of one instruction per cycle [24]. Therefore, VHDL codes of

the FPUs are generated and optimized using FloPoCo [6] – an arithmetic synthesizable
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Table 8.1. Energy(pJ) comparison of the FPUs with corresponding AMMs.

ADD MUL SQRT RECIP MADD F2FIX
FPU 5.81 12.76 16.92 30 21.21 3.04
AMM 1.66 1.66 1.30 1.30 1.99 1.30

FP core generator. To achieve a balanced clock frequency across the FP pipelines, the

RECIP has a latency of 16 cycles, while the rest of the FPU have four cycles latency.

The FPUs are synthesized and mapped using the TSMC 45-nm technology

library. The front-end flow has been performed using Synopsys Design Compiler with

the topographical features, while Synopsys IC Compiler has been used for the back-end.

The design has been optimized for a signoff clock period of 2ns at (SS/0.81V/125◦C),

and then optimized for power. The AMM module has different size based on the type

of FPU, its TCAM has: 32×32 for SQRT, RECIP, and FP2FIX; 32×64 for ADD, and

MUL; 32×96 for MULADD. The transistor-level CMOS circuitry is implemented and

then SPICE simulations are done using Cadence Virtuoso. For line resistances and

capacitances, the same model and numbers used in [69] were assumed. The memristor

models are having 250K Ron and 100M Roff, and are based on the fabricated memristors

in [86]. To integrate the resilient architecture, the AMM modules are integrated into the

FPUs pipelines with the multiple-issue recovery mechanism [42].

Table 8.1 summarizes the power results of FPUs and AMMs implementations. As

shown, integration of FPUs with AMMs incurs negligible overhead and it is entirely paid

off by the power saving due to the frequent clock-gating of the FPUs during the hit events

that results into even higher energy efficiency detailed in the following subsection. We

note that the overhead will be further reduced for deeper pipelines. The AMM module

does not limit the clock frequency as it has a positive slack of 300ps.
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Figure 8.6. Overall AMM hit rates for test datasets: dataset1 [2], dataset2 [3].

8.4.2 Energy Saving

We measure the overall AMM modules hit rates for the image processing filters

using two datasets: dataset1 which is a relatively small dataset of ∼400 face images [2];

dataset2 which a large 2,000 Web faces [3]. For profiling, we have used only 20 random

images from dataset1 as the training inputs. Figure 8.6 shows the worst, the best, and

average hit rates for the two datasets. The best hit rate of 84% is observed during Sobel

execution for one of the images in dataset2. As shown, for every filter, the average hit

rate is almost equal across the two different datasets: 38% or 36% for URNG, 22% or

24% for Gaussian, and 34% for Sobel. The worst hit rate is 13% that Gaussian filter

experienced in one of the images in the large dataset2, guaranteeing the absence of a poor

locality in real-life datasets. It therefore confirms the applicability of profiling for the

associative memory-based computing. The proposed optimization framework is based

on either profiling or designer knowledge (provided from a domain expert). We should

note that the profiling is a common technique used for runtime optimizations [64].

We evaluate the energy saving of our proposed architecture with a baseline

architecture that utilizes recent resilient techniques: Razor error detection [56], and the

scalable recovery mechanism of the multiple-issue instruction replay [42] adapted for the
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FPUs. Our architecture (FPUs+AMMs) superposes the AMM modules on the baseline

architecture. Figure 8.7 illustrates the energy consumption of the two architectures at

different voltage points for each kernel. At the nominal voltage of 1.0V, where there

is no timing errors, the proposed architecture with AMM modules achieves 36% better

energy efficiency across all the kernels, thanks to the high hit rates in the AMMs. This is

accomplished through the appropriate coupling of the memristive-based computing and

value prediction that is extended to GP-GPU architectures.

We also assess the efficacy of the proposed architecture in the VOS regime while

clocking at constant speed. To do so, the voltage of FPUs is scaled down in the range of

1.0V–0.88V. To ensure always correct functionality of the AMM modules, we maintain

their operating voltage at the fixed nominal 1.0V. We employ voltage scaling feature of

Synopsys PrimeTime to analyze the delay variations under the voltage overscaling. Then,

the voltage overscaling-induced delay is back annotated to the post-layout simulation

which is coupled with Multi2Sim simulator to quantify the timing error rate. The baseline

architecture triggers the recovery mechanism when any voltage overscaling-induced

timing error occurs, while our proposed architecture does it in case of simultaneous

events of the error and the AMM miss.

At the nominal voltage of 1.0V, without any timing error, the proposed architecture

reaches up to 76% energy saving for FastWalsh. The proposed architecture also exhibits

a great potential of survival in the VOS regime. Scaling down the voltage below 0.92V

for the FPUs causes abrupt increasing of the error rate and therefore these units incur

frequent recovery cycles. Our implementation excludes the fact that the AMM module

may produce an erroneous result, because the module has a positive slack of 300ps and

always works at the nominal voltage proving sufficient guardband. Therefore it is unlikely

for AMM modules to face any timing errors. In the voltage range of 0.92V–0.88V, the

kernels face 10%–38% error rate in the baseline architecture which is further reduced to
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Figure 8.7. Total energy consumption of proposed architecture with AMM modules
(FPUs+AMMs) in comparison with the baseline architecture (FPUs) under VOS.
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a range of 3%–24% in the proposed architecture. The proposed architecture consumes

a little bit more energy till 0.88V because of the errors that are not masked by our

AMM modules; it reaches an average energy saving of 39% at voltage of 0.88V. This is

accomplished through the efficient timing error recovery by associative memristive-based

modules that do not impose any penalty as opposed to the baseline recovery.

8.5 Chapter Summary

This chapter proposes static compiler analysis and coordinated microarchitectural

design that enable efficient reuse of computations in GP-GPUs. The proposed technique

makes use of emerging associative memristive modules connected with floating point

units that enables spatial and temporal computational reuse. Fast and efficient accesses to

the pre-stored computation are guaranteed by carefully placing these key values in tightly-

coupled associative-memory modules. The GP-GPU kernels exhibit a low entropy, that

is high contextual information, yielding up to 84% hit rate on the 32-entry AMMs with

an average energy saving of 36%. Our proposed framework also enhances robustness

and energy saving in the VOS regime by avoiding conventional timing error recovery

costs. This technique highly surpasses the baseline architecture by an average energy

saving of 39%.

This chapter contains material taken from “Energy-Efficient GPGPU Architec-

tures via Collaborative Compilation and Memristive Memory-Based Computing,” by

Abbas Rahimi, Amirali Ghofrani, Miguel A. Lastras-Montano, Kwang-Ting Cheng,

Luca Benini, and Rajesh K. Gupta, which appears in ACM/IEEE Design Automation

Conference (DAC), 2014. The dissertation author was the primary investigator and author

of this paper.



Chapter 9

Accuracy-Configurable OpenMP

We propose a tightly-coupled, multi-core cluster architecture with shared, variation-

tolerant, and accuracy-reconfigurable floating-point units (FPUs). This resilient shared-

FPUs dynamically characterize FP pipeline vulnerability (FPV) and expose it as metadata

to a software scheduler for reducing the cost of error correction. To further reduce this

cost, our programming and runtime environment also supports controlled approximate

computation through a combination of design-time and runtime techniques. We provide

OpenMP extensions (as custom directives) for FP computations to specify parts of a

program that can be executed approximately. We use a profiling technique to identify

tolerable error significance and error rate thresholds in error-tolerant image processing ap-

plications. This information further guides an application-driven hardware FPU synthesis

and optimization design flow to generate efficient FPUs. At runtime, the scheduler utilizes

FPV metadata and promotes FPUs to accurate mode, or demotes them to approximate

mode depending upon the code region requirements. We demonstrate the effectiveness of

our approach (in terms of energy savings) on a 16-core tightly-coupled cluster with eight

shared-FPUs for both error-tolerant and general-purpose error-intolerant applications.

This chapter provides a method for accepting errors in tightly-coupled processor clusters

with shared FPUs.

167
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9.1 Introduction

The cost of error recovery mechanisms is high in the face of frequent timing errors

in aggressive voltage down-scaling and near-threshold computation in an attempt to save

power [81, 79]. This cost is exacerbated in floating-point (FP) pipelined architectures be-

cause FP pipelines typically have high latency, e.g., up to 32 cycles to execute depending

upon the type and precision on an ARM Cortex-A9, and higher energy-per-instruction

costs than their integer counterparts. Further, deeper pipelines induce higher pipeline

latency and higher cost of recovery through flushing and replaying. These energy-hungry

high-latency pipelines are prone to inefficiencies under timing errors because the number

of recovery cycles per error is increased at least linearly with the pipeline length. More

importantly, FP pipelines are often shared among cores due to their large area and power

cost. For instance, the AMD Bulldozer architecture shares a floating-point unit (FPU)

between a dual-clustered integer core, with four pipelines. UltraSPARC T1 also has a

shared-FPU between eight cores. This makes the cost of recovery even more pronounced

for a cluster of tightly-coupled processors utilizing shared resources.

We present techniques to enhance OpenMP and the shared-memory architecture

to support approximate computing. Our goal is to reduce the cost of a resilient FP

environment which is dominated by the error correction. Tolerance to error in execution

is often a property of the application: some applications, or their parts, are tolerant to

errors (notably, media processing applications), while some other parts must be executed

exactly as specified. We either explicitly accept the timing errors – if possible – in a

fully controlled manner to avoid undefined behavior of programs; or we try to reduce the

frequency of timing errors by assigning computations to appropriate pipelines with lower

vulnerability. Accordingly, this chapter makes three contributions:

1. We propose a set of accuracy-reconfigurable FPUs that are resistant to variation-
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induced timing errors and shared among tightly-coupled processors in a cluster.

This resilient shared-FPUs architecture supports online timing error detection, cor-

rection, and characterization. We introduce the notion of FP pipeline vulnerability

(FPV), captured as metadata, to expose variability and its effects to a software

scheduler for reducing the cost of error correction. A runtime ranking scheduler

utilizes the FPV metadata to identify the most suitable FPUs for the required

computation accuracy for the minimum timing error rate.

2. Using the notions of approximate and accurate computations, we describe a com-

piler and architecture environment to use approximate computations in a user- or

algorithmically-controlled fashion. This is achieved via design-time profiling, syn-

thesis, and optimization in conjunction with runtime characterization techniques.

This approach eliminates the cost of error correction for specific annotated approx-

imate regions of code if and only if the propagated error significance and error rate

meet application-specific constraints on quality of output. For error-tolerant appli-

cations our OpenMP extensions specify parts of a program that can be executed

approximately, thus providing a new degree of scheduling flexibility and error

resilience. At design-time, code regions are profiled to identify acceptable error

significance and error rate. This information drives synthesis of an application-

driven hardware FPU. At runtime, as different sequences of OpenMP directives

are dynamically encountered during program execution, the scheduler promotes

FPUs to accurate mode, or demotes them to approximate mode depending upon

the code region requirements.

3. Our approach enables efficient execution of finely interleaved approximate and

accurate operations enforced by various computational accuracy demands within

and across applications. We demonstrate the effectiveness of our approach on a 16-
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core tightly-coupled cluster in the presence of timing errors. For general-purpose

error-intolerant application, our approach reduces the recovery cycles that yield an

average energy saving of 22% (and up to 28%), compared to the worst-case de-

sign. For error-tolerant image processing applications with annotated approximate

directives, 36% energy saving is achieved while maintaining acceptable quality

degradation.

9.2 Controlled Approximation

Approximate computation leverages the inherent tolerance of some (type of)

applications within certain error bounds that are acceptable to the end application. Two

metrics have been previously proposed to quantify tolerance to errors [43]: error rate

and error significance. The error rate is the percentage of cycles in which the computed

value of a FP operation is different from the correct value. The error significance is the

numerical difference between the correct and the computed results.

Disciplined approximated programming allows programmers to identify parts of

a program for approximate computation [65]. This is commonly found in applications

in vision, machine learning, data analysis, and computer games. Conceptually, such

programs have a vector of ‘elastic outputs’ than a singular correct answer. Within the

range of acceptable outputs, the program can still appear to execute correctly from

the user’s perspective [65, 54, 131] even if the individual computations are not exact.

Programs with elastic outputs have application-dependent fidelity metrics, such as peak

signal to noise ratio (PSNR), associated with them to characterize the quality of the

computational result. The degradation of output quality for such applications is acceptable

if the fidelity metrics satisfy a certain threshold. For example, in multimedia applications

the quality of the output can be degraded but acceptable within the constraints of PSNR
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≥ 30dB.

The timing error must be controllable because it could occur anytime and any-

where in the circuit. Therefore, three conditions must be satisfied to ensure that it is safe

not to correct a timing error when approximating the associated computation:

1. The error significance is controllable and below a given threshold;

2. The error rate is controllable and below a given error rate threshold;

3. There is a region of the program that can produce an acceptable fidelity metric

by tolerating the uncorrected, thus propagated, errors with the above-mentioned

properties.

These conditions can be satisfied either through a set of profiling phases, or a set of

threshold values specified by a domain expert via application knowledge. As we will

detail in Section 9.4.1, the output information of our profiling phase is a set of threshold

values that guarantee an acceptable fidelity metric. Any timing error greater than the set

of thresholds triggers the recovery mechanism during the approximate operation to avoid

unacceptable accuracy and undefined program behavior (e.g., in case of data-dependent

control-flow), therefore guaranteeing a safe approximate computation.

In the following sections, we describe how we use these rules in OpenMP envi-

ronment to ensure that approximate computations always deliver the required accuracy,

and how they can be used for efficient hardware FPU synthesis and optimizations.

9.3 Accuracy-Configurable OpenMP Environment

9.3.1 Accuracy-Configurable FPUs

We extend the baseline cluster architecture with our resilient shared-FPUs. Similar

to the DMA, our FPU design is also controlled via memory-mapped registers, accessible
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Figure 9.1. Variability-aware cluster architecture with accuracy-configurable FPUs.

through a slave port on the peripheral interconnect. As shown in the rightmost part of

Figure 9.1, the FPU has three pipeline blocks which work in parallel. Each pipeline’s

inputs and outputs are retrieved from a minimal register file (one register file per pipeline

to allow for parallel execution). For each pipeline there is a write-only opmode register

that determines whether the current operation is accurate (i.e., exact) or approximate.

Every pipeline block has two dynamically reconfigurable operating modes: (i) accurate,

and (ii) approximate. To ensure 100% timing correctness in the accurate mode, every

pipeline uses the EDS sensors as well as the ECU to detect and correct any timing errors.

During the accurate operation if a timing error is detected, the EDS circuits prevent

pipeline from writing results to the register and thus avoid corrupting the architectural

state. To recover the errant operation, the ECU adopts the multiple-issue operation replay

mechanism [42].

In the approximate mode, the pipeline simply disables the EDS sensors on the

less significant N bits of the fraction. The sign and the exponent bits are always protected

by EDS. This allows the pipeline to ignore any timing error below the less significant N

bits of the fraction and save on the recovery cost. We only disable the error detection

circuits partially on N bits of the fraction. This enables the FP pipeline for executing
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the subsequent accurate or approximate software blocks without any problem in power

retention. Further, this ensures that the error significance threshold is always met, but

limits the use of the recovery mechanism to those cases where the error is present

on the most significant bits. To characterize vulnerability of every FP pipeline to the

timing error, we use FPV which is defined as the percentage of cycles in which a timing

error occurs on the pipeline reported by the EDS sensors. To compute FPV, the ECU

dynamically characterizes this per-pipeline metric over a programmable sampling period.

The characterized FPV of each pipeline is visible to the software through the memory-

mapped registers. Thus, the runtime scheduler leverages this characterized information

for better utilization of FP pipelines, for example, it can assign fewer operations to a

pipeline with higher FPV metadata. The runtime scheduler can also demote an error-

prone pipeline to the approximate mode.

9.3.2 OpenMP Compiler Extension for Approximation

We provide two custom directives to OpenMP to identify approximate or accurate

computations with an arbitrary granularity determined by the size of the structured block

enclosed by the two custom directives:

#pragma omp accurate

structured-block

#pragma omp approximate [clause]

structured-block

The approximate directive allows the programmer to specify the tolerated error for the

specific computation through an additional clause:

error_significance_threshold (<value N>)
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The error is specified as the least significant N bits of the fraction. By default, if

the programmer does not specify an error significance threshold, it is assumed zero-

tolerance (i.e., the approximate directive behaves as the accurate). By using this

clause the approximate structured blocks have deterministic fully-predictive semantics:

the maximum error significance for every FP instruction of the structured block is bound

below the less significant N bits of the fraction. Moreover, any approximate instruction

cannot modify any register other than its own. Let us consider the code snippet for

Gaussian filter in Figure 9.2.

#pragma omp parallel 
{ 
 #pragma omp accurate 
 #pragma omp for 
 for (i=K/2; i <(IMG_M-K/2); ++i) { 
 // iterate over image 
  for (j=K/2; j <(IMG_N-K/2); ++j) { 
   float sum = 0; 
   int ii, jj; 
   for (ii =-K/2; ii<=K/2; ++ii) { 
   // iterate over kernel 

    for (jj = -K/2; jj <= K/2; ++jj) { 
     float data = in[i+ii][j+jj]; 
     float coef = coeffs[ii+K/2][jj+K/2]; 
     float result; 
     #pragma omp approximate \ 
               error_significance_threshold(20)                    
 { 
         result = data * coef; 
        sum += result; 
 } 
    } 
   } 
   out[i][j]=sum/scale; 
  } 
 } 
} 

 
 

Figure 9.2. Code snippet for Gaussian filter utilizing OpenMP approximation directives.
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Here, the programmer has indicated the whole parallel block as the accurate

computation, with the exception of the FP multiplication and accumulation of the input

data. These two operations are annotated for the approximate computation with a

tolerance threshold of less significant 20 bits of the fraction derived from a profiling stage.

We use a profiling technique [125] to identify tolerable error significance and error rate

thresholds in error-tolerant image processing applications. The compiler transforms the

blocks to appropriate API calls implemented through the runtime library.

9.3.3 Runtime Support

The runtime library is a software layer that lies between the variation-tolerant

shared-FPU architecture and the compiler-transformed OpenMP program. The goal of our

runtime scheduler is to inspect the status of the FPUs and allocate them to approximate

or accurate software blocks to reduce the overall cost of timing error correction. This

is accomplished in a twofold manner: (i) the runtime scheduler reduces the number of

recovery cycles for accurate blocks by favoring utilization of FPUs with a lower FPV,

thus lower the error rate and energy; (ii) the scheduler further reduces the cost of error

correction by deliberately propagating the error toward the program, thus excluding the

correction cost. The latter guarantees the quality of service for approximate blocks by

demoting FPUs to the approximate mode for ignoring errors that match the tolerance

expressed via the error significance threshold clause.

To allow for quick selection of best suited units for the accuracy target at hand, our

scheduler ranks all the individual pipelines based on their FPV. The scheduler traverses

the sorted list, starting from the head, until it finds an available pipeline. Once the target

FP pipeline has been identified, it is configured to the desired operation mode on-the-fly,

and a handler is returned to the program for offloading the consecutive FP instruction.

Using this, for every type of FP operations the ranking algorithm tries to highly utilize
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those pipelines with a lower FPV (and rarely allocate operations to the pipelines at the

end of list), thus the aggregate recovery cycles for execution of FP operations will be

reduced. Figure 9.3 illustrates the ranking algorithm (RANK). For the approximate

operations, in case of specifying an error rate threshold the scheduler limits its search to

a certain element of the sorted list, e.g., until the K-th pipeline in Figure 9.3.
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Figure 9.3. RANK scheduling based on FPV ranks.

As soon as the scheduler finds a pipeline which has a higher FPV than the error

rate threshold, it marks it as the virtual end point of the list for the approximate operations.

Therefore, for the following approximate requests, the scheduler starts from the start point

of the sorted list, and traverses down toward the virtual end point of the corresponding

sorted list for finding a free pipeline. However, this virtualization technique limits the

available parallelisms discussed in the Section 9.4.

9.3.4 Application-Driven Hardware FPU Synthesis and Optimiza-
tion

In the earlier sections, we describe the three essential components of our variability-

aware OpenMP environment: the language directive extensions, the compiler and runtime

support, and the accuracy-configurable architecture. In this section, we introduce an

optional yet effective methodology to generate efficient hardware FPU. The design flow

should be done by choosing a threshold that is acceptable on a wide class of application,
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and if an application cannot tolerate this type of inaccuracy, the runtime system must

reconfigure architecture to the accurate mode. We couple the proposed methodology with

the application tolerable error analysis presented in Section 9.2. As we have mentioned

earlier, the output information of the profiling phase is two threshold values, i.e., the error

significance threshold and the error rate threshold, that guarantee the acceptable fidelity

metric (in our case: PSNR ≥ 30dB). This information is utilized during design-time flow

for synthesis and optimization of hardware FPUs; Figure 9.4 illustrates the proposed

methodology.

The error significance threshold indicates that any timing error below the bit

position of e.g., N can be ignored since it will not induce large deviations from the

corrected value. This means for the approximate computation the only important parts

are the bit positions higher than N since any timing error on these bits have to be

corrected to guarantee the acceptable fidelity metric. Therefore, an efficient FPU for the

approximate mode should eliminate the possibility of any timing error on the high order

bits, while relaxing this constraint on the low order bits. At the same time they should

not be too relaxed, to avoid the generation of many errors that have to be recovered in the

accurate mode. Consequently, a set of tight timing constraints is generated to guide the

hardware synthesis and optimization flow for providing fast paths connected to the high

order bits (thus the lower delay, and the lower probability of timing errors). The synthesis

CAD tool meets these constraints by utilizing fast leaky standard cells (low-VT H) for

the paths with the tight timing constraint, while utilizing the regular and slow standard

cells (regular-VT H and high-VT H) for the rest of paths. As a result, the new generated

hardware FPU will experience a lower probability of the timing error on the bit positions

higher than N, at the power expense of higher leaky cells.

We have applied the proposed methodology to optimize the netlist of the shared-

FPUs. The approximation-aware timing constraints try to deliver fast paths connected
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to bit position of 20 up to 32. As a result, the optimized shared-FPUs experience lower

timing error rate; compared to the non-optimized shared-FPUs, the total recovery cycles

are reduced by 46% and 27% in the accurate and approximate modes, respectively. On the

other hand, the total power over-head of the optimized shared-FPUs is 16% in comparison

with the non-optimized shared-FPUs (19% overhead in leakage power). However, this

power overhead is highly compensated because the optimized shared-FPUs spend smaller

number of clock cycles to compute the same amount of work. Experimental results in

Section 9.4.1 quantify the energy benefit of this proposed methodology.

The proposed optimization methodology is based on either designer knowledge

(provided from a domain expert), or static profiling (derived from the fidelity metric

and error analysis). We should note that the static profiling is a common technique for

approximate computation analysis [30, 91]. However, our methodology takes advantage

of the maximum allowable error significance at design-time, while the error detection

and correction circuits embedded in FPUs are responsible to dynamically handle any

non-maskable timing error.

9.4 Experimental Results

We demonstrate our approach on an OpenMP-enabled SystemC-based virtual

platform for on-chip multi-core shared-memory clusters with hardware accelerators [46].

Table 9.1 summarizes the architectural parameters. A cycle-accurate SystemC model of

the shared-FPUs is also integrated to the virtual platform, which enables the variability-

affected emulation. To accurately emulate the low-level device variability on the virtual

platform, we have integrated the variability-induced error models at the level of individ-

ual FP pipelines using the instruction-level vulnerability characterization methodology

presented in [111]. The RTL description of shared-FPUs are generated and optimized

by FloPoCo [6], an arithmetic FP core generator of synthesizable VHDL. Then, the
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shared-FPUs have been synthesized for TSMC 45nm technology, the general purpose

process. The front-end flow with multi VT H cells has been performed using Synopsys

Design Compiler with the topographical features, while Synopsys IC Compiler has been

used for the back-end. The design has been typically optimized for timing to meet the

signoff frequency of 625MHz at (SS/0.81V/125◦C).

Next, we have analyzed the delay variability of the shared-FPUs under process

and temperature variations. First, to observe the effect of static process variation on the

eight shared-FPUs, we have analyzed how the critical paths of each pipeline are affected

due to within-die and die-to-die process parameters variation. Therefore, the various

pipelines within the FPUs experience different variability-induced delay and thus display

various error rate. During the sign-off stage, we have injected process variation in the

shared-FPUs using the variation-aware timing analysis engine of Synopsys PrimeTime

VX [25]. It utilizes process parameters and distributions of 45nm variation-aware TSMC

libraries [23] derived from first-level process parameters by principal component analysis.

Second, to observe the effects of temperature variations, we employ voltage-temperature

scaling feature of Synopsys PrimeTime to analyze the delay and power variations under

temperature fluctuations. Finally, the variation-induced delay is back-annotated to the

post-layout simulation to quantify the error rate of individual pipelines. For every back-

annotated variation scenarios, the FP pipelines are characterized with a representative

random set of 107 inputs, automatically generated by FloPoCo. Finally, these error rate

models are integrated to the corresponding modules in the SystemC virtual platform to

emulate variability.

9.4.1 Error-Tolerant Applications

In this section we evaluate the effectiveness of the proposed variability-aware

OpenMP environment under the process variability for the error-tolerant image processing
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Table 9.1. Architectural parameters of shared-FPUs cluster

ARM v6 core 16 TCDM banks 16 

I$ size(per core) 16KB  TCDM latency 2 cycles 

I$ line 4 words TCDM size 256 KB 

Latency hit 1 cycle L3 latency ≥ 60 cycles 

Latency miss ≥ 59 cycles L3 size 256MB 

Shared-FPUs 8 FP ADD latency 2 

FP MUL latency 2 FP DIV latency 18 

 

applications. For benchmark, we consider two widely-used image processing applications

as the approximate programs: Gaussian smoothing filter, and Sobel edge detection filter.

Execution without Approximation Directives

For the first experiments, we marked the entire program for accurate computation

(#pragma omp accurate), representative of what a non-expert programmer would

achieve without application profiling, tuning, and code annotation. Later, we show how

these applications can benefit from the approximate code annotation. We have compared

the proposed ranking scheduling (RANK) with the baseline round-robin scheduling

(RR) in terms of FP energy and total execution time. The RR algorithm assigns the FP

operations to the pipelines in the order they become available, while RANK utilizes

the sorted list structure of the FPV. Figure 9.5 shows the shared-FPU energy and total

execution time for the target applications for RANK normalized to the baseline RR

algorithm. Each bar (or point) indicates the normalized shared-FPUs energy (or the total

execution time) for a set of different input sizes.

As shown, the RANK algorithm achieves up to 12% lower energy for the shared-

FPU compared to RR algorithm, while the maximum timing penalty is less than 1%. This

energy saving is achieved by leveraging the characterized FPV metadata and the sorted

list data structure that enable high utilization of those pipelines that display lower error
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Figure 9.5. Energy and execution time of RANK scheduling (normalized to RR) for
accurate Gaussian and Sobel filters.

rates. Consequently, it reduces the total recovery cycles, and energy. Moreover, the total

timing overhead of the RANK is minimal, and the overhead for sorting and searching

among eight shared-FPUs is highly amortized. These low cost features are accomplished

through the advantages of fast TCDM, carefully placing the key data structures in TCDM,

and the low-latency logarithmic interconnection.

Profiling Error-tolerant Applications

In this section we present the profiling phases for producing useful threshold

information to enable approximate computation. We analyze the manifestation of a

range of error significance and error rate on the PSNR of the two image processing

applications. We have annotated the approximable regions of the application codes using

the proposed OpenMP custom directives (the code snippet for the Gaussian filter is

shown in Figure 9.2). The annotated approximate regions of both applications are only

composed of FP addition and multiplication operations. We quantify how much error

significance can be tolerated in these approximate regions, given a maximum error rate.

To do so, we have profiled the annotated approximate regions of the programs. In a
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series of profiling, we have monotonically increased the error significance by injecting

the timing errors as random multiple-bit toggling up to a certain bit position of the FP

single precision representation. The position of multiple-bit toggling is varied from 1 to

28, for a wide range of 1% error rate to 100%.

Figure 9.6 illustrates results for the error rate of 100%, i.e., every addition and

multiplication operation in the FP approximate regions has an errant output depending

up on the injected error significance. Figure 9.6.a shows the PSNR degradation of output

image of the Gaussian filter as a function of the error significance. As shown, the three

channels of RGB color space, experience similar PSNR degradations by increasing the

error significance. Figure 9.6.b also illustrates the similar trend for the Sobel filter. The

rightmost part of Figure 9.6 shows that this degradation of the quality is acceptable from

the user’s perspective. In summary, the output information of these profiling indicates

that for a given error rate of 100%, 50%, 25% if the timing error lies within the bit

position of 0 to 20, 21, 22 of the fraction part, these two applications can tolerate the

timing error by delivering a PSNR of greater than 30dB. This information is essential

not only during runtime to intentionally ignore the tolerable timing errors, but also for

efficient hardware FPU synthesis and optimizations, detailed in the following section.

Therefore, for the approximate regions of these applications, we have set the

error rate threshold to 100%, and the error significance threshold to 20 to maintain the

acceptable PSNR. By setting the threshold of the error rate to 100%, during the runtime

execution of the approximate regions all FPUs can be utilized. This is important in data-

parallelized image applications where there is enough parallelism, and especially so when

the number of FPUs is lower than the number of the cores and any time-multiplexing

might incur performance degradation.



184

 

0

20

40

60

80

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

P
S

N
R

 (
d

B
)

Error Significance (bit position)

R G B

PSNR=60dB PSNR=30dB

PSNR=101dB PSNR=31dB

0

20

40

60

80

100

120

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

P
S

N
R

 (
d

B
)

Error Significance (bit position)

R G B

Figure 9.6. PSNR degradation as a function of error significance: a) for Gaussian filter
(top); b) for Sobel filter (bottom).

Execution with Approximation Directives

Now, let us quantify the benefit of the approximate computation using the infor-

mation of the profiling. Since the RANK scheduling algorithm surpasses the baseline RR

algorithm, for the rest of results we have used the RANK algorithm. We have repeated

the experiments in Section 9.4.1, but for two variants of the applications code. In the first

version, the programs are entirely composed of the accurate FP operations, and the in the

second version the programs utilize the approximate ADD and MUL operations in the

annotated regions of code.

Figure 9.7 shows the total shared-FPUs energy for these two versions of the

programs with different input sizes. The first group of bars shows the energy of the

shared-FPUs for the accurate programs, while the second group of bars refers to the

approximate programs. For example, with an input size of 60×60, the shared-FPUs

consume 3.5µJ (or 4.6µJ) for the accurate Gaussian (or Sobel) program, while execution

of the approximate version of the program reduces the energy to 2.8µJ (or 3.5µJ),
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achieving 24% (or 30%) energy saving. This energy saving is achieved by ignoring the

timing error within the bit position of 0 to 20 of the fraction part. The next two bars show

the energy of an optimized hardware implementation of the shared-FPUs, discussed in

the following.
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Figure 9.7. FP energy of accurate and approximate programs for non-optimized and
optimized hardware shared-FPUs.

To generate the efficient FPUs suitable for these applications we leveraged the

hardware FPU synthesis and optimization methodology proposed in Section 9.3.4. There-

fore, the application-driven timing constraints guide the CAD flow to selectively optimize

timing of the desired paths. Figure 9.7 also shows the energy differences between the

non-optimized and optimized FPUs in the two operating modes. On average, compared to

the non-optimized shared-FPUs, the optimized shared-FPUs achieves 25% and 7% lower

energy for the accurate and approximate modes, respectively. Overall, utilization of the

annotated programs with the approximate directives on top of the optimized shared-FPUs

achieves an average energy saving of 36%.

9.4.2 Error-intolerant Applications

Using the concept of configurable accuracy as discussed earlier, we now show

that the proposed variability-aware OpenMP environment not only facilitates efficient

execution of the approximate programs, but also reduces the cost of recovery for the
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error-intolerant general-purpose applications. We have evaluated the effectiveness of our

proposed approach in the presence of process variability under operating temperature

fluctuations for five applications where we have no domain expert knowledge about their

tolerance to error: three widely used 2-D computational kernels (matrix multiplication,

matrix addition with scalar multiplication, and DCT), Monte Carlo kernel, and image

conversion kernel (HSV2RGB).

Figure 9.8 shows the shared-FPUs energy saving of these applications compared

to the worst-case design. For these experiments, we consider 25% voltage overdesigned

for the baseline FPUs which can guarantee their error-free operations [65]. On average

22% (and up to 28%) energy saving is achieved at the operating temperature of 125◦C,

thanks to allocating the FP operations to the appropriate pipelines. As shown, this saving

is consistent (20%–22% on average) across a wide temperature range (∆T=125◦C),

thanks to the online FPV metadata characterization which reflects the latest variations,

thus enabling the scheduler to react accordingly. The lower temperature leads to a higher

delay in the low-voltage region of nanometer CMOS technologies [89], thus the higher

error rate and the more energy for recovery. Please note that after having the ranked

pipelines tables on TCDM, we rarely need to re-execute the sorting algorithm unless we

sense a temperature fluctuation which has a slow timing-constant.

We also compare our proposed environment with method presented in Truffle [65].

Truffle, as a single core architecture, duplicates all the functional units in the execution

stage. Half of them are hardwired to VddHigh (to execute the accurate operations), while

the other half operate at VddLow (to execute the approximate operations). To have an

iso-area comparison with Truffle, as it is suggested in their paper, we assume that Truffle

uses dual-voltage FPUs and changes the voltage depending on the instruction being

executed. This would also save the static power. To have a fair comparison, we also

assume that Truffle employs a fast Vdd-hopping technique to switch between VddHigh
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Figure 9.8. Shared-FPUs energy saving for the error-intolerant applica-tions compared
to the worst-case design.

and VddLow. Among the Vdd-hopping implementation techniques [31], Beigne et al.

propose a Vdd-hopping unit with voltage transitions less than 100ns [31, 87]. Kim et

al. also propose fast on-chip voltage regulators with transitions time of 15ns–20ns [87],

thus we consider this transition time and optimistically augment a latency of 10-cycle

for switching FPUs between the accurate and approximate modes. We apply Truffle

limitation to our virtual plat-form cluster to quantify its energy.

For comparison, we consider two application scenarios: (i) once the cluster is

executing only one approximate application; (ii) simultaneous execution of one approxi-

mate application with one accurate application. In the former scenario, entire 16 cores of

the cluster cooperatively execute one of the approximate image applications, while in the

latter scenario, eight cores execute the approximate Gaussian filter and the other eight

core execute the accurate matrix multiplication, simultaneously. Figure 9.9 compares the

shared-FPUs energy of Truffle with our proposed approach when executing the above two

scenarios. As shown, our proposed approach surpasses Truffle in the both applications

scenarios. In the former scenario, on average, our approach saves 20% more energy

compared to Truffle by reducing the conservative voltage overdesigned for the accurate
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part of filters application. For the mixed scenario of the applications, our approach saves

36% more energy, since Truffle highly faces with the overhead of frequent switching

between the accurate and approximate modes which is imposed by interference of the

accurate and approximate operations resulting from the concurrent execution of Gaussian

and matrix multiplication applications.
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9.5 Chapter Summary

We propose an OpenMP programming environment that is resilient to variability-

induced timing errors and suitable for fine-grained interleaved approximate and accurate

computation on shared-FPUs processor clusters. This is orchestrated through a vertical

abstraction of circuit-level variations into a high-level parallel software execution. The

OpenMP extensions help a programmer specify accurate and approximate FP parts of a

program. The underlying architecture features a set of shared-FPUs with two sensing

and actuation primitives; every FPU dynamically senses the timing errors, characterizes

its own FPV metadata, and can be configured to operate in the approximate or accurate

modes. The runtime scheduler utilizes the sensed FPV metadata, and parsimoniously



189

actuates depending upon the code region requirements on the computational accuracy.

These three components in the pro-posed environment support a controlled approxi-

mation computation through various design-time phases (applications profiling, and

FPU synthesis and optimization) in combination with runtime sensing and actuation

primitives. Either the environment deliberately ignores the otherwise expensive timing

error correction in a fully controlled manner, or it tries to reduce the frequency of timing

errors.

For general-purpose error-intolerant applications with no domain expert knowl-

edge, our approach reduces energy up to 28%, across a wide temperature range (∆T=125◦C),

compared to the worst-case design. For error-tolerant image processing applications with

the annotated approximate directives, on average, 36% energy saving is achieved while

maintaining the PSNR ≥ 30dB. In comparison with the state-of-the-art architecture [65],

our approach saves 36% more energy when executing finely interleaved mixture of FP

operations.

This chapter contains material taken from “A Variability-Aware OpenMP Envi-

ronment for Efficient Execution of Accuracy-Configurable Computation on Shared-FPU

Processor Clusters,” by Abbas Rahimi, Andrea Marongiu, Rajesh K. Gupta, and Luca

Benini, which appears in ACM/IEEE International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS) Conference, 2013. The dissertation

author was the primary investigator and author of this paper.



Chapter 10

Approximate Memristive Associative
Memory

Multimedia applications running on thousands of deep and wide pipelines work-

ing concurrently in GPUs have been an important target for power minimization both at

the architectural and algorithmic levels. At the hardware level, energy-efficiency tech-

niques that employ voltage overscaling face a barrier so-called “path walls”: reducing

operating voltage beyond a certain point generates massive number of timing errors that

are impractical to tolerate. We propose an architectural innovation, called A2M2 module

(approximate associative memristive memory) that exhibits few tolerable timing errors

suitable for GPU applications under voltage overscaling. A2M2 is integrated with every

floating point unit (FPU), and performs partial functionality of the associated FPU by

pre-storing high frequency patterns for computational reuse that avoids overhead due

to re-execution. Voltage overscaled A2M2 is designed to match an input search pattern

with any of the stored patterns within a Hamming distance range of 0–2. This matching

behavior under voltage overscaling leads to a controllable approximate computing for

multimedia applications. Our experimental results for the AMD Southern Islands GPU

show that four image processing kernels tolerate the mismatches during pattern match-

ing resulting in a PSNR ≥ 30dB. The A2M2 module with 8-row enables 28% voltage

190
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overscaling in 45nm technology resulting in 32% average energy saving for the kernels,

while delivering an acceptable quality of service. This chapter provides a method for

accepting errors in GPUs.

10.1 Introduction

There is an ever-increasing demand for multimedia information processing. A

graphical processing unit or GPU provides a programmable fabric that orchestrates

over 2,000 stream cores to meet the required performance demanded by multimedia

applications. Given a limited thermal envelope, powering up over 4 billion transistors

makes energy efficiency a primary concern for GPUs. Earlier work has pointed to

supply voltage overscaling (VOS) [79, 74] and computational reuse [142] as promising

approaches to reduce energy consumption. For a core, there is a voltage and clock

frequency operating point at which the core is efficiently functional, but reducing the

operating voltage beyond a critical point leads to so-called “path walls” [127, 107]. The

path walls effect is highly pronounced in well-optimized circuits [127]. Hitting the path

walls results either in a complete core failure, or massive number of timing errors that

are very expensive to correct, and wipe out the energy benefits of VOS.

Multimedia applications provide ability to exploit the varying degrees of tolerance

to error that an application has due to its programming or inherent application needs

[44]. To use this flexibility, “approximate programs”, programs that produce results

that may be an approximation to the specified results, have an application-dependent

fidelity metric to characterize the quality of the output result. For instance, peak signal to

noise ratio (PSNR) of greater than 30dB is generally considered acceptable from users

perspective in image processing applications. Therefore if program execution is not 100%

numerically correct due to few errors during computations, the program can still “appear”

to execute correctly. However, recent experiment on an ARM Cortex-M0 core shows that
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VOS after the critical operating point increases the number of timing errors dramatically

[90]. In a similar vein, SRAM-based cache counterpart displays useless behaviour under

VOS: operating at the nominal voltage is error-free; reducing the voltage down by ∼25%

generates few errors in data array; below that point there is a massive number of errors in

every row and column [70]. This massive number of errors is beyond the capability of the

approximate applications to tolerate. Efforts have been done to enable VOS in traditional

CMOS-based synthesis by generating approximate hardware blocks for coarse-grained

meta-function [100].

In contrast, non-volatile memories such as resistive RAM (ReRAM/memristor)

offers low energy operation with 270mV–1.0V [52]. Their downside is limited durability

beyond billion write operations that limits their lifetime [92]. Li et al. [94] demonstrate

a 1-Mb ternary content addressable memory (TCAM) test chip using 2-transistor/2-

resistive-phase-change-storage (2T-2R) cell that achieves > 10× smaller cell size than

SRAM-based TCAMs, and ensures reliable low voltage search operation. To build energy-

efficient GPUs using the CMOS-compatible memristor parts, we have earlier shown

integration of the TCAMs with the floating point units (FPUs) for exact computation

reuse in Chapter 8. These FPUs consume higher energy-per-instruction than their integer

counterparts, and the overall arithmetic operations contribute to more than 70% of the

total GPU power consumption in compute-intensive kernels [149].

Parallel execution in the GPU architectures provides an important ability to

combine computational reuse and approximation for reducing energy. This work exploits

this opportunity to make three main contributions:

1. We propose approximate associative memristive memory (A2M2) microarchitec-

tural design to enable simultaneous VOS and computational reuse. A2M2 is a

programmable module accessible by software to store computations that appear

frequently, and is tightly integrated to every FPU in the GPU. A2M2 is composed
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of a TCAM and a crossbar-based memristor memory block that together represent

the pre-stored computations as partial functionality of the associated FPU. Under

VOS, A2M2 exhibits a controllable error behaviour: when we reduce the voltage

from 1.0V down to 725mV, A2M2 still matches an input search pattern with any of

the stored computations within a Hamming distance of 0, 1, or 2.

2. We present a framework, compatible with OpenCL as an industry-standard pro-

gramming for heterogeneous computing, to profile GPU kernels to identify frequent

redundant computations. It applies a fine-grained value partitioning for every FP op-

eration, and extracts a set of values that are occurred frequently through searching

the space of possible inputs provided by training samples. The framework carefully

pre-stores these key computations in appropriate A2M2 modules for reusing them

to avoid re-executions.

3. We demonstrate the effectiveness of our approach on the Southern Islands GPUs

with four image processing kernels adopted from AMD APP SDK v2.5 [1]. We use

10% of Caltech 101 computer vision dataset [2] for the training, and the full dataset

for the testing. Our experimental results show that the image processing kernels for

all the test images: 1) tolerate the Hamming distance mismatches during pattern

matching by displaying a PSNR ≥ 30dB; 2) save on average 32% energy on A2M2

modules of size 8 made possible by approximate reuse under 28% VOS.

The rest of this chapter is organized as follows. Section 10.2 describes design of

A2M2 for energy-efficient GPU architectures. A framework and kernel execution flow to

support A2M2 is presented in Section 10.3. In Section 10.4, we explain our methodology

and present experimental results followed by conclusions in Section 10.5
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10.2 GPU Architecture Using A2M2 Module

10.2.1 Southern Islands Architecture

We focus on one of the most recent GPUs from the AMD, the Southern Islands

family (Radeon HD 7000-series). The Southern Islands is based on AMD’s Graphics

Core Next which is a RISC single instruction, multiple data (SIMD) architecture; it

replaces the elder VLIW SIMD architecture from the Evergreen. We target Radeon HD

7970 device which has 32 compute units. Every compute unit contains a scheduler and

a set of four SIMD execution units, aka vector units. Each SIMD execution unit has

16 stream cores, or parallel lanes, constituting a total number of 64 stream cores per

compute unit.

An OpenCL application is formed of a host program and one or more device

kernels that can be run on a GPU device. An instance of the OpenCL kernel is called

a work-item. Each stream core is devoted to the execution of one work-item using

the integer or FP units. Most arithmetic operations on a GPU are performed by vector

instructions. A vector instruction is fetched once and executed in a SIMD fashion by all

its comprising work-items. After the fetch and decode stages, the source operands for

each instruction are read from vector registers or local memory. The core stage of a GPU

is the execute stage, where arithmetic instructions are carried out in each stream core.

When the source operands are ready in the vector unit, the execution stage starts to issue

the operations into the integer units or FPUs. The execution stage of every FPU has a

latency of six cycles and a throughput of one instruction per cycle [14]. Finally, the result

of the computation is written back to the destination operands.
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10.2.2 Approximate Associative Memristive Memory Module
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Figure 10.1. Execution stage of FPU with A2M2 module.

In order to fully exploit the energy saving potentials of both partial memory-

based computing and approximate computing, in this section we propose an approximate

associative memristive memory (A2M2) which is tightly integrated to each FPU. The

proposed A2M2 microarchitecture demonstrates controllable approximate computing

capabilities under VOS.

For each type of FPU, we first identify the sets of frequent input operands and

store them along with their corresponding pre-calculated outputs in an A2M2 module.
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Section 10.3.1 describes this flow in details. During the execution, in case of a match

between the input values of the FPU and the input patterns stored in A2M2, the pre-stored

results are provided by A2M2, and FPU re-execution is avoided for frequent operands.

A2M2 module performs the match operation and returns the output at extremely lower

energy costs compared to the FPU, thanks to the ultra-low power characteristics of

memristive memories. This energy cost is further reduced by VOS that relaxes the

matching criterion, from the exact to approximate, described in the following.

A2M2 module consists of two pipelined stages as shown in Figure 10.1: (I) a

memristive TCAM which stores and searches for the high frequent sets of input operands,

and (II) a 1T-1R memristive memory which maintains the pre-calculated FPU output

results for each set of such frequent operands. For each operation, in the first stage, the

TCAM searches to determine whether there is a match between the input operands and

the stored operand patterns. In case of a match, the result of the operation is read in the

second stage from the corresponding line in the 1T-1R memory.

Each TCAM row stores one set of highly-frequent input operands. We use a

2T-2R cell structure for the TCAM design [94]. In this structure each bit of data is stored

in a cell that consists of two memristive elements to store the pattern and two access

transistors that decouple the memristors from a corresponding match line (ML), as shown

in Figure 10.1. To program the TCAM, the write voltages are applied on the match lines

(ML), and access-transistors of select devices are connected via the search line (SL) to

perform the write operation.

A memristive TCAM operation is based on the fact that a low-resistance path

to the ground discharges a precharged line faster than a high-resistance path. Each row

in the TCAM has a match line which is precharged during a precharge phase: SLs are

deactivated to disconnect the access transistors. During the evaluation phase, one of the

access transistors in each bit-cell is ON and connects the ML to the ground via a high-
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(or low-) resistance path if the pattern-under-search matches (mismatches) the stored

pattern. In case of an exact match, i.e. bit-by-bit, the ML stays charged for an extended

period of time due to the high-resistance of the memristive device that connects the ML

to the ground. If the pattern-under-search and the stored pattern mismatch by even a

single bit, the ML will be discharged quickly because of the existence of low-resistive

path(s) between the ML and ground, providing a clear margin between an exact match

and mismatches. As the number of bit-mismatches increases, the ML will be discharged

even faster. A clocked self-referenced sensing circuitry and a 2-bit data encoding scheme

is applied [94] to further increase the noise margin and provide a digital match/mismatch

output signal. Figure 10.2 illustrates the evolution of the digital “match” signal during

the evaluation phase for different number of bit-mismatches based on SPICE simulation

results. As it is expected, this signal drops faster when a larger number of bit-mismatches

exist. The digital match signals are sampled (i.e. latched) at the end of the evaluation

phase. A logic ‘1’ means that the line is not discharged yet, indicating a match. The

latched match signals are then fed to the 1T-1R memory stage as enable lines (EnL), to

read the previously-computed results that are stored in the 1T-1R memory. The logical

OR of the EnLs represents a “hit signal” which indicates that the result is provided by

A2M2 module.

In case of a match, the pre-computed result (QA2M2) is read from the memristive

memory at negligible energy cost and is propagated toward the end of the FPU pipeline

along with the hit signal. The propagated hit signal is used as a clock-gating signal for

the remaining stages of the FPU to avoid the redundant computation. Given that only

the first stage of the FPU is concurrently working with TCAM, other FPU stages are

clock-gated in case of a match which results in considerable amount of energy saving. In

case of a TCAM miss, the FPU works normally, and its result (QFPU ) is selected as the

pipeline output. The hit signal selects whether the QFPU or QA2M2 should be reported as
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the output.

Figure 10.1 shows the structure of such 1T-1R memory that is used to store the

output patterns. To program the memory, a write voltage is applied on the bit-lines,

while the enable lines are used to select the target cell. For read operation, the enable

lines are derived by the EnL values of TCAM. Assuming an exact matching, either

none or only one of EnLs are active at any given clock cycle, connecting the bit-line

to the ground through a high-/low-resistance memristive cell, depending on the stored

data. The read circuitry works as a voltage divider and is consisted of a sense resistor

RSense and a NOT gate. If the memristor is in the high-resistance state, which represents

logic ‘0’, RMemristor >> RSense and thus the voltage drop on RSense is negligible and

the output of the NOT gate will be a logic ‘0’. In case of a low-resistance memristor,

RSense >> RMemristor, thus most of the voltage is dropped on RSense and the output of the

read circuitry is a logic ‘1’.
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Figure 10.2. TCAM match operation under VOS.

It can be observed in Figure 10.2 that for few bit-mismatches (e.g. 1 or 2), the drop

time of the match signals differ with clear margins. Hence, by shortening the evaluation
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period (i.e. faster sampling), or similarly reducing the supply voltage while preserving

the same evaluation period, a “controllable” approximate matching can be realized in

which a pattern with a Hamming distance of 1 or 2 (i.e., the number of bit-mismatches)

is considered as a “match”. Operating at the nominal voltage of 1V guarantees an exact

matching with 0 number of bit-mismatch. If we reduce the voltage to 775mV, TCAM also

matches the input pattern with any of the stored patterns if there is a Hamming distance

of 1 between them (1-HD approximate matching). VOS down to 720mV matches the

input patterns with 2 bit-mismatches (2-HD approximate matching). Further lowering

the supply voltages results in an abrupt increase in the number of bit-mismatches.
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Figure 10.3. Execution flow using A2M2: design time profiling + runtime reuse.

However, the approximate matching has two downsides: (I) possibility of a false

match, and reporting a wrong output as the result of the computation, and (II) having

several matches, which would enable several word-lines in the 1T-1R memory, resulting

in the logical OR of the corresponding outputs being reported as the output of A2M2

module (QA2M2). Possibility of several matches can be avoided if the stored patterns in

the TCAM have a minimum Hamming distance (e.g. 3 for 1-HD approximate matching
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respectively); this is practical given the typical TCAM word-size (i.e., 32, 64, or 96),

and the small number of TCAM rows. As for the case of a false match, its likelihood is

reduced by a proper sizing of A2M2 module described in Section 10.4.2. We limit the

match set such that it decreases the likelihood of a false matching and of the introduced

error at the same time. In Section 10.4.2, we show the application of this approximate

matching for different image processing kernels that can tolerate the introduced errors and

display a high PSNR while benefiting from the lower energy consumptions. Moreover,

A2M2 module could be designed in a hybrid fashion to always exclude the error in a few

critical bits (e.g., the sign and exponent bits); for instance, by applying a high voltage

to those bits to perform a robust and exact matching, lowering the significance effect of

such error.

10.3 Framework to Support A2M2

In this section, we briefly describe our approach to programming A2M2 and

evaluation of A2M2 effectiveness in improving energy efficiency of GPUs.

10.3.1 Execution Flow

Execution flow using A2M2 has two main stages: (I) design time profiling, and

(II) runtime computational reuse. Figure 10.3 illustrates this execution flow. The goal of

profiling stage is to identify redundant computations with a high frequency of occurrence.

In the profiling stage, we have an OpenCL kernel, a host code with a training input

dataset. We focus on the individual FPUs to observe the dispersion of the input operands

at the finest granularity. To expose highly frequent set of operands for each FP operation,

we individually profile every type of FP operation and keep the distinct sets of the input

operands with the related output result. The output of this stage for every FP operation

is highly frequent computations (HFC): a sorted list of sets of values, each set has the
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input operand(s) and the related result, and the sets are sorted based on their frequency of

occurrence. After extracting HFC, we need to determine how much approximation can be

tolerated during the reuse of these key computations. To do so, we leverage the Southern

Islands functional simulator to apply different matching constraints for determining

the degree of approximation applicable to each A2M2 module. The simulator starts

with the exact matching and then increases the degree of approximation step-by-step by

applying 1-HD and 2-HD approximate matching. For every step, the output image is

compared with a golden output image to measure PSNR. Finally, the maximum degree

of approximation is determined for each A2M2 module such that the introduced errors

result in a PSNR higher than the desired PSNR (e.g., 30dB). This profiling stage is a

one-off activity whose cost is amortized across all future usage of the kernel.

In the next step, the framework transfers the output of the profiling stage to A2M2

modules for runtime reuse. The AMD compute abstraction layer (CAL) provides a

runtime device driver library that supports code generation, kernel loading, and allows

the host program to interact with the stream cores at the lowest-level. A2M2 module

are designed to be addressable by software therefore the host code can program them

using CAL. Right before launching the kernel execution, the host code programs A2M2

modules: for every type of FP operation activated during the kernel, a subset of HFC (up

to few hundred bytes depending up on the size of A2M2) in conjunction with the degree

of applicable approximation is set for the corresponding A2M2 modules accordingly. In

this way, the framework concurrently programs all the A2M2 modules integrated to a

type of FPU across all the available compute units in the GPU, since their content is

equivalent.
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10.3.2 Design Space for A2M2

Here, we explain the design space for utilizing A2M2 modules as a case study for

Roberts filter, one of our edge detection kernels. We evaluate the trade-off between the

size of A2M2 module, i.e., the number of rows that store different patterns, with its hit

rate. A higher hit rate means higher number of operands are matched with the stored

computations in A2M2 module, therefore there is no need for re-executing the results for

those values, leading to higher energy saving. We quantify the hit rate of A2M2 module

for multiply-accumulator (MAC) FPU for 100 test input images. Figure 10.4 summarises

the minimum, the maximum, and the average (shown in bars) hit rates of A2M2 module

with a wider range of sizes. The experiment is repeated for the three matching constraints.

Figure 10.4(a) shows the hit rates for the exact matching. A2M2 module with

4-row displays the hit rates in the range of 25%–83%. Increasing the size of A2M2 from

4-row to 8-row, and to 16-row improves the average hit rate from 40% to 42%, and to

50%. Overall, the average hit rates increases less than 12% when the number of rows is

increased from 16 to 512. A similar trend of the hit rates versus A2M2 sizes is observed

for the approximate matching, as shown in Figure 10.4(b)-(c). Once the number of rows is

increased from 16 to 512, the average hit rates improves less than 19% and 18% for 1-HD

and 2-HD approximate matching, respectively. Figure 10.4 also illustrates that an A2M2

with a fixed size experiences higher hit rates by switching from the exact matching to

any of the approximate matching. For instance, the hit rate of A2M2 with 4-row increases

12% on average (from 40% to 52%) by using 2-HD approximate matching instead of the

exact matching. This increased hit rate is because A2M2 relaxes the matching constraint

therefore more number of input patterns are approximately matched with one of the

stored patterns.
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Figure 10.4. Hit rate versus size of A2M2 for MAC during Roberts filter executions.

In a nutshell, choosing large A2M2 size has two disadvantage. I) It diminishes the

gain of energy saving, because after a certain size the average hit rates almost saturates,

while the energy consumption of the A2M2 increases for larger sizes. For example,

increasing A2M2 size from 8-row by 64× only brings 25% higher hit rates with 2-HD

approximate matching. This significantly lowers the hit rate per unit of power consumed

by A2M2. In Section 10.4.2, we show that enlarging A2M2 beyond a certain size will not
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Table 10.1. Energy consumption (fJ) per operation in 45nm technology for FPUs and
A2M2.

Module FPU A2M2: Exact Matching A2M2: 1-HD Approximate Matching A2M2: 2-HD Approximate Matching
4-row 8-row 16-row 32-row 4-row 8-row 16-row 32-row 4-row 8-row 16-row 32-row

ADD 4742 1176 1403 1858 2740 644 732 906 1262 505 555 709 999
MUL 9891 1176 1403 1858 2740 644 732 906 1262 505 555 709 999
SQRT 9983 934 1137 1528 2322 514 594 756 1084 397 441 593 864
MAC 12051 1410 1653 2122 3096 774 867 1052 1422 612 667 832 1124

bring any energy saving. II) It increases the likelihood of false matches that might quickly

drop PSNR below the desired threshold. Our profiling results indicate that Roberts filter

is able to tolerate the errors in computations (an average PSNR of 34dB) with A2M2

modules of maximum 512-row using 2-HD approximate matching. Increasing A2M2

size after 512-row drops the PSNR below 30dB. Visual depiction and the corresponding

PSNR of different matchings for one of the test images are shown in Figure 10.5.

10.4 Experimental Results

10.4.1 Experimental Setup

We focus on the AMD Southern Islands GPU, Radeon HD 7970 device, but

our method can be applied to other GPUs as well. We have adopted image processing

applications from AMD APP SDK v2.5 [1] a software ecosystem suitable for stream

applications written in OpenCL. We have examined four image processing filters: Roberts,

Sobel, Sharpen, and Shift. Multi2Sim [14], a cycle-accurate CPU-GPU simulation

framework, is used for profiling and simulations. These kernels typically apply a 2D

convolution; we extract frequently activated FPUs during the kernel executions: adder

(ADD), multiply (MUL), multiply-accumulator (MAC), and SQRT. Accordingly, the

6-stage balanced FPUs are generated and optimized using FloPoCo [6]. These FPUs

are synthesized and mapped using a 45-nm ASIC flow. The front-end flow has been

performed using Synopsys Design Compiler, while Synopsys IC Compiler has been used
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for the back-end. The FPUs have been optimized for power and a signoff clock period

of 1.5ns. Finally, Synopsys PrimeTime is used to report power at the nominal operating

voltage of 1.0V. The second column of Table 10.1 shows the energy per operation for

each FPU.

Considering the single precision FPUs, we design A2M2 module with different

word-sizes based on the type of FPU. TCAM has a word-size of 32-bit for SQRT, 64-bit

for ADD, MUL, and 96-bit for MAC; while the crossbar-based memory has a fixed word-

size of 32-bit for any FPU to maintain the outputs. To estimate power and delay of A2M2

module, transistor-level SPICE simulations are done using Cadence Virtuoso. For the

memristor parts, we integrate 50K Ron and 50M Ro f f models based on the measurements

of fabricated memristors [86]. For the line resistances and capacitances, we use the same

model and numbers reported in [69]. Energy operation of A2M2 modules is shown in

Table 10.1. Given the clock period of 1.5ns, A2M2 modules can reliably work under the

designated VOS points (see Section 10.2.2). FPUs face massive errors, in this range of

VOS, which is simply too high to be useful. We integrate a functional model of A2M2

module into Multi2Sim that computes the Hamming distance for every FP operation to

quantify the hit rates and PSNR drops.

Exact matching

No noise

1-HD approximate matching

PSNR=61dB

2-HD approximate matching 

PSNR=42dB

Figure 10.5. Visual depiction of the output quality degradation with exact, 1-HD, 2-HD
approximate matching for Roberts filter.
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10.4.2 Energy Saving with Corresponding PSNR
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Figure 10.6. A2M2 normalized energy and PSNR: for different sizes, matching criteria,
and kernels – values are averaged over the full dataset [2].

Table 10.1 summarizes the energy consumption per operation for individual FPUs,

and different sizes of A2M2 modules in the cases of exact matching, 1-HD, and 2-HD

approximate matching. The energy numbers show the potential of A2M2 modules to

reduce the energy consumption per operation. For example for SQRT operation, an exact-

matcher A2M2 module with 8 rows provides ≈8× higher energy efficiency compared to

FPU counterpart. Although both A2M2 (exact) and FPU work at the nominal voltage of

1.0V, this energy saving is accomplished through the ultra-low power memristive-based

computing. The energy saving is further improved by allowing the approximate matching,

which improves the energy efficiency by factors of 16× and 22×, for 1-HD and 2-HD

approximate matching respectively. Such saving trend is consistent for different types of

FPUs, and different sizes of A2M2 modules.

Table 10.1 also demonstrates that increasing the size of the A2M2 beyond a limit
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sacrifices the energy efficiency. For instance in case of ADD operation, an exact-matcher

A2M2 module with 64-row roughly consumes as much energy as FPU itself. Any larger

A2M2 module can incur energy penalty rather than improving the energy consumption;

since the aggregate energy of integrating FPU with A2M2 module cannot be paid off by

the power saving offered by even an ideal hit rate. In the following, we present energy

saving of the kernels using A2M2 modules with different sizes.

For the four image processing kernels, our framework uses 10% of Caltech 101

computer vision dataset [2] for the training to extract HFC as explained in Section 10.3.1.

Depending on the size of A2M2 modules, the framework loads 4, 8, 16, 32, and 64 top

pairs of HFC to A2M2 modules before the kernel execution. We quantify the average

energy saving and the corresponding average PSNR degradation over the full dataset

[2] as the test cases. Figure 10.6 shows the normalized energy compared to FPUs for

each kernel. For all the kernels, the exact-matcher A2M2 modules with 64-row exhibit

poor energy efficiency, for instance Sobel (or Sharpen) faces 20% (17%) higher energy

consumption compared to using the normal FPUs. A2M2 modules with sizes smaller

than 64-row provide a significant range of energy saving (16%–45%) depending on the

size and the degree of approximation. As shown in Figure 10.6(b), A2M2 modules with

4-row reduce the average energy of Sobel by 20% using 1-HD approximate matching.

Increasing the size to 8-row leads to a higher average energy saving of 28% because of the

higher hit rate. However, increasing the size beyond 8-row is not optimum because the

amount of energy saving offered by the extra hit events is less than the energy overhead

due to the increased A2M2 sizes. We should note that once we reduce the voltage of

FPUs down to 775mV, they face massive number of errors making them impractical to

use for low power computations.

Sobel and Shift kernels cannot tolerate the errors using 2-HD approximate match-

ing, as opposed to Sharpen and Roberts filters. For all the kernels, PSNR is degraded
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with larger A2M2 sizes. Increasing the number of stored patterns beyond 32 (or 8) for

Sobel (or Shift) abruptly increases the likelihood of a false match that introduces more

computational errors resulting in a dropped PSNR of 30dB or lower. Considering the

acceptable PSNR of 30dB or higher, A2M2 modules with 8-row provide the best average

energy saving for Sobel (28%), Sharpen (23%), and Shift (34%); Robert exhibits the best

energy saving of 45% with A2M2 modules of size 16-row. Choosing 8-row as the size

of A2M2 modules brings an average energy saving of 32% across all four kernels, while

guaranteeing the acceptable PSNR.

10.5 Chapter Summary

We propose A2M2 as an associative memory module that mixes emerging mem-

ristor technology benefits with the application needs to deliver higher energy efficiency.

A2M2 modules are tightly integrated to every FPU to save energy by: I) recalling the

frequent computations therefore avoiding re-executions, and II) operating at VOS by ac-

cepting the approximate matches. Using the memristor parts in designing A2M2 enables

28% VOS while incurring up to 2 bits mismatch during the operand matching. We ob-

serve that this introduced error into the computations is tolerable by the image processing

kernels delivering an acceptable PSNR. Experimental results on the Southern Islands

GPU show the integrated A2M2 modules with 8-row reduce the average kernel energy by

32%. Our continuing work will explore methods to integrate A2M2 in a programming

environment that enables accuracy- and reliability-aware optimizations of approximate

kernels.

This chapter contains material taken from “Approximate Associative Memristive

Memory for Energy-Efficient GPUs,” by Abbas Rahimi, Amirali Ghofrani, Kwang-

Ting Cheng, Luca Benini, and Rajesh K. Gupta, which appears in ACM/IEEE Design,

Automation, and Test in Europe (DATE) Conference, 2015. The dissertation author was
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the primary investigator and author of this paper.



Chapter 11

Spatial and Temporal Memoization

The cost and speed of error recovery can be improved by memoization-based

optimization methods that exploit spatial or temporal parallelisms in suitable computing

fabrics such as general-purpose graphics processing units (GP-GPUs). Memoization is

a form of computational reuse and refers to methods that normally use pre-computed

results in place of actual computation at runtime. We propose here two techniques,

spatial memoization and temporal memoization, for use in floating-point units (FPUs) in

GP-GPUs that use value locality and similarity inside data-parallel programs. Spatial

memoization alleviates cost of timing errors recovery, building upon lock-step execution

of single-instruction, multiple-data (SIMD) architectures. To support spatial memoization

at the level of instruction, we propose a single strong lane, multiple weak lanes (SSMW)

architecture. Spatial memoization recalls result of error-free execution of an instruction

on the SS lane, and concurrently reuses it to spatially correct any errant instructions

across MW lanes. This error correction can be done exactly or approximately. Temporal

memoization recalls the context of error-free execution of an instruction on a FPU. To

enable scalable and independent error recovery, a single-cycle lookup table (LUT) is

tightly coupled to every FPU to maintain few contexts of recent error-free executions.

The LUT reuses these memorized contexts to exactly, or approximately, correct errant FP

instructions based on application needs. The proposed memoization techniques eliminate

210
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the cost of error recovery (e.g., on average 62% for the voltage droop-affected timing

errors) and enhance energy efficiency. This chapter provides a joint method for detecting

and correcting with accepting the timing errors in GP-GPUs.

11.1 Introduction

We have shown in earlier chapters (Chapter 4, Chapter 6, and Chapter 9) how

a shared memory cluster of processors can schedule parallel work-units to efficiently

handle the errors utilizing the fact that runtime system has the ability of “choosing a

favor core” in close proximity. On the contrary, such a choice of unit is not available

in the data-level parallel architectures where the workload is uniform (SIMD) and all

the computing units are fully utilized. Since such architecture has no choice for any

alternative execution, it can utilize memoization, or computational reuse, that return a

pre-stored error-free result without triggering the error recovery.

Sodani and Sohi [135] introduced the concept of instruction reuse that comes

from the observation that many instructions can be skipped if another instance has already

been executed using the same input values. The instruction reuse memoizes the outcome

of an instruction on hardware tables so a processor can reuse it temporally if the processor

performs the same instruction with the same input values. We further extend such notion

of temporal memoization to spatial memoization for use in GP-GPUs. GP-GPUs execute

workload in SIMD fashion with high utilization. Parallel execution in such SIMD

architectures provides an important ability to reuse computation (i.e., memoization) and

reduce the cost of recovery from timing errors. We rely on the memoization to safely

store the result of a portion of computing on a reliable medium, and then reuse the

result rather than re-execution. To do so, we define two notions of memoization at the

instruction level: concurrent instruction reuse (CIR), and temporal instruction reuse

(TIR). Figure 11.1 shows that for a SIMD architecture:



212

• CIR answers whether an instruction can be reused spatially across various parallel

lanes.

• TIR answers whether an instruction can be reused temporally for a lane itself.

CIR/TIR recalls the result of an error-free execution on an instance of data, then

reuses this memoized context in case of meeting a matching constraint. Since different

programs exhibit varying degrees of error tolerance, we consider two matching constraints

that further extend the application of the memoization to approximate computing domain:

1. Exact matching constraint that enforces full bit-by-bit matching of the single-

precision instructions.

2. Approximate matching that relaxes the criteria of the exact matching during the

comparison by ignoring mismatches in the less significant N bits of the fraction

parts.

The latter constraint enables an approximate error correction technique suitable for

applications in approximate computing to receive further benefits form the memoization

technique. In a nutshell, the spatial and temporal memoization techniques leverage

inherent value locality and similarity of applications by memoizing the result of an error-

free execution on an instance of data; and by reusing this memoized result to exactly (or,

approximately) correct any errant execution on other instances of the same (or, similar)

data at a very low-cost.

These two techniques are fully compatible with the standard CMOS process.

In [122, 121], we extend usage of such spatial and temporal reuse techniques in design-

ing associative memory modules (AMMs) by leveraging the emerging CMOS-friendly

memristor technology. More details can be found in Chapter 8 and Chapter 10.
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Figure 11.1. Concurrent and temporal instruction reuse (CIR and TIR) for SIMD.

11.2 Spatial Memoization (Concurrent Instruction
Reuse)

To exploit the inherent spatial value locality across SIMD lanes, we propose a

SIMD architecture consisting of a single strong lane and multiple weak lanes (SSMW).

The SSMW is designed to maintain the lockstep integrity in the face of timing error.

The key idea, for satisfying both resiliency and lockstep execution goals, is to always

guarantee error-free execution of a strong lane (SS). Then, the rest of weak lanes (MW)

can reuse the output of SS lane in the case of timing errors. In other words, SSMW

provides an architectural support to leverage CIR for correcting the timing errors of MW

lanes.

To measure the exposed spatial value locality over the parallel lanes, we have

defined concurrent instruction reuse (CIR) as a metric for the entire kernel execution.

CIR is defined as the number of simultaneous instructions executed on the lane1 (L1)

through L15 of the CUs which satisfy the matching constraint, divided by the total number

of instructions executed in all 16 lanes (L0–L15). The matching constraint determines

whether there is a value locality between the input operands of the instruction executing

on L0 and the input operands of another instruction executing on any of the neighbor lanes,
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i.e., Li, where i ∈[1,15]. Thus, a tight (or, relaxed) matching locality constraint ensures

that the instructions of L0 and any of Li are working on the same (or, adjacent) instance

of data, and consequently their outputs are equivalent (or, almost equivalent). This

exchangeability allows the instructions of L0 to correct any errant output of instructions

executing on Li. In the Radeon HD 5870 with 16-wide SIMD pipeline, the maximum

theoretic CIR is 93.75% (15 out of 16).

Figure 11.2 shows the CIR rate and the corresponding PSNR for various input

pictures while using different matching constraints. As shown in Figure 11.2(c), applying

the exact matching constraint yields, on an average, a CIR rate of 27%. This means that

27% of the executed instructions on the whole SIMD can reuse the results of the executed

instructions on the L0 (SS lane) for the accurate error correction, without any quality

degradation. Approximate matching relaxes the matching criteria through masking the

less significant 12 bits of the fraction parts during comparison. Consequently, higher

multiple data-parallel values fuse into a single value, resulting in a higher CIR rate for

approximate error correction, e.g., up to 76% for Sobel. Applying the approximate

matching, on average a CIR rate of 51% (32%) is achieved on the Sobel (Gaussian) filter

with the acceptable PSNR of 29 dB (39 dB).

11.2.1 Single Strong Multiple Weak (SSMW) Architecture

The cost of recovery per single timing error on a floating-point SIMD architecture

is very expensive. Pawlowski et al. [110, 88] propose to decouple the SIMD lanes through

private queues that prevent error events in any single lane from stalling all other lanes,

thus enables each lane to recover errors independently. The decoupling queues cause

slip between lanes which requires additional architectural mechanisms to ensure correct

execution. Therefore, the lanes are required to resynchronize when a microbarrier (e.g.,

load, store) is reached, therefore, incurs performance penalty.
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Figure 11.2. CIR of the FP with the corresponding PSNR for two kernels. (a) Sobel and
(b) Gaussian filters using the approximate matching constraint– 12 bits masked. (c) CIR
and PSNR for Sobel and Gaussian filters with the exact and approximate constraints.

In response to this deficiency, we exploit the inherent value locality, therefore

the SIMD is architected to maintain the lock-step integrity in the face of timing error:

SSMW architecture, a resilient SIMD architecture. The key idea, for satisfying both

resiliency and the lock-step execution goals, is to always guarantee error-free execution

of a lane (SS). Then the rest of lanes (MW) can reuse its output in case of timing errors.

In other terms, SSMW provides an architectural support to leverage CIR for correcting

the timing errors of MW lanes. Note that to achieve this goal, SSMW superposes resilient

circuit techniques on top of the baseline SIMD architecture without changing the flow

of execution. SSMW employs two circuit resilient techniques. First, it guarantees the

error-free execution of the SS lane in the presence of the worst-case PVT variations using

voltage overdesign (VO). On the other hand, the MW lanes employ EDS to detect any

timing error and propagate an error bit toward the tail of pipeline stages.

Second, SSMW also employs a CIR detector module for every PE of the MW
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lanes, as shown in Figure 11.3. This module checks the matching constraint, and if it

is satisfied, the module forwards the output result of the PE in the SS lane to the output

of the corresponding PE in the weak lane. In case of simultaneous matching and timing

error for any of the MW lanes, the errant weak lane can reuse the result of SS lane rather

than triggering the recovery mechanism. The output result of the SS lane is broadcast

via a voltage overdesign network across the MW lanes. The CIR detector module is a

programmable combinational logic working on parallel with the first stage of the PE

execution; since every PE executes one instruction per cycle, the module is thus shared

across all FP functional units of the PE. To check the matching constraint, the module

compares bit by bit the two operands of its own PE with the two operands of the PE

on the SS lane. All the CIR detector modules share a masking vector to ignore the

differences of the operands in the less significant N bits of the fraction part. The masking

vector is a memory-mapped 32-bit register that is set by various application demands

on the computation accuracy. If the two sets of the operations, with consideration of

commutativity, meet the value locality constraint, the module sets a reuse-bit which will

traverse alongside the corresponding instruction through the stages of the PE. At the last

stage of the execution, the PE takes three actions based on the {reuse-bit, error-bit}. In

case of no timing error, i.e. {1/0,0}, the PE sends out its own computed result to the

write stage. If a timing error occurred for the instruction during any of the stages, but

it has a value locality with the instruction on the SS lane, i.e., {1,1}, the PE sends out

the computed result of the SS lane, and avoids the propagation of the error-bit to the

next stage. Finally, in case of the error and lack of the value locality, i.e., {0,1}, the PE

triggers the recovery mechanism.
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11.2.2 Experimental Results

Our methodology is developed upon the AMD Evergreen GPUs, but can be

applied to other SIMD architectures as well. We use Multi2Sim [14] with naive binaries

of kernels in AMD APP SDK 2.5 [1]; the input values for the kernels are generated by the

default OpenCL host program. We analyzed the effectiveness of SSMW architecture in

the presence of timing errors on TSMC 45-nm ASIC flow. To keep the focus on processor

architecture, we assume that the memory components are resilient, e.g., by utilizing the

tunable replica bits [128]. We have partially implemented the FP execution stage of the

PE, consisting of three frequently exercised functional units: ADD, MUL, and SQRT

with a latency of four cycles at the signoff frequency of 1GHz at (SS/0.81V/125◦C). To

achieve balanced pipelines with latency of four cycles, the SQRT utilizes a polynomial

approximation of degree of 5th to decrease its delay. Finally, the variation-induced delay

is back annotated to the post-layout simulation which is coupled with Multi2Sim. To

quantify the timing error, we consider two global voltage droop scenarios, 3% and 6%,

across all 16 lanes during the entire execution of the kernels.

We consider five architectures for comparison. (i) The lane decoupling queues

architecture without VO [110, 88]. (ii and iii) SIMD baseline architecture with 10% (or

6%) VO across all 16 lanes. (iv and v) SSMW architecture in which the SS lane, the

CIR detector modules, and the broadcast network are guard-banded by 10% (or 6%) VO

to guarantee error-free operations. Once SSMW cannot exploit CIR for an error event

recovery, it relies on the single-cycle recovery mechanism presented in [110, 88].

To generalize the CIR concept, we have extended our experiments to the error-

intolerant applications that do not have inherent algorithmic tolerance. We consider this

class of applications as error-intolerant applications that require complete numerical

correctness. We have examined three applications where exact matching constraint



219

is applied: Binomial option pricing, Haar wavelet transform, and Eigenvalues of a

symmetric matrix. Figure 11.4 shows the effectiveness of SSMW: the percentage of the

corrected errant instructions by CIR for all kernels when encountering 6% and 3% voltage

droops during the execution. On average for all kernels, SSMW avoids the recovery for

62% of the errant instructions thus significantly reduces the total cost of recovery.
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Figure 11.4. Effectiveness of CIR for kernels in face of 3% and 6% voltage droops.

Figure 11.5 shows the total energy comparison of the kernels while experiencing

6% voltage droops. On average, SSMW (10% VO) reduces 8% of the total energy

compared to its baseline counterpart. The CIR detector modules increase the delay of the

baseline architectures up to 4.9% due to the SS lane broadcast network, and imposes a

maximum of 5.7% total power overhead. In comparison with decoupling queues, SSMW

(10% VO) has on average 12% lower energy consumption. The SSMW (6% VO) has

also 1% lower energy compared to the baseline with 6% VO, optimistically assuming

that the baseline does not incur any timing error while operating at the edge of failure

with 6% voltage droops.
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11.3 Temporal Memoization (Temporal Instruction
Reuse)

TIR aims to exploit the value locality and similarity inside each processing

element, i.e., FPU in our case. We observe the dispersion of the input operands at

the finest granularity for individual FPUs. To expose the value locality for each FPU

operations, we consider a private FIFO for every individual FPU. These FIFOs have a

small depth and keep the distinct sets of the input operands in the order of instruction

arrivals. The FIFO matches a set of incoming input operands and the current content of

entries of FIFO using the matching constraint. The FIFO maintains a limited number of

recent distinct sets. Therefore, if a set of incoming input operands does not satisfy either

matching constraints, the FIFO will be updated by cleaning its last entry and inserting

the new incoming operands accordingly.

To exploit the value locality, we tightly couple the FPU pipeline with our proposed

temporal memoization module. This module has essentially a single-cycle LUT, and a set

of flip-flops and buffers to propagate signals through the pipeline. The LUT is composed

of two parts: (i) a FIFO with four entries; (ii) a set of combinational comparators. In

every entry, the FIFO maintains a set of input operands and the computed result provided

by the output of the FPU in the last stage (QS). The parallel combinational comparators
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implement the two matching constraints, and are programmable through a 32-bit memory-

mapped register as a masking vector. They concurrently make either a full or partial

comparison of the input operands with the stored operands in each entry based on the

masking vector. The LUT works in parallel with the first stage of the FPU. Therefore,

for every set of input operands, the LUT searches the FIFO to find a match between the

input operands and the operand values stored in the entries (i.e., whether the matching

constraint is satisfied or not). A match directly results in reuse of results computed earlier.

Consequently, this affords the temporal memoization module an opportunity to correct

an errant instruction with zero cycle penalty.

11.3.1 Temporal Memoization for Error Recovery

To enable reuse, the LUT propagates a hit signal alongside with the previously-

computed result (QL) toward the end of pipeline. The LUT raises the hit signal that

squashes the remaining stages of the FPU to avoid the redundant computation by clock-

gating; the clock-gating signal is forwarded to the rest of stages, cycle by cycle. The

stored result is also propagated toward the end of pipeline for the reuse purpose. The

hit signal selects the propagated output of the LUT (QL) as the output of the FPU; it

also disables the propagation of timing error signal (if any) to the recovery unit, thus

avoids the costly recovery. Therefore, each hit event reduces energy by locally retrieving

the result from the LUT, rather than doing full re-execution by the FPU. In case of a

LUT miss, the FIFO is updated to maintain the last recently computed values. It is

implemented through a write enable signal (Wen) that ensures there is no timing error

during execution of all stages of the FPU for computing QS. Finally, if simultaneous

timing error and miss occurred, the error signal will be propagated to the recovery unit

that triggers the baseline recovery. Table 11.1 summarizes these four states.
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Table 11.1. Timing error handling with temporal instruction reuse.

Hit Error Action QPipe
0 0 Normal execution + LUT update QS
0 1 Triggering baseline recovery (ECU) QS
1 0 LUT output reuse + FPU clock-gating QL
1 1 LUT output reuse + FPU clock-gating + masking error QL

11.3.2 Experimental Results

We focus on the execution stage consisting of six frequently exercised functional

units: ADD, MUL, SQRT, RECIP, MULADD, FP2FIX. We select eight kernels form

AMD APP SDK 2.5 [1]. For these applications, TER avoids costly recovery that improves

the energy efficiency with an average energy savings of 8% (for 0% timing error rate) to

28% (for 4% timing error rate). The memoization techniques are explained in detail in

[116, 118, 117].

11.4 Chapter Summary

We propose architectures to enable spatial and temporal memoization techniques

that seek to reduce error recovery costs by reuse of concurrent and temporal instructions,

while maintaining a lock-step execution of the SIMD architecture. These proposed mem-

oization techniques exploit the value locality and similarity in data-parallel applications

that are explicitly exposed to the parallel lanes. These memoization techniques recall

result of an error-free execution on an instance of data; then reuse the memoized result to

exactly (or, approximately) correct any errant execution on other instances of the same

(or, similar) data. Together, they significantly reduce the cost of resiliency and enhance

the range of variability-induced timing errors that can be mitigated at very low cost. On

an average, the proposed SSMW eliminates the cost of recovery for 62% of the voltage

droop-affected instructions, and reduces 12% of the total energy compared to recent
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work [110].

The observations in this chapter open an opportunity to exploit instruction reuse

technique, in the context of memristive associative memories, to spontaneously apply

clock gating to FPUs beforehand, therefor avoiding redundant computations.

This chapter contains material taken from “Spatial Memoization: Concurrent

Instruction Reuse to Correct Timing Errors in SIMD Architectures,” which appears in

IEEE Transactions on Circuits and Systems II (TCAS-II), 60(12), 2013, and “Temporal

Memoization for Energy-Efficient Timing Error Recovery in GPGPUs,” which appears in

ACM/IEEE Design, Automation, and Test in Europe (DATE) Conference, 2014 by Abbas

Rahimi, Luca Benini, and Rajesh K. Gupta. The dissertation author was the primary

investigator and author of these papers.



Chapter 12

Outlook

Microelectronic variability is a phenomenon at the intersection of microelectronic

scaling, semiconductor manufacturing and how electronic systems are designed and

deployed. Using timing errors, as the most threatening manifestation of variability, we

showed various levels of microelectronic circuit and system design where the effects of

variability can be mitigated. Increasing leakage power is another challenge; variability

has already had a major impact on the leakage power. Coordinated combined methods

are central to the emerging outlook on variability-tolerance as discussed below.
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12.1 Domain-Specific Software Resiliency

12.1.1 Software

Software presents a great unexploited potential for diagnosis and mitigation of

variation effects. Software requires runtime monitoring and re-calibration to approach to

the edge-of-failure or “nothing works” for energy efficiency, but never go on the other

side of the border with failure. The key point is that at design time there is not enough

knowledge and there is too much variability and sensitivity to have a viable design time

approach. A self learning approach can discover the frontiers of efficient operating points,

of course we need a means of recovery is something goes bad. Distributed software

techniques and paradigms will therefore become increasingly pervasive even at the
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chip level. The trend should be toward avoiding global variability bottlenecks, through

arranging a mix of redundant execution (avoiding single-point of failure), globally-

asynchronous communication and orchestration, and fine-grained rollback.

12.1.2 Architecture

Variability mitigation is about cost and scale. Modular and scalable architectures

such as those found in the programmable accelerators enable better observability and

controllability of variations through explicit parallelism. Both hardware and software can

enhance variability-tolerance by tuning two available axes: configurations and choices.

Hardware and software can jointly configure available settings of an architecture and

appropriate parameters explicitly coded in applications. They can also selectively choose

a suitable hardware resource, or an alternative code path. For instance, one alternative

can select an optimized approximate kernel rather than exact one results in significant

resource reduction enabling integration larger number of parallel kernels on the fixed

budget the underlying architecture.

12.1.3 Circuit

Focusing on CMOS circuits, a large spectrum of asynchronous circuits can

be utilized. For a given sub-circuit (either exact or approximate), a synthesis tool

would have the choice of selecting a communication scheme among available different

communication templates for realizing that sub-circuit. In other words, the problem of

determining the level of accuracy of a sub-circuit will be transformed to how much energy

we want to spend on ensuring the sub-circuit functional integrity instead of spending the

energy on the actual sub-circuit computation.
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12.2 Non-Von Neumann Massively Parallel Architec-
tures

Emerging applications including graphics, multimedia, web search, data analytics,

and cyber-physical system go beyond primarily numerical computations for scientific

use to interacting with sensory interfaces. Functional non-determinism presents in these

applications at human-cyber interfaces. In this direction, we have observed limitations

on Von Neumann architecture: we can only relax the execution stage and fine-grained

mechanisms incur high overhead with increased complexity. On the other hand, we

found out that parallel architectures and parallelism in general provide the best means

to combat and exploit variability to design resilient and efficient systems. Therefore,

fast, highly scalable, and space-efficient methods are very desirable that could initiate

a departure from Von Neumann architecture toward neuro-inspired computing. For

instance, new sparse and distributed data representation promises to deliver substantial

energy advantages and robust operation. Further, utilizing resistive memory elements not

only solves the leakage problem but also provides a dense memory-centric architecture

suitable for neuro-inspired resistive computing.



Bibliography

[1] Amd app sdk v2.5. http://www.amd.com/stream.

[2] Caltech 101 dataset. http://www.vision.caltech.edu/Image Datasets/Caltech101/.

[3] Caltech 10k web faces dataset. http://www.vision.caltech.edu/Image Datasets/
Caltech 10K WebFaces/.

[4] Coremark. http://www.coremark.org/home.php.

[5] Eembc benchmark consortium. http://www.eembc.org.

[6] Flopoco: Floating-point cores generator. http://flopoco.gforge.inria.fr/.

[7] The gnu project, gomp – an openmp implementation for gcc.
http://gcc.gnu.org/projects/gomp.

[8] The ITRS website. http://www.itrs.net/Links/2011ITRS/Home2011.htm.

[9] Kalray, mppa. http://www.kalray.eu/products/mppa-manycore-a-multicore-
processors-family-13/.

[10] Leon3. http://www.gaisler.com/cms/.

[11] Mediabench. http://euler.slu.edu/∼fritts/mediabench/.

[12] Mibench. http://www.eecs.umich.edu/mibench/.

[13] Micro-benchmarking the gt200 gpu. Technical report, Computer Group, ECE,
University of Toronto.

[14] Multi2sim: A heterogeneous system simulator. https://www.multi2sim.org/.

[15] Parsec benchmark suite. http://parsec.cs.princeton.edu/.

[16] Plurality, the hypercore processor. http://www.plurality.com/hypercore.html.

[17] Predictive technology model (ptm). http://ptm.asu.edu/.

228

http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech_10K_WebFaces/
http://www.vision.caltech.edu/Image_Datasets/Caltech_10K_WebFaces/
http://www.coremark.org/home.php
http://euler.slu.edu/~fritts/mediabench/
http://www.eecs.umich.edu/mibench/
http://parsec.cs.princeton.edu/
http://ptm.asu.edu/


229

[18] Pvta models for hierarchically focused guardbanding. http://mesl.ucsd.edu/site/
PVTA MODELS/models.htm.

[19] Scimark v2.0. http://math.nist.gov/scimark2/.

[20] Theia. http://opencores.org/project,theia gpu.

[21] Tsim iss. http://www.gaisler.com/index.php/products/simulators/tsim.

[22] Arm cortex-m3 technical reference manual, rev. r1p1. 2006.

[23] Tsmc 45 nm standard cell library release note, v 120a, November 2009.

[24] Amd evergreen family instruction set architecture. 2011.

[25] Primetime vx user guide, June 2011.

[26] S.N. Agathos, V.V. Dimakopoulos, A. Mourelis, and A. Papadogiannakis. De-
ploying openmp on an embedded multicore accelerator. In Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS XIII), 2013 Interna-
tional Conference on, pages 180–187, July 2013.

[27] Ehsan K. Ardestani, Elnaz Ebrahimi, Gabriel Southern, and Jose Renau. Thermal-
aware sampling in architectural simulation. In Proceedings of the 2012 ACM/IEEE
International Symposium on Low Power Electronics and Design, ISLPED ’12,
pages 33–38, New York, NY, USA, 2012. ACM.

[28] Todd Austin, Valeria Bertacco, David Blaauw, and Trevor Mudge. Opportunities
and challenges for better than worst-case design. In Proceedings of the 2005 Asia
and South Pacific Design Automation Conference, ASP-DAC ’05, pages 2–7, New
York, NY, USA, 2005. ACM.

[29] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Yuan Lin, F. Massaioli, X. Teruel,
P. Unnikrishnan, and Guansong Zhang. The design of openmp tasks. Parallel and
Distributed Systems, IEEE Transactions on, 20(3):404–418, March 2009.

[30] Woongki Baek and Trishul M. Chilimbi. Green: A framework for supporting
energy-conscious programming using controlled approximation. In Proceedings
of the 2010 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’10, pages 198–209, New York, NY, USA, 2010. ACM.

[31] E. Beigne, F. Clermidy, H. Lhermet, S. Miermont, Y. Thonnart, Xuan-Tu Tran,
A. Valentian, D. Varreau, P. Vivet, X. Popon, and H. Lebreton. An asynchronous
power aware and adaptive noc based circuit. Solid-State Circuits, IEEE Journal of,
44(4):1167–1177, April 2009.

http://mesl.ucsd.edu/site/PVTA_MODELS/models.htm
http://mesl.ucsd.edu/site/PVTA_MODELS/models.htm
http://math.nist.gov/scimark2/
http://opencores.org/project,theia_gpu
http://www.gaisler.com/index.php/products/simulators/tsim


230

[32] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif,
Liewei Bao, J. Brown, M. Mattina, Chyi-Chang Miao, C. Ramey, D. Wentzlaff,
W. Anderson, E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and
J. Zook. Tile64 - processor: A 64-core soc with mesh interconnect. In Solid-
State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE
International, pages 88–598, Feb 2008.

[33] L. Benini, E. Flamand, D. Fuin, and D. Melpignano. P2012: Building an ecosystem
for a scalable, modular and high-efficiency embedded computing accelerator. In
Design, Automation Test in Europe Conference Exhibition (DATE), 2012, pages
983–987, March 2012.

[34] K. Bernstein, D.J. Frank, A.E. Gattiker, W. Haensch, B.L. Ji, S.R. Nassif, E.J.
Nowak, D.J. Pearson, and N.J. Rohrer. High-performance cmos variability in
the 65-nm regime and beyond. IBM Journal of Research and Development,
50(4.5):433–449, July 2006.

[35] S. Bhardwaj, Wenping Wang, R. Vattikonda, Yu Cao, and S. Vrudhula. Predictive
modeling of the nbti effect for reliable design. In Custom Integrated Circuits
Conference, 2006. CICC ’06. IEEE, pages 189–192, Sept 2006.

[36] M. Bhushan, A. Gattiker, M.B. Ketchen, and K.K. Das. Ring oscillators for
cmos process tuning and variability control. Semiconductor Manufacturing, IEEE
Transactions on, 19(1):10–18, Feb 2006.

[37] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De. Parameter
variations and impact on circuits and microarchitecture. In Design Automation
Conference, 2003. Proceedings, pages 338–342, June 2003.

[38] Daniele Bortolotti, Christian Pinto, Andrea Marongiu, Martino Ruggiero, and
Luca Benini. Virtualsoc: A full-system simulation environment for massively
parallel heterogeneous system-on-chip. In IPDPS Workshops, pages 2182–2187,
2013.

[39] K. Bowman, C. Tokunaga, J. Tschanz, A Raychowdhury, M. Khellah, B. Geuskens,
Shih-Lien Lu, P. Aseron, T. Karnik, and V. De. Dynamic variation monitor for
measuring the impact of voltage droops on microprocessor clock frequency. In
Custom Integrated Circuits Conference (CICC), 2010 IEEE, pages 1–4, Sept 2010.

[40] K.A Bowman, S.G. Duvall, and J.D. Meindl. Impact of die-to-die and within-die
parameter fluctuations on the maximum clock frequency distribution. In Solid-
State Circuits Conference, 2001. Digest of Technical Papers. ISSCC. 2001 IEEE
International, pages 278–279, Feb 2001.

[41] K.A. Bowman, J.W. Tschanz, Nam Sung Kim, J.C. Lee, C.B. Wilkerson, S.L.
Lu, T. Karnik, and V.K. De. Energy-efficient and metastability-immune resilient



231

circuits for dynamic variation tolerance. Solid-State Circuits, IEEE Journal of,
44(1):49–63, Jan 2009.

[42] K.A. Bowman, J.W. Tschanz, S.L. Lu, P.A. Aseron, M.M. Khellah, A. Raychowd-
hury, B.M. Geuskens, C. Tokunaga, C.B. Wilkerson, T. Karnik, and V.K. De. A
45 nm resilient microprocessor core for dynamic variation tolerance. Solid-State
Circuits, IEEE Journal of, 46(1):194–208, Jan 2011.

[43] Melvin A. Breuer. Intelligible test techniques to support error-tolerance. In 13th
Asian Test Symposium (ATS 2004), 15-17 November 2004, Kenting, Taiwan, pages
386–393, 2004.

[44] Melvin A. Breuer. Multi-media applications and imprecise computation. In
Proceedings of the 8th Euromicro Conference on Digital System Design, DSD ’05,
pages 2–7, Washington, DC, USA, 2005. IEEE Computer Society.

[45] D. Bull, S. Das, K. Shivshankar, G. Dasika, K. Flautner, and D. Blaauw. A power-
efficient 32b arm isa processor using timing-error detection and correction for
transient-error tolerance and adaptation to pvt variation. In Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, pages
284–285, Feb 2010.

[46] Paolo Burgio, Andrea Marongiu, Dominique Heller, Cyrille Chavet, Philippe
Coussy, and Luca Benini. Openmp-based synergistic parallelization and HW
acceleration for on-chip shared-memory clusters. In 15th Euromicro Conference
on Digital System Design, DSD 2012, Cesme, Izmir, Turkey, September 5-8, 2012,
pages 751–758, 2012.

[47] Paolo Burgio, Giuseppe Tagliavini, Andrea Marongiu, and Luca Benini. Enabling
fine-grained openmp tasking on tightly-coupled shared memory clusters. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2013, pages 1504–1509,
March 2013.

[48] B.H. Calhoun and A.P. Chandrakasan. Ultra-dynamic voltage scaling (udvs) using
sub-threshold operation and local voltage dithering. Solid-State Circuits, IEEE
Journal of, 41(1):238–245, Jan 2006.

[49] Andrea Calimera, Enrico Macii, and Massimo Poncino. Nbti-aware power gat-
ing for concurrent leakage and aging optimization. In Proceedings of the 2009
ACM/IEEE International Symposium on Low Power Electronics and Design,
ISLPED ’09, pages 127–132, New York, NY, USA, 2009. ACM.

[50] Tuck-Boon Chan, J. Sartori, P. Gupta, and R. Kumar. On the efficacy of nbti miti-
gation techniques. In Design, Automation Test in Europe Conference Exhibition
(DATE), 2011, pages 1–6, March 2011.



232

[51] Meng-Fan Chang, Shyh-Shyuan Sheu, Ku-Feng Lin, Che-Wei Wu, Chia-Chen
Kuo, Pi-Feng Chiu, Yih-Shan Yang, Yu-Sheng Chen, Heng-Yuan Lee, Chen-Hsin
Lien, F.T. Chen, Keng-Li Su, Tzu-Kun Ku, Ming-Jer Kao, and Ming-Jinn Tsai. A
high-speed 7.2-ns read-write random access 4-mb embedded resistive ram (reram)
macro using process-variation-tolerant current-mode read schemes. Solid-State
Circuits, IEEE Journal of, 48(3):878–891, March 2013.

[52] Meng-Fan Chang, Jui-Jen Wu, Tun-Fei Chien, Yen-Chen Liu, Ting-Chin Yang,
Wen-Chao Shen, Ya-Chin King, Chorng-Jung Lin, Ku-Feng Lin, Yu-Der Chih,
S. Natarajan, and J. Chang. 19.4 embedded 1mb reram in 28nm cmos with
0.27-to-1v read using swing-sample-and-couple sense amplifier and self-boost-
write-termination scheme. In Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2014 IEEE International, pages 332–333, Feb 2014.

[53] G. Chen, M.-F. Li, C.H. Ang, J.Z. Zheng, and D.-L. Kwong. Dynamic nbti of
p-mos transistors and its impact on mosfet scaling. Electron Device Letters, IEEE,
23(12):734–736, Dec 2002.

[54] Hyungmin Cho, L. Leem, and S Mitra. Ersa: Error resilient system architecture
for probabilistic applications. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 31(4):546–558, April 2012.

[55] J. Cong and K. Gururaj. Assuring application-level correctness against soft errors.
In Computer-Aided Design (ICCAD), 2011 IEEE/ACM International Conference
on, pages 150–157, Nov 2011.

[56] S. Das, D. Roberts, Seokwoo Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner, and
T. Mudge. A self-tuning dvs processor using delay-error detection and correction.
Solid-State Circuits, IEEE Journal of, 41(4):792–804, April 2006.

[57] L.M. de Lima Silva, A. Calimera, A. Macii, E. Macii, and M. Poncino. Power effi-
cient variability compensation through clustered tunable power-gating. Emerging
and Selected Topics in Circuits and Systems, IEEE Journal on, 1(3):242–253, Sept
2011.

[58] S. Dighe, S.R. Vangal, P. Aseron, S. Kumar, T. Jacob, K.A. Bowman, J. Howard,
J. Tschanz, V. Erraguntla, N. Borkar, V.K. De, and S. Borkar. Within-die variation-
aware dynamic-voltage-frequency-scaling with optimal core allocation and thread
hopping for the 80-core teraflops processor. Solid-State Circuits, IEEE Journal of,
46(1):184–193, Jan 2011.

[59] A. Drake, R. Senger, H. Deogun, G. Carpenter, S. Ghiasi, T. Nguyen, N. James,
M. Floyd, and V. Pokala. A distributed critical-path timing monitor for a 65nm
high-performance microprocessor. In Solid-State Circuits Conference, 2007.
ISSCC 2007. Digest of Technical Papers. IEEE International, pages 398–399, Feb
2007.



233

[60] Ronald G. Dreslinski, Michael Wieckowski, David Blaauw, Dennis Sylvester, and
Trevor N. Mudge. Near-threshold computing: Reclaiming moore’s law through
energy efficient integrated circuits. Proceedings of the IEEE, 98(2):253–266,
2010.

[61] Pradeep Dubey. Recognition, mining and synthesis moves computers to the era of
tera. In Technology Intel Magazine, pages 1–10, February 2005.

[62] D. Ernst, S. Das, Seokwoo Lee, D. Blaauw, T. Austin, T. Mudge, Nam Sung Kim,
and K. Flautner. Razor: circuit-level correction of timing errors for low-power
operation. Micro, IEEE, 24(6):10–20, Nov 2004.

[63] D. Ernst, Nam Sung Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw,
T. Austin, K. Flautner, and T. Mudge. Razor: a low-power pipeline based on circuit-
level timing speculation. In Microarchitecture, 2003. MICRO-36. Proceedings.
36th Annual IEEE/ACM International Symposium on, pages 7–18, Dec 2003.

[64] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural acceleration for
general-purpose approximate programs. In Microarchitecture (MICRO), 2012
45th Annual IEEE/ACM International Symposium on, pages 449–460, Dec 2012.

[65] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Architec-
ture support for disciplined approximate programming. In Proceedings of the
Seventeenth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVII, pages 301–312, New York,
NY, USA, 2012. ACM.

[66] F. Firouzi, S. Kiamehr, and M.B. Tahoori. Nbti mitigation by optimized nop
assignment and insertion. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, pages 218–223, March 2012.

[67] M. Floyd, M. Allen-Ware, K. Rajamani, B. Brock, C. Lefurgy, A.J. Drake, L. Pe-
santez, T. Gloekler, J.A. Tierno, P. Bose, and A. Buyuktosunoglu. Introducing
the adaptive energy management features of the power7 chip. Micro, IEEE,
31(2):60–75, March 2011.

[68] M. Floyd, M. Ware, K. Rajamani, T. Gloekler, B. Brock, P. Bose, A. Buyukto-
sunoglu, J.C. Rubio, B. Schubert, B. Spruth, J.A. Tierno, and L. Pesantez. Adaptive
energy-management features of the ibm power7 chip. IBM Journal of Research
and Development, 55(3):8:1–8:18, May 2011.

[69] A. Ghofrani, M.A. Lastras-Montano, and Kwang-Ting Cheng. Towards data
reliable crossbar-based memristive memories. In Test Conference (ITC), 2013
IEEE International, pages 1–10, Sept 2013.



234

[70] Mark Gottscho, Abbas BanaiyanMofrad, Nikil Dutt, Alex Nicolau, and Puneet
Gupta. Power / capacity scaling: Energy savings with simple fault-tolerant caches.
In Proceedings of the The 51st Annual Design Automation Conference on Design
Automation Conference, DAC ’14, pages 100:1–100:6, New York, NY, USA, 2014.
ACM.

[71] E. Gunadi and M. Lipasti. Crib: Consolidated rename, issue, and bypass. In
Computer Architecture (ISCA), 2011 38th Annual International Symposium on,
pages 23–32, June 2011.

[72] P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt, R.K. Gupta, R. Kumar, S Mitra,
A. Nicolau, T.S. Rosing, M.B. Srivastava, S. Swanson, and D Sylvester. Un-
derdesigned and opportunistic computing in presence of hardware variability.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 32(1):8–23, Jan 2013.

[73] K. Hazelwood and D. Brooks. Eliminating voltage emergencies via microar-
chitectural voltage control feedback and dynamic optimization. In Low Power
Electronics and Design, 2004. ISLPED ’04. Proceedings of the 2004 International
Symposium on, pages 326–331, Aug 2004.

[74] K. He, A. Gerstlauer, and M. Orshansky. Circuit-level timing-error acceptance for
design of energy-efficient dct/idct-based systems. Circuits and Systems for Video
Technology, IEEE Transactions on, 23(6):961–974, June 2013.

[75] S. Herbert and D. Marculescu. Characterizing chip-multiprocessor variability-
tolerance. In Design Automation Conference, 2008. DAC 2008. 45th ACM/IEEE,
pages 313–318, June 2008.

[76] Giang Hoang, Robby Bruce Findler, and Russ Joseph. Exploring circuit timing-
aware language and compilation. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVI, pages 345–356, New York, NY, USA, 2011. ACM.

[77] P.D. Hoang and J.M. Rabaey. Scheduling of dsp programs onto multiprocessors
for maximum throughput. Signal Processing, IEEE Transactions on, 41(6):2225–
2235, Jun 1993.

[78] S. Hoppner, H. Eisenreich, S. Henker, D. Walter, G. Ellguth, and R. Schuffny. A
compact clock generator for heterogeneous gals mpsocs in 65-nm cmos technology.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 21(3):566–
570, March 2013.

[79] Dongsuk Jeon, Mingoo Seok, Zhengya Zhang, D. Blaauw, and D. Sylvester.
Design methodology for voltage-overscaled ultra-low-power systems. Circuits
and Systems II: Express Briefs, IEEE Transactions on, 59(12):952–956, Dec 2012.



235

[80] Kwangok Jeong, A.B. Kahng, and K. Samadi. Impact of guardband reduction on
design outcomes: A quantitative approach. Semiconductor Manufacturing, IEEE
Transactions on, 22(4):552–565, Nov 2009.

[81] M.R. Kakoee, I. Loi, and L. Benini. Variation-tolerant architecture for ultra low
power shared-l1 processor clusters. Circuits and Systems II: Express Briefs, IEEE
Transactions on, 59(12):927–931, Dec 2012.

[82] Kunhyuk Kang, Sang Phill Park, Keejong Kim, and K. Roy. On-chip variability
sensor using phase-locked loop for detecting and correcting parametric timing
failures. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
18(2):270–280, Feb 2010.

[83] G. Karakonstantis, A. Chatterjee, and K. Roy. Containing the nanometer “pandora-
box”: Cross-layer design techniques for variation aware low power systems.
Emerging and Selected Topics in Circuits and Systems, IEEE Journal on, 1(1):19–
29, March 2011.

[84] U.R. Karpuzcu, B. Greskamp, and J. Torrellas. The bubblewrap many-core:
Popping cores for sequential acceleration. In Microarchitecture, 2009. MICRO-42.
42nd Annual IEEE/ACM International Symposium on, pages 447–458, Dec 2009.

[85] H. Kaul, M.A. Anders, S.K. Mathew, S.K. Hsu, A. Agarwal, R.K. Krishnamurthy,
and S. Borkar. A 300mv 494gops/w reconfigurable dual-supply 4-way simd vector
processing accelerator in 45nm cmos. In Solid-State Circuits Conference, 2009.
Digest of Technical Papers. ISSCC. 2009 IEEE International, pages 260–261, Feb
2009.

[86] Kuk-Hwan Kim, Siddharth Gaba, Dana Wheeler, Jose M. Cruz-Albrecht, Tahir
Hussain, Narayan Srinivasa, and Wei Lu. A functional hybrid memristor crossbar-
array/cmos system for data storage and neuromorphic applications. Nano Letters,
12(1):389–395, 2012. PMID: 22141918.

[87] Wonyoung Kim, David M. Brooks, and Gu-Yeon Wei. A fully-integrated 3-level
DC/DC converter for nanosecond-scale DVS with fast shunt regulation. In IEEE
International Solid-State Circuits Conference, ISSCC 2011, Digest of Technical
Papers, San Francisco, CA, USA, 20-24 February, 2011, pages 268–270, 2011.

[88] Evgeni Krimer, Patrick Chiang, and Mattan Erez. Lane decoupling for improving
the timing-error resiliency of wide-simd architectures. In Proceedings of the 39th
Annual International Symposium on Computer Architecture, ISCA ’12, pages
237–248, Washington, DC, USA, 2012. IEEE Computer Society.

[89] R. Kumar and V. Kursun. Reversed temperature-dependent propagation delay
characteristics in nanometer cmos circuits. Circuits and Systems II: Express Briefs,
IEEE Transactions on, 53(10):1078–1082, Oct 2006.



236

[90] Liangzhen Lai and Puneet Gupta. A case study of logic delay fault behaviors
on general-purpose embedded processor under voltage overscaling. Technical
report, Dept. of Electrical Engineering, University of California Los Angeles, Los
Angeles, CA 90095, August 2014.

[91] Mark S.K. Lau, Keck-Voon Ling, and Yun-Chung Chu. Energy-aware probabilis-
tic multiplier: Design and analysis. In Proceedings of the 2009 International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems,
CASES ’09, pages 281–290, New York, NY, USA, 2009. ACM.

[92] H.Y. Lee, Y. S Chen, P.S. Chen, T. Y Wu, F. Chen, C.C. Wang, P. J Tzeng, M. J
Tsai, and C. Lien. Low-power and nanosecond switching in robust hafnium oxide
resistive memory with a thin ti cap. Electron Device Letters, IEEE, 31(1):44–46,
Jan 2010.

[93] L. Leem, Hyungmin Cho, Hsiao-Heng Lee, Young Moon Kim, Y Li, and S Mi-
tra. Cross-layer error resilience for robust systems. In Computer-Aided Design
(ICCAD), 2010 IEEE/ACM International Conference on, pages 177–180, Nov
2010.

[94] Jing Li, R.K. Montoye, M. Ishii, and L. Chang. 1 mb 0.41µm2 2t-2r cell nonvolatile
tcam with two-bit encoding and clocked self-referenced sensing. Solid-State
Circuits, IEEE Journal of, 49(4):896–907, April 2014.

[95] Xiaojun Li, Jin Qin, and J.B. Bernstein. Compact modeling of mosfet wearout
mechanisms for circuit-reliability simulation. Device and Materials Reliability,
IEEE Transactions on, 8(1):98–121, March 2008.

[96] V. K. Prasanna M. Lee, W. Liu. A mapping methodology for designing soft-
ware task pipelines for embedded signal processing. Parallel and Distributed
Processing, pages 937–944, 1998.

[97] A. Marongiu, P. Burgio, and L. Benini. Fast and lightweight support for nested
parallelism on cluster-based embedded many-cores. In Design, Automation Test in
Europe Conference Exhibition (DATE), 2012, pages 105–110, March 2012.

[98] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou, F. Clermidy,
and D. Dutoit. Platform 2012, a many-core computing accelerator for embedded
socs: Performance evaluation of visual analytics applications. In Design Automa-
tion Conference (DAC), 2012 49th ACM/EDAC/IEEE, pages 1137–1142, June
2012.

[99] Sylvain Miermont, Pascal Vivet, and Marc Renaudin. A power supply selector for
energy- and area-efficient local dynamic voltage scaling. In Proceedings of the
17th International Workshop on Integrated Circuit and System Design. Power and



237

Timing Modeling, Optimization and Simulation, PATMOS ’07, pages 556–565,
Berlin, Heidelberg, 2007. Springer-Verlag.

[100] D. Mohapatra, V.K. Chippa, A. Raghunathan, and K. Roy. Design of voltage-
scalable meta-functions for approximate computing. In Design, Automation Test
in Europe Conference Exhibition (DATE), 2011, pages 1–6, March 2011.

[101] A. Moreno, E. Cesar, A. Guevara, J. Sorribes, and T. Margalef. Load balancing in
homogeneous pipeline based applications. Parallel Computing, 38(3):125 – 139,
2012.

[102] Srinivasan Murali, Almir Mutapcic, David Atienza, Rajesh Gupta, Stephen Boyd,
Luca Benini, and Giovanni De Micheli. Temperature control of high-performance
multi-core platforms using convex optimization. In Proceedings of the Conference
on Design, Automation and Test in Europe, DATE ’08, pages 110–115, New York,
NY, USA, 2008. ACM.

[103] F. Oboril and M.B. Tahoori. Extratime: Modeling and analysis of wearout due to
transistor aging at microarchitecture-level. In Dependable Systems and Networks
(DSN), 2012 42nd Annual IEEE/IFIP International Conference on, pages 1–12,
June 2012.

[104] S. Ogawa and N. Shiono. Generalized diffusion-reaction model for the low-field
charge-buildup instability at the si-sio2 interface. Physical Review, 51(7):4218–
4230, Feb 1995.

[105] M. Ozawa, M. Imai, Y. Ueno, H. Nakamura, and T. Nanya. Performance eval-
uation of cascade alu architecture for asynchronous super-scalar processors. In
Asynchronus Circuits and Systems, 2001. ASYNC 2001. Seventh International
Symposium on, pages 162–172, 2001.

[106] S. Pant and D. Blaauw. Circuit techniques for suppression and measurement of on-
chip inductive supply noise. In Solid-State Circuits Conference, 2008. ESSCIRC
2008. 34th European, pages 134–137, Sept 2008.

[107] J. Patel. Cmos process variations: A critical operation point hypothesis. Online
Presentation, 2008.

[108] F. Paterna, L. Benini, A. Acquaviva, F. Papariello, A. Acquaviva, and M. Olivieri.
Adaptive idleness distribution for non-uniform aging tolerance in multiprocessor
systems-on-chip. In Design, Automation Test in Europe Conference Exhibition,
2009. DATE ’09., pages 906–909, April 2009.

[109] F. Paterna, C. Pinto, A. Marongiu, M. Ruggiero, and L. Benini. Exploring instruc-
tion caching strategies for tightly-coupled shared-memory clusters. In System on
Chip (SoC), 2011 International Symposium on, pages 34–41, November 2011.



238

[110] R. Pawlowski, E. Krimer, J. Crop, J Postman, N. Moezzi-Madani, M. Erez, and
P. Chiang. A 530mv 10-lane simd processor with variation resiliency in 45nm
soi. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012
IEEE International, pages 492–494, Feb 2012.

[111] Abbas Rahimi, Luca Benini, and Rajesh K. Gupta. Analysis of instruction-
level vulnerability to dynamic voltage and temperature variations. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2012, pages 1102–
1105, March 2012.

[112] Abbas Rahimi, Luca Benini, and Rajesh K. Gupta. Procedure hopping: A low over-
head solution to mitigate variability in shared-l1 processor clusters. In Proceedings
of the 2012 ACM/IEEE International Symposium on Low Power Electronics and
Design, ISLPED ’12, pages 415–420, New York, NY, USA, 2012. ACM.

[113] Abbas Rahimi, Luca Benini, and Rajesh K. Gupta. Aging-aware compiler-directed
vliw assignment for gpgpu architectures. In Proceedings of the 50th Annual Design
Automation Conference, DAC ’13, pages 16:1–16:6, New York, NY, USA, 2013.
ACM.

[114] Abbas Rahimi, Luca Benini, and Rajesh K. Gupta. Application-adaptive guard-
banding to mitigate static and dynamic variability. Computers, IEEE Transactions
on, 2013.

[115] Abbas Rahimi, Luca Benini, and Rajesh K. Gupta. Hierarchically focused guard-
banding: An adaptive approach to mitigate pvt variations and aging. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2013, pages 1695–1700,
March 2013.

[116] Abbas Rahimi, Luca Benini, and Rajesh K. Gupta. Spatial memoization: Concur-
rent instruction reuse to correct timing errors in simd architectures. Circuits and
Systems II: Express Briefs, IEEE Transactions on, 60(12):847–851, Dec 2013.

[117] Abbas Rahimi, Luca Benini, and Rajesh K. Gupta. Temporal memoization for
energy-efficient timing error recovery in gpgpu architectures. Technical Report
CS2014-1006, Dept. of Computer Science and Engineering, University of Califor-
nia San Diego, La Jolla, CA 92093, June 2014.

[118] Abbas Rahimi, Luca Benini, and Rajesh K. Gupta. Temporal memoization for
energy-efficient timing error recovery in gpgpus. In Design, Automation and Test
in Europe Conference and Exhibition (DATE), 2014, pages 1–6, March 2014.

[119] Abbas Rahimi, Daniele Cesarini, Andrea Marongiu, Rajesh K. Gupta, and Luca
Benini. Improving resilience to timing errors by exposing variability effects to
software in tightly-coupled processor clusters. Emerging and Selected Topics in
Circuits and Systems, IEEE Journal on, 4(2):216–229, June 2014.



239

[120] Abbas Rahimi, Daniele Cesarini, Andrea Marongiu, Rajesh K. Gupta, and Luca
Benini. Task scheduling strategies to mitigate hardware variability in embedded
shared memory clusters. In Proceedings of the 52Nd Annual Design Automation
Conference, DAC ’15, pages 152:1–152:6, New York, NY, USA, 2015. ACM.

[121] Abbas Rahimi, Amirali Ghofrani, Kwang-Ting Cheng, Luca Benini, and Rajesh K.
Gupta. Approximate associative memristive memory for energy-efficient gpus.
In Proceedings of the 2015 Design, Automation & Test in Europe Conference &
Exhibition, DATE ’15, pages 1497–1502, 2015.

[122] Abbas Rahimi, Amirali Ghofrani, Miguel Angel Lastras-Montano, Kwang-Ting
Cheng, Luca Benini, and Rajesh K. Gupta. Energy-efficient gpgpu architec-
tures via collaborative compilation and memristive memory-based computing. In
Proceedings of the The 51st Annual Design Automation Conference on Design
Automation Conference, DAC ’14, pages 195:1–195:6, New York, NY, USA, 2014.
ACM.

[123] Abbas Rahimi, Igor Loi, Mohammad Reza Kakoee, and Luca Benini. A fully-
synthesizable single-cycle interconnection network for shared-l1 processor clusters.
In Design, Automation Test in Europe Conference Exhibition (DATE), 2011, pages
1–6, March 2011.

[124] Abbas Rahimi, Andrea Marongiu, Paolo Burgio, Rajesh K. Gupta, and Luca
Benini. Variation-tolerant openmp tasking on tightly-coupled processor clusters.
In Design, Automation Test in Europe Conference Exhibition (DATE), 2013, pages
541–546, March 2013.

[125] Abbas Rahimi, Andrea Marongiu, Rajesh K. Gupta, and Luca Benini. A variability-
aware openmp environment for efficient execution of accuracy-configurable com-
putation on shared-fpu processor clusters. In Hardware/Software Codesign and
System Synthesis (CODES+ISSS), 2013 International Conference on, pages 1–10,
Sept 2013.

[126] A. Rajendiran, S. Ananthanarayanan, H.D. Patel, M.V. Tripunitara, and Siddharth
Garg. Reliable computing with ultra-reduced instruction set co-processors. In
Design Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE, pages 697–
702, June 2012.

[127] S.G. Ramasubramanian, S. Venkataramani, A. Parandhaman, and A. Raghunathan.
Relax-and-retime: A methodology for energy-efficient recovery based design. In
Design Automation Conference (DAC), 2013 50th ACM / EDAC / IEEE, pages
1–6, May 2013.

[128] A. Raychowdhury, B.M. Geuskens, K.A. Bowman, J.W. Tschanz, S.L. Lu,
T. Karnik, M.M. Khellah, and V.K. De. Tunable replica bits for dynamic variation



240

tolerance in 8t sram arrays. Solid-State Circuits, IEEE Journal of, 46(4):797–805,
April 2011.

[129] V.J. Reddi and D. Brooks. Resilient architectures via collaborative design:
Maximizing commodity processor performance in the presence of variations.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 30(10):1429–1445, Oct 2011.

[130] R. Rithe, S. Chou, Jie Gu, A. Wang, S. Datla, G. Gammie, D. Buss, and A. Chan-
drakasan. The effect of random dopant fluctuations on logic timing at low voltage.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 20(5):911–
924, May 2012.

[131] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman. Enerj: Approximate data types for safe and general low-
power computation. In Proceedings of the 32Nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’11, pages 164–174,
New York, NY, USA, 2011. ACM.

[132] P.N. Sanda, J.W. Kellington, P Kudva, R. Kalla, R. B. McBeth, J. Ackaret, R. Lock-
wood, J. Schumann, and C. R. Jones. Soft-error resilience of the ibm power6
processor. IBM Journal of Research and Development, 52(3):275–284, May 2008.

[133] P Singh, E. Karl, D. Blaauw, and D Sylvester. Compact degradation sensors
for monitoring nbti and oxide degradation. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 20(9):1645–1655, Sept 2012.

[134] P Singh, E. Karl, D Sylvester, and D. Blaauw. Dynamic nbti management using a
45 nm multi-degradation sensor. Circuits and Systems I: Regular Papers, IEEE
Transactions on, 58(9):2026–2037, Sept 2011.

[135] Avinash Sodani and Gurindar S. Sohi. Dynamic instruction reuse. In Proceedings
of the 24th Annual International Symposium on Computer Architecture, ISCA ’97,
pages 194–205, New York, NY, USA, 1997. ACM.

[136] Oussama Tahan and Mohamed Shawky. Using dynamic task level redundancy for
openmp fault tolerance. In Proceedings of the 25th International Conference on
Architecture of Computing Systems, ARCS’12, pages 25–36, Berlin, Heidelberg,
2012. Springer-Verlag.

[137] A. Terechko, M. Garg, and H. Corporaal. Evaluation of speed and area of clustered
vliw processors. In VLSI Design, 2005. 18th International Conference on, pages
557–563, Jan 2005.

[138] A. Tiwari and J. Torrellas. Facelift: Hiding and slowing down aging in multi-
cores. In Microarchitecture, 2008. MICRO-41. 2008 41st IEEE/ACM International
Symposium on, pages 129–140, Nov 2008.



241

[139] J. Tschanz, K. Bowman, S. Walstra, M. Agostinelli, T. Karnik, and Vivek De.
Tunable replica circuits and adaptive voltage-frequency techniques for dynamic
voltage, temperature, and aging variation tolerance. In VLSI Circuits, 2009 Sym-
posium on, pages 112–113, June 2009.

[140] J. Tschanz, K. Bowman, S. Walstra, M. Agostinelli, T. Karnik, and Vivek De.
Tunable replica circuits and adaptive voltage-frequency techniques for dynamic
voltage, temperature, and aging variation tolerance. In VLSI Circuits, 2009 Sym-
posium on, pages 112–113, June 2009.

[141] J. Tschanz, Nam Sung Kim, S. Dighe, J. Howard, G. Ruhl, S. Vangal, S. Narendra,
Y. Hoskote, H. Wilson, C. Lam, M. Shuman, C. Tokunaga, D. Somasekhar, S. Tang,
D. Finan, T. Karnik, N. Borkar, N. Kurd, and V. De. Adaptive frequency and
biasing techniques for tolerance to dynamic temperature-voltage variations and
aging. In Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical
Papers. IEEE International, pages 292–604, Feb 2007.

[142] Weidong Wang, A Raghunathan, and N.K. Jha. Profiling driven computation
reuse: an embedded software synthesis technique for energy and performance
optimization. In VLSI Design, 2004. Proceedings. 17th International Conference
on, pages 267–272, 2004.

[143] Wenping Wang, Shengqi Yang, S. Bhardwaj, S. Vrudhula, F. Liu, and Yu Cao.
The impact of nbti effect on combinational circuit: Modeling, simulation, and
analysis. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
18(2):173–183, Feb 2010.

[144] L. Wanner, R. Balani, S. Zahedi, C. Apte, P. Gupta, and M. Srivastava. Variability-
aware duty cycle scheduling in long running embedded sensing systems. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2011, pages 1–6, March
2011.

[145] Whitepaper. Nvidia’s next generation cuda compute architecture: Fermi. 2009.

[146] Whitepaper. Nvidias next generation cudatm compute architecture: Kepler tm
gk110. 2012.

[147] H. Zakaria and L. Fesquet. Designing a process variability robust energy-efficient
control for complex socs. Emerging and Selected Topics in Circuits and Systems,
IEEE Journal on, 1(2):160–172, June 2011.

[148] Bo Zhai, R.G. Dreslinski, D. Blaauw, T. Mudge, and D. Sylvester. Energy efficient
near-threshold chip multi-processing. In Low Power Electronics and Design
(ISLPED), 2007 ACM/IEEE International Symposium on, pages 32–37, Aug 2007.



242

[149] Hang Zhang, Mateja Putic, and John Lach. Low power gpgpu computation with
imprecise hardware. In Proceedings of the The 51st Annual Design Automation
Conference on Design Automation Conference, DAC ’14, pages 99:1–99:6, New
York, NY, USA, 2014. ACM.


	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Sources of Variability
	Delay Variation
	Dissertation Organization and Contributions
	Predicting and Preventing Errors
	Detecting and Correcting Errors
	Accepting Errors
	Detecting and Correcting with Accepting Errors


	Instruction-Level Tolerance
	Introduction
	Effect of Operating Conditions
	Delay Variation among Pipeline Stages
	Instruction Characterization Methodology and Experimental Results
	Gate-Level Simulation
	Instruction-Level Delay Variability
	Less Intrusive Variation-Tolerant Technique
	Power Variability

	Chapter Summary

	Sequence-Level Tolerance
	Introduction
	PVT Variations
	Conventional Static Timing Analysis
	Variation-Aware Statistical STA

	Error-Tolerant Applications
	Analysis of Adaptive Guardbanding for Probabilistic Applications

	Error-Intolerant Applications
	Sequence-Level Vulnerability (SLV)
	SLV Characterization

	Adaptive Guardbanding
	Experimental Results
	Effectiveness of Adaptive Guardbanding
	Overhead of Adaptive Guardbanding

	Chapter Summary

	Procedure-Level Tolerance
	Introduction
	Variation-Tolerant Processor Clusters Architecture
	Variation-Aware VDD-Hopping

	Procedure Hopping for Dynamic IR-Drop
	Supporting Intra-Cluster Procedure Hopping

	Characterization of PLV to Dynamic Operating Conditions
	Experimental Results
	Cost of Procedure Hopping

	Chapter Summary

	Kernel-Level Tolerance
	Introduction
	Device-Level NBTI Model
	GP-GPU Architecture
	GP-GPU Workload Distribution

	Aging-Aware Compilation
	Observability: Aging Sensors
	Prediction: Wearout Estimation Module
	Controllability: Uniform Slot Assignment

	Experimental Results
	Chapter Summary

	Work-Unit Tolerance
	Introduction
	Architectural Support for VOMP
	Work-Unit Vulnerability and VOMP Work-Sharing
	Intra- and Inter-Corner WUV
	Online WUV Characterization

	VOMP Schedulers
	Variation-Aware Task Scheduling (VATS)
	Variation-Aware Section Scheduling (VASS)

	Experimental Results
	Framework Setup
	VOMP Results for Tasking
	VOMP Results for Sections

	Chapter Summary

	Hierarchically Focused Guardbanding
	Introduction
	Timing Error Model for PVTA
	Analysis Flow for Timing Error Extraction
	Parametric Model Fitting
	TER Classification
	Robustness of Classification

	Runtime Hierarchically Focused Guardbanding
	Observability
	Controllability

	A Case Study of HFG on GPUs
	Chapter Summary

	Exact Memristive Associative Memory
	Introduction
	Energy-Efficient GP-GPUs
	Associative Memristive-Based Computing

	Collaborative Compilation
	FPU Memristive-based Computing

	Experimental Results
	FPUs with AMM Modules
	Energy Saving

	Chapter Summary

	Accuracy-Configurable OpenMP
	Introduction
	Controlled Approximation
	Accuracy-Configurable OpenMP Environment
	Accuracy-Configurable FPUs
	OpenMP Compiler Extension for Approximation
	Runtime Support
	Application-Driven Hardware FPU Synthesis and Optimization

	Experimental Results
	Error-Tolerant Applications
	Error-intolerant Applications

	Chapter Summary

	Approximate Memristive Associative Memory
	Introduction
	GPU Architecture Using A2M2 Module
	Southern Islands Architecture
	Approximate Associative Memristive Memory Module

	Framework to Support A2M2
	Execution Flow
	Design Space for A2M2

	Experimental Results
	Experimental Setup
	Energy Saving with Corresponding PSNR

	Chapter Summary

	Spatial and Temporal Memoization
	Introduction
	Spatial Memoization (Concurrent Instruction Reuse)
	Single Strong Multiple Weak (SSMW) Architecture
	Experimental Results

	Temporal Memoization (Temporal Instruction Reuse)
	Temporal Memoization for Error Recovery
	Experimental Results

	Chapter Summary

	Outlook
	Domain-Specific Software Resiliency
	Software
	Architecture
	Circuit

	Non-Von Neumann Massively Parallel Architectures

	Bibliography

