ETHzurich
ASIP: Application Specific Instruction-Set

Processor

Advanced System-on-Chip Design

17.05.2016
Michael Gautschi IIS-ETHZ
Luca Benini IIS-ETHZ
-
O e
- B .
- -
- B e
- -
-
-
o
m [e -
- _ -Jii'—“‘: *
w: = =‘ “ - -
. BN Integrated Systems Laboratory
n .
- o
e]

E'HZUrich Integrated Systems Laboratory

Introduction

« Contents:

— ASIP Introduction
» Special function unit
* Integration in SoC

— Commercially available tools
» Design flow

— Exercise session about Tensilica Xtensa Xplorer
* Introduction to Xtensa Xplorer
» Exercise session

+ Goals:
— Knowing the pros and cons of ASIPs
— Learning the general concepts of ASIPs
— Being able to design and analyze ASIPs using Xtensa Xplorer

5/17/2016 Michael Gautschi

ErHZ(jr’ich Integrated Systems Laboratory

Motivation for ASIPs

* Problem:
— GPP is too slow for some applications
— Power consumption is not feasible for an embedded system

High
©
)
o
(@8
2 ‘
? ‘
o
c
Q
o
E ‘
L]
> GPP
)
c
L]
Low
Low Flexibility High

=> How do ASIPs achieve a better speed/energy efficiency?

5/17/2016 Michael Gautschi

ASIP Introduction

« ASIP = Application Specific Instruction-Set Processor
— Compromise between performance and flexibility
— Adding custom instruction to the CPU as dedicated hardware
— Designed and optimized for a specific application
— Commercial tool-suites available for fast development

« Example where ASIPs are used:
— Digital signal processing
— Audio processing
— Mobile communication: encoding/decoding/synchronization
— Cryptographic extensions
— And many more

5/17/2016 Michael Gautschi

Weakness and strength of ASIPs

 An ASIP is a compromise between the two extremes ASIC and GPP
« ASIPs and ASICs are designed for a very specific application
— But ASIPs are programmable and therefore almost as flexible as GPP

« ASIPs are great to be integrated in a embedded systems or SoC
— Design effort is more on system level rather than on hardware

e JASP___JASC____
Low High Very high

Excellent Good Poor

Large Medium Small

Small Large Very large

Large Large None

Excellent Good Poor

Very large Relatively large small

Mainly on SW SoC Volume sensitive

Source: A.Nohl “Application specific processor design: Architectures, design methods and tools”

5/17/2016 Michael Gautschi

E'HZUrich Integrated Systems Laboratory

ASIPs in Multicore System-on-Chip

« SoC becomes Sea-of-Cores
— Many application specific processors integrated on a single chip
— ASIPs as building blocks for heterogeneous designs

Next Generation

Current

‘ r . ' up ‘ Graphics
! .. Crypto

! [
3
i 13
! LSIP
i pP e DOsP LAS T Audio
' 'L custom logic
Lt RS A Filtering
| 4
Low-level protocoll Volce - I I ‘ I /)
Application SW codec
Imaging Video Radio/modem 3

5/17/2016 Michael Gautschi

E'HZUrich Integrated Systems Laboratory

Processor Customization

« ASIPs are customized processors with hardwired functional units in the data path.

« Custom instructions are executed on a special function unit (SFU)
— Compiler maps application source code to the extended instruction set
— New instructions can be used intrinsically in C code

* Processor data path

— 4 stage pipeline: { Instruction Fetch, Instruction Decode, Execute, Write-Back}
— 32 bit Instruction/ data interface

Instruction Memory Interface] [Data Memory Ingerface]
Different possibilities for data : — mmmr —
path integration: ﬂﬂ DF '] i
PC_ DN - — —
~
a) SFU as comb. block in 3 S
parallel of ALU v =l
b) Comp. unit with internal 1@ . - E
state registers ¥ - ;
c) Comp. unit with its own — o WE
register file D
d) Shared SFUs =
e) Coprocessor with S |7”
load/store interface A 9 -D_ N N

5/17/2016 Michael Gautschi

ETH:zurich

Integrated Systems Laboratory

Special Function Unit

« Combinational unit, similar to ALU

— Gets operands from general purpose registers (2 in this example)
— Write back the result back to GPR

— Multi-cycle instructions to map complex functions

Example:
* Modulo operation:
—c=a%hb

e Square root:
— c=a + sqgrt(b)

5/17/2016

Instruction Memory Interface] [Data Memory Interface]
(s or——

Addr_DO Data_DI
‘pc FC_DP
PC_DN —

Instr_DI

PC Sel

N XNW-zdo / N\ Xnw-1do /S

Immediate |7

>
5

Michael Gautschi

ETH:zurich

SFU with internal state registers

« Computation unit with internal state
— State contains content which does not need to be stored in GPR

— Read/write state with extra read/write instructions

Example:
Accumulator

1.

a += b[i] * c[i]
a stored in the state

register (can be
larger than 32 bit)

Initialize state to 0
Compute MAC
Read final state

|Instructi0n Memory Interface]

|

Integrated Systems Laboratory

[Data Memory Interface]
g, v

PC | PC_DF

FC_DON]

S

Addr_DO Data_DI

PC Sel

g,

Instr_Dl

N XNW-zdo / N\ Xnw-1do /S

Immediate |7

5

5/17/2016

Michael Gautschi

ErHZ(jr’ich Integrated Systems Laboratory

SFU with a separate register file

« SFU reads/writes from/to the special register file (SPR)
— Compiler creates move/load/store instruction to SPR
— Custom register width optimized for the SFU
— Custom size and number of ports at the special register file

Example: Instruction Memory Interface] [Data Memory Interface]
.) {0} i}
« Multiple accumulators - 550 | fraa 50 | Bee D
pC | PC DF
— a+=Db[i] * c[i] PC D“‘;] .] L
. . N
~ d+=1[)* gl - 5 A S
. wn n L7 0Opl -
=> Store d and a in SPR g * =nlg co2 gl
with higher precision 1@4, . | o %
5 ™ L e =
Instr_DI 1 S| | g_
. & 2
7 |7/
Immediate "
A DHa AT

5/17/2016 Michael Gautschi

E'HZUrich Integrated Systems Laboratory

Floating-point Extensions in GPUs and Multi-core
systems

« Expensive floating point operations can be computed in SFUs to
approximate special functions:
— sgrt(x), 1/x, log,(x), 2%, sin(x), cos(x), etc.

* Implemented with function interpolators
— Speedup due to single cycle operation (no software emulations)
— Limited precision (1ulp)
— Implemented in GPUs [1,2]

o
S rCIuster

« Shared logarithmic number unit (LNU) [3]

— Used to interpolate floating point additions and M
subtractions d

— 2%, log,(x), sin(x), cos(x), atan2(y,Xx)

32432

32
0 @
]

¢~ reqgfack, emd :

16 KB

— Can be efficiently shared in a cluster of multiple || t2ven
processor cores

A vy

[1] Caro et. al, “High-Performance Special Function Unit for Programmable 3-D Graphics Processors”, TCAS 2009

[2] Oberman et. al, “A High-Performance Area-Efficient Multifunction Interpolator”, ARITH 2005

[3] Gautschi et. al, “A 65nm CMOS 6.4-t0-29.2 pJ/FLOP@ 0.8 V shared logarithmic floating point unit for acceleration of nonlinear
function kernels in a tightly coupled processor cluster”, ISSCC 2016

17.05.2016 Michael Gautschi

ETH:zurich

Customization with a Coprocessor

* Implement a set of instruction in a coprocessor

— Customize the processor with more general instruction which can be used in several

applications!

— Share hardware resources for multiple instructions
— Capable of issuing wider/more load/stores at the time

— SIMD execution for maximum speedup

* Usage in software:

— Program in standard C with the use of intrinsics

128 bits\Mde

i

Integrated Systems Laboratory

64 hits Wide

Instruction
Memmory
Interface
Local
Memmory or
Cache

Data Vector Register File General Register File
Load'Store Unit0 |/ > .
7T TN, [rorteryivigiviof 16 entry 160 bits (16, 2 64 x 2t
= Sidean 10-bit (B-bit with 2 guard bits) [
<- Bhswie) LoadStoreUnit1 |/ > Vector Align
— /| (32128 bitto 128bit) |V 4eentry 128 bits 3
b
B 4 :
b b
£ 3
N N
- Computation Unit
Load . Store
Computation 16 Way ALU
SIMD ALU
3 Way VLIW Instruction Decoder

Tensilica ConnX Soft Stream Coprocessor Architecture

5/17/2016

Michael Gautschi

Data path of
simple
processor

ETH:zurich

Integrated Systems Laboratory

Reconfigurable ASIPs

* Design SFU for more than one single application!

5/17/2016

Replace SFU by
configurable array of
simple functions

Configure the array to
process the desired
function

FPGA-like approach

— Efficient if not necessary
to reconfigure very often

] o

Source: Berekovic, TU-Braunschweig 2010

Michael Gautschi

13

E'HZUrich Integrated Systems Laboratory

Commercially available ASIP/VLIW design tools

* LISA (Synopsys) Design Flow:
SYNOPSYS
Silicon to Software Choose template ..
« Xtensa Application
(Tensilica/Cadence) l
T Create P
R Processor =
. OptimoDE (ARM) l ! s
ISS Compile é)’
. A N
* Codasip l _L Profile ?
@ .. \ 4 application
e Hardware Software

5/17/2016 Michael Gautschi

E'HZUrich Integrated Systems Laboratory

Where is it used?

« AMD Radeon R290

— Highend graphics card with
TrueAudio

— TrueAudias a ceprocessor
based on the HIFI core
architecture of Cadence

— AMD supports audio processing 'E"‘-*g;': | B —
viaTrueAudian all its new chips - — —
(architecture generation GCN 1.1 :— Y i “

s |\ PR b b
S Voice
Slot @
[] Base Xtensa LX coniguration [HiFi 2 Audio Engine hardware
* Samsung Galaxy S3

— Voice recognition used by S-Voice
— Uses low power HIFI xtensa core

17.05.2016

ErHZ(jrich Integrated Systems Laboratory

Cryptographic Example: ECDSA signature
verification

« Elliptic Curve Digital Signature
Algorithm (ECDSA)

— Signature validation with Elliptic ECDSA
Curves (EC) .

! EC
. Operations

« ECDSA - equires prime and
binary finite field operations

e Add, sub, mult, div, etc. defined
in the finite-field arithmetic
— We used the NIST B-233 curve

» Flexibility is good! » Finite field operations are not

» Possible to support different suitable for general purpose
algorithms and different standards architectures
with one hardware! => hardware much more efficient!

17.05.2016 Michael Gautschi

E'HZUrich Integrated Systems Laboratory

Cryptographic Example: Base processor
configuration

* Processor configuration:
— 5 stage integer pipeline
— 32 32bit general purpose registers
— 16x16 bit multiplier
— 2 KB 1$, D$

« Estimated performance (65nm LP technology):

— Max speed: 344 MHz (worst case)
— Area: 83 kGE
— Power : 20 mW (not verified)

« ECDSA algorithm ported from a former semester project [1]

[1] Semester Thesis by A. Traber, S. Stucki, 2014, A Unified Multiplier Based Hardware Architecture for Elliptic Curve Cryptography

17.05.2016 Michael Gautschi

E'HZUrich Integrated Systems Laboratory

ECDSA Signature Verification Algorithm

Profiling results using Xtensa Xplorer:

Operation Total Total # function | Code size
(cycles)) calls (bytes)

ECDSA Verification 46'674°997 6518
GF(2233) multiplication 42°063°643 90.1% 2’309 366
16x16 bit binary f. field mult. 34'199'189 73.3% 591’104 157
GF(2%33) squaring 2'706°852 5.7% 2472 446
others 1'904’502 21.0% - 4’930

« Simple squaring operation on a 233 bit binary field:

Insert ‘0’ bit between each input bit
 e.g.’11017 => ‘010100071
Reduce resulting 466 bit number to 233 bit

* Requires masking and shifting in C -> not efficient at all!

« Hardware architectures can do such operations in one cycle!
=> add custom instructions for 16bit mult, and squaring

17.05.2016 Michael Gautschi

E'HZUrich Integrated Systems Laboratory

Optimizing the multiplication in GF(2233)

Original C code

// shortened C - code: binary field 16 bit
// multiplication

uintlé_ta, b; //input
uint32_t prod = 0; // output

for(i =0; i <16; i++){
if((S%(élfé Ib))<< - New C code
~60 cycles /I intrinsic function calll

prod = BinMul16(a,b);

Speedup of
factor 60!

“ T | -Hénsilica Instruction Extensions

/I shortened BinMul operation
operation BinMull6 {out ARres, in ARa, in ARDHK

/l a, b, prod are stored in normal r‘

wire [31:0] temp0 =(@&(1<<0) ? (b <<0)) : 3206b0
wire [31:0] templ =(@&(1<< 1)) ?(tempO? b<< 1)) . tempO;

wire [31:0] temp2 =(@a&(1<< 2) ?(templ™M b<<2)) :templ;

Il é

wire [31:0] templ5 = (a & (1 << 15)) ? (templ4”(b << 15)) : temp14;
assign res = temp15;
} 1 cycle only!

17.05.2016 Michael Gautschi

E'HZUrich Integrated Systems Laboratory

Results: Performance

* Profiling results of specialized circuit
* Reduced code size: 5.1 KB vs 5.7 KB

Operation Total # cycles Speedup
(cycles) before

ECDSA Verification 46°'674°997
GF(2233) multiplication 42'063'643
16x16 bit binary f. field 34°199°189
multiplication

GF(2233) squaring 2'706’852
others 1'904°502

« Comparison to HW-architecture:[2]
— Coprocessor with 16 bit datapath requires ~1’850°000 cycles (12 kGE)
— Factor 3.3 slower

2] M. Gautschi, M. Muhlberghuber et.al. , SIRIOUS: A tightly coupled ECC Coprocessor for the OpenRISC

17.05.2016 Michael Gautschi

ErHZ(jrich Integrated Systems Laboratory

Results: Area and Timing

» Synthesis results with UMC 65 nm technology

Core comparison | Max Speed (MH2z) Area (kGE)

Synthe5|s Estimation Synthe5|s Estimation
Basic configuration 857* 580* 103 107 83
With hardware 850* 589* 344 107 111 100 85
extensions
Instruction 4.1 4.2 2.3 2.2
extension

* Synthesized without memories; expected drop by 200-400MHz when synthesizing with a 2KB cache

« Conclusion:
— Flexible architecture fully integrated in an application processor
— 7.5x speedup at very low costs and design time (< 1 week)
— Only 2.2 kGE hardware overhead, (datapath of co-processor 12 kGE)

17.05.2016 Michael Gautschi

E'HZUrich Integrated Systems Laboratory

Summary

« ASIPs are widely used in application specific domains
« ASIP can increase energy efficiency
* Possible to create complex SoCs with ASIPs

« ECDSA example is based on a mini-project completed
by Sven Stucki

17.05.2016 Michael Gautschi

E'HZUrich Integrated Systems Laboratory
Q&A

17.05.2016 Michael Gautschi

