
Integrated Systems Laboratory

ASIP: Application Specific Instruction-Set

Processor

Advanced System-on-Chip Design

Michael Gautschi IIS-ETHZ

Luca Benini IIS-ETHZ

17.05.2016

Integrated Systems Laboratory

Introduction

• Contents:

– ASIP Introduction

• Special function unit

• Integration in SoC

– Commercially available tools

• Design flow

– Exercise session about Tensilica Xtensa Xplorer

• Introduction to Xtensa Xplorer

• Exercise session

• Goals:

– Knowing the pros and cons of ASIPs

– Learning the general concepts of ASIPs

– Being able to design and analyze ASIPs using Xtensa Xplorer

2Michael Gautschi

Integrated Systems Laboratory

Motivation for ASIPs

• Problem:

– GPP is too slow for some applications

– Power consumption is not feasible for an embedded system

3Michael Gautschi

ASICs

ASIPs

GPP

DSP

E
n
e
rg

y
E

ff
ic

ie
n

c
y
/S

p
e

e
d

Flexibility
Low

Low High

High

=> How do ASIPs achieve a better speed/energy efficiency?

Integrated Systems Laboratory

ASIP Introduction

• ASIP = Application Specific Instruction-Set Processor

– Compromise between performance and flexibility

– Adding custom instruction to the CPU as dedicated hardware

– Designed and optimized for a specific application

– Commercial tool-suites available for fast development

• Example where ASIPs are used:

– Digital signal processing

– Audio processing

– Mobile communication: encoding/decoding/synchronization

– Cryptographic extensions

– And many more

4Michael Gautschi

Integrated Systems Laboratory

Weakness and strength of ASIPs

• An ASIP is a compromise between the two extremes ASIC and GPP

• ASIPs and ASICs are designed for a very specific application
– But ASIPs are programmable and therefore almost as flexible as GPP

• ASIPs are great to be integrated in a embedded systems or SoC
– Design effort is more on system level rather than on hardware

5

GPP ASIP ASIC

Performance Low High Very high

Flexibility Excellent Good Poor

Power Large Medium Small

HW design Small Large Very large

SW design Large Large None

Reuse Excellent Good Poor

Market Very large Relatively large small

Cost Mainly on SW SoC Volume sensitive

Source: A.Nohl “Application specific processor design: Architectures, design methods and tools”

Michael Gautschi

Integrated Systems Laboratory

ASIPs in Multicore System-on-Chip

6Michael Gautschi

• SoC becomes Sea-of-Cores

– Many application specific processors integrated on a single chip

– ASIPs as building blocks for heterogeneous designs

Integrated Systems Laboratory

Processor Customization

• ASIPs are customized processors with hardwired functional units in the data path.

• Custom instructions are executed on a special function unit (SFU)
– Compiler maps application source code to the extended instruction set

– New instructions can be used intrinsically in C code

• Processor data path
– 4 stage pipeline: { Instruction Fetch, Instruction Decode, Execute, Write-Back}

– 32 bit Instruction/ data interface

7Michael Gautschi

Different possibilities for data
path integration:

a) SFU as comb. block in
parallel of ALU

b) Comp. unit with internal
state registers

c) Comp. unit with its own
register file

d) Shared SFUs

e) Coprocessor with
load/store interface

Integrated Systems Laboratory

Special Function Unit

• Combinational unit, similar to ALU

– Gets operands from general purpose registers (2 in this example)

– Write back the result back to GPR

– Multi-cycle instructions to map complex functions

8Michael Gautschi

Example:

• Modulo operation:

– c = a % b

• Square root:

– c = a + sqrt(b)

Integrated Systems Laboratory

SFU with internal state registers

• Computation unit with internal state

– State contains content which does not need to be stored in GPR

– Read/write state with extra read/write instructions

9Michael Gautschi

Example:

• Accumulator
– a += b[i] * c[i]

– a stored in the state
register (can be
larger than 32 bit)

1. initialize state to 0

2. Compute MAC

3. Read final state

Integrated Systems Laboratory

SFU with a separate register file

10Michael Gautschi

• SFU reads/writes from/to the special register file (SPR)

– Compiler creates move/load/store instruction to SPR

– Custom register width optimized for the SFU

– Custom size and number of ports at the special register file

Example:

• Multiple accumulators

– a += b[i] * c[i]

– d += f[j] * g[j]

=> Store d and a in SPR

with higher precision

Integrated Systems Laboratory

Floating-point Extensions in GPUs and Multi-core

systems

• Expensive floating point operations can be computed in SFUs to
approximate special functions:

– sqrt(x), 1/x, log2(x), 2x, sin(x), cos(x), etc.

• Implemented with function interpolators
– Speedup due to single cycle operation (no software emulations)

– Limited precision (1ulp)

– Implemented in GPUs [1,2]

• Shared logarithmic number unit (LNU) [3]
– Used to interpolate floating point additions and

subtractions

– 2x, log2(x), sin(x), cos(x), atan2(y,x)

– Can be efficiently shared in a cluster of multiple
processor cores

11

[1] Caro et. al, “High-Performance Special Function Unit for Programmable 3-D Graphics Processors”, TCAS 2009

[2] Oberman et. al, “A High-Performance Area-Efficient Multifunction Interpolator”, ARITH 2005

[3] Gautschi et. al, “A 65nm CMOS 6.4-to-29.2 pJ/FLOP@ 0.8 V shared logarithmic floating point unit for acceleration of nonlinear

function kernels in a tightly coupled processor cluster”, ISSCC 2016

Michael Gautschi

Integrated Systems Laboratory

Customization with a Coprocessor

• Implement a set of instruction in a coprocessor
– Customize the processor with more general instruction which can be used in several

applications!

– Share hardware resources for multiple instructions

– Capable of issuing wider/more load/stores at the time

– SIMD execution for maximum speedup

• Usage in software:
– Program in standard C with the use of intrinsics

12Michael Gautschi

Tensilica ConnX Soft Stream Coprocessor Architecture

Data path of

simple

processor

Integrated Systems Laboratory

Reconfigurable ASIPs

• Replace SFU by
configurable array of
simple functions

• Configure the array to
process the desired
function

• FPGA-like approach
– Efficient if not necessary

to reconfigure very often

13Michael Gautschi

• Design SFU for more than one single application!

Source: Berekovic, TU-Braunschweig 2010

Integrated Systems Laboratory

Commercially available ASIP/VLIW design tools

• LISA (Synopsys)

• Xtensa

(Tensilica/Cadence)

• OptimoDE (ARM)

• Codasip

14Michael Gautschi

Application

Create

Processor

CompileISS

Hardware Software

M
o
d
ify

/c
u
s
to

m
iz

e

Choose template

Profile

application

Integrated Systems Laboratory

Where is it used?

• AMD Radeon R9-290
– High-end graphics card with

TrueAudio

– TrueAudiois a co-processor
based on the HIFI core
architecture of Cadence

– AMD supports audio processing
via TrueAudioin all its new chips
(architecture generation GCN 1.1)

44

•

–

–

Integrated Systems Laboratory

Cryptographic Example: ECDSA signature

verification

• Elliptic Curve Digital Signature
Algorithm (ECDSA)

– Signature validation with Elliptic
Curves (EC)

• ECDSA requires prime and
binary finite field operations

• Add, sub, mult, div, etc. defined
in the finite-field arithmetic

– We used the NIST B-233 curve

45

• Flexibility is good!

• Possible to support different

algorithms and different standards

with one hardware!

• Finite field operations are not

suitable for general purpose

architectures

=> hardware much more efficient!

Michael Gautschi

Integrated Systems Laboratory

Cryptographic Example: Base processor

configuration

• Processor configuration:

– 5 stage integer pipeline

– 32 32bit general purpose registers

– 16x16 bit multiplier

– 2 KB I$, D$

• Estimated performance (65nm LP technology):

– Max speed: 344 MHz (worst case)

– Area: 83 kGE

– Power : 20 mW (not verified)

• ECDSA algorithm ported from a former semester project [1]

46

[1] Semester Thesis by A. Traber, S. Stucki, 2014, A Unified Multiplier Based Hardware Architecture for Elliptic Curve Cryptography

Michael Gautschi

Integrated Systems Laboratory

ECDSA Signature Verification Algorithm

• Simple squaring operation on a 233 bit binary field:
• Insert ‘0’ bit between each input bit

• e.g. ’1101’ => ‘01010001’

• Reduce resulting 466 bit number to 233 bit

• Requires masking and shifting in C -> not efficient at all!

• Hardware architectures can do such operations in one cycle!

=> add custom instructions for 16bit mult, and squaring

47

Operation Total

(cycles)

Total

(%)

function

calls

Code size

(bytes)

ECDSA Verification 46’674’997 6518

GF(2233) multiplication

16x16 bit binary f. field mult.

42’063’643

34’199’189

90.1%

73.3%

2’309

591’104

366

157

GF(2233) squaring 2’706’852 5.7% 2’472 446

others 1’904’502 21.0% - 4’930

Profiling results using Xtensa Xplorer:

Michael Gautschi

Integrated Systems Laboratory

Optimizing the multiplication in GF(2233)

48

// intrinsic function call

prod = BinMul16(a,b);

// a, b, prod are stored in normal registers

// shortened C - code: binary field 16 bit
// multiplication

uint16_t a, b; // input
uint32_t prod = 0; // output

for(i = 0 ; i < 16; i ++) {
if((a&(1<< i))

prod ^= b << i ;
}

// shortened BinMul operation

operation BinMul16 { out AR res, in AR a, in AR b}{}{

wire [31:0] temp0 = (a & (1 << 0)) ? (b << 0)) : 32ôb0

wire [31:0] temp1 = (a & (1 << 1)) ? (temp0^(b << 1)) : temp0;

wire [31:0] temp2 = (a & (1 << 2)) ? (temp1^(b << 2)) : temp1;

// é

wire [31:0] temp15 = (a & (1 << 15)) ? (temp14^(b << 15)) : temp14;

assign res = temp15;

}

~60 cycles

1 cycle only!

Original C code

New C code

“TIE” –Tensilica Instruction Extensions

Speedup of

factor 60!

Michael Gautschi

Integrated Systems Laboratory

Results: Performance

• Profiling results of specialized circuit

• Reduced code size: 5.1 KB vs 5.7 KB

49

Operation Total

(cycles)

cycles

before

Speedup

ECDSA Verification 6’181’171 46’674’997 7.5x

GF(2233) multiplication

16x16 bit binary f. field

multiplication

4’163’127

591’104

42’063’643

34’199’189

10.1x

57.9x

GF(2233) squaring 177’998 2’706’852 15.2x

others 1’840’046 1’904’502

• Comparison to HW-architecture:[2]
– Coprocessor with 16 bit datapath requires ~1’850’000 cycles (12 kGE)

– Factor 3.3 slower

[2] M. Gautschi, M. Mühlberghuber et.al. , SIRIOUS: A tightly coupled ECC Coprocessor for the OpenRISC

Michael Gautschi

Integrated Systems Laboratory

Results: Area and Timing

• Synthesis results with UMC 65 nm technology

50

Core comparison Max Speed (MHz) Area (kGE)

Synthesis Estimation Synthesis Estimation

TC WC TC WC 344 MHz

Basic configuration 857* 580* 344 103 107 98 83

With hardware

extensions

850* 589* 344 107 111 100 85

Instruction

extension

4.1 4.2 2.3 2.2

• Conclusion:
– Flexible architecture fully integrated in an application processor

– 7.5x speedup at very low costs and design time (< 1 week)

– Only 2.2 kGE hardware overhead, (datapath of co-processor 12 kGE)

* Synthesized without memories; expected drop by 200-400MHz when synthesizing with a 2KB cache

Michael Gautschi

Integrated Systems Laboratory

Summary

• ASIPs are widely used in application specific domains

• ASIP can increase energy efficiency

• Possible to create complex SoCs with ASIPs

• ECDSA example is based on a mini-project completed

by Sven Stucki

51Michael Gautschi

Integrated Systems Laboratory

Q&A

52Michael Gautschi

