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Abstract—When compared to traditional floating point (FP) number
representation, logarithmic number systems (LNS) have superior
performance when evaluating complex functions, since multiplications
and divisions can be calculated with ease in the logarithmic domain.
However, additions and subtractions become costly nonlinear opera-
tions. Efficient LNS units (LNUs) implementing ADD/SUB operations
in hardware rely on interpolation techniques to save area. Even the
most advanced LNUs are still larger than standard single-precision
FPUs – which renders them impractical for most general purpose
processors. In this paper, we show that in a multi-core setting, when
shared among several processor cores, LNUs become a very attractive
solution. We present a methodology to generate LNUs with various
error bounds and perform a design space exploration with different
parameterizations. We show that already small precision relaxations
in the order of a few units in the last place (ulp) reduce the LNU area
significantly. Using examples from several signal processing domains,
we demonstrate that shared approximate LNUs can outperform their
standard FP counterpart on average by 2.14x in speed and 1.92x in
energy-efficiency, with insignificant degradation of the output quality.

Keywords-Logarithmic Number System (LNS), Shared Floating Point
Unit (FPU), Approximation, Multi-core, RISC, ASIC, VLSI

I. INTRODUCTION

The Logarithmic Number System (LNS) allows low-latency eval-
uation of computationally intensive non-linear functions kernels
and has over the years attracted significant attention as a possible
replacement of the conventional single-precision floating point
number representation [1–9]. This is not only relevant for high-
performance computing, but also increasingly needed for low-
power, low-cost embedded applications where the demand on
intensive signal-processing capabilities continues to grow on a
regular basis. However, the drawback of LNS is that additions and
subtractions become nonlinear operations and when implemented
in hardware have to be approximated accordingly with a dedicated
LNS unit (LNU).

Recent developments [9–11] have shown that these functions can
be efficiently approximated using piecewise polynomial interpola-
tion, combined with suitable function decompositions (also called
cotransformations) in order to handle the singularity region present
in LNS subtractions. LNS units that reach the numerical accuracy
equivalent to single precision FP [9], [11] and double precision
FP [10] have been demonstrated. But despite these developments,
LNS ADD/SUB operators are still much larger than their standard
FP counterparts, which makes it difficult to motivate their use as
FPU replacement in general purpose processors.

When viewed in a multi-core setting, the area overhead of the
LNS units change. In such a setting, one LNS can be effectively
shared between several cores, as the percentage of ADD/SUB
instructions in even the most intensive computations usually remain
below 30%. This arrangement is more efficient than sharing stan-
dard FP units, as the MUL and DIV instructions in the logarithmic
domain can be performed within the integer cores, allowing M
DIV and MUL operations to be performed in parallel when only
one LNU is shared among M cores.

Another remedy is to relax precision requirements since certain
applications, such as image or audio processing, are error tolerant
to some degree and usually do not require the equivalent accuracy
of single precision FP. Using approximate computing techniques
on the architecture and circuit levels [12–14], significant area and
energy savings have been reported with only modest quality impact.

In this paper, we combine these ideas of LNU sharing and
approximate computing in order to reduce the LNU area, latency
and improve its utilization and overall energy-efficiency. Using
application kernels from several signal processing domains we
show that shared approximate LNUs can outperform standard
single precision FPUs in several applications by an average factor
of 2.14× in terms of speed and 1.92× in terms of energy-efficiency.
Also, a precision relaxation of just a few units in the last place
(ulp) already leads to significant reductions of the LNU area –
with insignificant degradation of the output quality when applied
to several image and audio processing kernels. In particular, this
paper makes the following contributions:

• We develop a methodology to generate accurate and approx-
imate LNUs capable of natively evaluating LNS ADD/SUB,
typecasts (Integer to float – I2F, Float to Integer – F2I), and
logarithms and exponentials with base 2 (LOG2, EXP2),

• We provide a design space exploration of LNUs in the
accuracy range between half- and single precision FP,

• We integrate shared LNUs with different parameters into
a multi-core RISC cluster and show comprehensive results
of benchmark applications from different signal processing
domains.

Sections II and III give a short introduction into LNS and related
work. The architecture and generator framework is described in
Section V. Core integration aspects are covered in Section VI, and
the results are finally presented in Section VII.

II. RELATED WORK

LNS has been proposed as a replacement for standard fixed-point
and floating-point arithmetic [1], [2] dating back to the 1970’s. As
will be described in section III, the main challenge in implementing
a hardware unit to perform operations in the logarithmic domain
is realization of additions and subtractions which turn into non-
linear operations that need to be approximated. Finding efficient
methods to approximate ADD/SUB functions has driven research
in the LNS domain. In early papers, implementation of LNUs with
accuracy higher than 12 bits in hardware was considered infeasible
due to exponentially increasing lookup-table (LUT) sizes needed
for approximations. Since then, several improved implementations
have been proposed. In the low-precision floating point calcula-
tion domain, with bit-widths lower than 16 bits, so-called multi-
partite table [15] and high-order table based methods (HOTBM)
[16] have been shown to be effective approximation methods for
LNS operations [17]. LNS based operations have been used to



replace fixed-point operations in several applications such as QR
decomposition [18], embedded model predictive control processors
[19] and low power digital filtering with LNS [20]. LNS numbers
have also been extended to be used for complex numbers [21] and
quaternions [22].

Coleman, et al. [5] introduced the concept of a cotransformation
to alleviate approximation difficulties related to the subtraction
operation where the difference between the two operands is very
small. As explained later in subsection III-D, such cotransforma-
tions are basically analytical decompositions of the problematic
function to be approximated, and allow to implement the same
functionality with significantly smaller coefficient table sizes. Fol-
lowing the example of Coleman, et al., several different cotrans-
formation variations have been presented in [3], [4], [6–9], [11]. In
a paper by [23], a solution is presented that tries to combine the
advantages of both standard FP and LNS representations. The main
drawback in this hybrid approach is the cost of typecasts, which are
also non-linear operations, between the representations. Generators
for LNS operators on FPGAs have been proposed in [10], [17],
[24], [25]. Very competitive operators can be generated with the
framework presented by Fu, et. al [10] which is based on the
cotransformation developed by [3] and minimax polynomials [26].

Complete LNUs for ASIC processors with accuracy equivalent
to IEEE single-precision FP have been presented in [8], [9],
[11], [27]. Coleman, et al. [8] describe the European Logarithmic
Microprocessor (ELM), the first microprocessor featuring an LNU.
Their design combines a custom interpolation scheme with the
cotransformation developed by [5], and amounts to an area of
0.906 mm2 using a 180 nm technology with an equivalent complex-
ity of ~97 kGE. Ismail, et al. [9] improve the ELM design and pro-
pose an LNU with lookup tables small enough to be implemented
without ROMs which amounts to 0.589 mm2 in 180 nm technology
(~63 kGE). Both LNU designs are able to execute only basic LNS
ADD/SUB instructions and do not have additional functionality
for casts. A compact ASIC design with accuracy equivalent to
single precision FP was reported by [11], [27] and has an area of
0.058 mm2 (40 kGE) in 65 nm while at the same time supporting
more operations (ADD/SUB, I2F, F2I, LOG2 and EXP2).

In this paper, we improve on above listed work on LNUs for
ASIC processors by designing a compact LNU based on the
cotransformation by [3] which is able to execute LNS ADD/SUB,
as well as I2F, F2I, LOG2 and EXP2 instructions. A similar
framework as described by Fu, et. al [10], [24] is established in
order to generate exact (≤ 1ulp accuracy) and approximate (≥1 ulp
accuracy) LNUs for different bit-widths ranging from half to single
precision FP. For an accuracy equivalent to FP single precision, this
design only amounts to 0.039 mm2 (26.8 kGE) in 65 nm – which
is smaller than all other state-of-the-art ASIC designs. Further,
we analyze these LNUs in a shared multi-core setting and using
application kernels from different signal processing domains we
show significant improvements in speedup and energy-efficiency
for exact and approximate designs.

III. PRELIMINARIES

A. LNS Number Representation and Format

Standard FP number systems represent a real number a as

a = (−1)s ·mfrac · 2lexp (1)

where s is the sign, mfrac the mantissa and lexp the exponent. In
LNS, real numbers are represented similarly, but without using a
mantissa. I.e., the number is only represented by an exponent lexp

which now has a fractional part:

a = (−1)s · 2lexp . (2)

The encoding used in this work is parametrized with the number of
integer wint and fraction wfrac bits in the exponent. In this case, the
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Figure 1. Encoding of the LNS numbers used in this work.

exponent is an unbiased two’s complement number and its width
is denoted as wexp = wint + wfrac. The bit-width of the complete
number including the sign bit is denoted as wlns = wexp + 1.
For wint = 8 and wfrac = 23, the encoding is aligned with the
IEEE 754 32-bit single-precision format. Similar to the IEEE 754
standard, special values such as zeros (ZERO), infinities (INF)
and not a number (NAN) are encoded using special bit patterns.
ZEROs are represented by setting the exponent to the smallest 2’s
complement value. INFs are represented by setting the integer part
of the exponent to the maximum value and the rest of the mantissa
to 0. NANs are encoded similarly, but with the highest fraction bit
in the exponent set to 1 as illustrated in Figure 1 for wint = 8 and
wfrac = 23.

B. Arithmetic Operations in LNS

Certain operations can be implemented very efficiently when
working with LNS. For example, multiplications, divisions, and
square-roots can be calculated using a single addition, subtraction
or bitshift, respectively.

a · b = (−1)sa+sb · 2la+lb (3)

a/b = (−1)sa+sb · 2la−lb (4)√
|a| =

(
2la
)0.5

= 20.5·la (5)

This is an important advantage because numbers represented in this
format can be efficiently calculated by slightly modified integer
ALUs and result in much shorter latencies than the equivalent FP
implementations. However, these simplifications come at the cost of
more complex additions and subtractions which become nonlinear
operations in LNS and have to be calculated accordingly:

a± b = c, (6)

lc = max(la, lb) + log2(1± 2−|la−lb|). (7)

Using the absolute difference r = |la − lb|, the two nonlinear
functions for addition and subtraction can be defined as F+(r) =
log2(1+2−r) and F−(r) = − log2(1−2−r). These functions are
shown in Fig. 2.

C. Rounding Modes and Precision

The IEEE 754 standard defines several rounding modes that can
be applied after basic arithmetic operations like multiplications



and additions. The default rounding mode is round to nearest,
and provides average and maximum relative errors of 0.1733 and
0.5 ulp, respectively. However, due to the different spacing of the
machine numbers in LNS, an ulp in FP is not equivalent to an ulp
in LNS. Therefore in [6], Coleman introduced the relations
|ε|avg rel arith

2wfrac
=
(

2|ε|avg log − 1
)

=

(
2

|ε|avg rel log
2wfrac − 1

)
(8)

|ε|max rel arith

2wfrac
=
(

2|ε|max log − 1
)

=

(
2

|ε|max rel log
2wfrac − 1

)
(9)

where |ε|avg log and |ε|max log are the average and maximum absolute
errors in the LNS domain, |ε|avg rel log and |ε|max rel log are the average
and maximum relative errors w.r.t. to one ulp in the LNS domain,
and |ε|avg rel arith and |ε|max rel arith are the corresponding relative errors
in the FP domain. Using these relations, we can calculate that,
e.g. an LNS design with wint = 8 and wfrac = 23 should
have |ε|max rel log < 0.7213 in the LNS domain in order to have
equivalent precision as FP with round to nearest rounding mode
(|ε|max rel arith < 0.5).

However, FP equivalent accuracy of 0.5 ulp for a certain bit-
width usually comes at a high cost and is not always required.
Hence, it is common to use so called faithful designs [10],
[17] which deliver a maximum error ≤1 ulp. Depending on the
definition, an operator is either faithful in the FP or LNS domain
(we use the latter in this work). For the distinction between exact
and approximate designs, we will use the following definitions. A
design for a certain bit-width configuration wint.wfrac is said to be
exact if its maximum relative error |ε|max rel arith ≤ 0.5. A design is
considered to be faithful if |ε|max rel log ≤ 1 in the LNS domain, and
approximate otherwise.

D. Cotransformation

While for low precision implementations with up to around 12
fractional bits F±(r) can be stored in LUTs, this approach is
not practical for designs requiring higher precision since the LUT
storage requirements increase exponentially as the bit-width grows.
To achieve higher precision, piecewise polynomial approximations
have been found to work well [10], [24] – except for operations
where r is small since F−(r) has a singularity at zero. This
region is termed the critical region (CR) and typically ranges
from r ∈ [0, 0.25) to r ∈ [0, 4), depending on the employed
interpolation scheme. In this CR, so called cotransformations [3–
5], [7–9] are usually applied in order to decompose F−(r) into
sub-functions which can be approximated more efficiently.The
cotransformation employed in this work was originally proposed
by [3] and decomposes F−(r) into

F−(r) = − log2(1− 2−r) =− log2

(
1− 2−r

r

)
+ log2(r)

(10)

= cotrans(r) + log2(r). (11)

It has been selected since it has been successfully used to create
compact LNS operators for FPGAs [10], [24]. The first term
cotrans(r) behaves much better around 0 as shown in Figure 2, and
can be readily approximated using standard minimax polynomials.
The log2(r) function still has a singularity at 0, but for finite
precision arithmetic this function can be efficiently implemented
with range reduction techniques of the argument [28]. I.e., the
argument range can be reduced to [1, 2) by employing a leading
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Figure 2. Plot of the F+(r), F−(r) and the cotrans(r) functions - note
the singularity for r → 0.

zero counter and a barrel shifter. The log2 function itself can be
efficiently implemented on this reduced range using a minimax
polynomial. The size of the CR is often set to [0, 4) when using
this decompostion as this provides the best tradeoff in terms of the
overall number of polynomial segments [10], [24].

IV. LNU ARCHITECTURE

In this section, we will present the general architecture template of
our LNU. Details on how specific parameters and LUT coefficients
are obtained will be given in the next Section V. The main
design goal of the LNU architecture shown in Fig. 3 is to reduce
the hardware overhead and latency. For the targeted accuracy
range between half precision (16 bit) and single precision (32 bit),
first and second order minimax polynomial approximations of the
functions F+(r),F−(r), cotrans(r), and log2(r) have been found
to be very efficient and were used throughout this evaluation. The
architecture shown in Fig. 3 consists of 4 main blocks: the Pre-
and Postprocessing Blocks, the Main Interpolator Block and the
Log/Exp Interpolator Block. These blocks are explained in more
detail below.

A. Preprocessing Block

The proposed LNU architecture uses different datapath units
depending on the operation and whether or not the operation
falls in the CR. The Preprocessing Block decodes the command,
calculates the absolute operator difference r = |la − lb| and the
operator maximum for binary operations such as ADD/SUB. At
this point the block is able to determine which datapath units
will be activated and generates all control signals for the LNU
and performs operation dependent preparation steps on the two
operators A = [sa, la] and B = [sb, lb]. For unary operations such
as EXP/LOG and typecasts, operator B is gated to zero and A is
passed through.

B. Main Interpolator Block

The Main Interpolator Block implements F+(r) on the complete
range [0, tclip) and F−(r) outside the CR [4, tclip) using 1st
or 2nd order piecewise polynomial approximations which have
been found to provide the best latency vs. LUT area trade-off
for the precision range between half and single precision. This
block is also used for SUB operations in the CR [0, 4) to evaluate
cotrans(r), the result of which is later added to the log2(r) value
in the Postprocessing Block. For a given input r, the coefficients
pri = pi(r) for i = {0, ..., N} (where N is the polynomial order)
are selected from a set of LUTs, and the polynomial is evaluated
using the Horner scheme as

p(r) = pr0 + δrp ·
(
. . .
(
pr(N−1) + δrp · (prN )

))
(12)
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where δrp are the LSBs of r. Since the LNU processes only one
instruction at a time, the main interpolator datapath can be shared
among F+(r), F−(r) and cotrans(r). As will be explained in
more detail in Section V, each LUT is subdivided into different
segments, each of which contains a set of equidistantly spaced
coefficient samples. The segment boundaries have been aligned
to powers of two, such that the segment index can be easily
determined by looking at the MSBs of the argument r. For large r,
the functions values of F+(r) and F−(r) fall below the required
precision due to their asymptotic behaviour and can be clipped
to 0. This clipping threshold is denoted as tclip, and amounts
to tclip ≈ 24.588 for an exact single-precision design. Further,
F+(r) and F−(r) become increasingly similar with increasing r
such that one function can be replaced by the other without impact
on precision. Therefore, we define a second threshold trepl and
reuse the F+(r) tables for F−(r) when r > trepl. For an exact
single-precision design, this value is trepl ≈ 14.

C. Log/Exp Block

The main objective of the Log/Exp Interpolator Block is to
implement the log2(r) function on the critical range [0, 4) for
cotransformed SUB operations. The function is implemented using
a barrel shifter and leading zero counter to reduce the range of
the input, and a N -th order interpolator with LUTs covering the
argument range [1, 2). Note that it is possible to reuse this function
to also implement native typecasts from integer to LNS (I2F), and
LOG2 operations in the LNS domain. For a given input r, the
polynomial coefficients qri = qi(r) for i = {0, ..., N} are selected
from a set of LUTs, and the approximation result q(r) is again
calculated using the Horner scheme as in Equation (12). In order
to natively support inverse typecasts (F2I) and EXP2 operations in
LNS, we add a table for the exp2(r) function. Since this function
can also be efficiently implemented using range reduction and
polynomial interpolation, we can reuse the existing interpolator to
calculate the function value on the range [0, 1), and only have to

include an additional shifter at the output. This shifter has been
moved to the Postprocessing Block and operates in parallel to
the final adder of the ADD/SUB operations such that the main
ADD/SUB path suffers from no additional delay.

D. Postprocessing Block

The Postprocessing Block combines and/or selects the results of
the two interpolation blocks. For example, SUB operations in the
CR require the output p(r) of the Main Interpolation Block and the
output q(r) of the Log/Exp Interpolation Block to be combined. A
final rounding step to the output precision and special case handling
such as NAN, over- and underflow detection are also performed.

V. LNU GENERATOR

The architecture presented in the previous section serves as a
parameterizable template for our LNU generator. The flow of our
LNU generator is illustrated in Figure 4 and consists of three
steps. In the first step (A), the generator calculates the quantized
polynomial coefficients for all required functions according to
the LNU specification which consists of the LNS format wint,
wfrac, polynomial order N , and error bounds |ε|max, |ε|avg for
the relative errors in the LNS domain. In the second step (B),
all coefficients are scanned and the bit-width parameters for the
shared datapaths are calculated. The parameters and coefficients
are then printed into the architecture template in order to form a
specific LNU instance. In the third and last step (C), this instance
is then exhaustively verified using RTL simulations in Mentor
QuestaSim. The core generator functionality in steps A and B have
been implemented in MATLAB.
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Figure 4. Overview of the LNU generation flow.

A. Polynomial Fitting

For all function approximations, we use N th order piecewise
minimax polynomials. The coefficients are obtained using an ef-
ficient, quantization aware implementation of Remez’s algorithm
[26] available in the Sollya math library [29]. Since the functions
used here are increasingly difficult to approximate as r → 0, we
subdivide their domains into logarithmically spaced segments, and
within each segment a different number of piecewise polynomials
is used. These segment boundaries are always aligned to multiples
of powers of two, and the spacing between piecewise polynomials
∆r
p is always a power of two. A table lookup can then conveniently

be carried out by looking at the amount of leading zeros of r in
order to activate a specific segment. Depending on the spacing
∆r
p of the piecewise polynomials within that segment, the bits

[wexp : wfrac + log2(∆r
p)] of r are used to determine which set of

polynomial coefficients to use, and the remaining LSBs are used as
input into the Horner interpolator δrp = r[wfrac +log2(∆r

p)−1 : 0].



The fitting procedure subdivides the function to be fitted into
logarithmically spaced segment (e.g. [0, 32) is split into [16, 32),
[8, 16), [4, 8), etc.), and on each segment it fits a set of piecewise
polynomials with an initial spacing ∆r

p = 0.25. This choice has
been made to implicitly limit the integer bit-widths in the shared
interpolators. If the error of this piecewise polynomial is too large,
the spacing is iteratively divided by 2 until the error requirements
can be fulfilled. Once all segments have been processed, adjacent
segments with equal spacing are grouped together in order to
facilitate table lookup, and the coefficients are handed over to the
table generation.

B. Error Calculation and Bitwidth Selection

To asses the overall error of a given piecewise polynomial, we
exhaustively assess it at all bit combinations of r within its domain
and compare the result to a double precision reference. The so cal-
culated errors contain both the approximation error stemming from
the polynomial approximation, and the quantization errors from the
coefficient quantization and intermediate truncation/rounding steps.
The impact of coefficient quantization is minimized by using a
quantization aware minimax fitting method. Since a rounding step
always incurs a carry propagation in hardware, we only perform
one rounding step to the output precision wfrac at the end of a
polynomial evaluation. Intermediate results after multiplications
are always truncated to the fraction of the next coefficient it is
being added to, as illustrated in Figure 3. The bit-widths of the
polynomial coefficients are determined using a similar heuristic
as described in [30]. I.e., since typically δrp < ∆r

p < 1, the
weight of LSBs of a polynomial coefficient pri are decreased by at
least a factor of ∆r

p in each multiplication with δrp. Therefore, we
heuristically determine the fraction width wrfracpi of higher order
coefficients as

wrfrac pi = max
(
0, wrfrac p0 + i · log2

(
∆r
p

))
(13)

and the fraction of the 0th order coefficient is set to

wrfrac p0 = wfrac + max (0, nguard − dlog2 (εmax rel log − εrnd)e) (14)

where εmax rel log is the maximum error requirement, and the term
εrnd = 0.5 amounts for the maximum error due to the final rounding
step. The amount of additional guard bits has been set to nguard = 3,
since fewer than 3 bits lead to a significant increase in table size.

Within the CR, where two polynomial results p(r) and q(r) are
added together before the final rounding step, the error requirement
for both polynomials is adjusted to ε̃max rel log = (εmax rel log− εrnd)/2
in order to account for the fact that we have twice as many
error sources now. Error checking of the individual polynomials
is performed without final rounding in this case to make sure that
the polynomials are precise enough before being added. Also, εrnd

is set to 0 in Equation (14), as it has already been accounted for
in ε̃max rel log.

VI. PROCESSOR INTEGRATION

To evaluate the performance of the presented LNUs in a shared
setting, we have designed a multi-core processor system based
on a 32 bit OpenRISC core [31] using the UMC 65 nm LL
technology. As shown in Figure 5, the system consists of four
cores which share a single LNU and contains 32 kBytes of memory,
distributed equally between an eight-bank tightly-coupled data-
memory (L1), and a dense L2 memory. The four to one sharing
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Figure 5. Integration of the shared LNU into an OpenRISC cluster.

ratio is motivated by the fact that in most FP programs, the fraction
of ADD/SUB instructions rarely exceeds 0.25 (see Figure 8b for
some examples). For comparison purposes, an identical system
has been designed featuring 4 cores with a private IEEE 754
single precision compliant FPU that includes hardware support for
additions, subtractions, multiplications and typecasts. For divisions
we use software emulations as described in Section VII-B, since
divisions are expensive in hardware1 Note that this is a common
approach of adding FP support to small embedded processors [33].
The implemented FPU is a shared normalizer design similar to [32]
(but without divider), and when synthesized with 2 pipeline stages
it has a complexity of 11 kGE – which is competitive with state-
of-the-art implementations [33], [34].

All clusters have been designed to run at 500 MHz at 1.2V under
typical case conditions. In order to meet the timing constraints for
both architectures, the FPU has been pipelined once, and the LNU
one, two or three times – depending on the area and latency of the
specific LNU instance.

A. Modifications to the Processor Core

The LNU is shared in a completely transparent way, the program-
mer sees a system with as many LNUs as there are cores. A
dispatcher that is tightly integrated into the datapath of each core
is responsible to offload the LNU instructions, stall the cores if
necessary, and silence the operator ports in case no instruction has
to be offloaded such that unwanted switching activity across the
interconnect is minimized. The integer ALUs of the cores have
been slightly modified to be able to support the LNS sign bit
and the special cases such as INF, ZERO and NAN during LNS
MULT/DIV and comparison instructions. Besides the standard FP
instructions defined in the OpenRISC ISA which have been mapped
to the corresponding LNS instructions, we have added three special
instructions allowing the cores to natively execute SQRT, EXP2
and LOG2 operations. While EXP2 and LOG2 are offloaded to
the LNU, the SQRT instruction has been implemented using the
shifter in the core and can be executed in 1 cycle.

B. Sharing Interconnect

The LNU interconnect contains a fair round-robin arbiter which
handles requests from the processor cores. Whenever more than
one core wants to access the LNU, all cores but one have to stall
their pipeline and wait for an idle cycle of the LNU. Our OpenRISC
architecture contains two write back port to the register file since
several instructions update multiple registers concurrently. While

1As shown in [32], an FPU design with 12 cycle iterative division
consumes ~26 kGE (transistor count divided by four).
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Figure 6. a) Area vs. average error for LNUs synthesized with 4.5 ns timing constraint. b) AT-plots, including 0.8 ns I/O delay for the sharing infrastructure.

the first write port is used by the ALU, the results of which are
ready at the end of the execution-stage, the second write port is used
to write back the values loaded from memory. Instead of adding
a third write port for the LNU, this second write port has been
multiplexed with the LNU interconnect. In a single issue in-order
pipeline, it is mutually impossible that LNU and load operations
are executed at the same time. Hence, this second write port can
be shared without any contention.

During the exploration we have considered LNUs with different
pipeline depths. An implementation with only 2 cycles latency can
directly write back to the register file without causing the pipeline
to stall. For implementations with longer pipeline depths, the core
has to be stalled unless the LNU instruction is followed by another
LNU instruction with same latency. LNU operations with 3 and 4
cycle latency generally result in 1 and 2 stall cycles, respectively.
Hence, it is crucial to minimize the latency of the LNU in order
to obtain good application level performance. In case of a 2 cycle
latency LNU, stalls only occur when multiple cores try to access it
in the same cycle, or when the result of the LNU is needed in the
subsequent cycle which can typically be avoided by the compiler
with instruction reordering.

VII. RESULTS

In this section we first present a design space exploration of a
family of exact, faithful and approximate LNUs generated with
our framework and compare against related work. The resulting
instances have been synthesized using the 8-metal UMC 65 nm
LL CMOS technology with Synopsys Design Compiler version
2015.6 in order to get gate-level area and timing estimates at
typical conditions, 25 °C and 1.2 V supply voltage. For cluster
level evaluations, we have selected a set of representative LNU
versions, pipelined them using the automatic retiming feature of
Synopsys Design compiler, and for each cluster version we have
performed a complete back-end design flow using Cadence EDI
14.24 in the same 8-metal UMC 65 nm LL CMOS technology. We
have modified the back-end of the OpenRISC LLVM compiler to
support the LNS format, and added new instructions to support the
additional functionality provided by our LNU. A set of benchmarks
written in C was compiled and executed on the FP and LNU cluster
architectures, which have been simulated in Mentor QuestaSim
10.3a using back-annotated post-layout gate-level netlists. Finally,
the obtained VCD files were used to analyze the power dissipation
in Cadence EDI 14.24.

A. LNU Design Space Exploration

First we present a comparison of the fully exact 32 bit LNU
generated with our framework to similar published works [8],
[9], [11]. In Table I technology independent gate equivalent (GE)
numbers show that our 2nd order LNU implementation is the
smallest implementation reported in literature (by 33%), while
delivering the lowest maximum error over the relevant range
[0, 24.588). More importantly, at 26.8 kGE complexity we show
that exact LNUs can be designed with similar area overhead than
single precision FPUs that include division support (≥26 kGE with
12 cycle iterative division [32]).

Next we investigate the impact of approximation on the circuit
area. There are three approaches to trade-off circuit area, delay
and precision: changing the bit-width of the design, changing the
interpolation order, or relaxing the precision requirements. In order
to achieve smaller and faster designs, usually the bit-width and
interpolation order are reduced and tables are calculated for exact or
faithful representations. In this paper, for a given bit-width we also
relax the precision requirements up to 16 ulp which allows simpler
tables that reduce the overall circuit size. In Table II we show
the normalized area of 1st and 2nd order LNUs under different
bit-widths and approximation goals. As we can see, relaxing the

Table I
COMPARISON OF EXACT 32 BIT LNU WITH RELATED WORK.

[8] [9] [11], [27] This Work

Functionality ADD, SUB ADD, SUB ADD, SUB, I2F, F2I,
LOG2, EXP2

ADD Precision
|ε|max rel arith 0.4544 0.4623 0.4618 0.3920
|ε|avg rel arith 0.1777 0.1745 0.1748 0.1744

SUB Precision
|ε|max rel arith 0.4952 0.4987 0.4786 0.4504
|ε|avg rel arith 0.1776 0.1738 0.1748 0.1746

Implementation
Technology 180 nm 180 nm 65 nm 65 nm
1 GE [µm2] 9.374† 9.374† 1.44 1.44
Delay (min) [ns] 11.74 7.10 6.00 4.50Delay (max) [ns] 13.50 14.79
LUT size [kBit] 356.4 183.3 113.1 64.2
Area [mm2] 0.906 0.589 0.057 0.039
Area [kGE] 96.6 62.9 40.0 26.8
† assumed NAND2 area for calculating gate equivalents (GE) for [8], [9].



precision of an exact 2nd order LNU from 0.72 ulp to 8 ulp leads
to an area reduction of 40 %. The interesting result from Table II
is that area-wise, similar results can be obtained by either reducing
the bit-width or the precision. However, when considering the
average error, the situation changes. In Figure 6 the average error
for LNU designs are plotted against the circuit area. In this plot
we can see that approximate configurations with larger bit-width
are consistently more accurate (on average) than lower bit-width
configurations. For example, a 2nd order 8.20 with 8 ulp precision
LNU configuration is not only slightly smaller than a 2nd order
8.17 with 0.72 ulp precision, but the average error is lower by
a factor of × 2.74. Another observation that can be made from
Table II is the that for higher precision ranges (17-23 fractional
bits), 2nd order LNUs are much more area efficient since fewer
LUT entries are required. For designs with a wfrac ≤ 14, 1st order
interpolation is preferable.

Reducing the circuit complexity has an additional benefit as it
also reduces the critical path through the LNU. Depending on the
clock frequency of the system where the LNU will be integrated,
this could change the number of required pipeline stages which in
turn can have important consequences on the overall performance
of the system. Figure 6 shows a design space exploration for 50
LNU configurations, mapped to hardware with different timing
constraints. The target clock period (in our case 2 ns for 500 MHz
operation) is overlayed in this graph, and it can be seen that LNUs
with different area/precision trade-offs can be obtained with 2 to 4
pipeline stages. We have selected a representative set of three LNU
variants Approx2 (8.17 bit, 16 ulp, 1st order), Approx1 (8.20 bit,
4 ulp, 2nd order), and Exact (8.23 bit, 0.72 ulp, 2nd order) that
were implemented with different numbers of pipeline stages to be
evaluated in the following section that compares overall system
performance.

B. Performance of LNU in multi-core clusters

After evaluating the performance of a single LNU, we now present
a more detailed performance analysis of a shared LNU in a real
multi-core system running actual computation kernels. For this
comparison we use a system comprised of four 32-bit OpenRISC
processor cores running at 500 MHz in the UMC 65LL technology
used throughout this work. Our reference (FPU) is a system that
includes four IEEE-754 single precision compliant FPU units with
support for ADD/SUB/MULT and casts. This is compared against
three different LNU configurations (Exact, Approx1, and Approx2)
selected from the design space exploration described previously.

Table II
RELATIVE AREA COMPARISON (IN PERCENT) OF EXACT AND

APPROXIMATE LNUS SYNTHESIZED WITH 4.5NS TIMING CONSTRAINT.

Precision Constraint in the LNS Domain (ulp)
Order wint.wfrac 0.72 1 2 4 8 16

1

8.23 618.6 232.7 153.6 116.0 86.6 73.0
8.20 218.6 106.5 72.4 53.8 46.7 39.6
8.17 89.8 48.2 38.0 31.0 26.9 25.4
8.14 36.3 26.8 22.3 19.8 18.3 17.2
5.10 15.5 12.2 11.8 11.0 10.3 9.4

2

8.23 100.0 76.5 68.4 62.9 59.9 57.8
8.20 69.5 56.5 51.2 48.2 46.1 44.4
8.17 49.0 41.3 38.5 37.0 36.4 34.9
8.14 34.9 31.1 29.4 28.3 27.0 24.9
5.10 21.4 18.2 16.9 15.9 14.6 13.3

Table III
COMPARISON OF INSTRUCTION LATENCY AND ENERGY EFFICIENCY IN

THE FPU AND LNU CLUSTER VARIANTS AT 1.2 V.

Format IEEE754 LNS
Name FPU Exact Approx1 Approx2
Bitwidth 8.23 8.23 8.20 8.17
Precision 0.5 ulp 0.72 ulp† 4 ulp† 16 ulp†

Order N - 2 2 1
FPU/LNU [kGE] 4×11 36 27 23
Total Area [kGE] 720 718 708 704

Operations Latency [cycles] / Energy [pJ/Op]
I2F/F2I 2 / n.a. 4 / n.a. 3 / n.a. 2 / n.a.
ADD 2 / 40.7 4 / 106.2 3 / 88.8 2 / 85.3
SUB 2 / 39.7 4 / 109.9 3 / 92.1 2 / 90.4
MUL 2 / 47.6 1 / 30.7 1 / 27.7 1 / 30.6
DIV 62 / 525.0∗ 1 / 31.5 1 / 28.7 1 / 31.6
SQRT 56 / 609.3∗ 1 / 16.0 1 / 14.5 1 / 15.2
EXP 51 / 566.6∗ 4 / 114.9 3 / 56.8 2 / 86.9
LOG 85 / 695.7∗ 4 / 104.9 3 / 54.5 2 / 73.7
∗ software emulation. † in the LNS domain.

Table III lists all four variants and their complexities. As can
be seen, all LNU variants are smaller than the reference FPU
implementation. The larger size of the LNUs is compensated by
sharing them among the processor cores. Note that, even though
these systems only have a single LNU, they can perform up to four
MUL/DIV/SQRT single cycle LNS operations within the integer
ALU of the cores that include the modifications described in VI-A.

The reference FPU at 11 kGE is very compact but does not
include support for more complex operations which have to be
emulated in software. For DIV operations, we perform a range
reduction to [1,2) and generate a linear estimate for the inverse
that is refined using three Newton-Raphson iterations. A similar
technique is used for the SQRT, where the initial estimate is
generated using the fast-inverse square-root approach. EXP/LOG
operations combine range-reduction with a standard high-order
interpolation techniques as described in [28]. Note that this is a
common way to add FP support to small embedded processors
[33]. Table III lists the number of cycles per instruction and the
corresponding energy consumption in pJ/Op. While ADD/SUB
operations (as expected) are costlier in the LNUs than FPU, all
other operations can be performed more efficiently.

We have compiled a set of benchmarks written in C to reflect a
variety of different signal processing applications. The benchmark
set consists of linear algebra operations (AXPY, GEMM, GEMV),
geometry calculations (2D homographies, reprojection error [35],
3D distances), matrix decompositions (QR, CHOL), regression
(radial basis functions), and image (bilateral filter and FIR filters,
gradient magnitude, DCT-II) and audio processing kernels (sine
generation, Butterworth IIR lowpass). The floating point instruction
ratio and the instruction mix of the benchmark applications is
shown in Figure 8b. As can be seen, the ratio of ADD/SUB
operations for most benchmarks is below 25% further reinforcing
our sharing concept.

All performance evaluations were made with four configurations
of the cluster, including 2 configurations (Approx1 and Approx2)
that have small precision relaxations. We have determined the im-
pact of this range of approximations on image and audio processing
kernels using PSNR and THD+N metrics which are shown in
Figure 7. The FPU and Exact LNU configurations deliver identical
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Figure 7. Images and audio streams processed with the cluster variants
Exact, Approx1 and Approx2. Image © copyright 2008, Blender Foundation.

results. We can observe that for all image processing kernels the
PSNR values stay way above the 30 dB, below which artifacts start
to be visible. Also for the audio processing kernels we see that
THD+N values are below -59 dB for all LNUs. For all practical
purposes, both approximate versions show no perceptible quality
degradations. Normalized execution time and energy-efficiency
improvements with respect to the reference FPU implementation
mirror each other and are shown in Figure 8c and d. As can be
seen for most tests at least one LNU configuration outperforms the
reference. In the best case, a speedup of 5.54× can be achieved
for the DIST3D case using Approx2 configuration. Even when the
Exact LNU configuration is used, on average the kernels can be
calculated 1.71× faster and 1.65× more efficiently in terms of
energy. As expected the shared LNU has the most difficulty with
kernels containing many ADD/SUB operations (such as the linear
algebra or FIR/IIR filters). Even so, it can be seen in Figure 8c
and d that the Approx2 LNU configuration can perform at least as
well as the FPU design on all kernels except the Butterworth filter.

We also observe that the pipeline depth of the LNU implemen-
tation has significant impact on the overall system performance.
In our example, the 4-stage in-order OpenRISC cores can be
operated without stalling for LNUs with 2 stages. LNUs with more
stages incur additional stalls, reducing the overall IPC as seen in
Figure 8a.
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Figure 8. Application level performance for the four cluster variants.

VIII. CONCLUSIONS

We presented a framework to generate a family of accurate and
approximate 1st and 2nd order LNUs capable of executing ADD,
SUB, I2F, F2I, EXP2, and LOG2 instructions. The area overhead of
an accurate LNU with equivalent accuracy offered by the IEEE 754
single precision format is reduced by 33% when compared to
previous state-of-the-art implementations. Also, we show that by
relaxing the precision requirements from exact to 16 ulp, significant
area savings of 40 % can be achieved, bringing the complexity
closer to standard FPU implementations. The area overhead of the
LNU can further be reduced in a multi-core setting where one
LNU is shared by multiple processor cores. Unlike standard FPUs,
LNUs are much more amenable to a shared setting, as several LNS
operations such as MUL/DIV/SQRT can be performed within the
integer ALU of the cores. We have extracted real-life performance
values of three different shared LNU versions in a four-core cluster,
and compared it with a standard FPU implementation consisting
of four FPUs and four cores. We show that in a shared setting,
the shared LNU solutions are not only smaller but outperform the
standard FP solution on average by a factor of 1.71× in execution
time. We further show that by using approximate computing
techniques these gains can be further increased, by up to 5.54× in
the best case. Using examples from the image and audio processing
domains, we analyze the incurred quality losses of the approximate
designs in terms of PSNR and THD+N and demonstrate that the



errors are imperceptible in the evaluated precision range. We show
that using LNUs in a shared setting is a very promising approach
for multi-core processors especially in applications where energy-
efficiency is paramount. For these applications we also show that
relaxed-precision approximations can be more efficient than simple
bit-width reductions.
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