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Abstract— The logarithmic number system (LNS) has always been an
interesting alternative for floating point calculations since the implemen-
tation of several arithmetic operations such as divisions, exponentiations
and square-roots, which are required for computationally intensive non-
linear functions, is greatly simplified in the logarithmic space. However,
additions and subtractions become nonlinear operations that have to be
approximated using polynomials for area efficient realizations. A partic-
ular challenge is the accuracy within the so-called critical region which is
encountered for subtractions where the difference between the operands
is close to zero. In the literature, several arithmetic cotransformations
that reduce the overhead of approximating these operations have been
presented. Even so, the main problem with practical LNS realizations is
the area overhead when compared to standard FPUs with comparable
accuracy. In this paper, we propose a highly hardware-efficient novel
cotransformation concept that not only reduces the area requirements
by up to 35% when compared to the state-of-the-art, but also allows
the LNU to calculate single cycle logarithms and exponentiations within
the same datapath. We present comprehensive results for a complete
processing system that includes the LNU and an OpenRISC based core
in 65nm, and 28nm technologies. We compare this implementation with
a system using a standard IEEE compliant FPU and show that the LNS
based system can outperform its FP counterpart by up to 4.35× in speed.
The final, pipelined LNU system when implemented in 65nm occupies
an area of 54.3 kGE, allows 89 MFLOP per second and consumes 15.9-
136.7 pJ per operation at 1.2 V under typical conditions and 25°C.

I. INTRODUCTION

The logarithmic number system (LNS) has been considered sev-
eral times [1–8] as a replacement for conventional single-precision
floating-point (FP) arithmetic since computationally intensive nonlin-
ear function kernels can be evaluated with very low-latency in LNS.
This is not only relevant for high-performance computing, but also
increasingly needed for low-power, low-cost embedded applications
where the demand on intensive signal processing capabilities continue
to grow on a regular basis. However, the drawback of LNS is
that additions and subtractions become nonlinear and have to be
approximated accordingly with a dedicated LNS unit (LNU). These
functions can be efficiently approximated using piecewise polynomial
interpolation, with the exception of subtractions resulting in numbers
close to zero. In this critical region, conventional interpolation fails to
meet accuracy requirements at reasonable lookup-table cost, and more
elaborate approximations using so-called cotransformations have to
be used [2]. To this end, this paper makes the following contributions:
• We present a novel cotransformation which reduces circuit area

by up to 35% based on synthesis and post-layout results for
65 nm and 28 nm technologies.

• The novel LNU also provides additional functionality such as
single cycle logs/antilogs (LOG, EXP) and typecasts between
signed 31 bit integers and the LNS format at no additional cost.

• We integrate this LNU, and for comparison a standard IEEE sin-
gle precision FPU, into an OpenRISC processor and demonstrate
that LNS can have a speedup of up to 4.35× on our benchmark
set which comprises several nonlinear function kernels from
computer vision, classification and regression applications.

The paper is structured as follows: first a short introduction

into LNS and related work is given in sections II and III. The
new cotransformation and the corresponding LNU architecture are
explained in sections IV and V, respectively. Finally the results are
presented in Section VI.

II. PRELIMINARIES

A. LNS Number Representation and Format

Standard FP number systems represent a real number a as

a = (−1)sfp ·mfp · 2lfp , (1)

where sfp is the sign, mfp the mantissa and lfp the exponent. LNS
represents real numbers in a similar way, but without using a
mantissa. In its place the number is represented by an exponent llns,
that has a fractional part:

a = (−1)slns · 2llns . (2)

The encoding used in this work has been chosen to be aligned with
the IEEE 754 32-bit single-precision format [9] where 32 bit numbers
consist of a sign bit and a 31 bit fixed-point exponent with 8 integer
and 23 fractional bits:

slns llns

8 integer bits 23 fractional bits

31 30 23 22 0

1

Fig. 1. Encoding of the LNS numbers used in this work.

As in the IEEE 754 standard, special values such as infinity, NaN
(not a number) and zeros are encoded using special bit patterns.

B. Arithmetic Operations in LNS

Certain operations can be implemented very efficiently when working
with LNS. For example, multiplications, divisions and square-roots

a · b = (−1)sa+sb · 2la+lb , (3)

a/b = (−1)sa+sb · 2la−lb , (4)√
|a| =

(
2la
)0.5

= 20.5·la , (5)

can be calculated using a single addition, subtraction or bitshift,
respectively. This is an important advantage because the equivalent
FP implementations are much more complex and have longer latency.

However, these simplifications come at the cost of more complex
additions and subtractions which become nonlinear operations in LNS
and have to be calculated accordingly:

a± b = c, (6)

lc = max(la, lb) + log2(1± 2|la−lb|). (7)

Using the positive absolute difference r := |la−lb|, the two nonlinear
functions for addition and subtraction can be defined as F+(r) :=
log2(1+2r) and F−(r) := log2(1−2r). These functions are shown
in Fig. 2a.
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Fig. 2. (a) Plot of the F+(r), F−(r) functions - note the singularity for
r → 0. (b) Plot of the cotransformation and its first two derivatives.

III. RELATED WORK

Logarithmic number systems (LNS) have already been proposed
back in 1971 and 1975 in order to increase the dynamic range
of signal values in digital filters [10] and as a replacement for
standard fixed-point and floating-point arithmetic [7]. The formulae
for LNS addition and subtraction have already been derived in these
papers, but the implementation of LNS number systems with accuracy
higher than 12 bit was considered infeasible due to exponentially
increasing lookup-table (LUT) sizes for these functions. Since then,
several improved implementations have been proposed. For LNS with
bit-widths lower than 16 bits, so-called multi-partite table [11] and
high-order table based methods (HOTBM) [12] have been shown
to be effective approximation methods. LNS based operations have
been used to replace fixed-point operations with 16 or fewer bits in
several applications such as QR decomposition [13], embedded model
predictive control processors [14] and low power digital filtering with
LNS [15]. LNS numbers have also been extended to be used for
complex numbers [16] and quaternions [17].

As can be seen in Fig. 2a, for the most part, both functions
can be easily approximated. The challenge is the function F− as
it approaches its singularity at zero. In this so-called critical region
this singularity leads to precision problems when using piecewise
polynomial interpolation or any of the aforementioned multi-partite
table methods. Hence, Coleman, et al. [2] introduced the concept of a
cotransformation. Essentially, LNS subtractions in the critical region
are split into two successive subtractions where the first lies outside,
and the second only in a small subset of the initial critical region.
This scheme allows to significantly reduce the coefficient table size,
and several improved variations thereof have been presented in [1],
[3–5], [8]. At the time of writing, the most advanced design of an
LNU with equivalent accuracy to IEEE single-precision FP is the
one presented by Ismail, et al. [5], which is an improved version of
the unit which was fabricated as part of the European Logarithmic
Microprocessor [4].

In a paper by [18], a solution is presented that tries to combine the
advantages of both standard FP and LNS representations. The main
drawback in these approaches are the required typecasts between the
representations which themselves are costly operations.

We present an LNU architecture that has been optimized for
hardware efficiency by implementing a novel cotransformation suit-
able for applications where higher accuracy (IEEE single precision)
is required. In addition, the resulting datapath can be reused to
implement single cycle logs - and therefore also single cycle typecasts
from signed 31 bit integers to LNS, greatly improving the usability
of the LNU in a traditional processor. The presented LNU is part of
the four-core processing system presented in [19].
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Fig. 3. Architecture of the LNU (cr and uc stand for critical and uncritical).

A. Rounding Modes and Precision

The IEEE 754 standard defines several rounding modes that can
be applied after basic arithmetic operations like multiplications and
additions. The default rounding mode is round to nearest (ties to
even), and provides average and maximum relative errors of 0.1733
and 0.5 ulp (unit in the last place), respectively. However, due to the
different spacing of the machine numbers in the LNS domain, an ulp
in FP is not equivalent to an ulp in LNS. Therefore in [3], Coleman
introduced the relations

|e|avg rel fp = 2nfrac ·
(
2|e|avg lns − 1

)
, (8)

|e|max rel fp = 2nfrac ·
(
2|e|max lns − 1

)
, (9)

where nfrac is the number of LNS / FP fraction bits, |e|avg lns and
|e|max lns are the average and maximum relative errors in the LNS
domain, and |e|avg rel fp and |e|max rel fp are the corresponding relative
errors in the FP domain. Using these relations, we can calculate that
for an equivalent FP precision of 0.5 ulp, the LNS design should have
a maximum error less than 0.7213 ulp in the LNS domain.

B. Approximation Using Piecewise Polynomials

In order to reach IEEE single-precision accuracy, piecewise poly-
nomial approximations of the functions F+,F− (outside the critical
region) have been found to be very efficient and are also used in other
designs such as [4], [5]. In this work for all functions except F−

inside the critical region such piecewise polynomial approximations
have been used. The polynomial coefficients have been obtained by
using Remez’s algorithm [20] since for a given degree the maximum
error is guaranteed to be minimal (hence these polynomials are also
called minimax polynomials). In particular, we use the finite-precision
aware Remez fitting algorithm available in the Sollya library, which
takes coefficient quantization into account [21].



IV. NOVEL COTRANSFORMATION CONCEPT

While it is considered feasible to store the functions F±(r) in LUTs
for low precision implementations up to around 12 bits, this approach
is not practical for designs that require higher precision, such as IEEE
single-precision format, since the LUT size depends exponentially on
the bit width. To achieve higher precision, polynomial approximations
have been found to work well [4], [5] – except for operations in the
critical region (for r ∈ (-1, 0]) where F− has a singularity at zero. In
the critical region so-called cotransformations have been proposed,
which are mathematical transformations of F− attempting to reduce
the size of the critical region as in [2], or to split the evaluation of
F− into sub-functions which can be approximated more efficiently as
in [1], [4], [5], [8]. Our cotransformation belongs to the latter class,
i.e., F− is decomposed into

F−(r) = log2(1− 2r) = log2

(
1− 2r

1 + 2r

)
+ log2(1 + 2r) (10)

= log2(cotrans(r)) + F+(r) (11)

It should be noted that the log2 function still has a singularity at
0, but for finite precision arithmetic this function can be efficiently
implemented using range reduction of the argument [22]. In our
implementation the log2 function is approximated only on a reduced
range [1,2), and its argument is pre-normalized using bit-shifts, al-
lowing large and small numbers to be calculated with equal precision.
The second term is F+ and can be efficiently approximated using a
second order polynomial. As shown in Fig. 2b, cotrans(r) = 1−2r

1+2r

itself is a function which behaves increasingly linear for r → 0 since
all higher order derivatives are very small at this point.

The cotransformation in Eq. 10 belongs to a family of functions

F−(r) = log2

(
1− 2r

(1 + 2r)m

)
+m · log2(1 + 2r), (12)

which are parametrized by m ∈ R. Depending on the interpolation
scheme, this parameter can be used to tailor the cotransformation
scheme accordingly. For the first order polynomial interpolation used
in this paper, this parameter has been set to m = 1.

One interesting advantage of the arrangement in Eq. 10 is the
presence of the log2 block, which can be reused to natively support
typecasts from integers to LNS numbers as well as LNS logarithm
instructions directly in hardware.

V. HARDWARE ARCHITECTURE

The main design goal of the LNU architecture shown in Fig. 3 is to
reduce the hardware overhead, mainly caused by the LUTs needed
for approximations, without sacrificing accuracy and performance.
As noted in Section III, to achieve the desired accuracy efficiently,
different approaches are necessary depending on whether or not the
operation falls into the critical region. The presented architecture
consists of four main blocks that are used for different purposes:
the Pre- and Postprocessing Blocks, the Main Interpolator Block
and the Critical Region Block (cotransformation). Detailed numerical
analysis has shown that the best trade-off between accuracy and area
is achieved when the critical region is taken as (-0.25, 0]. Since only
one instruction is evaluated at a time, interpolator data paths within
the two parallel blocks can be shared among all functions in order to
achieve a more compact design. The following subsections explain
each block in more detail.

A. Preprocessing Block

The preprocessing block decodes the command, generates all control
signals for the LNU and performs operation dependent preparation

TABLE I
LOOKUP-TABLE DETAILS (LOWER BOUNDARY SPECIFIED).

F+(r) on (-25,0] Total: 5 Segments, 355 Entries, 20’347 bits
Seg Boundary ∆ # p2, p1, p0 Bits Size
0 -0.0625 2−4 1 19, 26, 30 75 bit
1 -0.25 2−5 6 17, 25, 30 432 bit
2 -8 2−5 248 14, 22, 27 15’624 bit
3 -16 2−3 64 12, 17, 20 3’136 bit
4 -25 2−2 36 7, 11, 12 1’080 bit

F−(r) on (-14,-0.25] Total: 6 Segments, 688 Entries, 41’312 bits
Seg Boundary ∆ # p2, p1, p0 Bits Size
0 -0.5 2−9 128 13, 22, 29 8’192 bit
1 -1 2−8 128 13, 22, 28 8’064 bit
2 -2 2−7 128 13, 21, 27 7’808 bit
3 -4 2−6 128 13, 21, 26 7’680 bit
4 -8 2−5 128 12, 20, 24 7’168 bit
5 -14 2−3 48 12, 18, 20 2’400 bit

Cotrans(r) on (-0.25,0] Total: 10 Segments, 512 Entries, 24’020 bits
Seg Boundary ∆ # p1, p0 Bits Size
0 -0.000488 2−11 1 21, 1 22 bit
1 -0.000977 2−11 1 26, 28 54 bit
2 -0.001953 2−11 2 25, 28 106 bit
3 -0.003906 2−11 4 24, 28 208 bit
4 -0.007812 2−11 8 23, 28 408 bit
5 -0.015625 2−11 16 22, 28 800 bit
6 -0.031250 2−11 32 21, 28 1’568 bit
7 -0.062500 2−11 64 20, 28 3’072 bit
8 -0.125000 2−11 128 19, 28 6’016 bit
9 -0.250000 2−11 256 18, 28 11’776 bit

2r on [0,1) Total: 1 Segments, 64 Entries, 4’096 bits
Seg Boundary ∆ # p2, p1, p0 Bits Size
0 0 2−6 64 14, 22, 28 4’096 bit

steps on the two 32 bit operators A = [sa, la] and B = [sb, lb].
The Main Interpolator Block is used to calculate ADD, EXP, Float
to Integer conversions (F2I) and SUB operations that fall outside
the critical region. The Critical Region Block is needed for LOG and
SUB operations in (-0.25, 0] as well as Integer to Float (I2F) typecasts
that take advantage of the log2 block. Once the preprocessing block
decodes the command, it calculates the absolute operator difference
r = |la − lb| and the operator maximum in the case of binary oper-
ations such as ADD/SUB. For unary operations such as EXP/LOG
and typecasts, operator B is gated to zero and A is passed through. In
order to reduce the latency of the preprocessing step, the comparison
la > lb and the operator differences la− lb and lb− la are calculated
in parallel, and only the correct result is taken.

B. Main Interpolator Block

This main interpolator block implements the approximations for EXP,
F+ on the complete range (-25, 0] and F− outside the critical region
(-25, -0.25] using 2nd-order piecewise polynomial approximations
which have been found to provide the best latency vs. LUT area trade-
off. For a given input r, three polynomial coefficients pri := pi(r) for
i = {0, 1, 2} are selected from a set of LUTs, and the approximation
result is calculated using the Horner scheme

omain = pr0 + δr · (pr1 + δr · pr2) , (13)

where δr are the least significant bits of r. Since LNU processes
only one instruction at a time, the main Horner evaluation datapath
can be shared among all function approximations. Each LUT has
been subdivided into different segments, each of which contains a
set of equidistantly spaced coefficient samples, as shown in Table I.
The segment boundaries have been aligned to powers of two, such



Fig. 4. AT analysis of different interpolation methods for the log2(.) function
in 65nm CMOS.

that the segment index can be easily determined by looking at the
MSBs of the argument r. The coefficient bitwidths and the amount
of sampling positions have been determined using a similar heuristic
as described in [23]. To achieve the target accuracy, a total of five
internal guard bits were found to be sufficient. Note that in Table I,
F− has only entries down to -14. Below that value, the coefficients
from F+ can be reused due to the similarity of the functions F− and
F+ for large negative r values.

In order to calculate the EXP and F2I functions, the actual 2r

function is only approximated on the reduced range [0,1) for the
fractional part of the incoming operator la. The full range can then
be reached by left-shifting the result of this approximation by the
integer part of the operator la.

C. Critical Region Block

The second order derivative of the novel cotransformation presented
in Section IV tends to zero for r → 0. This function can be
efficiently implemented using a first-order minimax polynomial for
the given precision requirement. The main challenge is implementing
the log2 function required in the cotransformation. We have used an
implementation based on a range reduction technique [22], which
normalizes the function argument to the range [1,2). Such normal-
ization can be achieved by shifting the output of the polynomial
approximation. In the worst case, for very small values of r, the
cotransformation output will have to be shifted by up to 23 places
to the left. To have sufficient precision in this worst case, the
cotransformation would have to be calculated with much higher
precision which in turn would increase the LUT size considerably.
In our implementation, we avoid this problem, by generating the
approximation in normalized format and by storing the pr0 coefficients
in a pre-shifted format. The output of the pr1 multiplication is then
shifted at runtime by a pre-computed amount

ocotrans = (pr0 + pr1 · δr) · 2g
r

= p̃r0 + pr1 · δr · 2g
r

, (14)

where gr ∈ N is the pre-computed shift amount and p̃r0 are the
pre-shifted coefficients. Numerical simulations have shown that the
result ocotrans is almost always dominated by p̃r0 since the coefficients
pr1 are all around 0.33 within the critical region. Only in the first
interval from (-0.000488, 0] the output magnitude is determined by
the product pr1 · δr , since p̃r0 = 0. This means that outside this
first interval, gr can always be chosen such that almost all the
cotransformation results ocotrans lie within the range [1,2). In very
few cases, a carry propagation takes place and the result has to be
shifted back by one bit. For the first interval (-0.000488, 0] the pre-
shift gr has to be computed at runtime (using a leading zero counter)
since the output magnitude solely depends on the term pr1 · δr .

The range-reduced log2 function lies on the critical path of

the proposed LNU and an efficient implementation is key to the
performance. We have considered three alternative methods:
• a basic first order polynomial interpolation.
• multi-partite tables generated by the framework presented in the

Arenaire project [11].
• the HOTBM method generated by the framework presented in

the FloPoCo project [12].
The resulting AT analysis depicted in Fig. 4 clearly shows that for the
desired accuracy (23 fractional bits + 4 guard bits), 1st and 2nd-order
HOTBM methods are more efficient. We have chosen to use a 2nd-
order HOTBM implementation due to its lower area requirements.

Note that the cotransformation block can also be used to implement
F2I typecasts and LOG operations by reusing the log2 block and the
pre-shift leading zero counter and shifter.

D. Postprocessing Block

The postprocessing block is used to combine and/or select the
results of the two main interpolation blocks. For example SUB
operations in the critical region as seen in Eq. 10 requires the
output of the cotransformation block (log2(cotrans(r))) and the main
interpolation block (F+(r)) to be combined. A final rounding step
to the output precision and special case handling such as NaN, over-
and underflow detection is also performed within this block.

VI. RESULTS

In this section we first present an analysis of the precision of the
implemented LNU. Then the area and timing costs are presented for
a combinational implementation of the LNU. Finally the performance
of a single-core processor with an integrated LNU is compared to a
processor using a traditional FPU.

A. Error Analysis

For verification purposes we have performed exhaustive simulations
over the one-dimensional space r ∈ (−24.588, 0] and calculated
error metrics as defined in [3]. This is the relevant domain of the
functions F±(r) since they are clipped to 0 for r < −24.588.
Table II compares the results obtained from our implementation to
those published in [4] and [5]. As expected from the description in
Section III-A, the corresponding relative errors in the FP domain
|e|av rel fp remains below 0.5 for both ADD and SUB operations.
On the top half of Fig. 5 maximal and average absolute relative
errors in the FP domain are plotted over relevant r values for
ADD/SUB operations, while on the bottom half error histograms for
both operations are shown.

B. Hardware Implementation

We have implemented the LNU using a 65 nm technology (8-metal
UMC65LL). For comparison purposes we have also ported the
architecture to a 28 nm technology (8-metal GF28SLP). Figure 6a

TABLE II
COMPARISON OF ERROR ANALYSIS.

Metric [4] [5] This Work
ADD
|e|max rel log 0.6556 - 0.6662
|e|av rel log 0.2563 - 0.2522
|e|max rel arith 0.4544 0.4623 0.4618
|e|av rel arith 0.1777 0.1745 0.1748
SUB
|e|max rel log 0.7144 - 0.6905
|e|av rel log 0.2563 - 0.2521
|e|max rel arith 0.4952 0.4987 0.4786
|e|av rel arith 0.1776 0.1738 0.1748
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Fig. 5. Relative arithmetic errors of the ADD/SUB operations in the LNU

shows the Area vs Timing (AT) plot obtained from both synthesis and
post-layout results using a fully combinational implementation of the
LNU under different timing constraints. A comparison in area and
timing to similar works published in [4] and [5] is given in Table III.
Technology independent gate equivalent (GE) numbers show that our
novel implementation is between 20%-35% more area efficient while
supporting more functionality such as casts, exponentiations and
logarithms. A more detailed analysis showing the area distribution
of the blocks with the LNU for different clock constraints is also
given in Fig. 6b.

C. Performance Comparison in a Processing System

To evaluate the performance of the presented LNU in a real system,
we have designed a single processor system based on a custom 32-bit
OpenRISC core [24] and have integrated the LNU into the datapath of
the processor core using a 65 nm process. For comparison purposes,
an identical system has been designed featuring a standard IEEE 754
single precision compliant FPU architecture with hardware support
for additions, subtractions, multiplications and typecasts.

The overall system consisting of the processor, 32 kBytes of
TABLE III

COMPARISON OF AREA AND DELAY

Metric [4] [5] This Work

Functionality ADD, SUB ADD, SUB ADD, SUB, I2F, F2I,
LOG, EXP

Technology 180 nm 180 nm 65 nm 28 nm
1 GE [µm2] 9.374 9.374 1.440 0.364

Synthesized
Delay min[ns] 11.74 7.10 6.00 5.00
Delay max[ns] 13.50 14.79 6.00 5.00
Area [mm2] 0.906 0.589 0.057 0.016
Area [kGE] 96.6 62.9 40.0 43.5

Routed
Delay min [ns] - 6.97 6.00 5.00
Delay max [ns] - 14.60 6.00 5.00
Area [mm2] - 0.584 0.071 0.017
Area [kGE] - 62.2 49.3 46.6

TABLE IV
COMPARISON OF EXECUTION LATENCY/THROUGHPUT/ENERGY

EFFICIENCY OF THE FPU AND LNU AT 1.2 V.

Operation FPU LNU
Latency Energy Latency Energy

cycles pJ/FLOP cycles pJ/FLOP

I2F/F2I 2 n.a. 4 n.a.
ADD 2 40.7 4 133.2
SUB 2 39.7 4 136.8
MUL 2 47.6 1 29.4
DIV 62∗ 525.0∗ 1 30.15
SQRT 56∗ 609.3∗ 1 15.85
EXP 51∗ 566.6∗ 4 131.671
LOG 85∗ 695.7∗ 4 108.471
∗ Emulation. DIV: range reduction, linear estimate and 3 Newton Raphson
iterations. SQRT: fast inverse SQRT and 3 Newton Raphson iterations.
EXP/LOG: range reduction and high-order polynomial interpolation [22].

memory, the LNU/FPU and basic peripherals has been designed to
operate at 125 MHz at 1.2 V under typical conditions. In order to
meet the timing constraints for both architectures, the FPU has been
pipelined once, and the LNU three times. The latency of all supported
FPU and LNU operations is listed in Table IV. Note that, for the
FPU only ADD, SUB, MUL operations and casts are performed in
hardware, while software emulations are needed for DIV, SQRT, EXP,
and LOG operations. The LNU can perform all operations directly in
hardware which leads to significant gains in energy per operation as
listed in Table IV. As mentioned earlier in Section II-B some complex
operations such as MUL, DIV, and SQRT are greatly simplified
in LNS and can therefore implemented directly within the integer
ALU of the processor core without major modifications, resulting in
significant gains in both latency and energy efficiency.

The pipelined and optimized LNU used in the system occupies
54.3 kGE and is larger than the FPU with a size of only 12 kGE.
However, the FPU does not include hardware support for division
and our estimations indicate that an FPU that also includes hardware
support for divider with a latency of 4 cycles would be around 30 kGE
closing the gap significantly. The size of the LNU must also be seen
in relation with the rest of the system. In our implementation with
a complexity of 331 kGE, the core occupied 42 kGE, peripherals
28 kGE and the 32 kB memory 175 kGE. Thus in our application,
the total area increase due to the LNU was less than 13%. We have
modified the backend of the OpenRISC LLVM compiler to support
the LNS format, and added new instructions to support the additional
functionality provided by our LNU core. A set of benchmarks written
in C was compiled and executed on the FP and LNU cluster architec-
tures, which have been simulated in Mentor QuestaSim 10.3a using
back-annotated postlayout gate-level netlists. Finally, the obtained
VCD files were used to analyze the power dissipation in Cadence
EDI 14.24. As expected, linear algebra kernels AXPY, GEMM,
GEMV that heavily feature ADD/SUB instructions resulted in small
performance degradations (less than 25%) as these operations are
costly in LNS. However for more complex applications, such as
the 3D distance computations, the LNU outperformed the traditional
FPU by a factor of 4.35. The floating point instruction ratio and the
instruction mix of the benchmark applications is shown in Fig. 7a
and the speed up of the LNU vs FPU is shown in Fig. 7b.

VII. CONCLUSIONS

In this paper, we present a novel cotransformation for hardware
efficient LNU implementation with equivalent accuracy offered by the
IEEE 754 single precision format. We show that the area overhead
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of the LNU is reduced by up to 35% when compared to previous
state-of-the-art implementations while supporting more functional-
ity such as casts, logarithms, and exponentiations. Using a 65 nm
technology node the final design occupies 54.3 kGE and is able to
calculate 89 MFLOP/s and achieve an energy efficiency between
15.9-136.7 pJ/FLOP at typical conditions, 1.2 V supply and 25 °C. We
show that when integrated in a single core system the novel LNU can
be up to 4.35× faster when compared to an implementation using a
standard FPU. Traditionally, LNUs were deemed to be too large to be
of practical use. We believe that by reducing the area overhead and
bringing additional functionality makes our new LNU architecture a
very interesting candidate for computationally intensive applications
even for embedded ultra-low-power applications.
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