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Abstract— In this paper, a video rendering ASIC for multiview automul-
tiscopic displays using an image domain warping approach is presented.
The video rendering core is able to synthesize up to nine interleaved
views from full-HD (1080p) stereoscopic 3D input footage. The design
employs elliptical weighted average (EWA) splatting to perform the image
resampling. We use the mathematical properties of the Gaussian filters
of EWA splatting to analytically integrate display anti-aliasing into
the resampling step. The use of realistic assumptions on the image
transformation enable a hardware architecture that operates on a video
stream in scan-line fashion and that does not require an off-chip memory.
The ASIC, fabricated in a 65 nm CMOS technology, runs at 260 MHz
and is able to deliver 28.7 interleaved full-HD (1080p) frames per second
with eight views enabled. It has a core power dissipation of 550 mW and
its complexity is 6.8 MGE, including 4.36 MBit SRAM macros.

I. INTRODUCTION

Multiview autostereoscopic displays (MADs [1]) that provide a
glasses-free 3D experience have recently become popular. Unfortu-
nately, such displays need images from multiple view points, and
automatic multiview (MV) content creation methods have therefore
been researched extensively. MV synthesis is an important technique
that addresses the problems of content creation and transmission for
such displays. The idea is to generate all required views from a lower
number - typically two for stereo 3D (S3D) - at the display. Common
MV synthesis methods are based on depth image based rendering
(DIBR) such as in [2]–[5], where a dense depth map of the scene is
used to reproject the image to new viewpoints. Although physically
correct, this approach requires accurate depth maps and additional
inpainting steps. An alternative S3D to MV conversion concept is
suggested by [6], and is based on image domain warping (IDW) [7].
This technique is promising as it does not rely on pixel dense depth,
but only on sparse image features. Further, no inpainting is needed
which is still an algorithmic/computational limitation of DIBR.

The input to the IDW processing pipeline is the S3D footage (left
and right images) which is analyzed in order to reveal sparse image
features (such as point correspondences, vertical lines and saliency
information) in a first step. Those features are then used to calculate
two warps - one for each input image. These warps describe the
(nonlinear) transformation of the input images to a viewing position
centered between the two original views. The new views are then
generated by first inter- and extrapolating the two warps to the
desired view positions; and secondly by resampling the S3D input
according to those interpolated warps. Finally, the generated views
are interleaved in such a way that they can be displayed on the MAD.

The ASIC presented here implements the warp interpolation, image
resampling and interleaving steps (Figure 1) of this IDW approach.
The circuit can either be used as part of a larger system with online
image analysis and warp generation, or in a stand-alone configuration
where the preprocessing is performed on the encoder side and the
warps are transmitted together with the content (S3D+warp) [8]. This
is similar to DIBR configurations where a depth map is transmitted
together with the content (S3D+depth).
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Fig. 1. IDW multiview rendering concept with 8 views: First, the warps
for the desired view positions are calculated via linear interpolation of the
input warps. The input images are resampled according to those warps in a
second step. Finally, they are interleaved such that they can be displayed on an
MAD. The interleaving pattern of one view is shown at the bottom, where the
color indicates the associated subpixel. Note that in lenticular-based MADs
individual subpixels are mapped to different views.

Summary of Contributions: We provide a design and an imple-
mentation of a hardware architecture for real-time MV rendering. The
architecture is based on our previous image warping implementations
[9], [10], which use elliptical weighted average (EWA) splatting to
resample the images. In contrast to [9], [10], the whole rendering
pipeline has been redesigned to meet the requirements of MV
rendering. In particular, display anti-aliasing and pattern based filter-
evaluation capabilities have been added, the throughput has been
increased, and the framebuffer caching architecture was adapted
to the sparse nature of typical sampling patterns. Furthermore,
additional circuitry for warp pre-processing has been included. The
resulting ASIC was fabricated in 65 nm CMOS technology (UMC)
and achieves a throughput of 28.7 fps (1080p, with 8 views) with a
core power dissipation of 550 mW.

II. MV SYNTHESIS USING IMAGE DOMAIN WARPING

The employed MV rendering concept of [6] is shown in Figure 1,
and can be roughly divided into three steps. The two input warps map
the two input images to a new view position on the baseline which
is in between the two original views. In a first step, those two warps
are then used to linearly inter- and extrapolate as many new warps as
required (in this case an example with 8 views is shown). The warps
are then applied to the corresponding input image in a second step,
and finally the resulting views are interleaved in one output image
in a third step. The algorithms employed in the those three steps are
summarised in the following subsections.
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Fig. 2. The MADMAX ASIC consists of three main stages. The Warp Interpolation stage preprocesses the incoming warp data, groups the calculated
coordinates with the input image data and dispatches those packets or splat jobs to the Rendering stage. The splats are assigned to the correct render unit (each
unit is responsible for one view), where the kernels are set up and rasterized on a programmable sampling pattern. The Accumulation receives the subpixel
values and accumulates them in a frame buffer. Note that all I/Os of the chip work in a clock domain which is 4× slower than the core clock.

A. Warp Interpolation

An image warp can be described using a non-linear, two dimen-
sional mapping m(u) : u ∈ R2 → m(u) ∈ R2. u is the two-
dimensional coordinate in the input image, and a linearized index k
is used to indicate when this coordinate is a discrete sampling point
uk (i.e. a pixel position). Let mα0(.) denote the input warp which
maps the corresponding input image to the relative position α0 on
the normalized baseline. The warp is linearly inter- and extrapolated
using

mαn(u)k =

(
1− αn

α0

)
· uk +

αn
α0
·mα0(uk), (1)

where αn is the desired position on the baseline of view n. For
most applications, the image warps have a lower resolution than the
images. In this project, warps with a resolution of 180 × 100 are
used. Therefore, the input warps are first up-sampled using bilinear
interpolation prior to the actual view interpolation.

B. Image Resampling and Anti-Aliasing

The images are resampled using EWA splatting, which is a
forward-mapping method. This has the advantage that no warp
inversion is required as the warps are generated in forward format in
this application [6]. The EWA framework uses Gaussian filter kernels
and the Jacobian of the image warp as a local deformation measure
in order to calculate the footprint of an input image pixel in the
output image. The input pixels thus correspond to Gaussian splats in
the output image, which are rasterized within a bounding box and
accumulated in a frame buffer. Since Gaussians are closed among
themselves and under affine transformations, an anti-aliasing filter
for the output image sampling grid can be easily incorporated ana-
lytically. A short summary is given below (for a complete derivation
we refer to [9], [10]).

The EWA Filter Kernel: Let wk be the input pixel value at
position uk ∈ N2, where k is a linear pixel index. Without loss of
generality we assume wk to be scalar here. As before, m(u) denotes
the image warp. Let Jk be the Jacobian of the warp at pixel position
uk. The EWA kernel is characterized by the covariance matrix

Σk = JkViJ
T
k + Vaa = Ck + Vaa (2)

in the target image domain, where the first term is the transformed
interpolation kernel, and the second term is the anti-aliasing kernel.
Vi = diag(σ2

i , σ
2
i ) and Vaa = diag(σ2

aa, σ
2
aa) are diagonal covari-

ance matrices that parameterize the interpolation and anti-aliasing
filters. The weight of the Gaussian filter at the discrete position

xj ∈ N2 in the output image is calculated as

ρjk =
|Jk|

2π
√
|Σk|

e(−0.5(xj−m(uk))Σ−1
k (xj−m(uk))), (3)

and is multiplied with the pixel value wk.
Post-Normalization: The individual transformation of the input

pixels can lead to normalization problems in the output image, and
thus a so called post-normalization is performed. To do so, the filter
weights ρjk are accumulated along with the pixel values ρjk · wk.
At the end of the rendering process the output image pixels pj are
calculated by dividing the accumulated values by the corresponding
weight pj = (

∑
∀k
ρjk · wk)/(

∑
∀k
ρjk).

Parametrization: In [9] it is shown that for a regular, quadratic
sampling grid the filter parametrization σi ≈ 0.39 leads to the optimal
L2 fit of a Gaussian to the ideal low-pass filter in the frequency
domain. In the same paper it is also shown how σ2

aa can be chosen
in an adaptive way in order only perform anti-aliasing when needed.
For the application at hand, the covariance matrices are diagonally
dominant, and therefore we can use the simplified adaptive scheme
which boils down to the following threshold rule:

Σk =

[
max(C00

k , V
00
aa ) C01

k

C10
k max(C11

k , V
11
aa )

]
, (4)

where the superscripts are the element indices and σi = σaa = 0.39.
Display Anti-Aliasing: The resampled views are interleaved into

one output image according to a special interleaving pattern (like in
Figure 1), such that they can be displayed simultaneously on a MAD.
Proper care must be taken in order to prevent aliasing, as shown
in [11]. The filters are generally non-separable, and a high order
is required to approximate the intricate shape of the passband. But
[11] also noted that for natural images, the benefit of such filters
is rather small. As a result, simpler separable filters that lead to
visually pleasing results could be used as well. In this work we
use the closedness of Gaussians in order to incorporate a Gaussian
display pre-filter analytically into the EWA filter kernel. Instead of
using adaptive EWA splatting with σaa = 0.39 we adapt this value
with the density d = 1/|Λ| of the display sampling lattice Λ

σ2
disp = σ2

aa/d = σ2
aa · |Λ|, (5)

where σ2
disp is now used in place1 of σ2

aa. The display we used for
experiments has a density of 1/8, which results in σ2

disp ≈ 1.22.

1Note that anisotropic anti-aliasing is also possible by defining two different
variances on the diagonal Vaa = diag(σ2

disp1, σ
2
disp2). This can be useful in

applications where EWA splatting is used to directly render other interleaved
images such as column or row interleaved stereo images.
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Fig. 3. a) The warp interpolation stage first rescales the 180 × 100 warps
using bilinear interpolation. Second, the warps are interpolated to the desired
views and third, the Jacobian and the target coordinates are calculated. b)
Rasterization process: the rasterizers of a render unit only evaluate the filter
kernels at the effectively required positions.

III. ARCHITECTURE

Figure 2 shows the top level VLSI architecture of our ASIC. It
consists of three main stages. The two input images and warps are
streamed in through the input interface in an interleaved manner.
The coordinates for the synthetic views are generated by the warp
interpolation stage on the fly, and are paired with the correct view
numbers and input pixels. Those packets are then passed on to the
rendering stage where they are dispatched to the correct render
unit. There are nine render units and each is allocated a specific
view number ∈ [0, ..., 8]). The rendered subpixels are sent to the
accumulation stage, where a two-level caching scheme is employed
to combine them and form the complete output image.

A. Input and Output Interfaces

For the following throughput calculations we use a core clock
frequency of 300 MHz. The I/Os of the chip operate at a 4× slower
clock frequency (75 MHz) than the core. The chip has three 24 bit
RGB ports – two at the input and one at the output. Each port provides
a bandwidth of 1.8 Gbit/s, which is enough to transfer 1080p video
at 30 fps (1.49 Gbit/s). The warp data rate is relatively modest and
amounts to only 2 × 180 × 100 × 21 bit × 30 fps ≈ 22.7 Mbit/s. A
configuration mode allows to set and read out the internal monitoring
and control registers.

B. Warp Interpolation

The warp interpolation works on warps in quadmesh format, as
this allows for a simple calculation of the Jacobian. As shown in
Figure 3a), the two input warps are first upsampled using bilinear
interpolation before being interpolated to the desired views. After
the view interpolation, the quadmesh format is converted into a target
coordinate and a Jacobian using finite differences. The term halfquad
in the figure indicates that only half of a quad (i.e. two vertices) are
computed at once (this is possible due to the scan-line operation). The
output of this unit are packets (so called splat jobs) containing the
view number, the Jacobian, the target coordinate and the associated
input image pixel. All sub-units of the warp interpolation stage are
matched in throughput if N = 4 dense warps have to be generated
from each of the two input warps. In this case, this stage can deliver
two splat jobs in each cycle.

C. Rendering

Each render unit in Figure 4 contains a kernel setup stage, which
iteratively prepares the Gaussian filter kernels such that they can
be efficiently evaluated in the rasterizer units. Only the required
subpixels of the target image are evaluated, and the rasterizers are
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Fig. 4. One render unit consists of a kernel setup unit which prepares the
filter kernels for efficient evaluation in one of the three rasterizer units. The
throughput of the setup unit and the rasterizers is matched when the average
number of rasterized subpixels per splat is M ≈ 12 (Figure 5a).

designed such that they can pre-calculate the indices of the next
valid subpixels in the sparse interleaving pattern, see Figure 3b).
Each render unit is able to process one splat job in four cycles,
which translates into a throughput of 75 Msplat/s per second. This
is sufficient to resample 1080p images at 30 fps as this amounts to
62.21 Msplat/s. As can be seen in Figure 5a), the average amount
of subpixels that have to be rasterized per splat is around 12 when
eight views are enabled. Since the rasterizers have a throughput of
one subpixel per cycle, three rasterizers are allocated per render unit.

D. Accumulation

Although only the required subpixels are evaluated in the render
units, the number of subpixels that need to be accumulated is still
very large: 8 × 1920 × 1080 × 30 × 4 ≈ 1.99 Gsubpixel/s per
color channel with eight enabled views. As a result, for each clock
cycle, 6.63 subpixel values have to be accumulated per color channel.
Fortunately, the large overlap among subsequent splats of the same
view can be leveraged to reduce this number by placing small
fully-associative subpixel-caches right after the rasterizers (so called
Level-1 caches in Figure 2). These L1 caches reduce the required
accumulations by roughly a factor of 5.6 as shown in Figure 5b).
The L2 cache is the actual framebuffer and is implemented as a
sliding window which automatically adjusts its position depending
on the incoming subpixel addresses. Assumptions on the geometric
arrangement (i.e. almost rectified input images) of the views allow
to store only a small excerpt (25 rows) of the whole output image
on-chip, and therefore no external memory is required. Column
interleaving with two memory banks per color channel is employed
in order to provide sufficient bandwidth of 2 subpixels per cycle and
color channel.
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Fig. 5. a) On average, twelve subpixels have to be rasterized per splat. b)
simulation that shows the L1 cache efficiency. In our implementation we use
6 associative subpixels per L1 cache instance.



TABLE I
KEY FIGURES OF THE MADMAX CHIP.

Physical Characteristics
Technology / Package UMC 65 nm, 8 M / CQFP 120
Core / Pad Voltage 1.2 V / 2.5 V
Core Area 14.2 mm2

Circuit Complexity (incl. SRAM) 6.8 MGE (9.76 mm2)
Logic (std. cells) 2.3 MGE (3.3 mm2)
Warp- / L2 Buffer (SRAM) 0.76 MBit / 3.6 MBit
Functional Characteristics
S3D Input- / Display Resolution 1920× 1080 pixel
Max. #views / Max. y-Disparity 9 / 11.25 pixel
Max. Scrambling Pattern Size 10×10×3 subpixel
Performance (Core @1.2V, 8 Views)
Max. Clock Frequency 260 MHz (Core), 65 MHz (I/O)
Max. Throughput 28.7 fps (8 views interleaved)
Power Dissipation 550 mW (Core), 350 mW (I/O)

TABLE II
COMPARISON WITH DIBR ARCHITECTURES.

this work [3] [5]
Technology UMC 65 nm UMC 90 nm TSMC 40 nm
Clock Frequency 260 MHz 200 MHz 240 MHz
Tot. Complexity 6.8 MGE 765.2 kGE N/A
Logic 2.3 MGE 268.5 kGE 1.416 MGE
SRAM 3.6 MBit 554.4 kBit 159.2 kBit
Ext. Memory no yes yes
Performance 28.7 fps 32.4 fps 216 fps
Resolution 1920× 1080 1920× 1080 4096× 2160

Format 8 views interleaved single frame single frame
Video Decoder - - H.264/AVC

IV. IMPLEMENTATION AND RESULTS

The implemented chip (Figure 6) is named MADMAX and was
fabricated in a 65 nm CMOS technology. The key figures of the
ASIC are shown in Table I. The term MGE stands for mega gate
equivalents, and one pixel consists of three subpixels (RGB). The
power dissipation has been measured on a Advantest SoC V93000
tester by looping the testvectors for the calculation of the first 300
rows of a frame with 8 enabled views (averaging over 10’000 DC
measurement samples).

By switching into a configuration mode, many parameters such
as the view positions, the scrambling pattern and the filter constants
can be re-configured at runtime. The chip can also be used for other
applications e.g. depth remapping [12] of stereo video with direct
rendering into a column interleaved output image (with anisotropic
anti-aliasing). For convenience during prototype testing, our design
features a warp buffer able to store two whole warps (760 Kbit). The
core of the chip runs at a four times faster clock than the I/Os). Both
clocks have a fixed phase relationship and are generated on-chip from
the same source clocks.

V. CONCLUSIONS

To our knowledge, this is the first implementation of IDW based
MV rendering. The key innovations of our design are the analytically
integrated display pre-filter, the fast, programmable rasterizers which
are able to evaluate the splats at sparse sampling points, and the fully
associative L1 caches which effectively exploit the spatial overlap of
subsequent splats that are evaluated on a sparse grid only.

(a) (b)

Fig. 6. CAD rendering (a) and photo (b) of the ASIC. The artwork is by
Dan Poll (used with permission) and was placed between the power stripes.

The same architecture could easily support quad-full-HD (3840×
2160) output resolution at 28.7 fps by increasing the I/O bandwidth
of the L2 cache and only practical I/O limitations (no flip-chip) have
prevented us from doing so. We believe that with further algorithmic
(e.g. as proposed in [13]) and architectural optimizations, IDW based
MV rendering systems can achieve comparable hardware complexity
to mature DIBR implementations, such as [3]–[5] (a comparison is
given in Table II).
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