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Energy efficient computing and ultra-low power operation are strong 
requirements for a vast number of application areas such as IoT and 
wearables. While for some applications integer and fixed-point processor 
instructions suffice, others (eg. SLAM, Stereo Vision, nonlinear regression and 
classification) require a larger dynamic range, typically obtained using 
single/double precision floating point (FP) instructions. Logarithmic Number 
Systems (LNS) have been proposed [1,2] as an energy-efficient alternative to 
conventional FP, as several complex operations such as MUL, DIV, and EXP 
translate into simpler arithmetic operations in the logarithmic space and can be 
very efficiently calculated using integer arithmetic units. However, ADD and 
SUB become nonlinear and have to be approximated by look-up tables (LUTs) 
and interpolation, which is typically implemented in a dedicated LNS unit (LNU) 
[1,2]. The area of LNUs grows exponentially with the desired precision, and an 
LNU with accuracy comparable to IEEE single precision format is larger than a 
traditional floating-point unit (FPU). However, we show that in multi-core 
systems optimized for ultra-low-power operation such as the PULP system [3], 
one LNU can be efficiently shared in a cluster as indicated in Fig. 1. This 
arrangement not only reduces the per-core area overhead, but more 
importantly allows several costly operations such as FP MUL/DIV to be 
processed without contention within the integer cores without additional 
overhead. We show that for typical nonlinear processing tasks, our LNU design 
can be up to 4.2x more energy efficient than a private-FP design.  
      For an accurate comparison, we have manufactured and measured two 
separate chips with a quad-core cluster system using the UMC65nm LL 
technology. Each chip contains an identical cluster with four 32b OpenRISC 
cores, a 16kB shared tightly coupled data memory (TCDM) and 1kB instruction 
caches. In the 1st chip, one LNU using an 8 bit integer, 23 bit fractional and a 
sign bit LNS format is shared by four cores, and in the 2nd chip all four cores 
have their own private FPU. A third shared FPU design has also been 
evaluated, but not included in this comparison as it was much slower (up to 
46%) due to contentions (up to 96%). LNU and FPUs have been tightly 
integrated into the integer ALUs of the processors, as illustrated in Fig. 1 and 
can be accessed using standard OpenRISC FP instructions. The FPU used for 
comparisons in this work is IEEE single-precision compliant and supports FP 
ADD/SUB/MULT and casts and is based on a multiply-add architecture with a 
shared normalizer. The measured FPU energy efficiency @0.8V of 15.3-18.4 
pJ/op is compatible with other state-of-the art designs [5,6]. 
      The main challenge of the LNU circuit shown in Fig. 2 is to efficiently 
implement the two nonlinear functions (f+ and f- as shown in Fig. 3) that are 
needed to calculate ADD/SUB in LNS. These two functions are approximated 
using a combination of LUTs and interpolators. To achieve IEEE single 
precision accuracy with reasonable area overhead, two separate blocks are 
used. The main 2nd order polynomial interpolator handles the regions where f+ 
and f- are almost linear and the corresponding LUTs have been partitioned into 
logarithmically spaced segments, using only 1k and 2.1k entries for f+ and f- 
respectively. Each set of coefficients has been optimized using a finite-
precision-aware minimax fitting algorithm to minimize the bit widths (from 3 to 
32 bits) and the amount of required coefficient samples at the given precision 
requirement. For results that fall in the critical region (Fig.3), a novel co-
transformation block has been designed, which employs a mathematical 
transformation to circumvent precision problems [1,2]. First it evaluates (1-
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The result is then fed to a log2 block, which has been implemented with the 
HOTBM method from [4]. In order to minimize LUT size, the log2 domain has 
been reduced to [1,2), and the output of (1-2
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) is calculated in shifted 

format by storing the 0th order coefficients in pre-shifted format. The 
coefficients are then properly aligned and processed. This arrangement allows 
the employed zero counter, shifter and log2 block to be used to calculate 
typecasts and native log2 functions as well. The pre-processing block of the 
LNU decodes the command, chooses the appropriate interpolator block and 

gates the input operators. Evaluations showed that silencing is critical for low-
energy operation and reduces energy consumption for LNU additions from 
107.7 pJ/op to only 28.7 pJ/op in our design. Finally, the post-processing block 
combines all intermediate results and performs special case handling such as 
over-/underflows. Our LNU implements more functions (casts, exp, log), uses 
far smaller LUTs (14.1 kB instead of 22.9 kB) and reduces the area overhead 
by 35% when compared to the most advanced design in literature [2].  
      Both units are tightly integrated in the processor's data path as shown in 
Fig. 1 and share a write back port of the register file with the load-store unit. 
The FPU requires only one pipeline stage, while the LNU requires three stages. 
The shared LNU is managed by a fair round-robin arbiter. The shared LNU is 
only needed to process LNS ADD, SUB, LOG, EXP and casts. Many LNS 
operations such as MUL, DIV, SQRT and comparisons can be directly 
computed in the integer ALU of the cores in a single cycle, which is energy 
efficient, reduces LNU contentions, and makes it more attractive for sharing in a 
multi-core setting. The efficiency of several LNS and FP-instructions is 
compared in Fig. 4.  While LNS ADD/SUB are less energy efficient than the FP 
equivalents, the LNS MUL requires 36% less energy than in FP. Apart from 
these basic instructions, LNS supports extremely energy efficient, single cycle 
square-roots (6.4 pJ/op) and divisions (12.1 pJ/op) utilizing the shifter and 
adder of the ALU with dedicated special case handling. Also, complex functions 
such as 2

x
 and log

2
(x) can be computed in the LNU in four cycles for 13.3 and 

22.6 pJ/op, respectively. 
      Both architectures have been benchmarked using a suite consisting of 
linear algebra kernels, matrix decompositions and more complex, nonlinear 
functions involving projective transforms, radial basis functions, trigonometric 
functions and distance computations. The benchmark set has been generated 
using MATLAB and its C++ embedded coder to ensure that competitive kernel 
implementations are used. The LLVM compiler has been adapted to support 
the LNS format for OpenRISC, letting the compiler handle automatically low-
level details, such as LNU latency. The upper part of Fig. 5 shows kernel 
characteristics such as FP instruction ratios, codesize and IPC where the lower 
part shows kernel execution time with its power consumption and energy 
savings. For complex kernels, such as 3D-distance computations and Cholesky 
decompositions the LNU can make use of its extended ISA (DIV, SQRT) 
allowing to run those applications up to 4.2x more efficiently as illustrated in Fig. 
6. A big difference is seen where EXP and LOG functions are frequently used 
because they can be performed natively on the LNU, while the FPU has to use 
software emulations consuming 51(exp) to 85(log) cycles.  
      For pure linear algebra kernels AXPY, GEMM, and GEMV, the cluster with 
private FPUs is 5-13% more energy efficient than shared LNU due to LNU’s 
longer latency for FP add/sub. This relatively small gap even for ADD-SUB 
intensive benchmarks is easily amortized for complex algorithms with many 
multiplications, divisions and nonlinear functions. The utilization of the shared 
LNU on our benchmarks was 0.37 on average with a maximum of 0.61 where 
the high utilization led to 10% stalls due to access contentions. On average, 
such contentions only occurred in 4% of all FP operations. The manufactured 
chips with private FPU and shared LNU integrated in a multi-core cluster are 
shown in Fig. 7. The two chips are comparable in size, but the shared LNU, 
with a top energy efficiency of 6.4 pJ/FLOP @0.8V, allows to compute complex 
nonlinear kernels up to 4.2x more energy efficiently than the FPU cluster. 
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Figure 4.6.1: Four-core cluster architecture with one shared LNU 
directly integrated in the pipeline of the processors. 

 
Figure 4.6.2: LNU architecture with main interpolator and 
cotransformation 

 
Figure 4.6.3: LNS f+ / f- functions with singularity in the critical region 
where the cotransformation applies. Comparison with related work. 

 
Figure 4.6.4: Energy efficiency comparison of different FP- and LNU-
instructions. 

 
Figure 4.6.5: Energy, speedup, and power comparison of shared LNU 
vs. private FPU. 

 
Figure 4.6.6: Energy efficiency in kernel iterations per J at different 
VDD levels. 



 
Figure 4.6.7: Chip photos and datasheet. 


