
4.6 A 65nm CMOS 6.4-to-29.2pJ/FLOP@0.8V Shared
Logarithmic Floating Point Unit for Acceleration of
Nonlinear Function Kernels in a Tightly Coupled
Processor Cluster

Michael Gautschi1, Michael Schaffner1, Frank K. Gürkaynak1, Luca
Benini1,2

1ETH Zurich, Zurich, Switzerland, 2University of Bologna, Bologna, Italy

Energy efficient computing and ultra-low power operation are strong
requirements for a vast number of application areas such as IoT and
wearables. While for some applications integer and fixed-point processor
instructions suffice, others (eg. SLAM, Stereo Vision, nonlinear regression and
classification) require a larger dynamic range, typically obtained using
single/double precision floating point (FP) instructions. Logarithmic Number
Systems (LNS) have been proposed [1,2] as an energy-efficient alternative to
conventional FP, as several complex operations such as MUL, DIV, and EXP
translate into simpler arithmetic operations in the logarithmic space and can be
very efficiently calculated using integer arithmetic units. However, ADD and
SUB become nonlinear and have to be approximated by look-up tables (LUTs)
and interpolation, which is typically implemented in a dedicated LNS unit (LNU)
[1,2]. The area of LNUs grows exponentially with the desired precision, and an
LNU with accuracy comparable to IEEE single precision format is larger than a
traditional floating-point unit (FPU). However, we show that in multi-core
systems optimized for ultra-low-power operation such as the PULP system [3],
one LNU can be efficiently shared in a cluster as indicated in Fig. 1. This
arrangement not only reduces the per-core area overhead, but more
importantly allows several costly operations such as FP MUL/DIV to be
processed without contention within the integer cores without additional
overhead. We show that for typical nonlinear processing tasks, our LNU design
can be up to 4.2x more energy efficient than a private-FP design.
 For an accurate comparison, we have manufactured and measured two
separate chips with a quad-core cluster system using the UMC65nm LL
technology. Each chip contains an identical cluster with four 32b OpenRISC
cores, a 16kB shared tightly coupled data memory (TCDM) and 1kB instruction
caches. In the 1st chip, one LNU using an 8 bit integer, 23 bit fractional and a
sign bit LNS format is shared by four cores, and in the 2nd chip all four cores
have their own private FPU. A third shared FPU design has also been
evaluated, but not included in this comparison as it was much slower (up to
46%) due to contentions (up to 96%). LNU and FPUs have been tightly
integrated into the integer ALUs of the processors, as illustrated in Fig. 1 and
can be accessed using standard OpenRISC FP instructions. The FPU used for
comparisons in this work is IEEE single-precision compliant and supports FP
ADD/SUB/MULT and casts and is based on a multiply-add architecture with a
shared normalizer. The measured FPU energy efficiency @0.8V of 15.3-18.4
pJ/op is compatible with other state-of-the art designs [5,6].
 The main challenge of the LNU circuit shown in Fig. 2 is to efficiently
implement the two nonlinear functions (f+ and f- as shown in Fig. 3) that are
needed to calculate ADD/SUB in LNS. These two functions are approximated
using a combination of LUTs and interpolators. To achieve IEEE single
precision accuracy with reasonable area overhead, two separate blocks are
used. The main 2nd order polynomial interpolator handles the regions where f+
and f- are almost linear and the corresponding LUTs have been partitioned into
logarithmically spaced segments, using only 1k and 2.1k entries for f+ and f-
respectively. Each set of coefficients has been optimized using a finite-
precision-aware minimax fitting algorithm to minimize the bit widths (from 3 to
32 bits) and the amount of required coefficient samples at the given precision
requirement. For results that fall in the critical region (Fig.3), a novel co-
transformation block has been designed, which employs a mathematical
transformation to circumvent precision problems [1,2]. First it evaluates (1-
2

z
)/(1+2

z
) which can be efficiently approximated using a first order polynomial.

The result is then fed to a log2 block, which has been implemented with the
HOTBM method from [4]. In order to minimize LUT size, the log2 domain has
been reduced to [1,2), and the output of (1-2

z
)/(1+2

z
) is calculated in shifted

format by storing the 0th order coefficients in pre-shifted format. The
coefficients are then properly aligned and processed. This arrangement allows
the employed zero counter, shifter and log2 block to be used to calculate
typecasts and native log2 functions as well. The pre-processing block of the
LNU decodes the command, chooses the appropriate interpolator block and

gates the input operators. Evaluations showed that silencing is critical for low-
energy operation and reduces energy consumption for LNU additions from
107.7 pJ/op to only 28.7 pJ/op in our design. Finally, the post-processing block
combines all intermediate results and performs special case handling such as
over-/underflows. Our LNU implements more functions (casts, exp, log), uses
far smaller LUTs (14.1 kB instead of 22.9 kB) and reduces the area overhead
by 35% when compared to the most advanced design in literature [2].
 Both units are tightly integrated in the processor's data path as shown in
Fig. 1 and share a write back port of the register file with the load-store unit.
The FPU requires only one pipeline stage, while the LNU requires three stages.
The shared LNU is managed by a fair round-robin arbiter. The shared LNU is
only needed to process LNS ADD, SUB, LOG, EXP and casts. Many LNS
operations such as MUL, DIV, SQRT and comparisons can be directly
computed in the integer ALU of the cores in a single cycle, which is energy
efficient, reduces LNU contentions, and makes it more attractive for sharing in a
multi-core setting. The efficiency of several LNS and FP-instructions is
compared in Fig. 4. While LNS ADD/SUB are less energy efficient than the FP
equivalents, the LNS MUL requires 36% less energy than in FP. Apart from
these basic instructions, LNS supports extremely energy efficient, single cycle
square-roots (6.4 pJ/op) and divisions (12.1 pJ/op) utilizing the shifter and
adder of the ALU with dedicated special case handling. Also, complex functions
such as 2

x
 and log

2
(x) can be computed in the LNU in four cycles for 13.3 and

22.6 pJ/op, respectively.
 Both architectures have been benchmarked using a suite consisting of
linear algebra kernels, matrix decompositions and more complex, nonlinear
functions involving projective transforms, radial basis functions, trigonometric
functions and distance computations. The benchmark set has been generated
using MATLAB and its C++ embedded coder to ensure that competitive kernel
implementations are used. The LLVM compiler has been adapted to support
the LNS format for OpenRISC, letting the compiler handle automatically low-
level details, such as LNU latency. The upper part of Fig. 5 shows kernel
characteristics such as FP instruction ratios, codesize and IPC where the lower
part shows kernel execution time with its power consumption and energy
savings. For complex kernels, such as 3D-distance computations and Cholesky
decompositions the LNU can make use of its extended ISA (DIV, SQRT)
allowing to run those applications up to 4.2x more efficiently as illustrated in Fig.
6. A big difference is seen where EXP and LOG functions are frequently used
because they can be performed natively on the LNU, while the FPU has to use
software emulations consuming 51(exp) to 85(log) cycles.
 For pure linear algebra kernels AXPY, GEMM, and GEMV, the cluster with
private FPUs is 5-13% more energy efficient than shared LNU due to LNU’s
longer latency for FP add/sub. This relatively small gap even for ADD-SUB
intensive benchmarks is easily amortized for complex algorithms with many
multiplications, divisions and nonlinear functions. The utilization of the shared
LNU on our benchmarks was 0.37 on average with a maximum of 0.61 where
the high utilization led to 10% stalls due to access contentions. On average,
such contentions only occurred in 4% of all FP operations. The manufactured
chips with private FPU and shared LNU integrated in a multi-core cluster are
shown in Fig. 7. The two chips are comparable in size, but the shared LNU,
with a top energy efficiency of 6.4 pJ/FLOP @0.8V, allows to compute complex
nonlinear kernels up to 4.2x more energy efficiently than the FPU cluster.

Acknowledgments
We thank M. Burger, T. Gautschi, L. Müller, Y. Popoff, F. Scheidegger, and F.
Schuiki for their valuable work and commitment during their semester projects.
This research was supported by the IcySoC project, evaluated by the Swiss
NSF and funded by Nano-Tera.ch with Swiss Confederation financing.

References
[1] J.N. Coleman et al. "The European Logarithmic Microprocessor," in IEEE
TC, vol.57, no.4, pp.532-546, April 2008
[2] R.C. Ismail et al. "ROM-less LNS," in IEEE ARITH, pp.43-51, July 2011
[3] D. Rossi et al. “A -1.8V to 0.9V Body Bias, 60 GOPS/W 4-core Cluster in
low-power 28nm UTBB FD-SOI technology,” S3S, 2015
[4] J. Detrey et al. "Table-based polynomials for fast hardware function
evaluation." IEEE ASAP, pp. 328-333, 2005
[5] S. Galal et al. "Energy-Efficient Floating-Point Unit Design," in IEEE TC ,
vol.60, no.7, pp.913-922, July 2011
[6] H. Kaul et al. "A 1.45 GHz 52-to-162GFLOPS/W variable-precision floating-
point fused multiply-add unit with certainty tracking in 32nm CMOS." ISSCC‘12

Figure 4.6.1: Four-core cluster architecture with one shared LNU
directly integrated in the pipeline of the processors.

Figure 4.6.2: LNU architecture with main interpolator and
cotransformation

Figure 4.6.3: LNS f+ / f- functions with singularity in the critical region
where the cotransformation applies. Comparison with related work.

Figure 4.6.4: Energy efficiency comparison of different FP- and LNU-
instructions.

Figure 4.6.5: Energy, speedup, and power comparison of shared LNU
vs. private FPU.

Figure 4.6.6: Energy efficiency in kernel iterations per J at different
VDD levels.

Figure 4.6.7: Chip photos and datasheet.

