
An Extended Shared Logarithmic Unit for Non-linear
Function Kernel Acceleration in a 65 nm CMOS Multi-Core

Cluster
Michael Gautschi∗, Michael Schaffner∗, Frank K. Gürkaynak∗, Luca Benini∗†

∗ETH Zürich, Switzerland, †Università di Bologna, Italy
Email: {gautschi, schaffner, kgf, benini}@iis.ee.ethz.ch

Tel: +41 44 63 {299 58, 265 56, 227 26 , 266 64}

Abstract—Energy-efficient and ultra-low power computing are strong
requirements for various application areas such as IoT and wearables. While
for some applications integer and fixed-point arithmetic suffice, others require
a larger dynamic range, typically obtained using floating point (FP) numbers.
Logarithmic Number Systems (LNS) have been proposed as energy-efficient
alternative, since several complex FP operations translate into simple integer
operations. However, additions and subtractions become non-linear opera-
tions which have to be approximated via interpolation. Even efficient LNS
units (LNUs) are still larger than standard FPUs, rendering them impractical for
most general purpose processors. We show that, when shared among several
cores, LNUs become a very attractive solution. A series of compact LNUs is
developed which provide significantly more functionality (such as transcen-
dental functions) than other state-of-the-art designs. This allows, for example,
to evaluate the atan2 function with three instructions for only 183.2 pJ/op at
0.8V. We present the first shared-LNU architecture where these LNUs have
been integrated into a multi-core system with four 32b-OpenRISC cores and
show measurement results demonstrating that the shared LNU-design can be
up to 4.1× more energy-efficient in common non-linear processing kernels,
compared to a similar area design with four private FPUs.

Index Terms—Logarithmic Number System (LNS), Shared Floating
Point Unit (FPU), Special Function Unit (SFU), Multi-Core, Low-Power Design

I. Introduction
Energy-efficient computing and ultra-low power operation are

strong requirements for a vast number of application areas such as
IoT and wearables. While for some applications integer and fixed-
point processor instructions suffice, several others (eg. classification
[1], [2], vision applications like detection [3], SLAM [4] or camera
pose estimation [5]) require a larger dynamic range, typically obtained
using single-precision floating point (FP) numbers. In addition, new
algorithms are usually first developed for general-purpose computing
systems (PCs, workstations) assuming high-dynamic range (HDR)
arithmetic. Porting these algorithms to integer or fixed-point arithmetic
is a labor-intensive and technically challenging task which requires
extensive test and verification [6]. Hence, there is a trend toward
supporting HDR arithmetic, currently in the form of single-precision
FP, also in low-power microcontrollers, such as the ARM Cortex M4 [7].
Unfortunately, it is well known that FP is energy-hungry, and significant
research effort is devoted toward reducing the energy required for
HDR computing. Logarithmic Number Systems (LNS) have been
proposed [8–17] as an energy-efficient alternative to conventional
FP, since several complex FP operations such as MUL, DIV, and
SQRT translate into simple integer operations in LNS. This is not only
relevant for high-performance computing, but also increasingly needed

This article on IEEE: https://doi.org/10.1109/JSSC.2016.2626272

for low-power, low-cost embedded applications where the demand on
intensive signal-processing capabilities continues to grow on a regular
basis.

However, the drawback of LNS is that additions and subtractions
become non-linear operations and, when implemented in hardware,
have to be approximated accordingly with a dedicated LNS unit (LNU).
The area of LNUs grows exponentially with the desired precision, and
for an accuracy equivalent to single-precision FP, LNUs are larger
than traditional floating-point units (FPUs), which makes it difficult to
motivate their use in general purpose processors. We show that in
multi-core systems optimized for ultra-low-power operation such as
the PULP system [18], one LNU can be efficiently shared in a cluster.
This arrangement not only reduces the per-core area overhead, but
more importantly allows several operations such as MUL/DIV to be
processed within the integer cores without contention and additional
overhead. Based on several application benchmarks, we show that in
a system with one LNU shared among four cores, access contentions
are minimal as in most algorithms the percentage of ADD/SUB opera-
tions remains below 30%.

In this work we introduce a series of compact 32b LNS units which
have similar area compared with the best designs in literature [15–
17], while at the same time providing significantly more functionality.
We enhance the LNU architecture to implement transcendental func-
tions with only small area overhead similar to special function units
(SFUs) present in today’s GPUs [19]. Therefore, we not only support
standard LNS ADD/SUB operations, but also fused multiply/divide-
add operations (FMA, FDA) and the non-linear function intrinsics 2x,
log2(x), sin(x), cos(x) and atan2(y, x), which are useful for many
embedded applications ranging from computer vision [5] to power
electronics [20].

For accurate comparison, we designed four chips with a quad-core
cluster system using the UMC 65 nm LL CMOS technology. Each
chip contains an identical cluster with four 32b OpenRISC cores. The
first chip is based on four private single-precision FPUs, and the
remaining three chips share differently parameterized LNUs. Three
of these chips (the FP, LNS A and LNS C, see Section V) have
been taped out and measured. Using these designs, we show that
for typical non-linear processing tasks, our LNS design can be up
to 4.1× more energy-efficient than a private-FP design and achieve
similar energy efficiency when running pure linear algebra kernels
with many ADD/SUB operations. Further, the use of a 16b vector
LNU is investigated, which can be an interesting design alternative
for applications that require HDR and can tolerate lower precision.

https://doi.org/10.1109/JSSC.2016.2626272

II. Related Work
The LNS has been proposed as a replacement for standard fixed-

point and FP arithmetic already in the 1970’s [8], [9]. The main chal-
lenge of finding efficient approximation methods to implement the non-
linear ADD/SUB operations has driven research in the LNS domain. In
early papers, implementation of LNUs with accuracy higher than 12b
was considered infeasible due to exponentially increasing lookup-table
(LUT) sizes. Since then, several improved implementations have been
proposed. In the low-precision FP calculation domain, with bit-widths
lower than 16 bits, so-called multi-partite table [21] and high-order
table based methods [22] have been shown to be effective [23]. LNS
based operations have been used to replace fixed-point operations in
several applications such as QR decomposition [24], non-linear SVM
kernel evaluation [1], embedded model predictive control [25], neural
network accelerators [26] and low power digital filtering [27]. LNS
numbers have also been extended to be used for complex numbers
[28] and quaternions [29]. Attempts to combine both the advantages
of standard FP and LNS into hybrid systems have been made in [30],
where the main drawback is the cost of non-linear typecasts.

Coleman, et al. [12] introduced the concept of a cotransformation to
alleviate approximation difficulties related to SUB operations where the
operand difference is close to 0.0. As explained in Section III-B, such
cotransformations are analytical decompositions of the problematic
functions allowing to implement the same functionality with signifi-
cantly smaller LUTs. Following the example of Coleman, et al., several
different cotransformation variations have been presented in [10], [11],
[13–17], [31]. Complete LNUs for ASIC processors with accuracy
equivalent to single-precision FP have only been presented in [15–
17] so far. Coleman, et al. [15] describe the European Logarithmic
Microprocessor (ELM), the first single-core microprocessor featuring
an LNU. Their design combines a custom interpolation scheme with
the cotransformation developed by [12]. In [16], [17] Coleman, et al.
improve their ELM design and propose LNUs with lookup tables small
enough to be implemented without ROMs. These LNU designs are
able to execute only basic LNS ADD/SUB instructions and do not have
support for casts.

FPUs for standard FP are designed in [32–35] and often only con-
tain support for ADD, SUB, MUL, casts and FMA operations. Support
for divisions is then added in form of SW emulations or iterative HW
dividers since single-cycle HW divisions are expensive [33]. On top
of the basic algebraic operations, there is a growing need to support
HDR computations of common non-linear functions. A significant body
of work [19], [36–40] studies the efficient implementation of special
function units (SFUs) for GPUs which implement non-linear functions
such as cosine, sine, arctangent, square-roots, etc. in FP. Compared to
complete numerical function libraries (e.g., as part of math.h in C++)
these intrinsics are much faster (a few cycles instead of hundreds), but
they do not provide the same accuracy level. Also, the intrinsics usually
evaluate the special functions on reduced ranges (e.g., [0, π/2)), and
have to be wrapped with range reduction routines [41].

In contrast to above listed work, we combine both the LNU and
the SFU into one unit, since they share many architectural properties.
Based on the PULP system previously developed in [18], we design
the first multi-processor with a shared LNU, and show that this can
be an energy-efficient alternative to a standard FP design for various
non-linear function kernels. PULP is an OpenRISC multi-processor
platform without FP support, and we used it as an architectural

![thb]

Figure 1: Encoding and special values of the 32b LNS numbers used
in this work.

template. Further, this paper extends our previous work on LNS [31],
[42], [43]. While [31], [42] focus on a first LNU implementation without
all special function (SF) extensions, [43] explains the fitting framework
in more detail and explores differently parameterized LNUs with lower
precision than 32b. The presented work represents the culmination
of these efforts and provides multiple silicon implementations and
measurements, more comparisons, and an improved LNU architecture
with SF-extensions, and a 16b vector LNU.

III. Preliminaries
A. LNS Number Representation, Format and Arithmetic Operations

Standard FP number systems represent a real number as a =
(−1)s ·mfrac · 2lexp , where s is the sign, mfrac the mantissa and lexp
the exponent. In LNS, numbers are only represented by an exponent
lexp which now has a fractional part: a = (−1)s · 2lexp . In this case,
the exponent is an unbiased two’s complement number and its width
is denoted as wexp = wint + wfrac, where wint and wfrac are the
number of integer and fractional bits, respectively. The bit-width of
the complete number including the sign bit is wlns = wexp + 1. For
wint = 8 and wfrac = 23, the encoding is aligned with the single-
precision FP (IEEE 754) format [46], and forwint = 5 andwfrac = 10,
it is equivalent to the half-precision format. Similar to the IEEE 754
standard, special values such as zeros (ZERO), infinities (INF) and
not a number (NAN) are encoded using special bit patterns (Figure 1).
In the following, we will use lowercase variables for real numbers (e.g.
a). The corresponding LNS sign and exponent are denoted as sa, la
and the machine representation as A = [sa, la].

Certain operations such as MUL, DIV, and SQRT can be imple-
mented very efficiently using the LNS format with a single integer
addition, subtraction or bitshift, respectively. This is an important
advantage because such operations can be efficiently calculated in
slightly enhanced integer ALUs and result in much shorter latencies
and energy costs than the equivalent FP implementations. However,
these simplifications come at the cost of more complex additions and
subtractions which become non-linear operations in LNS:

a± b = z, lz = max(la, lb) + log2(1± 2−|la−lb|). (1)

Using the absolute difference r = |la − lb|, the two non-linear
functions for addition and subtraction can be defined as F+(r) =
log2(1 + 2−r) and F−(r) = − log2(1− 2−r) shown in Figure 2.

As discussed in more detail in [13], [43], an LNS design with
wint = 8 and wfrac = 23 should have a maximum relative error of
0.7213 ulp in the LNS domain to be equivalent to FP with round to
nearest mode (0.5 ulp). In the following, all error figures are given w.r.t.
the FP domain.

critical region
[0, 4)

singularity

F+(r)
F −(r)
cotr(r)

Operator Difference

Fu
nc

tio
n V

alu
e

r

Fu
nc

tio
n V

alu
e

Operator Difference r

t
repl

t
clip

critical region
[0, 4)

replacement
threshold

clipping
threshold

2-23

10 -8
10 -7
10 -6
10 -5
10 -4
10 -3
10 -2
10 -1
10 0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 5 10 15 20 250 1 2 3 4 65

Figure 2: Plot of the F+(r), F−(r) and cotr(r) functions in linear and semi-logarithmic domain - note the singularity for r → 0. The critical
region is [0, 4), providing the best trade-off in terms of the overall number of polynomial segments [44], [45]. F−(r) can be replaced by F+(r)
for values of r above trepl, and both functions can be clipped to 0.0 above tclip for wfrac = 23.

B. Cotransformations and Fitting Framework

While for low precision (<12 bit) implementations F±(r) can be
stored in LUTs, this approach is not feasible anymore for single-
precision FP. Piecewise polynomial approximations however, have
been found to work well [44], [45] to reach these precision levels –
except for operations where r is small since F−(r) has a singularity at
zero. In this critical region (CR), so-called cotransformations [10–12],
[14–17] are usually applied to decompose F−(r) into sub-functions
which can be approximated more efficiently. The cotransformation
used in this work was originally proposed by [10] and decomposes
F−(r) as

F−(r) = − log2(1− 2−r)

= − log2

(
1− 2−r

r

)
+ log2(r)

= cotr(r) + log2(r).

(2)

It has been successfully used to create compact LNS operators for
FPGAs [44], [45] – but so far its usage for implementing an ASIC LNU
design has not been closely investigated. This decomposition lever-
ages the fact that cotr(r) behaves much better around 0.0 as shown
in Figure 2, and can thus be readily approximated using polynomials.
The size of the CR is set to [0, 4) which provides the best trade-off for
this decomposition in terms of overall number of polynomial segments
[44], [45]. The log2(r) function still has a singularity at 0, but for finite
precision arithmetic this function can be efficiently implemented with
range reduction techniques of the argument [41], where the argument
range can be reduced to [1, 2) by employing a leading zero counter
and a barrel shifter. The log2 function itself can be implemented on
this reduced range using a polynomial.

For the accuracy range between half-precision and single-precision
FP numbers, piecewise 1st and 2nd order polynomials have been
found to be efficient approximators for a wide range of non-linear
functions [19], [36–40]. This also holds for the F+(r),F−(r) func-
tions (outside the CR) [44], [45], and hence our LNU architecture
has been designed using such polynomials. The employed fitting
framework is described in more detail in [43] and uses a finite-precision
aware implementation [47] of the Remez algorithm [48] in combination

with an interval splitting heuristic [49] to compute so-called piecewise
minimax polynomials.

IV. LNU Architecture and Extensions
The proposed LNU architecture shown in Figure 3 uses five main

datapath units depending on the operation, and whether the operation
falls into the CR as explained below.

A. Main LNU Blocks

The MulDiv Block preprocesses fused multiply/divide-add
(FMA/FDA) functions and also enables arbitrary base exponentials
C = exp(A · B) and C = exp(A/B), termed MEX and DEX. In
addition, the division capability allows for convenient range reduction
of the trigonometric functions (e.g., division by π for sine/cosine).
The intermediate results U and V from the MulDiv Block are used
in the AddSub Preprocessing Block which calculates the absolute
operator difference r = |lu − lv| and the operator maximum for
binary operations such as ADD/SUB. For unary operations such as
EXP/LOG, operator V is gated to zero.

The Main Interpolator Block implements F+(r) on the complete
range [0, tclip) and F−(r) outside the CR [4, tclip) using piecewise
polynomial approximations. Depending on the latency-area trade-off
the 1st or 2nd order approximation will be used. This block is also used
for SUB operations in the CR [0, 4) to evaluate cotr(r), the result of
which is later added to the log2(r) value in the Postprocessing Block.
For a given input r, the coefficients pri = pi(r) for i = {0, ..., N}
(where N is the polynomial order) are selected from a set of LUTs,
and the polynomial is evaluated using the Horner scheme

p(r) = pr0 + δrp ·
(
. . .

(
pr(N−1) + δrp · (prN)

))
(3)

where δrp are the LSBs of r. The main interpolator datapath can be
shared among F+(r), F−(r) and cotr(r). As explained in more
detail in [43], each LUT is subdivided into different segments, each of
which contains a set of equidistantly spaced coefficient samples. The
segment boundaries have been aligned to powers of two, such that the
segment index can be easily determined by looking at the MSBs of the
argument r. The functions F+(r) and F−(r) become increasingly

Figure 3: The LNU architecture, shown for 2nd order interpolation. Parts for SF-extensions are highlighted.

similar with increasing r such that one function can be replaced by the
other without impact on precision. Therefore, we define a threshold
trepl and reuse the F+(r) tables for F−(r) when r > trepl (single-
precision: trepl = 14). Further, for large r, the functions values
of F+(r) and F−(r) fall below the required precision due to their
asymptotic behaviour and can be clipped to 0. This clipping threshold
is denoted as tclip (single-precision: tclip = 24.588).

The main objective of the Log/Exp Block is to implement the
log2(r) function within the critical region [0, 4) required for SUB
operations. This is achieved using a barrel shifter and leading zero
counter to reduce the range of the input, and anN th order interpolator
with LUTs covering the argument range [1, 2). Note that it is possible
to reuse this function for native typecasts from integer to LNS (I2F),
and LOG2 operations in the LNS domain. For a given input r, the
polynomial coefficients qri = qi(r) for i = {0, ..., N} are selected

from a set of LUTs, and the approximation result q(r) is again
calculated as in Equation (3).

To natively support inverse typecasts (F2I) and 2x (EXP) opera-
tions, an additional table for the 2x function has been added. Since
this function can also be efficiently implemented using range reduction
and polynomial interpolation, we can reuse the existing interpolator
to calculate the function value on the range [0, 1), and only have
to include an additional shifter at the output which has been moved
to the Postprocessing Block such that the delay for the ADD/SUB
operations is not increased. This final block combines or selects the
interpolators, performs rounding and special case handling such as
NAN and over/underflow detection.

B. Trigonometric Functions

Trigonometric functions can be approximated in several ways [39],
[40], [50], e.g., with the well-known class of CORDIC algorithms

Figure 4: The first quadrants (Q1-4) of the sine function plotted in the LNS domain (a) and in the semi-logarithmic domain (b). The sine function
is analytically split into (c) and (d) which can be implemented more efficiently using the LNU architecture. e) shows the arctangent function in
the LNS domain, and f) in the linear domain. g) shows examples for employed range reductions.

[51]. These iterative shift-and-add methods can even be implemented
on processors with limited DSP functionality. Lower-latency imple-
mentations however, use table-based methods in combination with
range reduction techniques [41]. In fact, several SFUs employ 2nd
order interpolation [36–38]. Hence, our LNU can be extended with
trigonometric functions by only modifying a few existing components.

We restrict the set of extensions to sine, cosine and arctangent
functions, since these are the most commonly used and many other
functions can be efficiently derived from these using trigonometric
relations. These functions are implemented using normalized angles
which have the advantage of simpler modulo-2 calculations for range
reductions (see [39], [40] for more details). We implement the ex-
tensions for the functions sin(π2x), cos(

π
2x),

2
π atan2(y, x) which

already implicitly contain the factor π2 .
While LNS has several benefits such as low-latency DIV/MUL, it

also introduces two difficulties for the particular case of trigonometric
functions. First, 0.0 equals to − inf in LNS and leads to singularities
as illustrated in Figure 4a and e, where the magnitude of the sin(π2x)
and 2

π atan(x) functions are plotted in the LNS domain. Second,
the logarithmic spacing complicates fast range reduction and folding
techniques for periodic functions since the quadrants are not evenly
spaced. These issues are addressed below for the trigonometric
SF-extensions. Note that these SF-extensions do not require any
additional special case handling and range reductions in software,
since this is automatically performed in HW in the LNU.

IV-B1 Sine/Cosine: First, the argument range is reduced via an
LNS division in the MulDiv Block, followed by a transformation into

the linear domain by reusing the EXP functionality. The modulo-1
operation (rem) and symmetric folding can then be performed by
truncating the MSBs and using integer additions, making it possible to
implement the sine/cosine functions by tabulation of the first sine quad-
rant. Second, the evaluation of this first sine quadrant is analytically
split into two terms in order to circumvent the singularity in a similar
way as using a cotransformation (Section III-B). As shown in Figure 4b,
the sine function log2(| sin(π2x)|) still has a singularity in the semi-
logarithmic domain. To implement it we use the decomposition

log2(| sin(
π

2
x)|) = log2

(∣∣∣∣ sin(π2x)x

∣∣∣∣)+ log2(|x|)

= rsin (x) + log2(|x|),
(4)

since the first term (Figure 4c) can be efficiently approximated with a
2nd order polynomial, and the second term (Figure 4d) is already avail-
able as part of the LogExp Block in the LNU. To maximize datapath
reuse these two steps are mapped onto different instructions termed
SCA (sine/cosine argument), SIN and COS (the actual interpolation)
which have to be issued sequentially (e.g., SIN(SCA(A,B)) with A=X,
B= π

2). The SCA(A,B) is a DEX variant leveraging a cheap LNS
division to divide the sine or cosine argument by π

2 .

IV-B2 Arc Tangent: The choice of the approximation scheme de-
pends on whether only the single argument version atan(x) or the
two-argument version atan2(y, x) is implemented. We target the
latter version in this work, such that no additional software wrapping
of the arctangent function is required to calculate the correct phase.
As shown in [40], the atan2(y, x) function can be implemented by

Bank 0 Bank 1 Bank 2 Bank 7...16kB TCDM (L1)

16kB
L2 Mem

TCDM Interconnect

DispatcherDispatcherDispatcher

Di
sp

atc
he

r Ex
 S

tag
e

Core 3Core 2Core 1Core 0

Load/Store

RR Arbiter

0 0 0

0

enable, cmd, tag 5
10 req/ack, cmd

Load/StoreLoad/StoreLoad/Store I$ II

Cl
us

ter
 B

us

64
32

32

Chip

Cluster

64
So

C
Bu

sGP
IO

3x

32bit LNU
(latency 3)

SP
I

2x16bit LNU
(latency 1) LNU Interconnect

FPU FPU FPU

FPU
(lat 1)

RF

I$

The Four
Designed

Chips

1. FP
4x private 32b FPU

silicon silicon postlayout silicon

2. LNS A
1x legacy LNU

3. LNS B
1x new LNU

32b

4. LNS C
1x new LNU + SF
1x new LNU + SF

32b 32b
16b

w lns

w lns

Figure 5: Integration of the shared 32b LNU and the 16b vector LNU into an OpenRISC cluster. For clarity connection details of the LNU are
shown only for core 3.

only tabulating the atan(y/x) function on y/x ∈ [0, 1] (i.e., on
the first cartesian octant when interpreting x and y as coordinate
values). Since atan2 is an odd function, the inputs can be reduced
to the positive quadrant, and using the relation atan (y/x) = π/2−
atan (x/y) this can be further reduced to the first octant.

To address the LNS singularity issue, the existing EXP and LOG
functionality of the LNU is reused to approximate the arctangent in
the linear domain (Figure 4f). The evaluation of one atan2 intrinsic
is therefore split in three LNU instructions ATA (arctan argument),
ATN (arctangent table lookup) and ATL (arctangent logarithm), and
the corresponding evaluation sequence is ATL(ATN(ATA(A,B))), where
A=Y and B=X.

The ATA(A,B) instruction is a variant of the DEX instruction. The
difference is that before actually applying the EXP operation, the
control logic detects cases where the result u = y/x > 1 and
inverts the value lu such that the result of the ATA instruction is
always within [0,1]. To mirror the output of the arctangent to the correct
octant, the information is encoded into the result of the ATA operation.
The ATN instruction performs the actual arctangent interpolation, and
mirrors the result to the correct octant via the constant multiplexor in
the LogExp Block. The ATL instruction is a LOG variant which just
bypasses negative signs in this case.

V. Processor Integration
To evaluate the performance of different LNUs in a shared setting,

we have designed a multi-core processor system based on a 32b
OpenRISC core [52] using the UMC 65 nm LL technology. As shown in

Figure 5, the system consists of four cores with 1 KB private instruction
caches which share a single LNU and contains a total of 32 kBytes of
memory. The four-to-one sharing ratio is motivated by the fact that
in most FP programs, the fraction of ADD/SUB instructions, rarely
exceeds 0.25 (see Figure 8a for examples). For comparison purposes,
an identical system has been designed featuring 4 cores with private
IEEE 754 32b compliant FPUs including HW support for ADD, SUB,
MUL and typecasts. For DIV we use SW emulations as described in
Section VI-D which is a common approach of adding FP support to
small embedded processors [33]. The implemented FPU is a shared
normalizer design similar to [32] (but without divider) with a complexity
of 10 kGE – which is competitive with state-of-the-art implementations
[33], [34], [53].

To show the evolution of the LNUs we present four chips (Figure 5),
where the last chip is extended with a vectorized half-precision LNU
allowing to perform two half-precision LNU operations in parallel as
well as providing dot-product (DOTP) instructions that utilize MulDiv
blocks of both half-precision LNUs. All clusters have been designed
to run at 500 MHz at 1.2V under typical case conditions. To meet the
timing constraints of the cluster, the FPU and the 16b vector LNU have
been pipelined once and the 32b LNUs three times.

Note that the tool flow has evolved over the project and the newest
versions are more efficient w.r.t. the first silicon implementations of the
FP and LNS A designs [42]. Therefore, the backends have been re-
peated using the current design flow to compensate for any systematic
offsets in the measurements from [42]. The cotransformation has also
evolved over the project, and while all new designs (LNS B, C) use

Main
Interpolator

Datapath

Main
Interpolator

Tables

LogExp
Tables

LogExp
Datapath

AddSub
Preprocessing

MulDiv

Postprocessing

32b new + SF extensions, 29.8 kGE @ 4.5ns

3.8
%

4.2
%

6.9%

25.6%

19.7%

9.7%

a) AT Behaviour in 65nm b) Detailed Area Breakdown

Time [ns]

32b new

16b new + SF extensions

32b new + SF extensions

32b legacy

shown in area
breakdown

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
0

10

20

30

40

50

60

Ar
ea

 [k
GE

] 0.5%

7.0%

20.1%

2.5%

SF ext.
SF ext.

SF ext.

Figure 6: a) Post-synthesis AT behaviours of the LNUs analyzed in this work (combinational, unpipelined entities), and b) detailed area
breakdown of the new LNU with SF-extensions (overheads due to these extensions are exploded in the pie chart).

[10], the first silicon implementation (LNS A) used the one described
in detail in [31], [42]. Thus, the main difference between the legacy
LNU and the new LNU designs is the way how subtractions in the CR
are handled. The new LNU designs have a smaller interpolator and
require about 45% less LUT bits than the legacy LNU design (as can
be seen in Table I).

A. Modifications to the Processor Core

The LNU is shared in a completely transparent way, the pro-
grammer sees a system with as many LNUs as there are cores. A
dispatcher that is tightly integrated in the execution stage of each
core is responsible to offload LNU instructions and stall the cores
if necessary, and silence the operator ports in case no instruction
has to be offloaded. Our OpenRISC architecture contains two write
ports to the register file, which are used by the ALU and the load-
store-unit (LSU). Instead of adding a third write port for the LNU, the
LSU-port has been shared with the dispatcher since a single-issue
in-order pipeline cannot execute multiple LNU and load operations
concurrently. However, due to contentions in the LNU interconnect and
LSU, write back collisions can occur, which are handled by a small
controller which stalls the pipeline if necessary. The integer ALUs of
the cores have been slightly modified to handle the LNS sign bit in
single, and half-precision format correctly. Since the OpenRISC core
has already been extended to support packed SIMD integer operations
[52], the sliced adder and shifters were reused to support vectorized
LNS MUL/DIV/SQRT operations. In LNS C, where the system is
enhanced with a 16b vector LNU, a second interconnect is used to
alleviate contention. Both interconnects consist of a fair round-robin
arbiter for core-request handling. Whenever several cores access the
LNU concurrently, all cores but one have to stall their pipelines and
wait for an LNU idle cycle.

VI. Results
For hardware and energy efficiency evaluations, we have pipelined

the LNU designs using the automatic retiming feature of Synopsys
Design Compiler 2016.03, and integrated them into a four-core Open-
RISC cluster as described in Section V-A. For each cluster we have

performed a complete back-end design flow using Cadence Innovus-
15.20.100 in the same 8-metal UMC 65 nm LL CMOS technology.
The back-end of the OpenRISC LLVM compiler has been modified
to support the LNS format, and new instructions have been added
to support the additional functionality provided by our LNUs. SF
intrinsics and vector instructions are provided as compiler built-in
functions (compiler auto-vectorization is currently not supported). A
set of benchmarks written in C was compiled and executed on the
FP and LNS architectures. The FP, LNS A and LNS C chips have
been manufactured, extensively tested and measured. The remaining
LNS B cluster has been simulated in Mentor QuestaSim 10.3a using
back-annotated post-layout gate-level netlists and power has been
analyzed in Cadence Innovus-15.20.100. First, a comparison of our
LNU designs with related LNUs and SFUs is given in Section VI-A,
followed by a comparison of the designed chips in Section VI-B.
Finally, we will give detailed results of instruction- and kernel-level
efficiencies in Section VI-C and Section VI-D.

A. LNU Results and Comparison with Related Work

The AT behavior of the LNUs, and a detailed area split for an
LNU with SF-extensions is shown in Figure 6a and b. A large part
of the LNU area is occupied by LUTs (42.3%) and interpolators
(42.8%). Table I shows a comparison of synthesis results for combi-
national implementations in both 65 nm and 180 nm. Our new LNU
without SF-extensions is significantly smaller in terms of normalized
gate-equivalents (GE) than most related designs, and provides more
functionality such as casts and EXP/LOG functions. The additional
FMX/TRIG instructions increase the area by only 17.3%. Compared to
the best related 65 nm design Minimax (2CT) by [17] our new LNU has
similar area, but a higher combinational delay. Note however, the only
silicon-proven related design is the ELM LNU [15], [16] and Minimax
(2CT) was first been developed in 180 nm, and the 65 nm results listed
in Table I represent additional technology translations provided in [17].
The related designs [15–17] either use custom 1st order schemes, or
2nd order polynomial interpolators with a dedicated squarer. These
schemes use 1.8-5.9× more LUT entries than our design, but have
the advantage of providing lower latency compared to our 2nd order

TABLE I: Comparison of different LNUs and related designs (synthesis results of combinational, unpipelined entities).

[15] [16] [17] This Work
ELM Mod. Chester (2CT) Minimax (2CT) Legacy New New + SF New + SF

Functionality§ ADD, SUB ADD, SUB, I2F, ADD, SUB, I2F, F2I, LOG,
F2I, LOG, EXP EXP, FMX, TRIG

Interpolation
Wordwidth [bit] 32 32 32 32 32 32 16
cotr Type [13] [16] [16] [31] [10] [10] [10]
cotr Interp. (N) custom (1) custom (1) minimax (2) custom (1) minimax (2) minimax (2) minimax (1)
Other Functions (N) custom (1) custom (1) minimax (2) minimax (2) minimax (2) minimax (2) minimax (1)

Error [ulp]
ADD (max) 0.4544 0.4623 0.4944 0.4618 0.3806 0.3806 0.3753
ADD (avg) 0.1777 0.1745 0.1721 0.1748 0.1744 0.1744 0.1734
SUB (max) 0.4952 0.4987 0.4626 0.4786 0.4755 0.4755 0.4561
SUB (avg) 0.1776 0.1738 0.1719 0.1748 0.1750 0.1750 0.1738

LUT Size [kBit]
F+

227.3 162.0 ? 20.3 30.4 30.4 2.8
F− 41.3 12.2 12.2 0.6
cotr 129.0 21.2 ? 24.0 4.7 4.7 1.0
other - - - 27.5 13.2 23.7 2.6
total 356.4 183.3 110.1 113.1 60.9 71.5 7.0

180 nm Results
Technology 180 nm UMC 180 nm UMC 180 nm
1 GE [µm2] 9.3744‡ 9.3744 9.3744
Delay min/max [ns] 11.74/13.50 7.1/14.79 9.3/~19.2 17.0/17.0 12.5/12.5 12.5/12.5 8.5/8.5
Area [mm2] 0.906 0.589 0.474 0.411 0.301 0.375 0.076
Area [kGE] 96.6 62.9 50.6 43.8 32.1 40.0 8.1
Used in Silicon yes (ELM) no no no no no no

65 nm Results
Technology - UMC 65 nm† UMC 65 nm
1 GE [µm2] - 1.44 1.440
Delay min/max [ns] - 0.91/1.94 1.24/2.60 6.0/6.0 4.5/4.5 4.5/4.5 3.0/3.0
Area [mm2] - 0.039 0.031 0.054 0.037 0.043 0.009
Area [kGE] - 26.8 21.8 37.5 25.4 29.8 6.5
Used in Silicon - no no yes (LNS A) no yes (LNS C) yes (LNS C)
§ FMX stands for all variations FMA, FMS, FDA, FDS, DEX and MEX. TRIG stands for the instructions SCA, SIN, COS, ATA, ATN, ATL. † 65 nm numbers from [17].
‡ assumed NAND2 area (UMC 180 nm).

TABLE II: Comparison of the new LNU with SF extensions and FP SFUs (post-layout figures, i.e. pipelined, placed&routed units).

NVidia [19], [36] Caro et al. [37] This Work (New LNU + SF)

Function Table Error× LUT Lat/ Table Error× LUT Lat/ Table Error× LUT Lat/
Interval [kBit] TPut Interval [kBit] TPut Interval [kBit] TPut

√
x - - - - [1,2] 1.0 ulp 1.73 6/1 - 0.69 ulp - 1/1§√
2x - - - - [1,2] 1.0 ulp 1.82 6/1 - 0.69 ulp - 1/0.5§

1/
√
x [1,4] 1.52 ulp 6.5 ?/1 [1,2] 1.0 ulp 3.71 6/1 - 0.69 ulp - 1/0.5§

1/
√
2x - - - - [1,2] 1.0 ulp 3.65 6/1 - 0.69 ulp - 1/0.33§

1/x [1,2] 0.98 ulp 6.5 ?/1 [1,2] 1.0 ulp 4.29 6/1 - 0 ulp - 1/1§
log2(x) [1,2] 22.57 bit 3.25 ?/1 [1,2] 24 bit 4.03 6/1 [1,4] 0.75 ulp 9.15 4/1
2x [0,1] 1.41 ulp 3.25 ?/1 [0,1] 1.0 ulp 1.98 6/1 [0,1] 23.0 bit 4.48 4/1
sin(x), cos(x) [0,π/2] 1.72e-7 3.25 ?/1 - - - - [0,1] 1.85e-7 6.54 8/0.5
atan2(y, x) - - - - - - - - [0,1] 1.87e-7 4.03 12/0.33

Other Support
Functions 2D Attribute Interpolation no ADD, SUB, I2F, F2I, FMA
NaN, INF ? no yes

Implementation
Technology ? TSMC 180 nm UMC 65 nm
1 GE [µm2] ? 9.374† 1.44
Freq. [MHz] ? 420 305
Area [mm2] ? 0.34 0.067
Area [kGE] 8030 FE≈ 42.2 kGE‡ 36.3 45.6
† Assumed NAND2 area (UMC 180 nm). ‡ Assuming 5.25 GE per FE. § Computed in integer ALU of the processor cores. × Error either specified in ulp or as
absolute maximum error if not applicable. For log2(x) (in FP) and 2x (in LNS) precision given in amount of good bits returned, see [36], [37].

Horner interpolator. However, these designs exhibit variable latency,
since CR subtractions have to pass through the interpolator twice,
making it harder to share such an LNU.

A comparison of the new LNU with SF-extensions (post-layout)
with an SFU from Tesla GPUs [19], [36] and from Caro et al. [37]
is shown in Table II. Our design is comparable in complexity while
providing equivalent accuracy levels and functionality. Note that an

LNS-based processor does not require any additional units to be
complete, whereas an FP-based system additionally requires an FPU
for standard operations. When comparing the LUT sizes, we can
observe that the design by Caro et al. requires the least amount of
bits for special functions. The reason for this is that they additionally
enforce constraints among neighboring LUT segments when fitting

TABLE III: Comparison of LNU-based and FPU-based Processor Chips.

TCDM (L1)
I$

I$ ctrl

I$

I$

I$

Core 1 Core 0

Core 2 Core 3
Interconnect

PeripheralsL2 Mem L2 Mem

TCDM (L1)
I$

I$ ctrl

I$

I$

I$

Core 1 Core 0

Core 2 Core 3

Shared LNU
Interconnect

Peripherals

L2 Mem L2 Mem

TCDM (L1)

I$

I$

I$

I$

Core 1 Core 0

Core 2
Core 3

Shared LNU

Interconnect

Peripherals
L2 Mem L2 Mem

I$ ctrl

TCDM (L1)

I$

I$ ctrl

I$

I$

I$

Core 1 Core 0

Core 2 Core 3

Shared LNUs

Interconnect

Peripherals
L2 Mem L2 Mem

I$ ctrl

ELM [15] 1. FP 2. LNS A 3. LNS B 4. LNS C

Results From Silicon Silicon Silicon Post-layout Silicon
Technology 180 nm 65 nm 65 nm 65 nm TT 25◦C 65 nm
Area [kGE] - 676 702 682 725
Area 1 Core [kGE] - 39.6 41.3 41.4 43.4
FPU/LNU Area [kGE] - 4×9.6 57.1 37.7 69.2
Supply Voltage [V] - 0.8 - 1.3 0.8 - 1.3 1.2 0.8 - 1.3
Max. Freq. @1.2V [MHz] 125 374 337 500 305
Power@100MHz, 1.2V [mW] - 23.2 24.4 22.2 24.5
Avg FPU/LNU Utilization - 0.22 0.39 0.39 0.42
LNU/FPU Type ELM LNU FPU Legacy LNU New LNU New LNU + SF
Wordwidth [bit] 32 32 32 32 32 2×16
Max Error [ulp] 0.454 0.5 0.478 0.476 0.476 0.456

Latencies

ADD/SUB/FMA hw 3/3(4)†/- 2/2/- 4/4/- 4/4/4 4/4/4 2/2/2
sw -/-/- -/-/- -/-/- -/-/- -/-/- -/-/-

MUL/DIV/SQRT hw 1/1/1 2/-/- 1/1/1 1/1/1 1/1/1 1/1/1
sw -/-/- -/62/56 -/-/- -/-/- -/-/- -/-/-

EXP/LOG/casts hw -/-/- -/-/- 4/4/4 4/4/4 4/4/4 2/2/2
sw -/- 51/85 -/-/- -/-/- -/-/- -/-/-

sin / cos / atan2 hw -/-/- -/-/- -/-/- -/-/- 8/8/12 4/4/6
sw -/-/- 69‡/68‡/340 64/60/92 64/60/92 -/-/- -/-/-

† Variable latency LNU. ‡Without range-reducing division (phase magnitude≥ 2π).

TABLE IV: Measured and Simulated Energy Consumption of Single Operations.

Design Horowitz et al. [34] Intel [53] 1. FP 2. LNS A 3. LNS B 4. LNS C

Results From Estimations Silicon Silicon§ Silicon§ Post-layout§ Silicon§
Technology 90 nm 45 nm 32 nm 65 nm 65 nm 65 nm TT 25◦C 65 nm
Vdd [V] 1.08 0.9 1.05 0.8 0.8 0.8 0.8
Frequency [MHz] 1200 2080 1450 165 115 150 97
FP Width [bit] 32 32 32 32 32 32 32 2×16
Pipeline Depth 10 6 3 2 4 4 4 2
Area [mm2] 0.113 0.016 0.045 0.015 0.089 0.054 0.066 0.017

[pJ/FLOP]
ADD - - - 16.1 55.0 40.1 58.1 50.3
SUB - - - 16.2 55.1 43.7 63.4 63.9
MUL - - - 18.4 12.5 12.9 13.5 16.0
DIV - - - - 12.7 13.0 14.3 16.8
SQRT - - - - 5.7 5.7 6.2 7.8
EXP - - - - 42.7 30.7 45.3 36.9
LOG - - - - 47.6 30.5 42.6 33.8
FMA† 55.4 14.4 38.8 - - - 57.3 43.6
MEX - - - - - - 57.4 50.6
sin(x) - - - - - - 127.4 92.0
cos(x) - - - - - - 126.9 95.6
atan2(y, x) - - - - - - 183.2 152.1
† One 1 FMA = 1 FLOP in this comparison. § Background power (NOP) subtracted, includes core activity (estimated core overheads are on average 2.6 pJ/FLOP for single-
operand instructions and 4.2 pJ/FLOP for all other instructions).

the non-linear functions. This allows to obtain even smaller LUTs
than with the minimax fitting heuristics employed in [19], [36] and our
design. However, the design by Caro et al. does not have support for
LNS ADD/SUB, trigonometric functions and the special cases (like
NAN/INF). Note that the complexity of the design by [19], [36] is
specified in full-adder equivalents (FE) of a proprietary library and has
been converted assuming 5.25 GE per FE. Also, the trigonometric
intrinsics for sine/cosine do not have complete range reduction from
arbitrary values to the first function period. Our design in contrast
is able to perform automatic range reduction on all trigonometric
functions thanks to cheap LNS divisions.

B. Designed Chip Variants

Table III lists all designs and gives a comparison of the measured
and simulated chip variants. Our reference design is the FP chip
which includes one private FPU per core (four total). LNS A is the
first chip which includes a shared legacy LNU. The LNS B design
includes a new LNU as well as optimizations in the multi-core system.
The LNS C design includes a new LNU with SF-extensions and a
2×16b vector LNU, allowing to calculate kernels more efficiently at
lower precision. In terms of related work, there exist many application-
specific implementations in the literature (e.g., [5], [24–27], [38]) which
use LNS and its benefits to compute faster and/or more energy-
efficiently. However, there are surprisingly few designs where an LNU

a) b) VDD [V]
0.8 0.9 1.0 1.1 1.2 1.3

En
er

gy
 E

ffic
ien

cy

[pJ
 / F

LO
P]

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

FP [34]
45nm
FMA

FP [53]
32nm
FMA

FP [34]
90nm
FMA

LNS C
65nm

LOG / EXP

LNS C 65nm
SQRT

[mm / GFLOPS]

LNS C
65nm
FMA

2

0.001

0.01

0.1

1.0

[W
 / G

FL
OP

S]

FP [34]
90nm
FMA

FP [53]
32nm
FMA LNS C

65nm
MUL / DIV

LNS C
65nm
FMA

LNS C
65nm

sin / cos

LNS C
65nm
atan2

FP [34]
45nm
FMA

0.001 0.01 0.1 1.0

FP
65nm

ADD / SUB

FP
65nm
MUL

LNS C
65nm

EXP / LOG

LNS C
65nm
SQRT

LNS C 65nm
MUL / DIV

FP
65nm
MUL

Figure 7: Measured efficiency results: a) W/GFLOPS versus mm2/GFLOPS and b) pJ/FLOP versus supply voltage. The parameterized plots of
our designs in a) have been obtained by sweeping the supply voltage over the range 0.8-1.3 V. Curves for related designs [34] also represent
differently pipelined designs. The LNS MUL/DIV/SQRT operations in a) have been normalized with the ALU area of one processor core
(0.0061 mm2 or 4.3 kGE). The processor overheads mentioned in Table IV have been subtracted from all shown results.

equivalent to single-precision FP is designed and integrated into a
programmable processor. In fact, the only comparable ASIC design
where this has been done is the ELM [15], which is also listed in
Table III.

C. Instruction Level Performance

Figure 7a shows an efficiency trade-off analysis similar to the one
conducted in [34], enhanced with datapoints from related FPU designs
[34], [53]. Figure 7b shows the energy-efficiencies over a range of
different VDD conditions for a selection of operations. A complete
comparison of the operator efficiencies of all designs is given in Ta-
ble IV. While LNS ADD/SUB are clearly less energy-efficient than the
FP equivalents, LNS MUL requires ~30% less energy than in FP for
all LNS designs. Apart from these basic instructions, LNS supports ex-
tremely energy-efficient, single-cycle square-roots (6.2 pJ/op @0.8V)
and divisions (14.3 pJ/op @0.8V) utilizing the shifter and adder of the
processor ALUs. Also complex functions such as 2x and log2(x)
can be computed in the LNU for only 45.3 pJ/op and 42.6 pJ/op,
respectively (@0.8V). The architectural improvements of the LNU
result in 27.2 % more efficient ADD/SUB instructions when comparing
the LNS A design with LNS B. The trigonometric function extensions
of LNS C cause a small increase in LUT size, but at the same time
enable completely range-reduced sine/cosine and arctangent function
instrinsics with 2-3 LNU instructions and a low energy consumption of
127.4-183.2 pJ/op @0.8V. In addition, the LNS C design supports 16b
instructions which have a 1.6-2.8× lower energy consumption w.r.t. to
their 32b equivalents.

D. Function Kernel Performance

To analyze the performance of the shared LNU in the multi-
core cluster, a representative set of benchmark kernels (Table V)
reflecting different signal processing applications has been compiled.
The set ranges from linear algebra operations, geometry calculations,
matrix decompositions and regression to image and audio process-
ing kernels. The FP instruction ratio and the instruction mix of the
benchmarks are shown in Figure 8a and we observe that the ratio
of ADD/SUB operations is below 30% for most benchmarks, which
further reinforces our sharing concept. It should be noted that a
second, shared FPU design with an overall complexity of 651 kGE has
also been evaluated but not included in this comparison as it was much
slower (up to 46%) due to many contentions in the FPU interconnect
(up to 96% of accesses resulted in stalls).

The reference FPU is compact but does not include support for
more complex operations which have to be emulated in SW. For DIV
operations, we perform a range reduction to [1,2) and generate a linear
estimate for the inverse that is refined using three Newton-Raphson
iterations. A similar technique is used for the SQRT, where the initial
estimate is generated using the fast-inverse square-root approach.
EXP/LOG operations and trigonometric functions combine range re-
duction with a standard high-order interpolation technique [41]. A
detailed listing of the HW and SW instruction latencies can be found
in Table III.

Figure 8d shows the energy efficiency gains of the analyzed LNS
clusters w.r.t. the FPU cluster. For complex algorithms with many
multiplications, divisions and non-linear functions all LNS designs
outperform the FPU up to 4.1× in terms of speedup and energy

Figure 8: Application kernel results based on silicon measurements (FP, LNS A, LNS C) and post-layout simulations (LNS B): Kernel
characteristics in terms of instruction mix (a) and IPC (b). Speedup (c) and energy efficiency (d) gains w.r.t. the FP design.

TABLE V: Description of Function Kernels in the Benchmark.

Kernel Details

AXPY BLAS 1 Kernel, [100×1] vectors
GEMV BLAS 2 Kernel, [10×10] matrices
GEMM BLAS 3 Kernel, [10×10] matrices
Chol Cholesky Decomposition, [10×10] matrices
QR QR Decomposition, [10×10] matrices
Schur Schur Decomposition, [5×5] matrices
SVD Singular value decomposition, [5×5] matrices
Hom2D Evaulation of 2D homographies (projective transforms) [5], [54]
ProjErr2D Calculation of reprojection error of 2D projective transforms [5], [54]
Dist3D Distance computations in 3D
Givens3D Calculation of 3D givens matrix and rotation of 10 vectors
GradMag2D Computation of gradient magnitude in 2D [3]
GradDir2D Computation of gradient direction (angle) in 2D [3]
Bilat2D Evaluation of a bilateral filter in 2D
FIR2D Evaluation of separable 5×5 Blur Filter in 2D
RBF Evaluation of a 2D regression function with 25 Gaussian kernels
DCT-II Evaluation of 1D 32-point DCTs
SinGen 1kHz sine generator (audio)
ButterW 6th order (3 second order sections) Butterworth IIR lowpass filter (audio)

efficiency (Figure 8c and d). The LNS C design which supports energy-
efficient intrinsic SIN/COS instructions even exhibits speedups in the
order of 2.3-5.9× for kernels with trigonometric functions. DCT-II for
example can take advantage of fast SIN/COS evaluations while the
FP design has to call expensive software emulations which take 68
cycles. For ADD/SUB intensive benchmarks like GEMM, GEMV and
ButterW, the FP design is 10% more energy-efficient than LNS C with
FMA extensions. In case of ButterW, for example, this drop is caused
by data-dependencies in the second order sections of the filter, leading
to an increased amount of stalls due to the LNS ADD latency. Note that
LNS multiplications can be handled very efficiently in the processor
cores with single cycle integer additions. Therefore, the use of FMA
instructions for LNS does not improve efficiency the same way as in
FP designs as can be seen in Figure 8c, e.g., for the AXPY, GEMV and
ButterW kernels. The utilization of the shared LNU on our benchmarks
was 0.42 on average with a maximum of 0.65, leading to an average
of 3% stalls due to access contentions (14% in the worst case). For
applications where half-precision is acceptable, speedup gains can be
increased by 2-2.4× w.r.t. the 32b LNS C design, since twice as many
operations can be executed per cycle and less stalls occur due to the
shorter latencies.

VII. Conclusions
We have presented the first multi-core chips with support for

complex, but energy-efficient HDR operations based on LNS. We
designed a series of compact 32b LNUs which provide significantly
more functionality than other state-of-the-art designs. Useful tran-
scendental functions (2x, log2(x), sin(x), cos(x), atan2(y, x))
can be conveniently added to the LNU incurring a small overhead of
17.3%, since most resources such as the interpolators can be reused.
Extending the preprocessing stage of the LNU with an adder allows
to support fused operations such as multiply-add. While the area cost
of a single LNU is difficult to amortize in a single-core system, we
show that a shared LNU can be competitive in size with a traditional
private FPU design. Due to the fact that MUL, DIV, SQRT can be
efficiently computed in the integer units of the cores, it is sufficient
to share one LNU among a cluster of four cores. Despite the fact
that additions are more complex and energy-consuming in LNS, we
show that the 32b shared LNS designs can compute typical non-
linear function kernels up to 4.1× more energy-efficiently than an

equivalent chip with four private FPUs. This gain can be attributed to
the low-latency MUL, DIV and SQRT instructions and special function
extensions. A vectorized, 2×16b half-precision LNU also represents
an interesting design choice as it allows additional speedup gains of 2-
2.4× for additional 24 kGE complexity for applications where reduced
precision is tolerable. Given the current trend to incorporate more and
more pre-processing steps into small embedded systems, support for
HDR arithmetic becomes ever more important – not only as enabler
but also for convenience and rapid application development. Especially
for applications involving the evaluation of complex non-linear kernels,
we think that shared-LNU architectures are a strong contender w.r.t to
standard FP implementations.

Acknowledgments
This research was supported by the FP7 ERC Advance project

MULTITHERMAN (g.a. 291125) and the IcySoC project, evaluated by
the Swiss NSF and funded by Nano-Tera.ch with Swiss Confederation
financing.

References
[1] F.M. Khan and M.G. Arnold and W.M. Pottenger, “Hardware-Based Support Vector

Machine Classification in Logarithmic Number Systems,” in IEEE ISCAS, 2005, pp.
5154–5157 Vol. 5.

[2] S. Afifi, H. Gholam Hosseini, and R. Sinha, Image and Video Technology – PSIVT
2015 Workshops. Revised Selected Papers. Springer International Publishing,
2016, ch. Hardware Acceleration of SVM-Based Classifier for Melanoma Images,
pp. 235–245.

[3] M. Komorkiewicz, M. Kluczewski, and M. Gorgon, “Floating Point HOG Implemen-
tation for Real-Time Multiple Object Detection,” in FPL, 2012, pp. 711–714.

[4] C. Kerl, J. Sturm, and D. Cremers, “Dense Visual SLAM for RGB-D Cameras,” in
IEEE/RSJ IROS, Nov 2013, pp. 2100–2106.

[5] I. Hong, G. Kim, Y. Kim, D. Kim, B. G. Nam, and H. J. Yoo, “A 27 mW Recon-
figurable Marker-Less Logarithmic Camera Pose Estimation Engine for Mobile
Augmented Reality Processor,” IEEE JSSC, vol. 50, no. 11, pp. 2513–2523, Nov
2015.

[6] G. Frantz and R. Simar, “Comparing Fixed- and Floating-Point DSPs,” http://www.ti.
com.cn/cn/lit/wp/spry061/spry061.pdf, 2004, Texas Instruments, Dallas, TX, USA,
Accessed: November 2016.

[7] “Cortex-M4 Processor,” http://www.arm.com/products/processors/cortex-m/
cortex-m4-processor.php, ARM Ltd., Cambridge, UK, Accessed: November 2016.

[8] N. Kingsbury and P. Rayner, “Digital Filtering Using Logarithmic Arithmetic,”
Electronics Letters, vol. 7, no. 2, pp. 56–58, January 1971.

[9] E.E. Swartzlander and A.G. Alexopoulos, “The Sign/Logarithm Number System,”
IEEE TOC, vol. C-24, no. 12, pp. 1238–1242, Dec 1975.

[10] V. Paliouras and T. Stouraitis, “A Novel Algorithm for Accurate Logarithmic Number
System Subtraction,” in IEEE ISCAS, 1996, pp. 268–271.

[11] M. G. Arnold, T. A. Bailey, J. R. Cowles, and M. D. Winkel, “Arithmetic Co-
transformations in the Real and Aomplex Logarithmic Number Systems,” IEEE
TOC, vol. 47, no. 7, pp. 777–786, 1998.

[12] J. N. Coleman, “Simplification of Table Structure in Logarithmic Arithmetic,” Elec-
tronics Letters, vol. 31, no. 22, pp. 1905–1906, Oct 1995.

[13] J. N. Coleman, E. I. Chester, C. I. Softley, and J. Kadlec, “Arithmetic on the
European Logarithmic Microprocessor,” IEEE TOC, vol. 49, no. 7, pp. 702–715,
2000.

[14] P. Vouzis, S. Collange, and M. Arnold, “LNS Subtraction Using Novel Cotransfor-
mation and/or Interpolation,” in IEEE ASAP, 2007, pp. 107–114.

[15] J. N. Coleman, C. I. Softley, J. Kadlec, R. Matousek, M. Tichy, Z. Pohl, A. Her-
manek, and N. F. Benschop, “The European Logarithmic Microprocessor,” IEEE
TOC, vol. 57, no. 4, pp. 532–546, 2008.

[16] R. C. Ismail and J. N. Coleman, “ROM-less LNS,” in IEEE ARITH, 2011, pp. 43–51.
[17] J. N. Coleman and R. C. Ismail, “LNS with Co-Transformation Competes with

Floating-Point,” IEEE TOC, vol. 65, no. 1, pp. 136–146, Jan 2016.
[18] D. Rossi, A. Pullini, I. Loi, M. Gautschi, F. K. Grkaynak, A. Bartolini, P. Flatresse,

and L. Benini, “A 60 GOPS/W, 1.8 V to 0.9 V Body Bias ULP Cluster in 28nm UTBB
FD-SOI Technology ,” Solid-State Electronics, vol. 117, pp. 170 – 184, 2016.

[19] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla: A Unified
Graphics and Computing Architecture,” IEEE Micro, vol. 28, no. 2, pp. 39–55,
March 2008.

http://www.ti.com.cn/cn/lit/wp/spry061/spry061.pdf
http://www.ti.com.cn/cn/lit/wp/spry061/spry061.pdf
http://www.arm.com/products/processors/cortex-m/cortex-m4-processor.php
http://www.arm.com/products/processors/cortex-m/cortex-m4-processor.php

[20] A. Ukil, V. H. Shah, and B. Deck, “Fast Computation of Arctangent Functions for
Embedded Applications: A Comparative Analysis,” in IEEE ISIE, June 2011, pp.
1206–1211.

[21] F. de Dinechin and A. Tisserand, “Multipartite Table Methods,” IEEE TOC, vol. 54,
no. 3, pp. 319–330, March 2005.

[22] J. Detrey and F. de Dinechin, “Table-based Polynomials for Fast Hardware Func-
tion Evaluation,” in IEEE ASAP, July 2005, pp. 328–333.

[23] ——, “A Tool for Unbiased Comparison Between Logarithmic and Floating-Point
Arithmetic,” J VLSI SIG PROC SYST, vol. 49, no. 1, pp. 161–175, 2007.

[24] J. Rust, F. Ludwig, and S. Paul, “Low Complexity QR-Decomposition Architecture
using the Logarithmic Number System,” in DATE, 2013, pp. 97–102.

[25] J. Garcia, M. G. Arnold, L. Bleris, and M. V. Kothare, “LNS Architectures for
Embedded Model Predictive Control Processors,” in ACM CASES, 2004, pp. 79–
84.

[26] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional Neural Networks using
Logarithmic Data Representation,” ArXiv, March 2016.

[27] I. Kouretas, C. Basetas, and V. Paliouras, “Low-Power Logarithmic Number System
Addition/Subtraction and Their Impact on Digital Filters,” IEEE TOC, vol. 62, no. 11,
pp. 2196–2209, 2013.

[28] M.G. Arnold and S. Collange, “A Real/Complex Logarithmic Number System ALU,”
IEEE TOC, vol. 60, no. 2, pp. 202–213, Feb 2011.

[29] M. G. Arnold, J. Cowles, V. Paliouras, and I. Kouretas, “Towards a Quaternion
Complex Logarithmic Number System,” in IEEE ARITH, 2011, pp. 33–42.

[30] R. Ismail, M. Zakaria, and S. Murad, “Hybrid Logarithmic Number System Arith-
metic Unit: A Review,” in IEEE ICCAS, 2013, pp. 55–58.

[31] Y. Popoff, F. Scheidegger, M. Schaffner, M. Gautschi, F. K. Gürkaynak, and
L. Benini, “High-Efficiency Logarithmic Number Unit Design Based on an Improved
Co-Transformation Scheme,” in DATE, 2016.

[32] T.-J. Kwon, J. Sondeen, and J. Draper, “Design Trade-Offs in Floating-Point
Unit Implementation for Embedded and Processing-in-Memory Systems,” in IEEE
ISCAS, 2005, pp. 3331–3334.

[33] K. Karuri, R. Leupers, G. Ascheid, H. Meyr, and M. Kedia, “Design and Implemen-
tation of a Modular and Portable IEEE 754 Compliant Floating-Point Unit,” in DATE,
vol. 2, 2006, pp. 1–6.

[34] S. Galal and M. Horowitz, “Energy-Efficient Floating-Point Unit Design,” IEEE TOC,
vol. 60, no. 7, pp. 913–922, July 2011.

[35] S. Galal, O. Shacham, J. S. B. II, J. Pu, A. Vassiliev, and M. Horowitz, “Fpu
generator for design space exploration,” in Computer Arithmetic (ARITH), 2013
21st IEEE Symposium on, April 2013, pp. 25–34.

[36] S. F. Oberman and M. Y. Siu, “A High-Performance Area-Efficient Multifunction
Interpolator,” in IEEE ARITH, June 2005, pp. 272–279.

[37] D. D. Caro, N. Petra, and A. G. M. Strollo, “High-Performance Special Function
Unit for Programmable 3-D Graphics Processors,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 56, no. 9, pp. 1968–1978, Sept 2009.

[38] B. G. Nam, H. Kim, and H. J. Yoo, “A Low-Power Unified Arithmetic Unit for
Programmable Handheld 3-D Graphics Systems,” IEEE JSSC, vol. 42, no. 8, pp.
1767–1778, Aug 2007.

[39] F. de Dinechin, M. Istoan, and G. Sergent, “Fixed-point Trigonometric Functions
on FPGAs,” SIGARCH Comput. Archit. News, vol. 41, no. 5, pp. 83–88, Jun. 2014.

[40] F. de Dinechin and M. Istoan, “Hardware Implementations of Fixed-Point Atan2,” in
IEEE ARITH, June 2015, pp. 34–41.

[41] J. F. Hart, Computer Approximations. Krieger Publishing Co., 1978.
[42] M. Gautschi, M. Schaffner, F. K. Gürkaynak, and L. Benini, “A 65nm CMOS 6.4-

to-29.2pJ/FLOP@0.8V Shared Logarithmic Floating Point Unit for Acceleration
of Nonlinear Function Kernels in a Tightly Coupled Processor Cluster,” in IEEE
ISSCC, 2016.

[43] M. Schaffner, M. Gautschi, F. K. Gürkaynak, and L. Benini, “Accuracy and
Performance Trade-offs of Logarithmic Number Units in Multi-Core Clusters,” in
IEEE ARITH, 2016.

[44] H. Fu, O. Mencer, and W. Luk, “Optimizing Logarithmic Arithmetic on FPGAs,” in
IEEE FCCM, 2007, pp. 163–172.

[45] ——, “FPGA Designs With Optimized Logarithmic Arithmetic,” IEEE TOC, vol. 7,
no. 59, pp. 1000–1006, 2010.

[46] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of Floating-Point
Arithmetic. Birkhäuser Boston, 2010.

[47] S. Chevillard, M. Joldeş, and C. Lauter, “Sollya: An Environment for the Develop-
ment of Numerical Codes,” in ICMS. Springer, 2010, pp. 28–31.

[48] J.-M. Muller, Elementary Functions. Springer, 2006.
[49] F. De Dinechin, M. Joldes, and B. Pasca, “Automatic Generation of Polynomial-

Based Hardware Architectures for Function Evaluation,” in IEEE ASAP, 2010, pp.
216–222.

[50] R. Gutierrez, V. Torres, and J. Valls, “FPGA-Implementation of Atan(Y/X) Based on
Logarithmic Transformation and LUT-based Techniques,” J. Syst. Archit., vol. 56,
no. 11, pp. 588–596, Nov. 2010.

[51] P. K. Meher, J. Valls, T. B. Juang, K. Sridharan, and K. Maharatna, “50 Years
of CORDIC: Algorithms, Architectures, and Applications,” IEEE TCAS-I: Regular
Papers, vol. 56, no. 9, pp. 1893–1907, Sept 2009.

[52] M. Gautschi, A. Traber, A. Pullini, L. Benini, M. Scandale, A. Di Federico,
M. Beretta, and G. Agosta, “Tailoring Instruction-Set Extensions for an Ultra-
Low Power Tightly-Coupled Cluster of OpenRISC Cores,” in IFIP/IEEE VLSI-SoC,
2015, pp. 25–30.

[53] H. Kaul, M. Anders, S. Mathew, S. Hsu, A. Agarwal, F. Sheikh, R. Krishnamurthy,
and S. Borkar, “A 1.45GHz 52-to-162GFLOPS/W Variable-Precision Floating-Point
Fused Multiply-Add Unit With Certainty Tracking in 32nm CMOS,” in IEEE ISSCC,
Feb 2012, pp. 182–184.

[54] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cam-
bridge university press, 2003.

Michael Gautschi (S’14) received the M.Sc. degree in
electrical engineering and information technology from
ETH Zürich, Switzerland, in 2012.

Since then he has been with the Integrated Systems
Laboratory, ETH Zürich, pursuing a Ph.D. degree. His
current research interests include energy-efficient systems,
multi-core SoC design, mobile communication, and low-
power integrated circuits.

Michael Schaffner (S’13) received the B.Sc. and M.Sc.
degrees from ETH Zürich, Zürich, Switzerland, in 2009 and
2012, respectively, where he is currently pursuing the Ph.D.
degree.

He has been a Research Assistant with the Integrated
Systems Laboratory, ETH Zürich, and Disney Research,
Zürich, since 2012. His current research interests include
digital signal processing, video processing, and the design
of very large scale integration circuits and systems.

Michael Schaffner received the ETH Medal for his mas-
ter thesis in 2013.

Frank K. Gürkaynak obtained his BSc. and M.Sc. degrees
from Electrical and Electronical Engineering Department of
the Istanbul Technical University and his Ph.D. degree from
ETH Zürich. He is employed by the Microelectronics Design
Center of ETH Zürich and his research interests include
design of VLSI systems, cryptography, and energy efficient
processing systems.

Luca Benini (F’07) is the Chair of Digital Circuits and
Systems with ETH Zürich, Zürich, Switzerland, and a Full
Professor with the University of Bologna, Bologna, Italy. He
received the Ph.D. degree in electrical engineering from
Stanford University, Stanford, CA, in 1997.

He has served as the Chief Architect for the
Platform2012/STHORM project with STMicroelectronics,
Grenoble, France in 2009-2013. He has held visit-
ing/consulting positions at EPFL, Stanford University,
IMEC. He has authored over 700 papers in peer-reviewed
international journals and conferences, four books, and

several book chapters. His current research interests include energy-efficient system
design and multicore system-on-chip design.

Dr. Benini is a member of Academia Europaea.

	Introduction
	Related Work
	Preliminaries
	LNS Number Representation, Format and Arithmetic Operations
	Cotransformations and Fitting Framework

	LNU Architecture and Extensions
	Main LNU Blocks
	Trigonometric Functions
	Sine/Cosine:
	Arc Tangent:

	Processor Integration
	Modifications to the Processor Core

	Results
	LNU Results and Comparison with Related Work
	Designed Chip Variants
	Instruction Level Performance
	Function Kernel Performance

	Conclusions
	References
	Biographies
	Michael Gautschi
	Michael Schaffner
	Frank K. Gürkaynak
	Luca Benini

