
1

Hybrid ASIC/FPGA System for Fully Automatic
Stereo-to-Multiview Conversion using IDW

Michael Schaffner, Frank K. Gürkaynak, Pierre Greisen, Hubert Kaeslin, Luca Benini, Aljosa Smolic

Abstract—Recently, multiview autostereoscopic displays
(MADs) have become commercially available which enable a
limited glasses-free 3D experience. The main problem of MADs
is that they require several (typically 8 or 9) views, while most of
the 3D video content is in stereoscopic 3D (S3D) today. In order
to bridge this gap, the research community started to devise
automatic multiview synthesis (MVS) methods. These algorithms
require real-time processing and should be portable to end-user
devices to develop their full potential. To this end, we revisit an
algorithmic solution based on image domain warping (IDW) and
devise a hardware architecture of a complete synthesis pipeline,
provide insights on where the computationally challenging parts
are, and present implementation results of a hybrid FPGA/ASIC
prototype - which is the first hardware implementation of a
complete, IDW-based MVS system. Based on these results, we
also estimate the complexity and energy efficiency of a fully
integrated solutionin 65 nm and 28 nm CMOS technology and
show that a full-HD real-time solution on a single chip is
within reach. The proposed architecture could be used as a
co-processor in a system-on-chip (SoC) targeting 3D TV sets,
thereby enabling efficient content generation with limited user
interaction (e.g. depth range adjustment) in real-time.

Index Terms—video processing, real-time, stereoscopic 3D
(S3D), multiview synthesis (MVS), image domain warping (IDW),
FPGA, ASIC, VLSI

I. INTRODUCTION

Over the last couple of years, video capture, post-processing
and distribution technologies for stereoscopic 3D (S3D) con-
tent have become mature enough for broad commercialization
[1], [2], [3]. Coupled with the box office success of S3D
movies, this has brought on renewed interest in the devel-
opment of S3D-capable consumer-electronic devices such as
TV sets. However, most such devices require the viewers to
wear some sort of shutter- or polarization glasses, which is
often regarded as an inconvenience [4]. Recently, so-called
multiview autostereoscopic displays (MADs) [5], [6] have
become commercially available. These are able to project
several views of a scene simultaneously - enabling a glasses-
free 3D experience and a limited motion parallax effect in
horizontal direction. However, appropriate content for such
displays is largely inexistent since storage and transmission
of high definition (HD) content with more than two views is
impractical and even infeasible in some cases. The fact that

M. Schaffner is with ETH Zurich, Switzerland, and Disney Research,
Zurich, Switzerland. Frank. K. Gürkaynak, P. Greisen, and H. Kaeslin are
with ETH Zurich, Switzerland. L. Benini is with ETH Zurich, Switzerland,
and University of Bologna, Italy. A. Smolic is with Disney Research,
Zurich, Switzerland. {schaffner,kgf,greisen,kaeslin,benini}@iis.ee.ethz.ch
{smolic}@disneyresearch.com

Copyright © 2015. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending an email to pubs-permissions@ieee.org.

MAD

0

2

4

6

1

3

5

7

Automatic
Multiview
Synthesis

M=8

N=2

Multiple
Viewers

Input Video (S3D)

Fig. 1: MV synthesis generates a large number of synthetic views (e.g. M =
8, 9 for current MADs) from a small number of input views (N = 2 for S3D).
Images © copyright 2008, Blender Foundation / www.bigbuckbunny.org.

each MAD has different parameters exacerbates the problem.
In order to bridge this content-display gap, multiview synthesis
(MVS) methods [7], [8], [9], [3] have been devised over the
past couple of years. These methods are able to generate M
virtual views from a small set of N input views, as shown in
Figure 1.

Common MVS methods are based on depth image based
rendering (DIBR) [10], [3], where a dense depth map of
the scene is used to reproject the image to new viewpoints.
Although physically correct, this approach requires accurate
depth maps and additional inpainting steps. Our work uses
an alternative conversion concept suggested by [11] which
is based on image domain warping (IDW) [12]. The IDW
framework allows to locally distort image regions via a non-
linear, two-dimensional transformation which is obtained by
solving a least-squares (LS) problem. The constraints for this
problem are formulated using image features extracted from
the input images. This technique is promising as it does not
rely on pixel dense depth, but only on robust, sparse point
correspondences. Further, no inpainting is required which is
still an algorithmically difficult step of DIBR based MVS [13].

Multiview synthesis, using IDW methods as well as alter-
native approaches, are computationally intensive - yet they
should run efficiently in real-time and should be portable to
end-user devices to develop their full potential. To this end,
we make the following contributions:

• We design and implement the first complete hardware
system for IDW-based, automatic MVS. While several
subcomponents have already been addressed in more
detail in previous work (feature points [14], saliency [15],
warp rendering [16], [17]) the system integration aspect
is new and represents one of the main contributions.

• The IDW processing pipeline for MVS [11] is revisited
and the algorithms involved in the substeps are selected
such that an efficient hardware implementation is possi-
ble. New w.r.t. to the existing algorithmic solution are the
hardware specific design decisions.

• Based on linear solver architectures we have developed

2

previously [18], we design an improved solver which
contains a programmable matrix assembly stage and
makes use of custom, fused floating-point (FP) arithmetic.

• Using these results, we estimate the implementation cost
and energy-efficiency of a completely integrated solution
and show that our proposal is viable as an accelerator in a
mobile SoC. Also, we provide a comparison with related
components from DIBR-based systems.

II. BACKGROUND AND RELATED WORK

A. Multiview Synthesis Methods

The IDW method used in this work relies heavily on prior
work on warping approaches for video content adaption such
as aspect-ratio retargeting [19], S3D retargeting [20] and non-
linear disparity mapping [21]. In these applications, the video
is warped in a content-aware manner in order to fulfill certain
constraints. Image features (such as edges) and visual impor-
tance maps (saliency) are used in order to determine which
parts of the image are important and should be preserved.
Unavoidable distortions are moved to visually unimportant
regions. This IDW framework has been extended for automatic
MVS by [11]. The artifacts caused by geometrical incor-
rectness are minor and visually hardly noticeable. In fact,
exhaustive and formal subjective experiments performed by
MPEG [22], [11] revealed that IDW as proposed here performs
at least as well as DIBR methods, even if those used pre-
computed and hand-tuned depth maps. Based on these results,
MPEG adopted warp coding for the 3D extension of the new
HEVC standard [23], thereby enabling IDW-based MVS.

Related methods [7], [10], [9], [3] for MVS and free-
viewpoint television (FTV) rely on DIBR in order to generate
new viewpoints. These methods use dense disparity maps to
re-project pixels into new virtual views using the relations
from epipolar geometry [24]. Although physically correct,
DIBR still has two major limitations that remain fundamen-
tally unresolved. First, DIBR-based rendering always intro-
duces disocclusions which have to be filled using inpainting
techniques. Second, a dense disparity map of the scene is
required which is difficult to obtain in practice, and in real-
time implementations often noisy and incomplete.

B. Image Features and Saliency Estimation

A crucial ingredient for multiview synthesis using IDW is
establishing robust sparse point correspondences between the
two input images. Numerous algorithms and variations thereof
have been devised over the past decade. Especially so termed
binary descriptors such as BRIEF [25] and Semantic Kernels
Binarized (SKB) [26] are attractive for hardware implemen-
tations since they are inexpensive to compute, require less
storage, and can be matched very efficiently. The hardware
architecture implemented in this work is based on an efficient
hardware implementation of SKB by [14].

Further, the IDW pipeline relies on so-called saliency maps
that indicate visually important regions in the images. Algo-
rithms for the extraction of saliency information are usually
based on psycho-visual attention models [27], and can greatly
vary in computational complexity. E.g., a very recent, high-
quality saliency for stereoscopic video was proposed by [28].

Their model not only considers low-level cues such as lu-
minance and chrominance, but also high-level cues. The algo-
rithm, involves many substeps such as optical-flow calculation,
segmentation, and scene-type classification, and therefore is
less suited for a real-time hardware implementation. Here, we
use an efficient implementation [15] of the Fourier-transform-
based saliency proposed by [29] due to its good tradeoff
between computational complexity and quality.

C. Linear Solvers

At the core of most IDW algorithms lies a quadratic energy
minimization problem which is discussed in more detail in
Section III. Such problems can be tackled by solving a large,
linear system with typically banded sparsity structure. Since
this system is positive definite and symmetric, conjugate
gradient (CG) and Cholesky decomposition (CD) based solvers
are usually the algorithms of choice [30], [31]. The design
of hardware architectures for these iterative and direct solver
types and related work thereof have been discussed in detail
in [18], [32]. These two serve as a basis for the CD-based
solver implemented in this work.

D. Resampling for MADs

The MAD specific interleaving process essentially represents a
resampling step onto a possibly non-orthogonal or completely
irregular sampling lattice. This matter is discussed in detail
in [5], [6]. Due to the imperfect optics of the MADs, the
views often suffer from crosstalk which can be mitigated using
appropriate filtering [6]. Further, MADs only have a limited
depth budget, and the content to be viewed can be optimized
in order to reduce spatial aliasing artifacts [33], [34].

In this work, we use an adapted version of elliptical
weighted average (EWA) splatting [16] for the warping and
interleaving processes. This is a forward-mapping algorithm
and its mathematical properties allow to analytically combine
interpolation and anti-aliasing filters for the transformation
with the display pre-filter.

E. Real-time Systems and Hardware Architectures

Most real-time systems for MVS are based on DIBR, and the
depth estimation and view synthesis steps are usually treated
separately in literature. There are only a few publications
where both parts have been combined, such as the work by
[35] where one of the first complete real-time systems for
MVS has been implemented using a high-end workstation. In
[36], an FPGA-based system able to synthesize one synthetic
view from 1080p S3D input at 60 fps is presented.

FPGA-based hardware accelerators for depth estimation
have been developed by [37], [38], [39], [40], [41]. A high-
quality, global stereo matching algorithm, achieving a through-
put of 720p@2.6 fps is implemented by [37]. The design by
[38] outputs CIF depth maps @42 fps whereas the designs by
[39] and [40] reach resolutions of up to XGA@60 fps. The
architecture from [41] is based on the algorithm used in the
MVS system [35] and shows very promising performance of
up to 2×1080p@30 fps (S3D).

DIBR-based view synthesis engines based on FPGAs and
CMOS integrated circuits are developed in [42] and [43], [44],

3

[45], [46], respectively. In [44], [46] and [45], single view sin-
gle view synthesis engines with throughputs of 1080p@32 fps,
1080p@94 fps and 4 k@216 fps, are developed. MVS ren-
dering solutions for 1080p@60 fps and SXGA@29 fps are
presented in [42] and [43].

In contrast to mentioned work, we devise a complete, IDW-
based hardware system that takes a 1080p S3D input stream
and that outputs interleaved 1080p video for display on a
MAD. A more detailed comparison is given in Section V-D.

III. ALGORITHMIC FLOW

This section is a summary of the algorithmic flow of the
implemented MVS scheme, and is based on work presented
previously in [11], [18]. Further, we explain the specific
selection and parametrization of the involved methods with
respect to hardware efficiency. As shown in Figure 2, the
input to the IDW processing pipeline is the S3D footage (left
and right images) which is analyzed in order to reveal image
features such as point correspondences, edges and saliency
information in a first step. Those features are then used to
formulate a global energy minimization problem the solution
of which results in two warps — one for each input image.
These warps describe the (nonlinear) transformation of the
input images to a viewing position centered between the two
original views. The new views are then generated by first inter-
and extrapolating the two warps to the desired view positions;
and then by resampling the S3D input according to those
interpolated warps. Finally, the generated views are interleaved
in such a way that they can be displayed on the MAD. The
individual steps are explained in more details below.

A. Sampling Lattices, Domains and Warps

In the following, we will use the terms sampling lattice Λ
[5] and domain of the image/warp. The former is a gener-
alization of sampling grids, and may also describe regular,
non-orthogonal arrangements. The latter describes the physical
dimensions that a certain image or warp spans (measured in
pixels). This distinction allows to define coordinate quantities
(e.g. warps) or feature maps (e.g. saliency) over a certain
physical dimension, but with a different amount of sampling
positions (e.g. for subsampled quantities). Non-orthogonal
sampling arrangements are important to describe the interleav-
ing patterns of MADs. A sampling lattice is defined as all
linear combinations of a set of (not necessarily orthogonal)
basis vectors Λ = {u : u = n1v1 + n2v2 + ...+ nNvN |ni ∈
Z = V n}. In order to emphasize the distinction between
orthogonal and non-orthogonal sampling arrangements, we
will refer to the former as a grid, and to the latter as a lattice.
Both are defined by a sampling matrix, but in case of a grid
we have the restriction that V is diagonal. A domain of an
image or warp will be denoted as D = {w × h} ⊂ R2 where
w and h are the dimensions in pixels.

An image warp can be described using a non-linear, two-
dimensional forward mapping w(u) : u ∈ Din → w(u) ∈
Dout, where u is the coordinate in Din. Since it is infeasible to
express the image warps as analytical expressions in general,
they are stored as discretized functions defined over a two-
dimensional grid Λwrp and with Din. Linearized indices, e.g.

Saliency

Point Corresp.

Edges

1. Video Analysis

S3D Input

Implemented on FPGA

5. Anti-Aliasing & Interleaving

Implemented on ASIC
Interleaved Output (to MAD)

Λdisp0.0 1.00.5

2. Warp Calculation

2 Warps

-0.25 -0.04 0.18 0.39 0.61 0.82 1.04 1.25

3. Warp Inter-/Extrapolation

2 Warps

-0.25 -0.04 0.18 0.39 0.61 0.82 1.04 1.25

4. Rendering

Fig. 2: IDW pipeline for MVS (refer to the text for more details). As indicated,
the first part is implemented on an FPGA, and the second part on an ASIC.
Images © copyright 2008, Blender Foundation / www.bigbuckbunny.org.

k, are used to enumerate the warp vertices wk sampled at
discrete sampling points uk on Λwrp. These may coincide with
the pixel positions in the input image in the case of pixel dense
warps. However this is usually not the case since the warps
are often subsampled by around 10× for efficiency reasons
(subsection III-C3). Superscript letters indicate to which view
and coordinate-dimension a particular quantity belongs. For
example, l and r denote the left and right input views, and
x and y the first and second dimension of a two-dimensional
quantity. The two S3D input images will be denoted as ilin, irin.
They are defined over Din = {win × hin} and the sampling
grid Λin is defined as Vin = diag (1, 1).

B. Video Analysis

III-B1 Sparse Point Correspondences and Disparities. In
MVS, the disparities are the most important features since
they reveal the 3D geometry of the observed scene. Yet these
have to be robust in order to get good results. As opposed
to DIBR-based methods, the IDW approach works on sparse
disparities. In this work we adopted features based on SKB
[26], since they work very well in the setting of almost ideally
rectified stereo video. As shown in Figure 3, SKB features
a low outlier rate and, therefore, it is possible to use the
features without additional RANSAC filtering, which would be
costly in hardware. Occasional outliers can be tolerated since
the warp calculation process enforces spatial and temporal
smoothness. Furthermore, since SKB is a binary descriptor,
it can be calculated and matched very efficiently in hardware.
Descriptors containing fixed-point or even FP entries such as
SURF or SIFT are much more costly in this respect.

Feature points are given in the form of two lists pl
i ∈ Din

and pr
i ∈ Din with i ∈ {0, 1, ..., npts − 1}. In addition, there

is confidence value ci associated with each pair pl
i, p

r
i , and

we have that 0 ≤ ci ≤ 1.0.

III-B2 Saliency Estimation and Edge Maps. A saliency map
identifies the visually important regions in the image, and is
used to guide the warp calculation such that deformations
are hidden in unimportant regions (e.g. homogeneous parts
such as blue sky). Extracting visual saliency is difficult since

4

1 - Precision
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Re
ca

ll

0

0.2

0.4

0.6

0.8

1

SIFT
SURF
BRIEF

SKB
SKB_WH

Fig. 3: Performance of a greedy nearest-neighbor matching with a small
window, as it is implemented in hardware (test set from [47]). The recall
is the ratio of correct matches and existing correspondences between left and
right image, and 1-precision is the fraction of false matches. The ‘SKB’ curve
is for the original 256 bit descriptor described in [14], [26], and ‘SKB WH’
represents the improved version used in this project where the original SKB
kernels have been replaced by binary Walsh-Hadamard basis functions.

it is a subjective measure that depends to some extent on
video content, viewer, and application [27]. Here we use
the quaternion-Fourier-transform-based (QFT) algorithm from
[29] which exhibits a good tradeoff between computational
complexity and quality. The algorithm leverages the phase-
spectrum of a video sequence, which carries information on
where discernible objects are located in an image. Note that
the QFT can be efficiently calculated using two separate 2D
Fast Fourier Transforms (FFTs) [15]. In the following, the
saliency maps extracted from ilin and irin are denoted as
{sl, sr} ∈ [0.0, ..., 1.0] and are defined on Din, Λwrp.

Very salient lines should also be preserved in order to
avoid bending them in the warped images. This can be done
using several methods, e.g. by extracting straight lines using
the Hough transform. However, since this feature is not as
important as the saliency and the point correspondences,
simple gradient-magnitude maps without Canny edge post-
processing are used. Such gradient-magnitude maps can be
extracted very efficiently using 3 × 3 Sobel filters. The edge
maps will be denoted as {el, er} ∈ [0.0, ..., 1.0] and are
defined on Din, Λwrp.

C. Warp Generation

The warps are calculated by solving a quadratic energy mini-
mization problem of the form

min
f

(E (f)) = min
f

(Edata (f) + Esmooth (f)) (1)

where the data term Edata enforces function values at certain
coordinate positions, and the smoothness term Esmooth is a
regularizer that propagates these known values to adjacent
sampling positions. The vector f holds the samples of the
unknown warp vertices on Λwrp. The data term itself is
composed of the energy term Ept containing the desired vertex
positions in the target image, and the energy term Et which
enforces temporal consistency:

Edata = λptEpt + λtEt.

λpt and λt are weighting parameters to set the relative impor-
tance of a particular constraint. Analogously, the smoothness
term comprises the two constraints Esal and Eedge which
determine the local smoothing strength:

Esmooth = λsalEsal + λedgeEedge.

Again, λsal and λedge are relative importance weights. Recall
that we solve for two warps, each of which maps either the
left or the right image to a virtual view at position 0.5 on the
normalized baseline. This asks for setting up four quadratic
energy functionals Elx, Ely, Erx and Ery (two coordinate
dimensions for each input view) which can all be minimized
independently. In the following we will only describe the
constraints assembly for the x-problem of the left warp Elx -
the formulations for all other problems follow analogously.

III-C1 Data Constraints. The term Ept contains the desired
positions of the warp vertices in the warped image. As illus-
trated in Figure 2, the target view for both warps is centered
between both input views. The sparse point correspondences
are used to formulate these constraints by setting

Elx
pt =

npts−1∑
i=0

(
slk · cli

)2 · (f lxk − 0.5
(
plxi + prxi

))2
, (2)

where slk is the saliency value at coordinate position pl
i, f

lx
k

is the warp vertex at position pl
i and ci is the associated

confidence value. Note that these constraints are only defined
for the warp vertices corresponding to pl

i. There may be many
warp vertices without any point constraints. In the case where
the warps are sub-sampled w.r.t. to the image resolution, the
point constraints have to be distributed to the surrounding
four warp vertices using bilinear weighting [18]. The temporal
constraint is defined using the warp of the previous frame g:

Elx
t =

∑
k∈Λwrp

(
f lxk − glxk

)2
.

III-C2 Smoothness Constraints. The saliency constraints

Elx
sal =

∑
k∈Λwrp

slk
2 ·
((
f lxk+1 − f lxk

)2
+
(
f lxk+h − f lxk + dx

)2)
,

penalize deformations of the regular warp grid (assuming a
column-major enumeration k of the warp vertices). dx denotes
the sample spacing, and is related to the warp grid sampling
matrix Λwrp = diag (dx, dy). The edge constraints penalize
deformations orthogonal to the edge directions:

Elx
edge =

∑
k∈Λwrp

elk
2 ·
(
f lxk+1 − f lxk

)2
.

III-C3 Sparse Linear System. Since the E(f) is quadratic
in the elements of f , the solution of (1) is a LS solution.
As shown in [18], the terms of E(f) can be arranged such
that E (f) = ||Af − b||2, where matrix A and vector b both
encode the constraints explained before. The global minimum
is then achieved if ∇E (f) = 2AT (Af − b) = 0, i.e.
the solution can be found by solving the normal equations(
ATA

)
f = ATb, where

(
ATA

)
is symmetric, quadratic and

positive definite. As shown in [18], it is possible to deduce
analytical expressions for ATA and ATb, which makes the
assembly of these equations more efficient.

Since the constraints are defined on small, local neigh-
borhoods on Λwrp, the matrix

(
ATA

)
is very sparse and

only contains one main- and nine off-diagonals. Further, its
dimension n = wwrp × hwrp is in the order of tens of
thousands to millions - depending on the resolution of Λwrp.

5

Current video content is predominantly in 1920×1080 format,
resulting in 4 problems (Elx,Ely,Erx and Ery) with nearly
two million variables for each video frame. Solving such large
systems at frame rates of up to 30 fps is computationally
very demanding and infeasible for real-time applications. Also,
such pixel dense solutions are not necessary as even 10× sub-
sampled grids result in sufficient synthesis quality on many
HD S3D sequences [11]. This results in realistic grid sizes of
about 180×100, which corresponds to 18 k variables.

III-C4 Solution Methods. Linear solver algorithms fall into
two main categories, namely direct and iterative ones. Direct
solvers employ a matrix decomposition such as LU or CD in
order to compute an exact solution, whereas iterative solvers
successively refine an approximate solution. The choice of the
solver is dependent on several factors such as the mathematical
properties and structure of

(
ATA

)
, convergence and numerical

behaviour, and the complexity of arithmetic operations and
memory accesses. The two most widely used algorithms for
positive-definite systems are direct CD- and iterative CG
solvers [30][31].

As discussed in [18], [32], iterative solvers require an
extremely large memory bandwidth. For IDW problems with
n = 18 k variables, a single-precision CG solver would have
to traverse nine n-dimensional vectors per iteration, and well
defined problems require in the order of 200 iterations. This
would translate into a memory bandwidth in the order of
30 fps × 4 × 18 k × 200 × 9 × 4 Bytes ≈ 15.6 GByte/s and
memory requirements of around 18 k×9×4 Byte ≈ 5.2 MBit.
Such a large memory bandwidth is infeasible to realize with
external memory on most embedded platforms, which means
that the whole solver would have to be implemented with on-
chip resources only, which is very costly in this case.

Instead a direct CD-based solver only requires two passes:
in the first pass the matrix is decomposed into a lower triangu-
lar matrix L, a forward substitution h = L−1b is performed,
and L and h are written to the memory. In a second pass, L
is read in reverse order to perform the backward-substitution
f = L−Th. In this case, L is a banded matrix with 102 nonzero
(off-)diagonals, so the external memory bandwidth would be
30 fps × 4 × 2 × 18 k × (102 + 1) × 4 Bytes ≈ 1.7 GByte/s,
and the memory requirements for local buffering amount to
325.1 kbit. Based on these numbers we decided to use a CD-
based solver in our hardware implementation. However note
that direct methods do not scale well to larger systems beyond
a few hundred-thousand variables, and more elaborate solvers
based on iterative methods are required in such scenarios [32].

D. Warp Interpolation and Rendering

In the rendering step, the two warps wl and wr are first
bilinearly upsampled from Λwrp to Λin in order to form pixel
dense warps w̃l and w̃r. These are then linearly inter- and
extrapolated to all desired view positions α on the normalized
baseline. As shown in Figure 2, eight views are generated in
this case: four views from the left image il, and the remaining
four views from the right image ir. Note that this view interpo-
lation can be used to linearly scale the depth range of the scene
at runtime. The resampling is performed using EWA splatting,
which is a forward-mapping method. Although more complex

than traditional bilinear backward mapping [48], EWA has the
advantage that no warp inversion is required since these are
in calculated in forward format in this application. The EWA
framework uses Gaussian filter kernels and the Jacobian of
the image warp as a local deformation measure in order to
calculate the footprint of an input image pixel in the output
image. The input pixels thus correspond to Gaussian splats in
the output image, which are rasterized within a bounding box
and accumulated in a frame buffer. Since Gaussians are closed
among themselves and under affine transformations, an anti-
aliasing filter for the output image sampling grid can be easily
incorporated analytically. A short summary is given below –
for a complete derivation see [16].

III-D1 The EWA Filter Kernel. w̃(u) can be any of the pixel
dense image warps. Let Jk be the Jacobian of the warp at
pixel position uk. The EWA kernel is characterized by the
covariance matrix Σk = JkWiJ

T
k +Waa = Ck +Waa in the

target image domain, where the first term is the transformed
interpolation kernel, and the second term is the anti-aliasing
kernel. Wi = diag(σ2

i , σ
2
i) and Waa = diag(σ2

aa, σ
2
aa) are

diagonal matrices that parameterize the interpolation and anti-
aliasing filters. The weight of the Gaussian filter at the position
vj ∈ Λout on the output sampling lattice is calculated as

ρjk = |Jk|
(

2π
√
|Σk|

)−1

e−0.5(vj−w̃(uk))Σ−1
k (vj−w̃(uk)),

and is multiplied with the pixel value iin (uk). The weights
ρjk are accumulated along with the pixel values ρjk · iin (uk).
Finally, the output pixels iout (vj) are calculated by dividing
the accumulated values by the corresponding weights.

III-D2 Filter Parametrization and Display Anti-Aliasing. In
[16], it is shown that for a regular, quadratic sampling grid
the filter parametrization σi ≈ 0.39 leads to the optimal L2
fit of a Gaussian to the ideal low-pass filter in the frequency
domain. It is also shown how σ2

aa can be chosen adaptively
such that anti-aliasing is only performed when needed. In our
application, the covariance matrices are diagonally dominant,
and therefore we can use the simplified adaptive scheme.

The resampled views are interleaved according to a special
interleaving pattern (like in Figure 2), such that they can be
displayed simultaneously on a MAD. Proper care must be
taken in order to prevent aliasing, as shown by [5]. The filters
are generally non-separable, and in theory a high order is
required to approximate the intricate shape of the passband.
But [5] also noted that for natural images, the benefit of such
filters is rather small. As a result, simpler separable filters
that lead to visually pleasing results could be used as well.
In this work we use the closedness of Gaussians in order to
incorporate a Gaussian display pre-filter analytically into the
EWA kernel. Instead of using σaa = 0.39 we adapt this value
with the density 1/|Vdisp| of the display sampling lattice for
one particular view as σ2

disp = σ2
aa ·|Vdisp|, where σ2

disp is now
used in place of σ2

aa. The sampling lattices of all views and
colors of the display we used for experiments have a density
of 1/8, which results in σ2

out ≈ 1.22.

IV. HARDWARE ARCHITECTURE

6

ASICFPGA

Dvi Tx

Memory Controller 2 (Multiport Interface), DDR2-666

Memory Controller 1 (Multiport Interface), DDR2-666

ASIC IF
Dvi Rx

Eth IF

Con�g
/

Status
512p
(rgb)

180p
(b/w)

360p
(b/w)

720p
(b/w)

100p
(b/w)

100p
(b/w)

QDFT
Saliency

Sobel

1. Input Scalers

SKB
(L)

M
atchingSKB

(R)

Binning
(L)

Binning
(R)

2. Video Analysis

Constraints
Assembly

(A,b)

3. Warp Calculation

Linear Solver
(Cholesky)

Transposer

Input
IF

Output
IF

Con�g

4. Warp Interpolation 5. Rendering

6. Accumulation

Renderunit 1

Renderunit 2

Renderunit 3

Renderunit 9

...

L1L1L1L1 ...

L2

1080p

View
Interp.

View
Interp.

1080p

148.5 MHz 138.6 MHz

125 MHz

135 MHz 255 MHz

75 MHz

300 MHz

adapted from [14]

from [15]

from [14]

from [17]

Fig. 4: Top-level blockdiagram of the MVS system. It consists of 5 main parts, where the first 3 reside on the FPGA and the remaining ones on the ASIC.

The complete MVS system shown in Figure 4 has been devel-
oped in several steps. Initial work concentrated on the design
of an efficient multiview rendering core in hardware which
was fabricated as a custom ASIC in 65 nm. In later stages of
the project, the development was moved to the FPGA-based
prototyping system Terasic DE4-530. The fabricated ASIC
was connected via one of the HSMC ports using a custom
extension PCB, and the missing parts have been developed
and implemented on the FPGA.

Figure 4 provides a high-level block diagram, where the
core view synthesis components are numbered from 1 through
6. These components are, in principle, device-independent and
can be ported to other FPGA/ASIC technologies. The system
processes the input according to the algorithmic flow presented
in Section III: The input scaler (1) block scales the input
video to the different resolutions that are required later on,
and stores them in the memory. The video analysis block (2)
extracts the saliency- and edge maps, and calculates the point
correspondences using these scaled video frames. The warp
calculation block (3) contains a constraints assembly core and
a Cholesky-decomposition-based linear solver. The former is a
µcode-programmable unit that builds the LS-problem matrices,
and the latter is a fixed function solver. The warp interpolation
stage (4) upsamples the two warps to 1080p, and interpolates
them to the desired view positions. The rendering block (5)
prepares a filter kernel for each input pixel/warp-vertex pair,
evaluates it on the sampling lattice Λdisp of the assigned view,
and sends it to the accumulation stage (6) which fuses all
subpixels to form the interleaved output image. The system
has been designed to provide enough throughput to process
1080p S3D input video @30 Hz using 180× 100 warps.

The main contributions of this paper are the complete MVS
system shown in Figure 4, the programmable matrix assembly
stage and the improved linear solver (3). The SKB subsystem
in the video analysis block (2) has been ported from [14]
and enhanced with better semantic kernels (Walsh-Hadamard
functions, see Figure 3) and with feature point sorting stages
(‘binning’ blocks in Figure 4). The saliency implementation
in (2) has been taken from [15], and the rendering ASIC
comprising (4-6) is the one from [17]. In the following
description we will concentrate on the new components of the
system, and the remaining parts will be summarized briefly.

A. Interfaces

The in- and output video streams are both transferred via
standard DVI interfaces, referred to as DVI RX and TX.

The DVI RX interface is configured to receive S3D video in
top/bottom format at 30 Hz with a pixel clock of 138.6 MHz.
This allows to conveniently mount the MVS system on any
PC or laptop, and play the S3D content using a standard
media player. The DVI TX interface is configured to transmit
a standard 1080p stream at 60 Hz with a pixel clock of
148.5 MHz. The frame rate of 60 Hz is a requirement of the
Alioscopy display we used for testing, since 1080p at 30 Hz is
not a supported video standard. Since the system is designed
for a throughput of 30 fps, the output of the rendering stage
has to be temporally upsampled and resynchronized. This is
achieved by duplicating frames, and a triple buffering scheme
is employed in order to guarantee synchronized frame changes.

In the current configuration, two memory controllers in-
terfacing to a DDR2-666 DIMM are used - providing a
theoretical maximum throughput of 5’333 MByte/s each. Each
controller is attached to a command-based multi-port interface
which employs a simple round-robin (RR) arbitration policy.
The multi-port interface works at 666.7 MHz/4 ≈ 166.7 MHz
and with 256 bit wide words such that the throughput is
matched. Dual-clock FIFOs are employed in order to facilitate
synchronization between the clock domains shown in Figure 4.

The ASIC rendering core is operating at 300 MHz in order
to achieve enough throughput for 30 fps. The IO between the
FPGA and the ASIC is running at a phase-synchronous clock
which is four times slower (75 MHz) than the core frequency.
The ASIC has three 24 bit RGB ports – two at the input
and one at the output. The two input images and warps are
streamed in through the input ports in an interleaved manner.

External memories and status/configuration registers can be
accessed from a MATLAB environment via Ethernet in order
to facilitate development and debugging.

B. Schedule and Memory Maps

A frame-pipelined architecture was chosen for this project
as each hardware component has a different requirement in
accessing the memory. Some of the blocks process the two
images of one S3D frame sequentially, and some in parallel.
Further, the solver works on transposed problems which follow
column-major order as opposed to the row-major order of the
image pixel streams. Also, some of the matrix arrays in the
solver have to be accessed in reverse order (backwards). In
such a setting, it is almost impossible to connect all blocks
directly to each other. As shown in Figure 5, each hardware
component (1- 6) works independently on a particular frame,
resulting in an overall processing latency of five frames. The

7

Input Scalers
Video Analysis

Warp Solve (Fwd)
Warp Solve (Bkwd)

Rendering

Frame 0
Frame 0

Frame 0

Frame 1
Frame 1
Frame 2

Frame 2
Frame 3

Frame 3
Frame 4 Frame 5

Frame 5Frame 4

Frame 3Frame 1 Frame 2

Frame 6
Frame 6
Frame 7

Time Slot 1 2 3 4 5 6 70

a)

Frame Slot 0 (17.5 MB)

Frame Slot 1 (17.5 MB)

Frame Slot 2 (17.5 MB)

Frame Slot 3 (17.5 MB)

Frame Slot 4 (17.5 MB)

Frame Bu�ers (19MB)

0

32

64

96

128

160

O
�s

et
 [M

By
te

]

2x 1080p RGB
2x 720p Gray
2x 360p Gray
2x 180p Gray
2x 288p RGB
2x 100p Saliency
2x 100p Edge
2x Points
1x Default Points

b) c) Frame Slot 0 (0.46 MB)

Frame Slot 1 (0.46 MB)

Frame Slot 2 (0.46 MB)

Frame Slot 3 (0.46 MB)

Frame Slot 4 (0.46 MB)

Solver Bu�er (14.2MB)

0

0.5

1

1.5

2

2.5

O
�s

et
 [M

By
te

]

4x Solve (Flp.)
4x Solve (Fixp.)

DIMM 2DIMM 1

2x L Matrix
2x y Vector

Pingpong Bu�er
for CD Solver

Fig. 5: Processing schedule (a), and memory maps for both DIMMS (b,c).

associated data is stored in frame slots and the rendered frames
are stored in a triple frame buffer for temporal upsampling.
Temporary decomposition data of the CD solver (L and y)
are stored in a ping-pong solver buffer.

The memory traffic generated by the individual components
is listed in Table I. Since the DE4-530 platform provides two
external memories (DIMM1 and DIMM2), the traffic has been
distributed to both memory controllers for convenience. Solver
related traffic is allocated to DIMM2, whereas everything
else is allocated to DIMM1. This minimizes memory pattern
interference, and allows to use simple controllers and multi-
port interfaces with round robin (RR) scheduling. As shown
in Table I, the theoretical bandwidth utilization is only around
30 % of the maximum bandwidth of the DDR2-666 interfaces.
Even if bandwidth is in high demand, this is in a completely
feasible range for modern mobile SoCs which usually have
even faster interfaces such as the LPDDR3-1600 interface,
providing a maximum bandwidth of 12’800 MByte/s.

C. Stereo Video Analysis

IV-C1 SKB Subsystem. The SKB subsystem works on an
image pyramid of 720p, 360p and 180p grayscale images.
Correspondences are detected in three steps: interest point
detection, descriptor calculation and descriptor matching. The
first is basically a filter bank that approximates a Laplacian
scale-space using box-filters. Extremal points in this space
representing well localized regions in the image are identified
using non-maximum suppression. In the descriptor calculation
step, small support regions around these extrema are convolved
with 16 semantic kernels, whose responses are binarized by
comparing them to zero – thereby producing binary 256 bit
descriptors. In the matching stage, the descriptors coming from
the left and the right view are matched using a greedy, win-
dowed matching procedure. For each descriptor coming from
the left image, the Hamming distances of all correspondence
candidates in a small matching window in the right image is
calculated. The lowest-distance candidate is accepted if the
value lies below the matching threshold. The SKB subsystem
is able to extract and match up to 25 k descriptors per frame
and the coordinate resolution is 1 pixel in the 720p domain.
All data formats are fixed-point and have been chosen such
that the performance is not compromised [14].

IV-C2 Point Correspondence Binning. The matching block
can not guarantee that the correspondences are output in-
order, and therefore an additional sorting stage is needed at
this point. Further, several correspondences may affect the
same warp-quad (the square formed by four warp vertices).

TABLE I: Required memory bandwidth (including alignment overheads).

DIMM1 DIMM2
[MByte/s] R W R+W R W R+W

Scalers - 497 497 - - -
Analysis 99 36 136 - - -
Warp Calc. 36 - 36 907 913 1’820
Rendering 398 199 597 6 - 6
DVI TX 398 - 398 - - -
Total 932 733 1’664 913 913 1’826

We accomplish this by allocating a coordinate bin for each
quad, and the correspondences are sorted into these bins on-
the-fly. Note that the binning is not equal for the left and the
right view, and therefore two such blocks are used. Since the
SKB subsystem works in scan-line fashion, the sorting blocks
only have to keep a sliding window of around 5 quad rows.

In our evaluations we observed that the number of corre-
spondences per bin does usually not exceed 4. Therefore we
align our data structure to DDR memory bursts (256 bit), and
hence it is able to hold a maximum of 6 correspondences
per bin (superfluous ones are discarded). This leads to a
180 × 100 × 256 bit ≈ 0.55 MByte data structure for each
of the two views. Clearly, there exist sparse data structures
more memory-efficient than this (such as quad-trees), but the
simplicity and regularity of this binning approach is very
convenient for a hardware implementation. Further, since the
warp-generation follows column-major order (Section IV-D),
this burst alignment also simplifies the transposition and as-
sociated address generation in the constraints assembly stage.

IV-C3 Saliency and Edge Extraction. The saliency is calcu-
lated by first converting the RGB information into a quaternion
representation, followed by a transformation to frequency
space using a quaternion Fourier transform (QFT). In the
frequency domain, the phase information is extracted by
normalizing each quaternion with its magnitude. An inverse
QFT transforms this information back into the image domain.
Since the QFT is separable, one QFT can be implemented
using two 2D FFTs which in turn can be split into four
1D FFTs, where two are along the rows and two are along
the columns of the image. This allows to use an iterative
datapath containing one 1D FFT core which performs the
QFT by 4 successive applications. However, this also implies
several transposition, which can be costly in terms of memory
bandwidth – especially if the 2D array does not fit on-
chip entirely. Therefore, the algorithm has been modified to
compute a block-wise saliency, where the image is partitioned
into p stripes spanning the full width, but only 1/p-th of
the height. The factor p-can be chosen depending on the on-
chip cache size of the target architecture, and has been set
to p = 16. Border artifacts are mitigated by overlapping the
stripes by 25%, and high frequency noise in the saliency map
is removed using a 9-tap separable box filter.

The edge maps are calculated using two 3 × 3 Sobel
masks and the vector magnitude approximation from [49],
Table 3.8. Clearly, it does not make sense to extract saliency
and edge maps from the full resolution 1080p images, since
the warp resolution is only 180 × 100. However, extracting
the features from such a low resolution results in poor feature

8

...

...

current vertex elements currently affected elements
(partially) processed elements

...

ATbATA

redundant elements

=
10

2
b
w

=
 1

00
 x

 1
80

n

180

10
0

w

...

Saliency Map

Edge Map

Binned Point Corresp.
#pts = 0 #pts = 4

Warp Grid

Linear System

Fig. 6: Constraints assembly: ATA, ATb are built along the warp columns.
Images © copyright 2008, Blender Foundation / www.bigbuckbunny.org.

quality – especially in the case where FFTs are involved.
Therefore, both the saliency and edge maps are extracted on an
intermediate resolution aligned to powers of two (512× 288).
Then, they are bilinearly downsampled to the warp resolution.

D. Warp Generation

The assembly of ATA matrices and ATb vectors is sequential
in nature and is not completely regular due to the sparse
point correspondences. With this in mind, it makes sense to
implement this using some sort of programmable architecture.
Not only is the development of a program more convenient,
but it also simplifies modifications and extensions of the
constraints later on. Therefore we implemented a µcode-
programmable mini-processor which is tailored exactly to
the needs of the constraints-assembly step. It works on an
image feature stream, assembles the constraints on-the-fly, and
outputs finished elements of ATA and ATb to the solver.

As discussed in Section III, we use a sparse CD-based
solver, since it offers a good compromise between on-chip
memory resources and off-chip bandwidth for problem sizes
around n = 180×100 = 18 k. Our previous implementation of
such a solver by [18] could not reach the required performance
of 120 solve/s because of latency overheads incurred by the
FP pipeline. Since the CD has many data dependencies, a
FP pipeline deeper than the matrix bandwidth bw (which is
102 for the 180 × 100 problems at hand) causes many idle
cycles where the whole datapath essentially has to wait until
all data has propagated to the end of the pipeline. To this end,
we make the following two improvements which both aim at
reducing the latency below bw and at improving the operating
frequency:
• First, the modified LDLT decomposition is used instead

of using the standard LLT decomposition. This has
the advantage that no square-root operator is required
[50], which has a high latency (~30 cycles). Further, no
divisions are required during backward substitution.

• Second, fused FP arithmetic with partial carry save (PCS)
[51] adders is used to implement the large adder tree
of the scalar product in the CD – similarly as in other
implementations for small, dense matrices [52].

IV-D1 Constraints Assembly. The architecture of this block
is shown in Figure 7: it consists of a feeder unit that loads the
image features from off-chip memory, converts them to FP,
and feeds them to the µcode-programmable constraints core
in column-major order. The saliency and edge maps do not
occupy a lot of memory, and therefore are loaded at once into
the on-chip memory. Note that these maps can be reused since

Constr. Feeder Constraints Core

PCS norm

uCode LUT & sequencer

Output
ATb
ATA,32 deep

register �le

308 x 32bit matrix
memory

64 x 32bit

==
+/-

24 deep

co
n�

g
in

pu
t

PCS
arithmetic

2FP matrix
addrgen

saliency/edge
trsp. bu�ers

bilinear

18k x 8bit

18k x 8bit

features input

Fig. 7: Architecture of the constraints assembly block. It contains a feeder unit
which loads the image features from the external memory, and feeds them to
the µcode-programmable constraints core.

the x- and y- direction warps of the same view are generated
consecutively. The correspondence bins are loaded one after
another from external memory, and the bilinear weights are
determined on-the-fly before being converted to FP.

The constraints core is essentially a FP MAC unit with a
64-entry-register file, a comparator, and a matrix memory. The
accumulator is capable of single-cycle accumulation thanks to
PCS arithmetic. The µcode instruction set provides a couple
of basic operations, such as mult, mv, etc. It also supports
comparisons and jumps for flow control. Load instructions
allow to load data either from the configuration and data
FIFOs (ldin), or from pre-defined relative address offsets in
the matrix memory (ldmat, only the address base changes from
vertex to vertex). Move instructions allow to move FP values
from register to register, or from register into the accumulator.
Accumulated values can be written back to the matrix memory
or output to the solver using store instructions. In order to use
the two ports of the register file efficiently, one arithmetic
instruction can be parallelized with one load/store instruction.

Once the features have been loaded, the feeder entity loads
them into the data FIFO of the core and triggers the execution
of the µcode program. This produces one matrix column,
for which the constraints core outputs exactly six values: the
main diagonal- and the four off-diagonal elements of ATA,
as well as an element of ATb. The execution time of the
µcode program has been optimized such that it takes 107
cycles to process one warp vertex in the case where 3 point
correspondences are present (solver processing time for one
column is 111 cycles). If no points are present, the program
only takes 38 cycles, and for 6 points it takes 176 cycles.
Latency variations are averaged by the input FIFO of the
solver. Constants and the weighting parameters λ can be
written to the configuration FIFO which is checked in the
initialization phase at the beginning of each frame.

IV-D2 Cholesky based Linear Solver. The CD computes a
factorization of the form AAT = LDLT , where D is a
diagonal matrix, and the diagonal elements of L are ones. In
order to obtain the solution, we first have to solve Lỹ = b for
ỹ, then we perform the divisions y = D−1ỹ and finally get
x by solving LTx = y. The architecture of the CD solver
is shown in Figure 8, and consists of two parts: The first
part performs the decomposition and the forward substitution
in interleaved manner, and the the second part performs the
backward substitution. Although the backward pass is similar
to the forward pass, the matrix L and the vector y have to be
accessed in reversed order. Thus this task can only be executed

9

Fused Scalar Product

...

...

div

Decomposition / Forward Substitution
Input

L,y Output

D

L,D,
y

-

L,y Input

Local f bu�er

f output

+/-

Backward Substitution

...

Local L,D,y Bu�ers
bw =
102

1.0

partial carry save
(PCS) arithmetic

reversion
bu�er

ATb
ATA

102 x 32 bit

103 x 32 bit

64 deep

2x
10

2
de

ep

8 deep

103 x 32 bit 103 x 32 bit103 x 32 bit

204 x 32 bit

PCS normto PCS

PCS norm

Fig. 8: Architecture of the Cholesky LDLT solver. The forward substitution
part (top) basically consists of a large scalar product, implemented using a
PCS adder tree to minimize datapath latency.

once the decomposition and forward pass are finished. Using
a separate unit is more convenient and allows to perform both
passes of two subsequent matrices in parallel.

The decomposition stage contains a wide scalar product,
which is used to calculate the inter-row products in column-
major order. The parts which use PCS arithmetic have been
highlighted. The decomposition is a sequential process since
each element Lij depends on all it’s neighbours to the left.
However, due to the banded shape of L, the values required
to compute another column of L all lie within a window
of size bw2. These are buffered locally - together with the
past bw elements of the y and D vectors. Parallelization is
easy up to a degree corresponding to bw. Beyond that, the
strong dependencies on previous results impedes further par-
allelization. Here, we use a scalar product width of bw = 102
in order to meet the throughput requirements. Together with
all overheads, the solver requires 111 cycles to process one
matrix column, which corresponds to 30 fps × 4 × 18 k ×
111 cycles ≈ 239.8 MCycle per second. Our implementation
has some margin and is clocked at 255 MHz.

IV-D3 Numerical Precision and PCS Arithmetic. The em-
ployed FP format has been tailored to the precision require-
ments of this application. Since we calculate coordinate values,
the result should be precise to at least ~0.5 pixel so that no
artifacts are visible in the rendered images. Using numerical
evaluations (Figure 9), we decided to use an asymmetrically
biased format (exponent is offset by +8), with 6 exponent and
24 mantissa bits, and an explicitly coded zero bit. One FP word
is therefore aligned to 32 bits, and the accumulator length of
the PCS adder tree is 24 + 26 + 1 + 7 = 96 bit (mantissa,
exponent range, sign bit and 7 overflow bits). No rounding is
performed in any of the FP operators. Test syntheses revealed
that 9 bits or less should be used per PCS segment such
that 255 MHz can be reached on the target FPGA. With an
accumulator length of 96 bits, this corresponds to 11 segments,
and therefore PCS normalization requires around 13 cycles.

E. Warp Interpolation, Rendering and Accumulation

10
−4

10
−3

10
−2

10
−1

10
0

10
1

 0.5 pixel

re
la

tiv
e

fre
qu

en
cy

order of magnitude [base 10]
 exact
zeros

range of custom
FP format with

6 exponent bits and
asymmetric bias (8)

7.2

 b)a)

0

0.25

0.5

0.75

1 -11.7

ATbf, y,

ATA

L, D

18 19 20 21 22 23 24 25 26
precision [mantissa bits]

−40 −30 −20 −10 0 10

ab
so

lu
te

 e
rr

or
 [p

ix
el

]

Fig. 9: The custom FP format has been defined by first fixing the exponent
range, then the mantissa precision. The histograms in a) show typical
magnitude distributions for the involved quantities. The boxplots in b) show
the error statistics in dependency of the mantissa precision. The exponent and
mantissa have been chosen to have 6 bits and 24 bits, respectively.

The two input warps wl, wr are first upsampled bilinearly
before being interpolated to the desired view positions. After
view interpolation, the warp Jacobians are calculated using
finite differences. Each warp coordinate is then grouped into
packets (splat jobs) with its Jacobian, its view number and its
associated input image pixel. The warp interpolation stage can
deliver two splat jobs in each cycle with 8 views enabled.

Each render unit contains a filter setup stage, which itera-
tively prepares the filter kernels, and three rasterization units
that evaluate the filter at programmable sampling points on the
sampling lattice of the corresponding view. Only the required
subpixels of the target image are evaluated, and the rasterizers
are designed such as to evaluate one subpixel on the sampling
lattice per cycle. Each render unit is able to process one
splat job in four cycles, which translates into a throughput of
75 Msplat/s per second. This is sufficient to resample 1080p
images at 30 fps as this amounts to 62.21 Msplat/s.

Only the subpixels required are evaluated in the render units
and around 2 Gsubpixel/s need to be accumulated per color
channel with eight views enabled. This corresponds to ~6.7
subpixel values per color channel and cycle. Fortunately, the
large overlap among subsequent splats of the same view can
be leveraged to reduce this number by placing small, fully-
associative subpixel-caches right after the rasterizers (Level-
1 (L1) caches in Figure 4). These L1 caches reduce the
required accumulations by a factor of 5.6 which means that
the L2 cache now needs to accumulate around 1.2 subpixels
per colour channel and cycle. The L2 cache is the actual
framebuffer and is implemented as a sliding window that
automatically adjusts its position depending on the incoming
addresses. Assumptions on the geometric arrangement (i.e.
almost rectified views) of the views allow to store only a small
excerpt (25 rows) of the whole output image on chip, and
therefore no external memory is required.

V. RESULTS

A. Multiview Synthesis Results

Rendered results are depicted in Figure 10a-o), and an ex-
ample for (real-time) depth-volume adjustment is shown in
Figure 10p). All depicted results have been processed using
our hardware system. During informal subjective tests using
full-length S3D movie footage, we found that the system
works well on a broad range of synthetic, as well as live
action content using the same set of parameters. In general,
the spatial artifacts of the IDW method are rather subtle in
nature since the image texture is transformed as a whole, and

10

Fig. 10: a1-b6 show two examples with all feature maps of the left view and the rendered ouput. c1-c4 show four first viewing zones (starting from the
left). d-e show two additional scenes where the IDW method works well. f-o4 show results with annotated warping artifacts, and p1-p2 show an example for
depth-volume adjustment – the percentages indicate the scaling factor of the original baseline. The rendered images have all been grabbed from the hardware
system and are in anaglyph format - use a document viewer to zoom in and view with red/blue glasses. Images (a,b,c,f,g,h,i,m,n,p) © copyright 2008, Blender
Foundation / www.bigbuckbunny.org and images (d,e,j,k,l,o) © 2006, Blender Foundation / Netherlands Media Art Institute / www.elephantsdream.org.

no discontinuities are produced. This is why even rendered
images with artifacts can be visually pleasing. Typical artifacts
are described in more detail below, and for exhaustive and
formal subjective experiments we refer to the study performed
by [22], [11], which revealed that fully automatic IDW as
proposed here performs at least equally well as DIBR methods.

V-A1 Spatial Artifacts Typical spatial IDW artifacts are ex-
cessively bended image regions, which are usually due to
large changes of perspective, large antagonistic disparities in
adjacent image regions, multiple disocclusions, or too few
point correspondences. Figure 10 f-h depict cases where fore-
and background have large opposite disparities. In such cases,
a change of perspective would usually lead to disocclusion of
large image areas, and the IDW method has to handle this by
streching/compressing the transition regions.

Enough accurate point correspondences are essential for
a good performance. Usual failure cases are small or thin
foreground objects which do not yield enough correspon-
dences, and therefore are ‘smeared’ into the background, e.g.
Figure 10 c1, i-n. Although we do not perform a RANSAC
filtering step, there are only very few artifacts due to false
correspondences, since the smoothness constraints in the warp
generation establish a certain outlier tolerance. Artifacts are
sometimes visible in repetitively or homogeneously textured

regions, such as in Figure 10 o. As shown in Figure 10 o4,
increasing the smoothness weight λsal can help to reduce such
artifacts - however at the price of increased warp stiffness.

The current implementation does not perform any blending
of textures coming from left and right views. This has the
advantage that less views need to be rendered, and that
these views do not exhibit any ghosting artifacts due to warp
misalignment. A series of four adjacent viewing zones from
an 8 view setup is shown in Figure 10. Note that these views
are all slightly different and enable a limited, horizontal head-
motion parallax when viewed on a MAD.

V-A2 Temporal Artifacts Without any temporal consistency
constraint, the warps can exhibit disturbing temporal jittering
artifacts (Figure 11 a) , since the extracted image features are
slightly different from frame to frame. In order to overcome
this issue, a temporal regularizer is used which basically acts
as a smoothing filter. However, as can be seen in Figure 11
a-b there’s obviously a tradeoff to be made between jittering
artifacts and over-smoothing which, for large values λt, can be
visible as temporally lagging depth adjustments. For smaller,
more reasonable values of λt, the effect of temporal regular-
ization can only be noticed around fast moving image regions
or at scene cuts1.

1A scene-cut detector could be employed in order to alleviate this.

11

Fig. 11: The effect of temporal regularization is illustrated using a slowly
moving scene (a) and a scene with fast motion (b). The plots show how the
average x-coordinate of a 5×5 warp patch evolves over time. For small values
of λt, one can observe temporal jittering artifacts, whereas for large values of
λt we can observe over smoothing and a temporal lag in image regions with
fast motion (with λpt = 1, λsal = 10, λsal = 100). Images © copyright
2008, Blender Foundation / www.bigbuckbunny.org.

V-A3 Warp Resolution and Parameterization The impact of
the warp resolution is illustrated with the example in Figure 12
b,c. Clearly, there is a tradeoff to be made: while small
resolutions are computationally preferable, they deliver poor
performance since the essential scene geometry is not captured
accurately enough. High-resolution warps perform visually
better, but they are also much more expensive to compute.
A resolution around 180×100 has therefore been found to be
a good compromise between visual quality and computational
complexity. For higher fidelity, warps in the order of 360×200
could be used in future designs.

There is a range of good parameter combinations and the
specific choice is up to the user. We found that setting the
(relative) weights to 50 × λt = 1 × λpt/cpt = 0.1 × λsal =
0.001 × λedge = 1 provides good results on most content,
where the factor cpt = (180× 100) /npts accounts for the
fact that all constraints except the point correspondences are
defined using 2D feature maps.

B. Functional Characteristics and Performance

Table II provides a summary of the resource utilization of the
multiview system. The input video is in top/bottom tiled S3D
format with 1080p resolution per view and 30 fps. The output
is a 1080p 60 Hz video stream, where the individual frames
contain 8 interleaved images for a MAD (currently for the
Alioscopy HD 47” LV, but can be adapted to similar displays).
The system is able to convert S3D video at 30 fps which
allows for real-time operation. Further, the warp generation
parameters, number of views (up to 9), the position of the
views on the normalized baseline and the display parame-
ters (interleaving pattern and filter parametrization) are fully
programmable at runtime. This allows, for example, to adjust
the displayed depth volume in real time (linear scaling of the
camera baseline) as shown in Figure 10p). Further, our system

Fig. 12: a1-6 example rendering using different warp resolutions. b1-6 are
the corresponding x-warps after bilinear upsampling. Results are in anaglyph
format, use a document viewer to zoom in and view with red/blue glasses.
Images © copyright 2008, Blender Foundation / www.bigbuckbunny.org.

does not assume completely rectified input content. In fact, a
Keystone [1] distortion of up to ±11 pixel can be tolerated.
Note that the same rendering architecture implemented in
the ASIC could easily support quad-full-HD (3840 × 2160)
output resolution at the same framerate by increasing the I/O
bandwidth of the L2 cache. Only practical I/O limitations (no
flip-chip packaging) have prevented us from doing so.

C. Estimated ASIC Complexity and Power Consumption

In order to get an idea of the area and power requirements of
a completely integrated system, the major blocks have been
ported to 65 nm and 28 nm technology. The results are shown
in Table III and with the exception of the saliency estima-
tion block, all results are based on gate-level synthesis and
simulation (Synopsys DC, Mentor Modelsim and Synopsys
Power Analyzer). Due to many FPGA macro dependencies
(FFT cores), the values for the saliency block have been
estimated using the FPGA and ASIC results of the Cholesky
solver (which has similar characteristics in terms of DSP, LUT
and register usage). Note that the estimates do not include the
infrastructure and interface blocks from the FPGA part.

It is important to keep in mind that the power consumption
due to the external memory accesses is not negligible. Using
the estimation procedure described in [32], we calculated
that an LPDDR3 PC6400 memory subsystem would consume
around 700 mW supplying a bandwidth of 3.5 GByte/s –
including memory controller, PHY, LPDDR3 component and
I/O switching power. Adding this to the power estimate for
28 nm results in a total power consumption of ≈ 1.3 W (not
accounting for additional I/O and infrastructure circuitry).
Note that at this technology node, the power consumption of
the external memory interface is even larger than the power
consumption of the hardware accelerator.

D. Comparison with Related Work

There are relatively few published real-time systems which
implement a complete MVS pipeline with video analysis and
rendering units. Both parts are usually treated as separate
subproblems in the literature. Therefore, we first compare our

12

system against complete systems, and then we compare the
two subsystems with related depth image based architectures.

V-D1 Complete Systems. Complete real-time systems with
similar functionality are the work by [35] and [36] (see
Table IV top). [35] implemented a system based on a dual
processor workstation with two Intel Xeon 5690 CPU’s and
two NVIDIA GTX 590 graphics cards. It has almost the same
performance as ours and is able to synthesize 8 interleaved
views from 1080p S3D content at 24 fps. Clearly, the size
of this system, the cost, and power consumption make it
unsuitable for integration into consumer devices. Similarly to
our system – their rendering engine could also support larger
4 k displays without any decrease in performance, since the
views are rendered at higher resolution internally. In [36]
a single-view synthesis pipeline on a Stratix III FPGA is
implemented, which is able to produce depth-adjusted S3D
content generated from 1080p S3D input video at 60 fps.
The system synthesizes one virtual view and bypasses one
of the input views. Since no detailed FPGA results where
published, we compare their complexity estimates in 250 nm
CMOS technology against our ASIC estimates in Table IV.
At first sight the implementation by [36] looks to be almost
a factor 10 more area-efficient. This has several reasons. First
of all, their implementation only renders one virtual view and
not up to nine views as in our work and [35]. They also
make the assumption that the input video is perfectly rectified,
i.e. there is no y-disparity between the left and right image,
which simplifies all 2D-problems to 1D-problems in the depth
estimation and rendering parts. Yet such rectification is not
easily achieved, and therefore systems should be designed to
tolerate y-disparities (Keystone [1]). For example, our system
is designed to support up to ±11 pixels of y-disparity.

TABLE II: Physical characteristics of the multiview system. The FPGA is a
Stratix IV (EP4SGX530KH40C2), and the ASIC has been fabricated in 65 nm
technology. Frequency values represent the current parametrisation.

FPGA Logic RAM Freq.
LUTs Regs DSPs LUTs 9/144K [MHz]

Scalers 4.1 k 7.1 k 24 2.3 k 10/0 138.6
Analysis 43.3 k 47.3 k 177 2.7 k 434/24 135

1 SKB Core 11 k 11.3 k 32 0 11/0 135
Matching 6.2 k 2.8 k 1 0.3 k 249/4 135
1 Binner 0.5 k 0.9 k 0 0.3 k 31/0 135
Saliency 8.3 k 13.2 k 96 1.1 k 95/0 135
Sobel 0.3 k 0.3 k 0 0 2/0 135

Warp Calc. 51.9 k 67.4 k 420 0.7 k 148/0 255
Assembly 4.8 k 6.6 k 8 0.2 k 38/0 255
Solver 45.8 k 58.9 k 412 0.5 k 104 255
Transposer 1.3 k 1.9 k 0 0 6/0 255

Subtotal 99.3 k 121.8 k 621 5.7 k 592/24 ↑
IO/Infra. 22.1 k 35.5 k 0 15.7 k 14/4 N/A
Total 121.4 k 157.3 k 621 21.4 k 606/28 ↑
ASIC Logic SRAM Freq.

[mm2] [kGE] [MBit] [mm2] [kGE] [MHz]
IO/Infra. 0.28 195 - - - 75, 300
Warp Interp. 0.314 218 0.76 1.023 710 300
Rendering 2.317 1’609 - - - 300

Renderunit 0.257 179 - - - 300
Accumulator 0.385 267 3.6 5.436 3’775 300
Total 3.296 2’289 4.36 6.459 4’485 ↑

TABLE III: Estimated complexity and power consumption2 of the major
blocks in 65 nm (LVT, TT @1.3V 25°) and 28 nm (LVT, TT @1V 25°).

ASIC Estimates Logic SRAM Power
[mm2] [kGE]� [mm2] [kGE]� [mW]

Scalers∗ 0.136 94 0.406 282 19
Analysis∗ 1.099 763 9.414 6’537 343
Warp Calc∗ 1.841 1’278 1.794 1’245 791
MADMAX ASIC† 3.296 2’289 6.459 4’485 752
Total (65 nm) 6.372 4’424 18.073 12’549 1’905
Total (28 nm)∗ 1.444 3’966 6.929 15’069 605
∗ Gate level synthesis and simulation †Measurements
� 1 GE = 1.44 µm2(65 nm), 1 GE = 0.364 µm2 (28 nm)

V-D2 Video Analysis and Depth Estimation Cores. In DIBR
frameworks, depth estimators such as the implementations by
[41], [40], [39], [37], [38] can be viewed as the equivalent
part of the video analysis block in an IDW-based system. A
quantitative comparison is shown in Table IV in the middle.
Note that the design by [37] uses a global, high-quality
technique which is extremely memory bound, and therefore
not suited for real-time frame rates. The other designs are
all local methods using either a variation of the census-
transform [38], [39], a combination of absolute differences
and the census-transform [40], or normalized cross-correlation
[41]. These local methods are more attractive for real-time
systems due to their higher throughput and lower bandwidth
requirements. However, this comes at the cost of more artifacts
in the depth maps. Among the listed designs, [41] is the most
recent and is best suited for a 1080p MVS system. In fact, it
implements a hardware friendly version of the algorithm used
in Riechert’s system [35], and is thus tailored to the needs of
MVS.

Note that there are several reasons why it is difficult to
directly compare the video analysis stage of our IDW system
with related depth extraction cores, although both the image
warps and depth maps essentially capture the scene geometry.
First of all, the depth maps and image warps used in DIBR
and IDW lead to inherently different artifacts which are not
similarly perceived. Also in terms of hardware complexity a
direct comparison is difficult due to the fact that most DIBR
methods are local methods, whereas IDW is a global method
requiring an LS-solve. In addition, some of the methods use
internal subsampling in order to be more efficient, and convert
the calculated maps to full resolution in a final post-processing
step. E.g. [41] work with 4× subsampling, and our method
works on 180×100 warps which are later upsampled to 1080p
in the MVS chip.

V-D3 View Synthesis Cores. A comparison of the rendering
ASIC with related DIBR rendering architectures is given in
Table IV at the bottom. [44], [46] and [45] develop single
(non-interleaved) view synthesis engines with performances
of up to 1080p@32.4 fps, 1080p@94 fps and 4 k@216 fps,
respectively. In contrast, [42] and [43] develop architectures
which are able to directly render interleaved views. As we can

2For comparison, the GPU subsystems of Apple’s A7 and NVIDIA’s
Tegra K1 occupy around 21mm2 and 40mm2, respectively, and the
platform power consumption (with display) of an A7-based tablet is
~6 W when running a graphics benchmark (www.fool.com/investing/
general/2014/06/04/just-how-big-is-nvidia-corporations-tegra-k1.aspx, www.
anandtech.com/show/7460/3).

13

TABLE IV: Comparison with other view synthesis systems, video analysis and rendering cores. The MBit values represent block ram bits in the case of
FPGA designs, and SRAM bits (macros) in the case of ASIC designs.

Full
Type Input Maps Output Technology LUT DSP Reg

Ram Ext Bw f
Fps

Systems [MBit] [GB/s] [MHz]
This work IDW 2×1080p 2×100p 8mix 1080p ASIC 65 nm 4’424 kGE∗ 10.5∗ 3.1‡ 135-300 30
Liao [36] DIBR 2×1080p 2×1080p 2×1080p† ASIC 250 nm 470 kGE∗ 1.27∗ 0 ? 60
Riechert [35] DIBR 2×1080p 2×1080p 8mix 1080p GPU+CPU 2×Xeon 5690 2×GTX 590 ? ? 24

Video
Type Input Map Output (max disp) Technology LUT DSP Reg

Ram Ext Bw f
Fps

Analysis [MBit] [GB/s] [MHz]
This work Warp 2×1080p 2×100p (128) Stratix IV 142.8 k 621 157.3 k 6.56 3.1‡� 135-255 30
Werner [41] Depth 2×1080p 2×1080p (?) Stratix V 70.7 k 625 132.9 k 3+6.5� 1.6� 150 30
Akın [40] Depth 2×XGA 1×XGA (128) Virtex 5 48 k 0 43 k 2.3+ 0.57 190 60
Zhang [39] Depth 2×XGA 1×XGA (64) Stratix III 80.6 k 257 94.9 k 3.77 ? 100 60
Perez [37] Depth 2×720p 1×720p (96) Virtex 5 23.7 k∗ 120∗ 17 k∗ 0∗ 19.2+ 200∗ 2.6
Chang [38] Depth 2×CIF 1×CIF (64) ASIC 90 nm 562 kGE 0.17 0.06+ 95 42

View
Type Input Maps Output Technology LUT DSP Reg

Ram Ext Bw f
Fps

Synthesis [MBit] [GB/s] [MHz]
This work IDW 2×1080p 2×100p 8mix 1080p ASIC 65 nm 2’289 kGE 4.36 0 300 33.1
Tsung [45] DIBR ? ? 1×4 k ASIC 40 nm 1’416 kGE 0.16 ? 240 216
Horng [44] DIBR 2×1080p 2×1080p 1×1080p ASIC 90 nm 269 kGE 0.55 0.96+ 200 32.4
Chang [46] DIBR 2×1080p 2×1080p 1×1080p ASIC 90 nm 143 kGE 0.44 1.27+ 200 94
Fan [43] DIBR ? ? 8mix SXGA ASIC 180 nm 104 kGE× 0.008 0 71.4 29.1
Chen [42] DIBR 1×360p◦ 1×360p◦ 9mix 1080p Cyclone III 1.4 k4 0 1.3 k 0.47 0 148.5 60
+ Calculated using published values. � Including bandwidth for S3D bypassing � ROM + RAM 4 4-input LUTs × Including SRAM
† One bypassed view, one rendered view ∗ Estimates, not accounting for memory controller and other I/O infrastructure ◦ 640×360
‡ DVI TX bandwidth due to temporal upsampling has been omitted, since 30 fps could be directly output from the rendering core.

see, the hardware complexities of these DIBR architectures
vary significantly. A main reason for this is that the designs
[46], [43], [42] make the same assumptions as [36] and work
with perfectly rectified content. This allows to collapse the 2D
warping operations to 1D problems which can be implemented
very efficiently with streaming architectures. Additional rea-
sons for the varying complexity are the different image and
depth map resolutions.

When comparing our chip with these related DIBR designs
we observe that it is has much larger logic and SRAM
area than all other designs. A main reason for this is that
we use a forward mapping algorithm, and its computational
complexity is defined by the input image resolution. In terms
of throughput, our design could therefore easily generate
interleaved output images up to the point where each sub-
view has 2 MPixel resolution (interleaved 4 k would therefore
be possible as well). Only practical I/O limitations prevented
us from doing so. Also, we do not make the assumption of
perfectly rectified content, which would allow us to simplify
the rendering architecture significantly as well. The large
SRAM area is due to the warp (0.76 MBit) and frame buffers
(3.6 MBit). The former has been incorporated for convenience
during development and debugging, and is not strictly required
since the design works in scan-line fashion. The latter has been
added such that no off-chip memory is required.

VI. LIMITATIONS AND EXTENSIONS

Although all three stages (analysis, warp solver, and rendering)
seem to have similar complexity, the computational bottleneck
of IDW-based MVS is clearly the linear solver since its
complexity does not scale as well as for the other parts when
moving to higher resolutions. There are several alternative
approaches that could be explored for improving the efficiency
of the warp solver stage such as using an iterative CG solver

which requires only on-chip resources as shown in [32]. The
system has – in principle – already enough throughput to
realize a 4 k system. Modifications only have to be made at
the output of the rendering subsystem. As proposed in [53],
the rendering part could be optimized further by performing
the large part of the display anti-aliasing using a pre-filter.

An additional RANSAC step could improve the quality of
the point correspondences – yet we found that this is not
required on the vast majority of S3D content (only repetitive
and homogeneous textures sometimes have issues). Since most
IDW pipelines are very similar, the system could in principle
be extended to support other applications such as video
retargeting [19], non-linear disparity mapping [21], retargeting
of S3D content [20], or optimum multiview content creation
methods [34]. The main part that would need modifications
is the assembly of the LS system since these applications
basically just differ in the way the constraints are assembled.
This underlines the need for a programmable warp assembly
stage we have implemented.

VII. CONCLUSIONS

To our knowledge, this is the first hardware implementation
of a complete, IDW-based MVS system. The only other
published complete system comprising similar functionality in
terms of video analysis and MVS has been implemented on
a high-end workstation. When comparing subcomponents of
our system to related DIBR-based modules, we observe that
some of these DIBR components are more compact in terms
of logic and SRAM area. However, these comparisons should
be interpreted with caution, since the involved algorithms are
completely different and the synthesis quality has not been
part of this comparison.

Our system is able to synthesize high quality, full-HD
content with up to 8 views in real-time, and supports a
keystone distortion of up to ± 11 pixels. Further, no inpainting

14

Fig. 13: a) photograph of the running system, and b) close up of the hardware
prototype, which can be mounted as an external display with video format
1920x2160@30Hz on any pc or laptop with DVI or HDMI capability. Image
© copyright 2008, Blender Foundation / www.bigbuckbunny.org.

steps are required due to the use of IDW. The current test-bed
is designed using an FPGA platform combined with a custom
ASIC, and our results show that a monolithic integration of
the developed hardware IP into a SoC fabricated in 28 nm is
completely feasible. With an estimated power consumption of
~1.3 W the hardware accelerator enables portable and energy
efficient MVS, which are both essential properties when
considering a deployment in consumer electronic devices.

REFERENCES

[1] B. Mendiburu, “3D Movie Making,” Focal Express, 2009.
[2] A. Smolic et al., “Three-Dimensional Video Postproduction and Pro-

cessing,” PIEEE, vol. 99, no. 4, pp. 607–625, 2011.
[3] C. Zhu et al., 3d-tv System with Depth-image-based Rendering.

Springer, 2014.
[4] N. A. Dodgson, “Optical Devices: 3D without the Glasses,” Nature, vol.

495, no. 7441, pp. 316–317, mar. 2013.
[5] J. Konrad and M. Halle, “3-D Displays and Signal Processing,” IEEE

SPM, vol. 24, no. 6, pp. 97–111, 2007.
[6] A. Boev et al., “Signal Processing for Stereoscopic and Multi-View 3D

Displays,” in Handbook of Signal Processing Systems. Springer New
York, 2013, pp. 3–47.

[7] D. Tian et al., “View Synthesis Techniques for 3D Video,” Proc. SPIE,
vol. 7443, p. 74430T, 2009.

[8] A. Smolic et al., “Disparity-Aware Stereo 3D Production Tools,” in IEEE
CVMP, 2011, pp. 165–173.

[9] M. Tanimoto et al., “Free-Viewpoint TV,” IEEE SPM, vol. 28, no. 1,
pp. 67–76, jan. 2011.

[10] M. Tanimoto et al., “View Synthesis Algorithm in View Synthesis
Reference Software 3.5 (VSRS3. 5) Document M16090, ISO/IEC
JTC1/SC29/WG11 (MPEG),” 2009.

[11] N. Stefanoski et. al, “Automatic View Synthesis by Image-Domain-
Warping,” IEEE TIP, vol. 22, no. 9, pp. 3329–3341, 2013.

[12] G. Wolberg, “Digital Image Warping,” IEEE Computer Society press,
vol. 3, 1990.

[13] P. Ndjiki-Nya et al., “Depth Image Based Rendering with Advanced
Texture Synthesis,” in IEEE ICME, July 2010.

[14] M. Schaffner et al., “A complete real-time feature extraction and
matching system based on semantic kernels binarized,” in VLSI-SoC: At
the Crossroads of Emerging Trends, ser. IFIP Advances in Information
and Communication Technology. Springer International Publishing,
2015, vol. 461, pp. 144–167.

[15] P. Greisen et al., “Algorithm and VLSI Architecture for Real-time
1080P60 Video Retargeting,” in ACM SIGGRAPH / Eurographics Con-
ference on High-Performance Graphics, ser. EGGH-HPG’12, 2012, pp.
57–66.

[16] P. Greisen et al., “Analysis and VLSI Implementation of EWA Rendering
for Real-Time HD Video Applications,” IEEE TCSVT, vol. 22, no. 11,
pp. 1577–1589, nov. 2012.

[17] M. Schaffner et al., “MADmax: A 1080p Stereo-to-Multiview Rendering
ASIC in 65 nm CMOS based on Image Domain Warping,” in ESSCIRC,
2013, pp. 61–64.

[18] P. Greisen et al., “Evaluation and FPGA Implementation of Sparse Lin-
ear Solvers for Video Processing Applications,” IEEE TCSVT, vol. 23,
no. 8, pp. 1402–1407, 2013.

[19] M. Rubinstein et al., “A Comparative Study of Image Retargeting,” in
ACM TOG, vol. 29, no. 6, 2010, p. 160.

[20] S. Kopf et al., “Warping-Based Video Retargeting for Stereoscopic
Video,” IEEE ICIP, 2014.

[21] M. Lang et al., “Nonlinear Disparity Mapping for Stereoscopic 3D,”
ACM TOG, vol. 29, no. 4, p. 75, 2010.

[22] K. Müller et al., “Report of subjective test results from the call for
proposals on 3d video coding,” ISO/IEC JTC1/SC29/WG11, Geneva,
Switzerland, Tech. Rep. MPEG2011/N12347, Nov. 2011.

[23] N. Stefanoski et al., “Image Quality vs. Rate Optimized Coding of Warps
for View Synthesis in 3D Video Applications,” in IEEE ICIP, Sept 2012,
pp. 1289–1292.

[24] R. Hartley and A. Zisserman, “Multiple view geometry,” Cambridge
university press Cambridge, UK, 2000.

[25] M. Calonder et al., “BRIEF: Computing a Local Binary Descriptor Very
Fast,” in IEEE TPAMI, vol. 34, no. 7, 2012, pp. 1281–1298.

[26] F. Zilly et al., “Semantic Kernels Binarized - A Feature Descriptor for
Fast and Robust Matching,” in CVMP, nov. 2011, pp. 39–48.

[27] L. Itti et al., “A Model of Saliency-based Visual Attention for Rapid
Scene Analysis,” IEEE TPAMI, vol. 20, no. 11, 1998.

[28] H. Kim et al., “Saliency Prediction on Stereoscopic Videos,” IEEE TIP,
vol. 23, no. 4, pp. 1476–1490, April 2014.

[29] C. Guo et al., “Spatio-Temporal Saliency Detection Using Phase Spec-
trum of Quaternion Fourier Transform,” in IEEE CVPR, June 2008, pp.
1–8.

[30] A. Björck, “Numerical Methods for Least Squares Problems,” SIAM,
1996.

[31] Y. Saad, “Iterative Methods for Sparse Linear Systems Second Edition,”
SIAM, 2003.

[32] M. Schaffner et al., “DRAM or no-DRAM? Exploring Linear Solver
Architectures for Image Domain Warping in 28 nm CMOS,” in DATE,
2015.

[33] M. Zwicker et al., “Antialiasing for Automultiscopic 3D Displays,” in
Eurographics conference on Rendering Techniques, 2006, pp. 73–82.

[34] A. Chapiro et al., “Optimizing Stereo-to-Multiview Conversion for
Autostereoscopic Displays,” Computer Graphics Forum, vol. 33, no. 2,
2014.

[35] C. Riechert et al., “Fully Automatic Stereo-to-Multiview Conversion in
Autostereoscopic Displays,” The best of IET and IBC, vol. 4, no. 8,
p. 14, 2012.

[36] C. Liao et al., “Stereo Matching and Viewpoint Synthesis FPGA
Implementation,” in 3D-TV System with Depth-Image-Based Rendering.
Springer New York, 2013.

[37] J.M. Perez et al., “High Memory Throughput FPGA Architecture for
High-Definition Belief-Propagation Stereo Matching,” in SCS, Nov
2009, pp. 1–6.

[38] N.Y.-C. Chang et al., “Algorithm and Architecture of Disparity Esti-
mation With Mini-Census Adaptive Support Weight,” in IEEE TCSVT,
vol. 20, no. 6, June 2010, pp. 792–805.

[39] Lu Zhang et al., “Real-time High-definition Stereo Matching on FPGA,”
in ACM/SIGDA FPGA. ACM, 2011, pp. 55–64.

[40] A. Akın et al., “Dynamically Adaptive Real-Time Disparity Estimation
Hardware using Iterative Refinement,” Integration, the VLSI Journal,
vol. 47, no. 3, pp. 365–376, 2014.

[41] M. Werner et al., “Hardware Implementation of a Full HD Real-Time
Disparity Estimation Algorithm,” IEEE TCE, vol. 60, no. 1, pp. 66–73,
February 2014.

[42] Hsin-Jung Chen et al., “Real-time Multi-View Rendering Architecture
for Autostereoscopic Displays,” in IEEE ISCAS, May 2010, pp. 1165–
1168.

[43] Yu-Cheng Fan et al., “DIBR Based Multi-View Generator Circuit and
Chip Design,” in ICICS, Dec 2013.

[44] Y. Horng et al., “Vlsi architecture for real-time hd1080p view synthesis
engine,” IEEE TCSVT, vol. 21, no. 9, 2011.

[45] Pei-Kuei Tsung et al., “A 216fps 4096x2160p 3DTV Set-Top Box SoC
for Free-Viewpoint 3DTV Applications,” in IEEE ISSCC, 2011.

[46] Fu-Jen Chang et al., “A 94fps View Synthesis Engine for HD1080p
Video,” in IEEE VCIP, 2011.

[47] H. Hirschmüller and D. Scharstein, “Evaluation of Cost Functions for
Stereo Matching,” in IEEE CVPR, 2007, pp. 1–8.

[48] T. Akenine-Moller et al., “Real-Time Rendering,” AK Peters, 2008.
[49] H. Kaeslin, “Top-Down Digital VLSI Design, from VLSI Architectures

to Gate-Level Circuits and FPGAs,” Morgan Kaufmann, 2014.
[50] Y. Depeng et. al., “Compressed Sensing and Cholesky Decomposition

on FPGAs and GPUs ,” Parallel Computing, vol. 38, no. 8, 2012.
[51] F. De Dinechin et. al., “An FPGA-Specific Approach to Floating-point

Accumulation and Sum-of-products,” in ICECE Technology, 2008.
[52] S. Demirsoy and M. Langhammer, “Cholesky Decomposition Using

Fused Datapath Synthesis,” in ACM/SIGDA FPGA, 2009.
[53] M. Schaffner et al., “Efficient Image Resampling for Multiview Dis-

plays,” in IEEE ICASSP, 2013.

15

Michael Schaffner received his BSc. and M.Sc.
degrees from the Swiss Federal Institute of Tech-
nology Zurich, Switzerland, in 2009 and 2012. He
is currently pursuing the Ph.D. degree with ETH
Zurich. He has been a Research Assistant with
the Integrated Systems Laboratory and with Disney
Research Zurich, since 2012. His research interests
include digital signal processing, video processing,
and the design of very large scale integration circuits
and systems. Michael Schaffner received the ETH
Medal for his Diploma thesis in 2013.

Frank K. Gürkaynak obtained his BSc. and M.Sc.
degrees from Electrical and Electronical Engineering
Department of the Istanbul Technical University and
his Ph.D. degree from ETH Zurich. He is employed
by the Microelectronics Design Center of ETH
Zurich and his research interests include design of
VLSI systems, cryptography, and energy efficient
processing systems.

Pierre Greisen received the M.Sc. degree from
ETH Zurich in 2007, a Master’s degree from Ecole
Centrale Paris (ECP) in 2007, and the Dr.sc. degree
from ETH Zurich in 2013. From 2009 to 2013, he
has worked as research assistant at the Integrated
Systems Laboratory (IIS) and at Disney Research
Zurich in the field of digital signal and video pro-
cessing. Since 2013, Dr. Greisen is working at the
Goodyear Innovation Center Luxembourg in the area
of data science and video processing. In 2013, he
was awarded the ETH medal for his PhD thesis.

Hubert Kaeslin received both the M.Sc. and the
Ph.D. degree in electrical engineering from ETH
Zurich, Switzerland, in 1978 and 1985 respectively.
Since 1989 he has been heading the Microelectronics
Design Center of ETH Zurich which taped out
roughly 400 circuit designs under his supervision
over the past 25 years, both for research and ed-
ucational purposes. These activities have led to the
publication of two textbooks on digital VLSI design.
His professional interests include dedicated VLSI
architectures, energy-efficient circuits, hardware de-

scription languages, synchronous and self-timed (GALS) clocking methodolo-
gies, electronic design automation, semiconductor technology, digital signal
processing, IT security, graph theory, and visual formalisms.

Dr. Kaeslin has authored or co-authored more than 75 papers in reviewed
journals and conference proceedings. He is Senior Member IEEE and has
been awarded the title of professor by ETH in 2010.

Luca Benini is the chair of digital Circuits and
systems at ETHZ and a Full Professor at the Uni-
versity of Bologna. He has served as Chief Ar-
chitect for the Platform2012/STHORM project in
STmicroelectronics, Grenoble. He has held visiting
and consulting researcher positions at EPFL, IMEC,
Hewlett-Packard Laboratories, Stanford University.
Dr. Benini’s research interests are in energy-efficient
system design and Multi-Core SoC design. He is
also active in the area of energy-efficient smart
sensors and sensor networks for biomedical and

ambient intelligence applications. He has published more than 700 papers in
peerreviewed international journals and conferences, four books and several
book chapters. He is a Fellow of the IEEE and a member of the Academia
Europaea.

Dr. Aljosa Smolic joined Disney Research Zurich
in 2009, as Senior Research Scientist and Head of
the Advanced Video Technology group. Before he
was Scientific Project Manager at the Fraunhofer
Heinrich-Hertz-Institut (HHI), Berlin, also heading
a research group. He has been involved in many
national and international research projects, where
he conducted research in various fields of video pro-
cessing and visual computing, and published more
than 100 referred papers in these fields. He received
the Dipl.-Ing. Degree in Electrical Engineering from

the Technical University of Berlin, Germany in 1996, and the Dr.-Ing.
Degree in Electrical Engineering and Information Technology from Aachen
University of Technology (RWTH), Germany, in 2001. He is Associate Editor
of IEEE Trans. on Image Processing, Area Editor for Signal Processing: Image
Communication and served as Guest Editor for the Proceedings of the IEEE,
and other scientific journals. He has been involved in MPEG standardization
for 3D video as group leader and one of the Editors of the Multi-view Video
Coding (MVC) standard. Further, he serves as Associate Lecturer at ETH
Zurich teaching full lecture courses on Multimedia Communications.

