
1

Towards Edge-Aware Spatio-Temporal Filtering in
Real-Time

Michael Schaffner, Florian Scheidegger, Lukas Cavigelli, Hubert Kaeslin, Luca Benini, Aljosa Smolic

Abstract—Spatio-temporal edge-aware (STEA) filtering met-
hods have recently received increased attention due to their
ability to efficiently solve or approximate important image-
domain problems in a temporally consistent manner - which is
a crucial property for video-processing applications. However,
existing STEA methods are currently unsuited for real-time,
embedded stream-processing settings due to their high processing
latency, large memory and bandwidth requirements, and the need
for accurate optical flow to enable filtering along motion paths.

To this end, we propose an efficient STEA filtering pipeline ba-
sed on the recently proposed permeability filter (PF) which offers
high quality and halo reduction capabilities. Using mathematical
properties of the PF, we reformulate its temporal extension
as a causal, non-linear infinite impulse response filter which
can be efficiently evaluated due to its incremental nature. We
bootstrap our own accurate flow using the PF and its temporal
extension by interpolating a quasi-dense nearest neighbour field
obtained with an improved PatchMatch algorithm, which employs
binarized octal orientation maps (BOOM) descriptors to find
correspondences among subsequent frames.

Our method is able to create temporally consistent results for
a variety of applications such as optical flow estimation, sparse
data upsampling, visual saliency computation and disparity
estimation. We benchmark our optical flow estimation on the
MPI Sintel dataset, where we currently achieve a Pareto optimal
quality-efficiency tradeoff with an average endpoint error of 7.68
at 0.59 s single-core execution time on a recent desktop machine.

Index Terms—edge-aware filter, spatio-temporal filter, patch-
match, binary descriptor, optical flow

1. Introduction
Edge-aware (EA) filters are an important tool in many

image-domain applications such as high-dynamic range
(HDR) tone mapping [1], stylization and detail manipulation
[2]. In particular their close relation to anisotropic diffusion [3]
allows to use them as efficient approximators for large, non-
convex regularization problems such as optical flow, disparity
estimation and colorization [4], [5]. This property becomes
important considering that the size of such regularization
problems typically increases rapidly with the inclusion of
the temporal dimension - thereby rendering these problems
often computationally impractical or even infeasible [6]. The
temporal extension of EA filters is straightforward [1], [6], and
computationally much more tractable than optimization-based
approaches. Therefore, EA filters are well-suited for efficiently
approximating many image-based regularization problems in

M. Schaffner is with ETH Zurich and Disney Research, Switzerland. F.
Scheidegger, L. Cavigelli and H. Kaeslin are with ETH Zurich, Switzerland.
L. Benini is with ETH Zurich, Switzerland, and University of Bologna, Italy.
A. Smolic is with Disney Research, Switzerland and Trinity College, Ire-
land. Email: {schaffner,scheidegger,cavigelli,kaeslin,benini}@iis.ee.ethz.ch
and {smolica}@scss.tcd.ie

This work has been jointly supported by Disney Research and the YINS
RTD project (no. 20NA21 150939), evaluated by the Swiss NSF and funded
by Nano-Tera.ch with Swiss Confederation financing.

(a) Ground Truth

(d) PCA Layers [34]

(c) CPM-Flow [17](b) FlowFields [57]

(f) PCA Flow [34](e) BOOM + PF (XYT)

18 sec 4.3 sec

3.2 sec 0.59 sec 0.18 sec

Fig. 1. Optical flow calculated with fast state-of-the-art methods (b,c,d,f) and
our STEA pipeline (e). ‘Sintel’ images © Blender Foundation, www.sintel.org.

a temporally consistent manner, which is a crucial property
for video-processing applications [7], [8].

However, although existing spatio-temporal, edge-aware
(STEA) methods [1], [6] are more efficient than solving
complete optimization problems, they still have two major
drawbacks which impede their deployment in embedded real-
time settings where only limited computational and memory
resources are available. First, they either operate iteratively on
complete video volumes or on sliding windows, which in both
cases incurs a high processing latency and requires access to
a large memory with high bandwidth. Second, the temporal
filtering extension requires accurate optical flow in order to
align neighboring frames within the temporal window to be
filtered, which is difficult to obtain efficiently. In this work, we
address these issues by proposing an efficient STEA filtering
pipeline based on the recently proposed permeability filter (PF)
[1], [9]. In particular, we make the following contributions:
• We show that under certain conditions, the temporal PF

can be formulated as an infinite impulse response (IIR)
filter in time, which reduces computational complexity
and bandwidth requirements compared to windowed ap-
proaches, since the filter can be incrementally evaluated
over time. Also, this formulation exhibits constant me-
mory complexity irrespective of the actual video length.

• In order to get fast and accurate flow estimates, we
design a new binary feature descriptor termed Binarized
Octal Orientation Maps (BOOM) which outperforms
other state-of-the-art descriptors [10–16] in terms of
Receiver Operating Characteristic (ROC) performance.
We integrate it into the recently proposed Coarse-to-fine
PatchMatch (CPM) method [17] in order to efficiently
compute a quasi-dense nearest neighbour field (NNF)
[18] which is used as an optical flow initialization. Dense
flow is then obtained via interpolation with the PF.

• Combining the above two components, we design an
efficient STEA filtering pipeline and provide an efficient
implementation which is significantly faster than previous
methods [1], [6]. Our single-core CPU implementation
processes an MPI Sintel frame [19] in only 0.59 s (re-
sulting in a throughput of 1.3 MPixel/s) and therefore

www.sintel.org

2

paves the way for embedded implementations in resource-
constrained real-time settings.

• We present results for several image-based applications
such as optical flow, disparity and saliency estimation. In
particular, we demonstrate that our implementation sig-
nificantly outperforms other state-of-the-art optical flow
methods in terms of both speed and quality (see Figure 1).

After an introduction of related work in Section 2 we explain
our STEA pipeline in Section 3 and the CPM+BOOM method
in Section 4. The results and comparisons are presented in
Section 5, and Section 6 finally concludes the paper.

2. Related Work
Edge-Aware Filtering Edge-aware (EA) filters are important
basic building blocks in many image and video processing
methods. Milanfar et al. [20] give an extensive overview of
many filtering approaches. Since the establishment of the first
EA methods such as the bilateral filter (BF) [21], a variety
of EA filters have been proposed [1], [2], [22–27] for several
image-based applications such as stylization, HDR tone map-
ping, detail editing and noise reduction. Notable instances for
EA filtering are the following. The so-called weighted least
squares (WLS) filter [22] is often used as reference method
due to the high quality of its results and its ability to suppress
halo artifacts by penalizing the distance between the original
and filtered image. However, the drawback of this method is
its high computational cost, since it requires the solution of a
large linear system. Edge-avoiding wavelets (EAW) [23] are
simpler to compute, but suffer from aliasing problems and
irregular edges [27]. The local Laplacian filter is capable of
producing high-quality results, but it also has the downside
of being computationally demanding [27]. The authors of
[26] provide a newer, more efficient implementation of the
Laplacian filter, but it is not clear how to extend the method
into the temporal domain. Other recent EA filtering techniques
such as the guided filter (GF) [24], the permeability filter (PF)
[1], [9], the domain transform (DT) [2] and its extension for
high-order recursive filtering [25] are all efficient techniques
which offer a good quality-performance tradeoff. However,
as pointed out [26], the GF and DT still suffer from halo-
artifacts, whereas the PF does not, since it has specifically been
designed to mimic similar behaviour as the high-quality WLS
filter - but with significantly lower computational complexity.

Optimization Problems A particularly interesting aspect of
EA filters is their close relation to anisotropic diffusion (AD)
[3], [28] which recently spurred a trend to use image filtering
techniques to approximate optimization problems [4–6]. As
explained in detail in [6], EA filters can be leveraged for
a class of regularization problems which minimize energy
functionals of the form E (J) = Edata (J) + λEsmooth (J),
where Edata is the application specific error term, Esmooth
enforces smoothness among neighbouring pixels and J is an
unknown solution. Rather than imposing a regularization term
Esmooth and solving for J , smoothness can be created by fil-
tering application-specific initial conditions (which minimize
Edata locally) with an efficient EA operation. By implicitly
calculating optical flow, Lang et al. [6] also extend this

concept into the temporal direction and propose an iterative
spatio-temporal edge-aware (STEA) filtering method which
is able to efficiently calculate temporally stable results for a
variety of applications ranging from optical flow estimation
itself to disparity and visual saliency estimation, sparse data
upsampling and scribble propagation.

Temporal Consistency Temporal consistency is a significant
problem in video processing since the frame-by-frame applica-
tion of image-based methods can often produce visually distur-
bing temporal artifacts [1], [6–8]. As mentioned in [8], STEA
filters [1], [6] are good at removing high-frequency temporal
artifacts such as noise and flickering, but for low-frequency
instabilities, more elaborate methods such as [7] and [8] have
to be used. These algorithms can deliver better quality for
certain applications - but at the cost of significantly increased
complexity. Both [7] and [8] need to solve large optimization
problems and typically require precomputed, accurate optical
flow. Despite the mentioned limitation of STEA filtering
methods, they provide efficient means for introducing temporal
consistency and can be used to bootstrap accurate optical flow
using sparse correspondences and interpolation.

Our work is conceptually similar to [6], but focuses on
addressing the following two issues which are critical for
embedded real-time settings, where only limited computational
and memory resources are available. First, we formulate a
temporal filtering extension which does not require access to
a large memory with high bandwidth. In particular, instead of
using the domain transform (DT) filtering kernel [2], we chose
to use the permeability filter (PF) kernel instead, that has been
originally introduced in [9] to filter disparity data, and which
has been successfully extended to the temporal domain to filter
HDR data in [1]. Under the simplifying assumption to only
filter over all past video frames it can be reformulated as a non-
linear IIR filter in time. This obviates the need to iterate over
complete video volumes and results in constant computational
complexity and memory requirements. The PF has similar
spreading characteristics as the DT, which is important for
propagation of sparse data (e.g., sparse data upsampling). In
addition, the PF can be implemented with linear complexity
O(N), where N is the amount of processed pixels, and the
filter has good halo-reduction capabilities due to its close
relation with the high-quality WLS filter [1].

Second, we propose a more accurate and efficient way to
obtain optical flow estimates. Lang et al. [6] compute sparse
point-correspondences using standard SIFT features which are
then fed into their filtering framework to iteratively compute
dense optical flow for the temporal filter. These standard
features suffer from the fact that they are usually not regularly
spaced, but rather occur in clusters in textured areas. In order
to obtain sufficient coverage of the whole image, the interest
point detectors therefore have to be tuned to yield many
more points, which makes the matching process slow and
inefficient. In this work, we also use the filtering framework to
interpolate a sparse flow-initialization, but we propose to use
a more accurate and efficient matching method, which returns
a regular, quasi-dense correspondence field.

3

Optical Flow Estimation Optical flow estimation is an ex-
tensive field and therefore we only mention relevant methods
and refer to [29], [30] for more details on standard algorithms.

Several recently proposed optical flow methods rely on
sparse feature matching methods in order to gain efficiency.
Sparse feature matches obtained between two temporally ad-
jacent frames are typically used as initializations for varia-
tional refinements [17], [31], [32] or interpolation methods
[6], [33], [34]. In particular, a recently proposed multi-level
method called CPM [17] has been shown to provide a good
speed/performance tradeoff (currently it is among the top ran-
king methods on the MPI Sintel dataset [19]). CPM calculates
a quasi-dense NNF via a randomized nearest neighbor search.
Compared to standard feature matching approaches which
first employ an interest point detector, such NNFs achieve
much more regularly distributed point-correspondences. Ho-
wever, standard NNFs such as computed by PatchMatch [18]
originally suffered from many outliers. This issue has been
addressed by CPM by performing the randomized search on
an image pyramid and making use of SIFT descriptors [10]
instead of a block matcher. In order to gain efficiency, the
NNF is calculated on a subsampled grid – and hence it is
quasi-dense. In order to obtain a dense flow estimate, the
obtained NNF is interpolated using the geodesic interpolation
and variational refinement method from EpicFlow [32]. CPM-
Flow takes around 4.3 s on a single core machine, where
around 1.3 s are spent calculating dense SIFT descriptors and
performing CPM, and the remaining 3 s are spent in the
variational refinement step of EpicFlow. Note that CPM-Flow
has similarities with SIFT-Flow [35] and DAISY [15], which
both use a dense scan formulation to efficiently compute a
descriptor for each pixel. In fact, CPM-Flow uses the same
dense formulation as SIFT-Flow for efficient operation.

In this work, we leverage the advantages of CPM, but wit-
hout the costly SIFT descriptors and the variational refinement
step. To this end, we propose to use CPM with an efficient,
binary descriptor which we specifically developed for this task.
After obtaining an NNF using our new version of CPM, we
approximate the variational refinement step using our much
faster edge-aware filtering pipeline.

Features Current state-of-the-art descriptors can be catego-
rized into two classes, namely floating-point methods such
as SIFT [10], SURF [11] or DAISY [15] which produce
numeric feature vectors and binary methods which produce
bit vectors. The latter class of descriptors has received increa-
sed attention over the last couple of years since they often
can be calculated and matched more efficiently than their
floating-point counterparts. Notable binary standard methods
are BRIEF [12], BRISK [36], FREAK [13] and SKB [14],
[16]. Zhou et. al. [37] propose a binary SIFT (B-SIFT)
variant, which applies a post-processing step to standard SIFT
descriptors, and hence is computationally more expensive than
the other binary descriptors mentioned.

An interesting observation is that gradient-based descriptors
like histograms of oriented gradients (HOG) [38] (and variants
thereof) often exhibit superior ROC performance compared
to intensity-based descriptors [39–41]. Moreover, HOG-based

Sparse Flow
Estimation

(CPM+BOOM)

Spatial Edge-
Aware Filter

(PFXY)

Temporal Edge-
Aware Filter

(PFT)

“Guiding” Video Sequence

Sparse Flow (NNF) Dense Flow Filtered Channels

Additional Channels

Ft FXYT
t

FXY
t

It

AXYT
t

Spatial Edge-
Aware Filter

(PFXY)

At

Temporal Edge-
Aware Filter

(PFT)

AXY
t

HXY
t

Spatial Filter
Coefficients

It

Ft

It

Fig. 2. Overview of the STEA Filtering Pipeline. Refer to the text for more
details. ‘Sintel’ images copyright © Blender Foundation, www.sintel.org.

features have also proven to be useful for calculating optical
flow with large displacements [42].

Machine learning has been successfully applied to optimize
feature arrangements and reduce the dimensionality of the
vectors [39–41], [43], [44]. In particular, methods employing
AdaBoost have recently led to a variety of top-performing
descriptors such as BinBoost [39], Bamboo [40] and LDDB
[41]. However, learned descriptors typically forfeit some of
the efficiency gain when extracting the descriptor, since they
often have irregular computation patterns and employ costly
dimensionality reducing projections.

For the NNF calculation using CPM, a good tradeoff among
extraction speed, matching speed and ROC performance is
important. On one hand we have state-of-the-art methods
which provide fast extraction, but exhibit a larger memory
footprint and fair ROC performance. On the other hand, there
exist descriptors with small memory footprint and/or better
ROC performance – but these are typically more costly to
compute. We strive to seek a balance between these attributes
and present a simple binary descriptor termed Binarized Octal
Orientation Maps (BOOM), which can be efficiently calcula-
ted and matched, and exhibits similar performance as SIFT and
DAISY. BOOM is inspired by HOG-like methods, but takes
them a step further by providing an effective way to obtain a
compact 256 bit representation. Note that BOOM has simila-
rities with binarized HOG (BHOG) variants [45–47] from the
domains of human detection and sketch-based image retrieval.
However, as described in more detail in Section 4-A, BOOM
employs a different cell layout and binarization strategy, and
is based on orientation maps introduced by Tola et al. [15]
instead of standard HOGs, leading to significantly better ROC
performance as demonstrated in Section 5.

3. STEA Filtering Pipeline
An overview of our STEA filtering pipeline is shown in

Figure 2. The inputs are a guiding video sequence It and
additional attribute channels to be filtered At, where t is
the frame index. The guiding frames It are used to derive
the edge-aware filter coefficients HXY

t and to estimate sparse
optical flow Ft. The filter coefficients HXY

t are then used to

www.sintel.org

4

0.0

0.2

0.4

0.6

0.8

1

0.0 0.02 0.04 0.06 0.08 0.1

σXY

= 0.005

σXY
 = 0.015

σXY = 0.030

αXY = 1.0
αXY = 2.0
αXY = 3.0

||Ip − Ip′ ||2
Fig. 3. Impact of σXY and αXY on the shape of the edge-stopping function.
σXY controls the transition point and αXY the falloff rate.

perform spatial filtering operations in order to turn the sparse
optical flow into a dense flow field FXYt and to filter the
additional data channels in spatial directions to produce AXY

t .
The optical flow estimate FXYt is then used to enable temporal
filtering along motion paths. First, it is used to temporally
filter itself to produce a stabilized version FXY Tt , and this
temporally stabilized flow is then used to filter the additional
channels in time. In this example we have At = It in order
to illustrate the impact of edge-aware filtering, but in practice
At usually contains other feature maps such as disparity or
saliency values. The pipeline outputs sparse and dense flow
estimates Ft, FXY Tt , as well as the filtered channels AXY T

t .
Similar to other recent flow estimation algorithms [17], [31–

33], flow is estimated using sparse feature extraction, followed
by an efficient sparse-to-dense conversion. The difference of
our method w.r.t. related work is, that our conversion consists
of a fast edge-aware interpolation without any variational
refinement. We will see in Section 5, that this approach offers
a competitive speed-quality trade-off. The employed feature
matching method (CPM+BOOM) is an improved NNF method
based on sparse features and will be explained in Section 4.

For the EA filtering operation we selected the recently
proposed permeability filter (PF) [1], [9] due to its high
efficiency and good quality. It can be formulated as an iterative
application of ideally parallelizable 1D filtering passes with
constant complexity per processed pixel. This property is
shared by the domain transform (DT) filter [2], but the PF has
the additional benefit of being closely related to the WLS filter,
which is known to produce high-quality anisotropic filtering
results with good halo artifact reduction [2], [22], [23]. The
temporal filter employs the same PF, but as opposed to its
original extension into the temporal domain [1], we formulate
it as an incremental IIR filter which does not iterate over

σXY

αXY = 1.0 αXY = 2.0 αXY = 3.0

= 0.005

σXY

= 0.015

σXY

= 0.030

Fig. 4. Impact of σXY and αXY on the permeability map π̃X . The typically
used configuration σXY ≈ 0.015 and αXY = 2 is highlighted in green.

Guiding Image

Channels

I

AXY after 1 and 5 iterationsA

Permeability Maps andX Yπ π~ ~

Fig. 5. Edge-aware spatial filtering using permeability maps π̃X and π̃Y .
Note that A is set to I for illustrative purposes in this example. ‘Sintel’ images
copyright © Blender Foundation, www.sintel.org.

large temporal volumes. This enables efficient, low-latency
implementations with constant memory complexity.

Note that temporal filtering as performed here and in related
methods implicitly assumes the feature maps to be approxi-
mately constant over time (at least on a local scale) in order to
produce valid results. This assumption does not always hold
– especially for optical flow if the motion patterns change
rapidly, or if the video has been captured at a low frame-
rate. To this end, our temporal filter employs a flow gradient
measure that is able to detect regions where the constancy
assumption is violated in order to prevent errors.

In the following, we will describe the spatial and tempo-
ral filtering steps, and the employed NNF method for flow
computation is explained in the subsequent section.

A. Spatial Filtering of Dense Data

The filter used in this work belongs to a class of filters which
is defined by iterative application of the recurrence equation

J (k+1)
p =

∑
q∈Ω

Hpq J
(k)
q + λXY Hpp

(
Ap − J (k)

p

)
, (1)

where Ap denotes the input data to be filtered at position p

at frame t, J (k)
p is the diffusion result at position p after k

iterations. The set Ω contains all pixel positions of a frame, and
Hpq are elements of the row stochastic [20] matrix H defining
the filter. The iteration is initialized with J(0) = A. Frame
indices are omitted in this subsection since all operations are
only applied to spatial dimensions. The first term of (1) is
the actual shift-variant convolution and the second term is a
fidelity term with λXY ∈ [0, 1] which can be used to bias the
iteration towards the input data A. Aydın et al. [1] explain that
the choice of λXY = 1 significantly reduces halo artifacts.

The PF is a specific instance of (1) with two separate filter
matrices HX and HY for filtering operations in horizontal and
vertical direction, respectively. These operations are applied in
alternating fashion, and the concatenation of one X and one
Y pass constitutes one spatial filter iteration. The two matrices
HX and HY are defined via permeability weights πpq between
two pixels p and q which control the local diffusion strength.
Below we summarize how to obtain the coefficients HX for
the horizontal filter. The derivation for HY is analogous.

The permeability between two neighboring pixels p = (x, y)
and p′ = (x+ 1, y) is defined as

π̃Xp =

(
1 +

∣∣∣∣ ||Ip − Ip′ ||2√
3 · σXY

∣∣∣∣α
XY)−1

, (2)

www.sintel.org

5

Sparse Flow

Confidence

F

After 5 Iterations

After 5 Iterations

Normalized Flow FXY

G

Fig. 6. Edge-aware spatial filtering of sparse data (in this case 2D flow
vectors). ‘Sintel’ images copyright © Blender Foundation, www.sintel.org.

which is a variant of the Lorentzian edge-stopping function,
applied to the color distance between p and p′ of the guiding
image I. This function evaluates close to 0.0 if the color
distance between the two pixels is high, and close to 1.0 if
the distance is low. As illustrated in Figures 3 and 4, σXY

controls the transition point and αXY the falloff rate of the
edge-stopping function. Typical values are σXY ≈ 0.015 and
αXY = 2. Permeabilities between arbitrary pixels are then
defined as

πXpq =


1 if p = q,

Πqx−1
n=px π̃

X
(n,py) if px < qx, py = qy

Πpx−1
n=qx π̃

X
(n,py) if px > qx, py = qy

0 else.

(3)

The final filter coefficients Hpq are then obtained by norma-
lizing the pairwise permeabilities as

Hpq = πXpq

(
w∑
n=1

πX(n,py),q

)−1

, (4)

where w is the image width. This filtering process is illustrated
in Figure 5, where the guiding image is also subject to filtering.
We observe that even with a low number of XY passes in
the order of 5 iterations, the PF achieves strong edge-aware
diffusion. Note that the permeabilities in (3) are defined such
that the filtering operations reduce to 1D operations over image
rows or columns. As will be shown later, this specific filter
can be implemented with efficient scanline operations.

B. Spatial Filtering of Sparse Data

Although most EA filters are not strictly interpolating filters,
they can also be used to efficiently spread sparse data F, i.e., to
perform an edge-aware, sparse-to-dense conversion. As shown
in [6], [9], this can be conveniently achieved by introducing
a normalization map G, that contains nonzero values at
sparse sample positions, and is zero otherwise. The map G is
subject to the same filtering operation which is applied to the
corresponding sparse data channels. After the desired amount
of filtering iterations K, the map is used to normalize the
filtered data element-wise as FXY = F(K)./G(K). Figure 6
illustrates the sparse-to-dense conversion of optical flow. Note
that the normalization map G can additionally be used to
incorporate data confidence by assigning values between 0.0
and 1.0 at the sparse sampling positions in order to give
more weight to those samples which are considered to be
more accurate than others. For sparse flow-vectors, we use
the matching confidence, normalized to the range [0.0, 1.0].

1) LR Pass

2a) RL Pass

2b) Combination Step

J (k)

l

Xπ

l^

r
r^

J(k+1)

~

Fig. 7. The PF can be efficiently evaluated with only two scan line passes
due to the multiplicative concatenation of the permeabilities. As explained in
the text, left- and right-sided intermediate results can be formed, which allow
to compute the final result without explicitly evaluating the full convolutions.

C. Efficient Formulation of the Spatial Filter

As shown by [9], the multiplicative concatenation of the
permeabilities allows to formulate the filtering operation as an
efficient two-pass scan line operation with constant computa-
tional complexity per pixel. The formulas are only given for
the k-th horizontal iteration since their counterparts for the
vertical iteration follow analogously.

As illustrated in Figure 7, the intermediate results lp and
the corresponding normalization values l̂p are computed in a
first left-right scan-line pass using the recurrences

lp = π̃X(px−1,py)

(
l(px−1,py) + J

(k)
(px−1,py)

)
,

l̂p = π̃X(px−1,py)

(
l̂(px−1,py) + 1.0

)
.

(5)

In a second right-left pass (2a in Figure 7), the right-sided
quantities rp and r̂p are then computed as

rp = π̃Xp

(
r(px+1,py) + J

(k)
(px+1,py)

)
,

r̂p = π̃Xp
(
r̂(px+1,py) + 1.0

)
.

(6)

The result is finally calculated by combining and normalizing
the intermediate results (step 2b in Figure 7), and adding the
bias term λXY ·

(
Ap − J (k)

p

)
as

J (k+1)
p =

lp +
(
1− λXY

)
· J (k)
p + λXY ·Ap + rp

l̂p + 1.0 + r̂p
. (7)

Note that this third step can be efficiently carried out on-
the-fly during the right-left pass, since all intermediate results
are available at position p at this point. Therefore, the whole
procedure results in exactly two scan line passes. Individual
scan lines of one X or Y iteration are independent and can
be conveniently parallelized. The initial values l(1,py), l̂(1,py),
r(w,py), r̂(w,py) are all set to zero (w is the image width).

D. Temporal Filtering

Existing Approaches In related STEA filtering methods [1],
[6], the temporal extension of the EA filter has been achieved
in two different ways, and both solutions can be problematic
in terms of computational- and memory complexity when
targeting efficient STEA embodiments capable of real-time
operation. Lang et al. [6] iteratively apply XY and T iterations
to the complete video volume by following the motion paths
as illustrated in Figure 8a. Similarly to our work, they use their
DT-based filter to bootstrap optical flow. Their method works
on a large data structure of linked lists representing the motion
paths, and requires a large amount of high-bandwidth memory
in order to store the complete video volume. Also, the appro-
ach is limited to batch-wise processing, which incurs a high

www.sintel.org

6

a) t0t0
b) t0c) t0d)

tlast

tfirst
t -n0

LR Pass RL Pass LR Pass
Only

Aligned Frames IIR Filter StateUnaligned Video Volume

t -10t -n0 t +n0

Fig. 8. Different temporal extensions of the filter: a) iterative filtering along
motion paths within the complete video cube, b) single filtering step within
aligned symmetric (noncausal) window, c) single filtering step within left-
sided (causal) window, d) IIR formulation of c).

processing latency and therefore makes this approach unsuit-
able for real-time, stream processing settings. Aydın et al. [1]
formulate their filter on a reduced temporal sliding window
comprising in the order of ±10 spatially aligned frames, which
reduces the latency to about 10 frames. Also, they reduce the
computational complexity by applying only one T iteration
after the spatial XY iterations. This turned out to be sufficient
to obtain temporally smooth results. However, the need to
align all frames within the temporal window still incurs a
non-negligible computational overhead. We therefore refrain
from these approaches and seek to formulate the filter in an
incremental fashion, which can be evaluated very efficiently
and with constant memory complexity. As shown in more
detail below, this is possible by leveraging the mathematical
properties of the permeability filter.

Formulation of the Recursive Permeability Filter First, we
make the following two assumptions:

• We assume that only one T iteration is applied after the
XY iterations. This assumption is valid in practice, since
already one T iteration improves temporal consistency
[1]. In addition, using only one T iteration eliminates the
‘chicken-and-egg’ problem described in [6], which arises
when the dense optical flow estimate used in the frame
alignment is bootstrapped using the filter itself.

• We assume that all data to be filtered, JXYt , has been
aligned to the centering frame t0 within a certain temporal
neighbourhood T = [t0 − n, ..., t0, ...t0 + n], n ∈ N+.
For the moment we neglect the fact that this assumption
implicitly requires the availability of optical flow for these
frames in order to perform the alignment, as this does not
pose a problem anymore in the incremental formulation.

With these assumptions, we can calculate one T filtering
iteration with the same recurrence equations defined in (5)
and (6), but using temporal permeabilities π̃Tt which will
be defined in Section 3-E. In other words, we can compute
the intermediate results lt, l̂t, rt, r̂t, where a left-right pass
corresponds to a forward pass in time and vice versa for
the right-left pass (the bold symbols now represent full-frame
matrices, indexed by the frame number t). The result of one
T iteration for the frame at time t0 is then given by

JXY Tt0 =

(
lt0 +

(
1− λT

)
· JXYt0 + λT ·At0 + rt0

)(̂
lt0 + 1.0 + r̂t0

) . (8)

We now simplify the problem by replacing the symmetric
temporal neighborhood with a causal, one-sided time window
T = [t0 − n, ..., t0], n ∈ N+. This is a valid simplification,
especially for real-time settings where low-latency is required

Frame It0Frame I t -10
Photo Constancy

Gradient MeasureFlow Ft0Flow Ft -10

XYTXYT

Frame It0Frame I t -10
Photo Constancy

Gradient MeasureFlow Ft0Flow Ft -10

XYTXYT

a)

b)

Fig. 9. Photo constancy and gradient measures for shots with slow and
steady zoom (a), and fast-changing motion (b). ‘Sintel’ images © Blender
Foundation, www.sintel.org.

and no information about future frames is available. We can
observe that the recurrence equation then reduces to

JXY Tt0 =

(
lt0 +

(
1− λT

)
· JXYt0 + λT ·At0

)(̂
lt0 + 1.0

) , (9)

since rt0 and r̂t0 are zero in this case. This means that one
temporal iteration can basically be calculated using just one
left-right pass. If we now let n → ∞, and by considering
the fact that the left-right pass is defined as a recurrence, we
see that it is possible to obtain a non-linear IIR filter in time
which only requires one recurrence evaluation for each time
step. The only missing part to consider is alignment. Recall
that we assumed that all frames within T are aligned to the
frame t0 in the first place. If we drop this assumption and want
to reuse the IIR filter state of the previous time-step t0 − 1
to update the recurrence equation, we have to re-align it to
the current frame t0, which can be conveniently done using
forward-warping based on the flow estimate of FXY Tt0−1 which
is already computed and available:

lt0 = π̃Tt0 warpFXY T
t0−1

(
lt0−1 + JXY Tt0−1

)
,

l̂t0 = π̃Tt0 warpFXY T
t0−1

(̂
lt0−1 + 1.0

)
.

(10)

Note that this recurrence step in time can be efficiently
implemented with constant memory and low latency.

E. Temporal Permeabilities and Flow Gradient Measure

As proposed in [1], we use a combination of color constancy
and a flow-gradient magnitude measure in order to calculate
permeabilities in temporal direction. The photo constancy is a
straightforward extension of the spatial permeabilities

π̃photot =

1 +

∣∣∣∣∣∣
∣∣∣∣∣∣It − warpFXY T

t−1
(It−1)

∣∣∣∣∣∣
2√

3 · σphoto

∣∣∣∣∣∣
αphoto


−1

,

(11)

www.sintel.org

7

and allows filtering along motion paths with similar color
values in the guiding image. The gradient-magnitude measure
is calculated similarly as

π̃gradt =

1 +

∣∣∣∣∣∣
∣∣∣∣∣∣FXYt − warpFXY T

t−1

(
FXY Tt−1

)∣∣∣∣∣∣
2√

2 · σgrad

∣∣∣∣∣∣
αgrad


−1

,

(12)
and prevents temporal filtering with rapid motion changes
where flow and warping artifacts are likely to occur. In other
words, this measure introduces a bias towards the current
frame in regions where the constancy assumption of the data
to be filtered may not hold and where temporal filtering may
hence introduce errors. Divisions and exponentiations are all
element-wise in the two equations above. The two measures
are then multiplied (element-wise) to get the final temporal
permeabilities π̃Tt = π̃photot · π̃gradt . Figure 9 shows two
examples, where the first shot exhibits slow and consistent
camera zoom, and the second shot contains quickly moving
parts (left arm of the main character). We can see that the
gradient measure effectively detects regions where warping
artifacts are likely to occur.

F. Forward Warping using EWA Splatting

For the implementation of the forward mapping operator
warpFXY T

t0−1
(.), we use the elliptic-weighted average (EWA)

splatting framework [48], [49] which is an efficient high-
quality resampling technique for non-linear, two-dimensional
forward mapping transformations. In addition to the temporal
permeabilities π̃photot and the flow gradient measure π̃gradt

introduced before, we additionally cull image regions that un-
dergo a significant density change due to the transformation1.
I.e., only image regions where the density stays within the
range [0.25, 2.5] are accumulated in the forward mapping
buffer. This can prevent stretching and compression artifacts
(e.g., at motion boundaries). Regions that are empty after
warping (e.g., disoccluded areas) are not filtered in time.

We use a forward mapping technique in this work since
this allows us to simplify the overall pipeline and work with
forward flow only. It should however be noted that backward
flow could be used in addition to forward flow to perform
stricter consistency checks in the warping step and resolve
warping ambiguities more effectively.

4. CPM with Binary Descriptors
Our STEA pipeline relies on sparse flow vectors to obtain

dense optical flow via EA filtering. These flow vectors are
extracted using an improved version of the recently proposed
CPM [17] method, which we will explain in the following.

CPM is a NNF method, which has been developed to
provide accurate optical flow vectors on a coarse, but regular
grid. As opposed to the original PatchMatch algorithm [18],
the randomized search is formulated on subsampled grids over
an image pyramid, where matching information is propagated
from coarser to finer grids in a top-down fashion. Instead

1Local density changes due to the transformation can be estimated at all
vertices of the warping grid using finite difference approximations of the
Jacobian determinants.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

e0

e1e2e3

e4

e5 e6 e7

25 quincunx centers
7 additional centers

kth 4x4 pixel cell with
8 projection vectors
total descriptor size:
(25 + 7) x 8 = 256

16 SIFT centers
Fig. 10. The descriptor is applied to a 16× 16 pixel patch and contains 32
4× 4 pixel bins with 8 orientation map responses. This results in 256 values
overall. The 4×4 spatial binning cells are arranged in a similar manner as in
SIFT, but instead of 16 non-overlapping cells, 32 partially overlapping cells
are employed (25 quincunx centers plus 7 additional centers).

of the simple block matching metric, CPM uses SIFT-Flow
features [35] to compute costs, since this provides more robust
matches. SIFT-Flow is a pixel-dense formulation of SIFT [10]
and returns a pixel-dense descriptor field for a given image.
It can be computed more efficiently than the sparse descriptor
since the regular, dense setting makes it possible to share
intermediate binning results among overlapping descriptors.

In this work, we found that the runtime of CPM can be even
further decreased by switching from costly SIFT descriptors to
binary descriptors. Such binary descriptors can be computed
and matched more efficiently, and they have a smaller memory
footprint. However, most binary descriptors with equivalent (or
better) ROC performance than SIFT have been obtained with
machine learning techniques such as [39–41], [43], [44] and
often exhibit irregular computation patterns, making it difficult
to share intermediate results among overlapping descriptors
in a dense scan setting. We therefore introduce a new binary
descriptor termed BOOM, which has a similar, regular binning
cell layout and ROC performance as SIFT – while being
computationally more efficient. The descriptor is explained
below, followed by the modifications to CPM. Performance
results and comparisons are presented later in Section 5.

A. Binarized Octal Orientation Maps

When looking at existing descriptors, we observe that
gradient-based features consistently provide better perfor-
mance than intensity-based ones [39–41]. Well performing
descriptors (binary and non-binary) such as BinBoost [39],
SIFT [10], DAISY [15] or SURF [11] therefore employ
Histograms of Oriented Gradients (HOG) [38] or variations
thereof as basic building blocks. Also, normalization of the
descriptor vector is essential for good ROC performance [10],
[39], [43]. The proposed BOOM descriptor combines HOG-
like features with a normalized binarization scheme in order
to get a descriptor with similar performance and regular layout
as SIFT and DAISY, but with the computational efficiency of
binary descriptors.

Support Region and Orientation Maps The input to our
BOOM descriptor is a normalized 18× 18 pixel patch P, that
is first preprocessed with Prewitt operators to get the gradients

8

gj = [Ghj , G
v
j] within a 16× 16 pixel support S16×16:

Gh = P∗

1 0 −1
1 0 −1
1 0 −1

 , Gv = P∗

 1 1 1
0 0 0
−1 −1 −1

 . (13)

BOOM is formulated as a collection of orientation maps [15]
on 4 × 4 pixel cells (spatial bins) arranged in a quincunx
pattern, as shown in Figure 10. In order to align the amount
of responses with a power of 2, we additionally add 7 cells
around the center region. The orientation maps are then built
within these 32 spatial bins using eight directions as

bki =
∑

j∈N 4×4
k

max (0, 〈ei,gj〉) , (14)

where bki are the orientation map responses and N 4×4
k denotes

the 4× 4 pixel neighbourhood of the kth spatial bin. Overall
this results in 32×8 = 256 orientation map responses bki. Note
that we use projections onto the following direction vectors[

e0 . . . e7

]
=

[
1 1 0 −1 −1 −1 0 1
0 1 1 1 0 −1 −1 −1

]
(15)

in order to calculate the gradient contribution to a specific
orientation map. Negative projections are clamped to zero.
Compared to standard HOG binning approaches, this scheme
has the advantage that angles do not have to be calculated
explicitly. Note that the use of unnormalized vectors and
Prewitt masks is intentional here as this allows to implement
these operations with integer additions only.

Normalization and Binarization It is crucial to normalize
gradient based descriptors in order to get good descriptor per-
formance [39], [43]. However, straightforward normalization
requires the computation of costly L2 norms and divisions.
As we aim to binarize the final responses, we use a slightly
different approach. First, we compute a simple approximation
(from [50], page 89) of the average gradient magnitude which
can be carried out with integer arithmetic as

s =
∑

j∈S16×16

5 ·max
(
|g0
j |, |g1

j |
)

+ 3 ·
(
|g0
j |+ |g1

j |
)
. (16)

The normalization of this approximation with (5 + 3) = 8 is
implicitly carried out in the binarization step

dki =

{
bki · θ0 > s , if i even,
bki · θ1 > s , if i odd,

(17)

which yields a binary 256 bit descriptor dki. The parameters
θ0 and θ1 compensate for all normalizations omitted so-far.
In order to determine the value of these parameters, we swept
them over the range of interest on the Liberty 100k dataset
of Brown et al. [43]. The minimal error is achieved for θ0 =
980 and θ1 = 230. We align these values to powers of two,
θ0 = 1024 and θ1 = 256, since these can be implemented with
simple bitshifts and the performance impact is negligible.

The BOOM descriptor can be efficiently implemented
using only integer arithmetic. No divisions, trigonometric-
and transcendental functions are required. As elaborated in
more detail in Section 5, its ROC performance is similar to
SIFT descriptors with 128 entries and to DAISY descriptors
with 200 entries, while at the same time being more efficient
than state-of-the-art binary descriptors in terms of processor

execution time. Similar to SIFT-flow and DAISY, BOOM can
be implemented as an efficient dense scan method.

Difference to Binarized HOG Descriptors Although the
proposed descriptors has similarities with binarized HOG
descriptors (BHOG) that have been proposed in the domain of
human detection [45], [46] and sketch-based image retrieval
[47], the following important differences should be noted:

1) Usually, HOG descriptors employ non-overlapping cell
layouts, whereas our descriptor uses partially overlap-
ping cells arranged in a quincunx pattern.

2) BHOG descriptors employ gradient binning – i.e., accu-
mulation of the gradient magnitude into corresponding
direction bins – instead of orientation maps.

3) BHOG descriptors use either fixed thresholds or the
average bin response within a single 4 × 4 pixel cell
to threshold the bin responses. In contrast, our BOOM
descriptor uses the average gradient magnitude over the
complete descriptor support.

As shown in Figure 11a in Section 5, these design decisions
have a significant performance impact. In addition, the propo-
sed normalization technique does not rely on the final HOG
values. The binarization threshold can hence be accumulated in
parallel to the orientation map responses, and does not require
the evaluation of high-dimensional vector norms.

B. Modifications of CPM and Parametrization

Our CPM closely follows the implementation of [17], and
therefore we refrain from repeating all details of the method
here and only mention important differences:

• Instead of SIFT-Flow, we use a dense scan implemen-
tation of BOOM. In addition, we applied CLAHE [51]
with threshold θclahe = 1 to the input images in order to
improve performance on low-contrast image regions.

• Instead of performing the forward-backward check on the
two finest levels, we perform one check on the coarsest
and one check on the finest level. Outliers on the coarsest
level are re-initialized. In addition, we also threshold the
matching costs in order to remove very bad matches.
Currently, this threshold is set to θdesc = 88.

• We use the same amount of pyramid levels (nlevels = 5),
propagation iterations (nprop = 6), and a grid spacing of
d = 3. However, we employ a slightly relaxed search
radius r of 11 instead of 4, and reduce the forward-
backward check threshold θflow from 3 to 1 pixel as we
found that this improves the accuracy of the method.

• The original CPM method does not provide sub-pixel
accurate results. In order to improve the precision for
small flow-vectors, we perform a quadratic interpolation
step by reusing the matching costs on 3×3 neighborhoods
around matches returned by CPM.

5. Results
First, we provide implementation details, followed by an

evaluation of BOOM and its combination with CPM. Then,
we evaluate the optical flow obtained with our STEA pipeline,
and we show results for additional image-based applications.

9

TABLE I
BOOM PERFORMANCE AND COMPARISON WITH OTHER STATE-OF-THE-ART DESCRIPTORS ON THE UBC DATASET [43].

Type Size 95% Error (FPR for TPR=0.95) Time per Implementation Processor
Descriptor [Bytes] Liberty Notredame Yosemite Descriptor [µs] Model

SIFT128 [10]

FP

128 29.54 23.65 29.27 483.6 VLFeat‡ i7 3.1 GHz (1 Thread)
SURF128 [11] 128 44.72 36.13 42.77 69.8 MATLAB i7 3.1 GHz (1 Thread)
SURF64 [11] 64 43.28 32.53 42.16 63.1 MATLAB i7 3.1 GHz (1 Thread)
DAISY200 [15] 200 28.33 22.66 31.71 -× author -
Brown29 [43] 29 17.56 11.98 13.55 - - -

BinBoost64{128} [39]

Bin

8 21.08† 15.72† 20.93† ~1000§ author Mobile i7 2.66 GHz
LDA-Hash128 [44] 16 49.66 51.58 52.95 - - -
Bamboo128 [40] 16 49∗ - - ~20§ author -
LDDB-U256 [41] 32 - - - ~154§ author ARM Cortex A9 1GHz
FREAK512 [13] 64 52.10 43.48 46.63 34.4 MATLAB i7 3.1 GHz (1 Thread)
BRISK512 [36] 64 73.74 70.24 67.55 38.2 MATLAB i7 3.1 GHz (1 Thread)
BRIEF256 [52] 32 53.47 46.51 51.12 29.9 author i7 3.1 GHz (1 Thread)
SKB256 [14], [16] 32 67.07 64.95 62.42 10.9 ours i7 3.1 GHz (1 Thread)
BOOM256 this work 32 27.27 22.04 27.23 10.9 ours i7 3.1 GHz (1 Thread)
§ from original publication ∗ 200k dataset † averaged training set numbers from [39] ‡ http://www.vlfeat.org/ × N/A as implemented as dense-scan.

A. Implementation and Choice of Parameters

We provide an efficient single core implementation of the
complete filtering pipeline in plain C++. Apart from the
__popcnt64 SSE intrinsic for computing the descriptor
matching cost, we do not make use of other SSE/AVX vector
intrinsics in order to facilitate comparisons. The descriptor cal-
culation and CPM parts only use integer arithmetic (with the
exception of the subpixel interpolation). The filtering stages
are implemented using single precision arithmetic. Timings for
the different substeps of our pipeline have been measured on
an i7-5557U machine (3.1 GHz) with 16 GB RAM. Detailed
numerical results are given in the following subsections.

Note, that there is significant acceleration potential by le-
veraging vector intrinsics, multiple threads or GPU implemen-
tations – especially for high resolution video content where
data-level parallelism becomes abundant (Nehab et al. [53]
provide useful insights of how recursive filtering approaches
can be parallelized). The only part of the current single-core
implementation which cannot be trivially parallelized is the
sequential search and propagation loop of CPM. For parallel
implementations, this issue can be resolved by switching to
more elaborate PatchMatch variants such as, e.g., those based
on the jump flood scheme [18], [54] which use search patterns
that are amenable to parallelization.

The filter parameters employed are listed in Table II, and
have been tuned on a few frames of the MPI Sintel training
set [19]. Parameters for spreading sparse data have been
validated on the MPI Sintel test set by means of the optical
flow evaluation in Section 5-C, and work well for a variety
of different sequences and applications. We set the fidelity
term λ to 0.0 since it is not intended to be used with sparse
data and can lead to discontinuities at the sparse sampling

TABLE II
EMPLOYED FILTER PARAMETERS.

Filter Parameter Flow Disparity Saliency Base/Detail Layer

σXY 0.017 0.017 0.025 0.025 / -
σphoto 0.3 0.3 0.3 0.3
σgrad 1.0 1.0 1.0 1.0
K 5 5 5 5 / 0
λ{XY,T} 0 0 1 1
α{XY,grad,photo} 2 2 2 2

locations. For applications involving a creative process with
artistic intent (such as, e.g. Visual Saliency and Base/Detail
Layer, see Section 5-E), the selected filter parameters represent
a possible choice and may be changed in order to smooth the
images at different scales. The employed parameterization of
the temporal filter provides a good tradeoff between oversmoo-
thing and no smoothing at all, as explained in more detail later
in Section 5-E. For CPM, we use the parameters as described
in Section 4-B. The only varying parameter is the grid spacing
d which we set according to the image resolution such that
CPM yields approximately the same amount of flow vectors
(~30-40K). For Sintel images (1024×436) we use d = 3 and
for ‘Tears of Steel’ (ToS) images (1920×800) we use d = 6.

B. Performance of the BOOM Descriptor and CPM

BOOM Descriptor We first evaluate the BOOM descriptor
on the three 100k datasets Liberty, Notredame and Yosemite
provided by Brown et. al [43], where each contains 100k
pairs of rotation- and scale-normalized 64×64 grayscale image
patches. The pairs come with annotated ground truth, which
allows to calculate performance measures in terms of ROC.

As mentioned in Section 4-A, the usage of orientation maps
instead of HOGs, and the complete descriptor support norma-
lization have a significant impact on the ROC performance.
Figure 11a shows a comparison of the proposed BOOM des-
criptor and three variants thereof that either employ standard
HOG binning with 8 directions instead of the orientation maps,
or that use standard per 4 × 4 pixel cell normalization as
described in [46]. Note the significant performance gain due to
the usage of orientation maps and the normalization method.

The ROC characteristic of our BOOM descriptor is shown
in Figure 11b, along with several other standard descriptor
methods [10–16], [36]. With a 95 % error rate of 22-27.3 %,
we can observe that it performs slightly better than SIFT and
DAISY, and it performs significantly better than many other
standard binary descriptors such as BRIEF, BRISK, FREAK
and SKB. The novelty of BOOM lies in the combination
of orientation maps with a normalized thresholding scheme,
which allows to retain this performance in spite of binarization.

More detailed numerical results are provided in Table I,
together with results from advanced learning-based descriptors
such as Brown et al. [43], LDA-Hash [44] and AdaBoost-

http://www.vlfeat.org/

10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
False Positive Rate (FPR)

0.5

0.6

0.7

0.8

0.9

1
Tr

ue
 P

os
itiv

e R
ate

 (T
PR

)

BHOG256 (per 4x4 cell norm)
BHOG256 (complete support norm)
BOOM256 (per 4x4 cell norm)
BOOM256 (complete support norm)

False Positive Rate (FPR)

Tr
ue

 P
os

itiv
e R

ate
 (T

PR
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.6

0.7

0.8

0.9

1

SURF64 (0.33)
SURF128 (0.36)
SIFT128 (0.24)

FREAK512 (0.43)
BRISK512 (0.70)
BRIEF256 (0.47)
SKB256 (0.65)

DAISY200 (0.23)

BOOM256 (0.22)

a)

b)

Fig. 11. ROC performance comparisons on the Notredame 100k UBC
dataset [43]. a) comparison of BOOM and 3 variants that selectively use
standard HOG binning instead of orientation maps, or standard per-cell HOG
normalization instead of the proposed normalization (all variants use the same
spatial layout). b) comparison of BOOM with several other standard methods.

based binary descriptors like BinBoost [39] and its simplified
derivatives Bamboo [40] and LDDB-U [41]. Timings have
been obtained by extracting 10k descriptors from the same
image (including descriptor support scaling). We observe
that in general, binary descriptors have much lower memory
footprints with respect to the floating-point (FP) counterparts
(assuming 1 B per dimension for FP methods [39]). Especially
BinBoost achieves a very compact representation with just
8 bytes while ranking second in terms of 95 % error rates.
However, it is very costly to compute (~1 ms per descriptor) as
each effective descriptor dimension results in the computation
of a linear superposition of 128 features. Therefore, this
method is better suited for large-scale database retrieval where
memory and matching efficiency matter most. As opposed to
this, BOOM offers a competitive speed/performance tradeoff,
since with an execution time of ~11µs per descriptor, it
is significantly more efficient than most other methods. At
the same time it provides similar error rates as SIFT and
DAISY. The run-time of the dense scan DAISY and SIFT-Flow
methods (published MATLAB MEX C++ implementations)
amounts to 1350 ms and 950 ms, respectively, for a 1024×436
pixel frame on a 3.1 GHz i7 machine. Compared to this, our
unvectorized single-core dense scan implementation of BOOM
only requires 111 ms, which is 12.3× faster than DAISY and
8.6× faster than SIFT-Flow.

CPM with BOOM Figure 12 shows a comparison of the
sparse flow estimates delivered by the original CPM method
(calculated using the code from [17] with standard parame-
ters) and our CPM variant with BOOM. The corresponding

Input Frames Ground Truth

CPM+SIFT CPM+BOOM
Fig. 12. Comparison of CPM+BOOM with CPM+SIFT from [17]. ‘Sintel’
images copyright © Blender Foundation, www.sintel.org.

numerical results using the metrics defined in [17] are shown
in Table III. SIFT-NN are matches obtained with SIFT and
FLANN [17], Kd-tree PatchMatch is a recent NNF method
[55], Deep Matching is the matching method used in Deep-
Flow [33] and EpicFlow [32], and CPM+SIFT is the original
CPM method [17]. We can see that CPM+BOOM performs
similarly compared to CPM+SIFT in terms of density and
precision. At the same time, it is more than twice as fast
when run on a slower i7 machine (3.1 GHz) than the original
(3.5 GHz). The decreased number of matches of CPM+BOOM
when compared to CPM+SIFT is mainly due to the larger
border region of our implementation and a stricter forward-
backward consistency check. This decrease can be tolerated
since the method provides sufficiently dense initializations.

C. Optical Flow and Comparison with Related Methods

Optical Flow Evaluation We evaluated the flow estimation
part of our STEA pipeline on the MPI Sintel dataset [19],
which is considered realistic and challenging and exhibits large
motions and motion blur. It comprises 23 training and 12
test sequences with up to 49 frames, and since it is derived
from an animation movie, accurate ground-truth is available
for training. Table IV lists our evaluation results, together
with results of the fastest methods (run times below 20 s per
frame) published on the Sintel website. A visual comparison
of selected methods is shown in Figure 14, and the run time vs.
average endpoint error (AEE) tradeoff is shown in Figure 13.

As can be observed in Figure 14, our method provides
visually similar quality as CPM-Flow [17], EpicFlow [32], and
FlowFields [57] which however provide more accurate results
in terms of AEE. The lowest AEE is achieved by CPM-Flow
on the clean pass (3.56) and by FlowFields on the final pass
(5.81). However, the run time of our unvectorized single-core
implementation amounts to only 0.59 s for XYT filtered flow
results and is therefore significantly faster than most other
methods listed in Table IV. This fact is also reflected in the plot

TABLE III
COMPARISON OF CPM+BOOM WITH RELATED METHODS ON MPI SINTEL

(FINAL TRAINING PASS). TIMINGS OF CPM+SIFT AND CPM+BOOM
HAVE BEEN MEASURED, THE REMAINING ONES ARE FROM [17].

Method Amount Density Precision Time Processor

SIFT-NN [10] 1K 0.175 0.851 0.5 s i7 3.5GHz
KPM [55] 446K 1.000 0.595 0.4 s i7 3.5GHz
DM [33] 5K 0.892 0.945 15 s i7 3.5GHz
CPM+SIFT [17] 40K 0.886 0.975 2.1 s i7 3.1GHz
CPM+BOOM 32.7K 0.834 0.979 0.56 s i7 3.1GHz

www.sintel.org

11

TABLE IV
RESULTS AND COMPARISON WITH OTHER FAST STATE-OF-THE-ART METHODS ON THE MPI SINTEL DATASET [19]. TIMINGS TAKEN FROM [17].

Clean Pass Final Pass Time Processor
Method AEE AEE Noc AEE Occ AEE AEE Noc AEE Occ [s] Model

DiscreteFlow [56] 3.57 1.11 23.63 6.08 2.94 31.69 ~180 s i7 3.5GHz (1 Thread)
SparseFlow [31] 6.20 2.36 37.46 7.85 3.86 40.40 10 s ?
DeepFlow [33] 5.38 1.77 34.75 7.21 3.34 38.78 19 s i7 3.5GHz (1 Thread)
FlowFields [57] 3.75 1.06 25.70 5.81 2.62 31.80 18 s i7 3.5GHz (1 Thread)
EpicFlow [32] 4.12 1.36 26.60 6.29 3.06 32.56 16.4 s i7 3.5GHz (1 Thread)
CPM-Flow [17] 3.56 1.19 22.89 5.96 2.99 30.18 4.3 s i7 3.5GHz (1 Thread)
PCA-Layers [34] 5.73 2.46 32.47 7.89 4.26 37.48 3.2 s i7 3.5GHz (1 Thread)
PCA-Flow [34] 6.83 3.01 37.94 8.65 4.73 40.67 0.18 s ?

BOOM+Epic+Var 3.56 1.10 23.71 6.53 3.17 33.96 3.4 s i7 3.1GHz (1 Thread)
BOOM+Epic 3.67 1.27 23.23 6.70 3.37 33.87 2.5 s i7 3.1GHz (1 Thread)
BOOM+PF+Var (XY) 4.91 1.38 33.63 7.29 3.41 38.90 1.4 s i7 3.1GHz (1 Thread)
BOOM+PF (XYT) 5.31 1.82 33.81 7.68 3.83 39.12 0.59 s i7 3.1GHz (1 Thread)
BOOM+PF (XY) 5.20 1.70 33.83 7.60 3.73 39.14 0.54 s i7 3.1GHz (1 Thread)

in Figure 13, which summarizes the quality/speed tradeoff of
all compared methods. We can see that our BOOM+PF method
provides a very competitive tradeoff, and shares the Pareto
frontier with PCA-Flow, CPM-Flow and FlowFields which are
optimal choices at different operating points. The only CPU-
based method that is faster than BOOM+PF is PCA-Flow [34],
which only requires 0.18 s. But as can be observed in Figure 14
at the bottom, PCA-Flow is not capable of capturing fine
details and the resulting flow is blurry. It is interesting to note
that all methods on the Pareto front (PCA-Flow, CPM-Flow
and FlowFields) rely on similar concepts. They extract sparse
point correspondences or NNFs and convert these to dense
flow maps via interpolation. The superior accuracy of CPM-
Flow and FlowFields is to some extent achieved by using the
EpicFlow backend (interpolation and variational refinement).
In addition, FlowFields employs a more elaborate matching
technique than CPM-Flow that results in slightly lower AEE,
at the price of a significantly longer execution time of 18 s.

To illustrate the quality-runtime tradeoffs due to the bac-
kend, we also integrated EpicFlow into our method, such that
we can selectively switch the interpolation technique and/or
add a variational refinement step. As can be seen in Table IV
and Figure 13, the resulting variants (BOOM+...) are all on
the Pareto front, offering a range of different quality/execution
time tradeoffs. Note that these variants have not been tuned

Runtime per Frame [s]
0.1 1 10 100 1’000 10’000

AE
E

[px
]

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10
10.5

PCA-Flow [34]

PCA-Layers [34]
SparseFlow [31]

SparseFlowFused
DeepFlow [33]

EpicFlow [30]

TF+OFM

MDP-Flow2

Data-Flow

Horn+Schunck

S2D-Match

Classic++

Classic+NL

Classic+NLP

Classic+NL-fast

LDOF-CPULDOF-GPU

NLTGV-SC

EPPM

DiscreteFlow [56]

FlowFields [57]

CPM-Flow [17]
FullFlow

PH-FlowBOOM+
PF(XY)

BOOM+
PF(XYT)

CPU
GPU

This Work: Related Methods:

BOOM+
PF(XY)+
VAR

BOOM+
Epic

BOOM+
Epic+
VAR

PF-based (CPU)
Epic-based (CPU)

Fig. 13. Runtime vs. AEE plot of fast CPU implementations on the final MPI
Sintel dataset. The Pareto front is indicated in gray.

and employ the default parameters. BOOM+EPIC+VAR has a
similar AEE as CPM-Flow on the clean pass, as expected,
and a slightly higher AEE on the final pass. Interestingly,
the variational refinement step decreases the AEE by only
around 0.4, when applied to BOOM+PF (XY). Larger AEE
improvements in the order of 0.9 can be achieved by using
EpicFlow interpolation instead. The reason for this is that
EpicFlow employs local, affine transformations for interpo-
lation, whereas our edge-aware filter performs an averaging
operation. It should be noted, however, that the execution
time of EpicFlow interpolation depends on the number of
sparse matches, and amounts to around 2.1 s on average
(including structured edge detection [58]). In contrast, the PF
has constant runtime and is significantly faster (90 ms), which
is an important property for real-time applications.

A visual comparison of all BOOM+... variants is given in Fi-
gure 14, and reveals that interpolation with the PF can preserve
fine details a bit better than Epic interpolation, whereas Epic
interpolation provides smoother object boundaries. This can be
explained by the fact that the PF directly operates on pixel-
wise permeabilities, whereas the Epic interpolation employs
structured edges [58] that are smoother.

The AEE difference between the XY and the XYT filtered
flows is a consequence of several small error sources that may
result in a numerical offset. This includes warping artifacts,
violations of the constant flow assumption, and the fact that an
asymmetric causal filtering window is used, which can intro-
duce a small temporal lag. Note however, that the numerical
differences are small and that several of these artifacts are
explicitly addressed (e.g., by using the flow gradient measure
to stop filtering in regions with rapidly changing motion
patterns). Further, the T step effectively removes temporal
flickering as shown in more detail in Section 5-D.

Performance and Related STEA Methods Calculating opti-
cal flow for a Sintel frame (1024×436) takes 0.59 s (without
file I/O), and most of the time is spent calculating the dense
descriptor field (26 %) and performing CPM (50 %). The
five spatial filtering iterations of the two flow components
and the confidence map amount to 16 %, and the temporal
step including warping to only 8 % of the total runtime. For
this resolution, CPM requires a large fraction of the time.
Note however, that the computational effort of CPM does not
increase when scaling to higher resolutions, since we keep

12

Gr
ou

nd
 Tr

uth
BO

OM
+P

F(
XY

)
+V

AR
BO

OM
+E

pic
BO

OM
+P

F(
XY

)

2.5 sec

1.4 sec

0.54 sec

Fr
am

e
BO

OM
+E

pic
+V

AR

3.4 sec

PC
A

La
ye

rs
[34

]
CP

M-
Flo

w
[17

]
PC

A
Flo

w
[34

]

4.3 sec

3.2 sec

0.18 sec

Flo
wF

iel
ds

 [5
7] 18 sec

Ep
ic-

Flo
w

[32
] 16.4 sec

Fig. 14. Flow results and comparison of our method on the MPI Sintel dataset. ‘Sintel’ images copyright © Blender Foundation, www.sintel.org.

the amount of sparse grid sampling points constant. For larger
frames such as in the ToS examples (1920×800) shown in the
following subsections, the fraction spent in CPM reduces to
25 %. The runtime for one frame amounts to 1.41 s in that case,
and the remaining fractions are 39 % for BOOM, 24 % for the
XY iterations, and 11 % for the T step. The measured DRAM
consumption of our method does not exceed 72 MB for Sintel
and 245 MB for ToS frames. The generated DRAM traffic
per frame has been profiled by observing last-level data cache

misses, and amounts to ~500 MB and ~1.66 GB, respectively.2

The related STEA method by Aydın et al. [1] on which our
spatial filter is based, has not been designed to calculate flow,
and relies on a slow, high-quality variational method [30]. The
STEA method by Lang et al. [6] is able to calculate optical
flow, but has not been thoroughly evaluated on a large dataset
like Sintel. In terms of run time, their optimized quad-core

2Typical embedded GPU platforms such as the Tegra X1 and X2 offer in
the order of 25-50 GB/s of DRAM bandwidth [59].

www.sintel.org

13

MPI Sintel training sequence

Me
an

 S
mo

oth
ne

ss
 ψ

0.0

0.2

0.4

0.6

0.8

1.0

alle
y_1

alle
y_2

am
bus

h_2

am
bus

h_4

am
bus

h_5

am
bus

h_6

am
bus

h_7

bam
boo

_1

bam
boo

_2

ban
dag

e_1

ban
dag

e_2

cav
e_2

cav
e_4

mark
et_

2

mark
et_

5

mark
et_

6

moun
tain

_1

sha
man_

2

sha
man_

3

sle
epi

ng_
1

sle
epi

ng_
2

tem
ple

_2

tem
ple

_3

σphoto =
 [0, 0.1, 0.2, 0.3, 0.4]

sequences with significant gainsequences with marginal
or no gain

a
v
g

Fig. 15. Average smoothness score of all traces in the analyzed sequences for different photo constancy parameterizations σphoto of the temporal filter
(σgrad is constantly set to 1.0 in this analysis.). The bars indicate the standard deviation. Note that there are several Sintel sequences, where the temporal
filtering step improves the smoothness of the sequence (highlighted with blue). The sequences plotted in red color only show marginal improvements, which
is due to the fact that they exhibit large and complex motion that inhibits filtering along motion paths.

C++ implementation requires 0.625 s on average to process
a 640×480 pixel image including feature matching and 4
XYT iterations (measured on a 2.67 GHz i7 CPU). Our single-
core implementation requires only 0.35 s for the same image
including CPM+BOOM, 5 XY iterations and one T step. Note
that the required amount of memory and the processing latency
of the method by Lang et al. grows linearly with the number
of frames, whereas our method has a constant latency and
memory footprint. For example, their method requires 8.83 GB
of DRAM to process 400 frames of 640×480 video, while our
method works with less than 50 MB of DRAM.

D. Temporal Consistency

Smoothness Metric To assess the temporal filter perfor-
mance, we define a smoothness metric ψ employing the lag-1
autocorrelation function to get a normalized smoothness score
for a discrete value trace trp starting at pixel position p:

ψ (trp) = 0.5 · acf (diff (trp) , 1) + 0.5, (18)

The differential operator diff acts as a low-pass filter and
removes low-frequency components from the motion itself.
The behavior of ψ is illustrated on a set of synthetic example
traces in Figure 16, where we observe that indeed, smooth
traces are assigned a value close to 1.0, and rough traces are
assigned a value close to 0.0. To evaluate complete video
sequences, we use the ground truth flow available in the
MPI Sintel dataset to extract motion paths as illustrated in
Figure 17. We start tracing at frame 1 and stop as soon as the

σ = 0
σ = 0.02 (BinFilt4)
σ = 0.04 (BinFilt4)
σ = 0.06 (BinFilt4)

σ = 0.02
σ = 0.04
σ = 0.06

+ 4th Order Binomial Filter:

Time Index t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ac

e V
alu

e

ψ = 0.98

ψ = 0.91
ψ = 0.87
ψ = 0.80

ψ = 0.41
ψ = 0.35

ψ = 0.19

0 5 10 15 20 25 30 35 40

Smoothness
Metric

Fig. 16. Behavior of the smoothness metric ψ on a set of synthetic traces
generated by superposition of a sigmoid with Gaussian noise with varying σ.
Some traces have additionally been filtered using a 4th order Binomial filter.
Note that ψ consistently assigns higher scores to smoother traces.

trace is being occluded, resulting in traces with an average
length of 21 samples. The average smoothness ψavg of a
sequence is then computed as the average over all scores

ψavg =
1

|Ω| ·
∑
p∈Ω

ψ (trp) . (19)

Evaluation We evaluate the impact of the temporal filtering
step by assessing the smoothness of optical flow that has been
filtered with different temporal filter settings. Figure 15 shows
the mean and standard deviation of the smoothness metric
ψavg evaluated on all sequences of the MPI Sintel training
set. In this plot, the parameter σphoto is varied from 0.0 to
0.4, whereas the parameter σgrad is held constant at 1.0. As
can be seen, the temporal filtering step leads to significant
temporal smoothness gains in the majority of sequences (blue).
However, there are a couple of sequences that do not show
improvements (red). Note that these sequences are sequences
with fast changing motion that is difficult to track. Our filter
has been designed to avoid temporal filtering in regions with
fast changing motion, since these regions are likely to contain
motion artifacts, and they violate the constant flow assumption
that is required for correct operation of our temporal filter.

The behavior of the temporal filter is analyzed further in
Figure 18, where the mean smoothness improvement ∆ψavg
has been plotted against the average flow gradient magnitude
of each sequence. In this analysis, the parameter σphoto is set
to 0.3, and the parameter σgrad is varied from 0.25 to 2.0.
We can observe that the smoothness gain is well correlated

sleeping_1

alley_1 ambush_5

bamboo_1
Fig. 17. Examples for motion paths extracted with the ground truth available
in the Sintel training dataset. These paths are used to sample value traces from
the filtered video cubes to assess their smoothness. Note that some scenes like
ambush 5 have complex motion patterns that are difficult to track.

14

σgrad = 0.25
σgrad = 0.5
σgrad = 1.0
σgrad = 2.0

Mean Flow Gradient Magnitude
10 -2 10 -1 10 0 10 1

Me
an

 S
mo

oth
ne

ss
 G

ain
 ∆

ψ

10 -4

10 -3

10 -2

10 -1

10 0

all
ey

_1

all
ey

_2

am
bu

sh
_2

am
bu

sh
_5

am
bu

sh
_6

am
bu

sh
_7

ba
mb

oo
_1

ba
mb

oo
_2

ba
nd

ag
e_

1

ba
nd

ag
e_

2

ca
ve

_2
ca

ve
_4

ma
rke

t_2

ma
rke

t_5ma
rke

t_6

mo
un

tai
n_

1
sh

am
an

_2

sh
am

an
_3

sle
ep

ing
_1

sle
ep

ing
_2

tem
ple

_2

tem
ple

_3

am
bu

sh
_4

 (n
o g

ain
)

sequences with significant gain

sequences with
marginal

or no gaina
v
g

Fig. 18. This scatter plot shows the average smoothness gain vs. the mean
flow gradient magnitude of the analyzed Sintel sequences. We can observe
that the sequences with slowly changing motion show the highest smoothness
improvements, which is expected due to the constant flow assumption.

with the average flow gradient magnitude. Sequences with
fast changing motion are also more sensitive to the gradient
measure parameter σgrad, as expected.

In Figure 19, we show a subset of the value traces extracted
from the alley 1 and sleeping 1 sequences (depicted in Fi-
gure 17) for qualitative assessment. As can be seen, temporal
flickering noise is effectively removed, whereas large value
changes are tracked accurately. It should be noted that the
temporal filter shows a similar behavior when other feature
maps such as saliency or disparity data is filtered.

E. Applications

In addition to optical flow, our STEA pipeline can be used
for a variety of important image-based applications for which
we present a selection of qualitative results in this section. See
also http://iis.ee.ethz.ch/∼michscha/stea/ for example videos.

Disparity Estimation Similarly to flow estimation, disparity
estimation involves the computation of dense correspondences
between image pairs. The main difference is the geometri-

Trace Value (Offset by Trace Number)

0

10

20

30

40

50

Tim
e I

nd
ex

 t

Trace Value (Offset by Trace Number)

0

10

20

30

40

50

Tim
e I

nd
ex

 t

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

alley_1

sleeping_1

σphoto = 0.0 σphoto = 0.1 σphoto = 0.2 σphoto = 0.3 σphoto = 0.4

Fig. 19. The plot shows value traces extracted from the XYT filtered optical
flow of the alley 1 and sleeping 1 sequences. The filter effectively removes
temporal flickering noise, whereas large value changes are tracked accurately.

0.1 1 10
Runtime [s/MPixel]

2

3

4

5

6

7

8

9

10

11

12

AE
E

[px
]

SGBM2
(Q)

SGBM1 (Q)

SGM (Q)

SGBM1 (F)

Cens5 (H)

SGBM1 (H)

SGM (H)

SGM (F)

LPS (H)

LPS (F)

SNCC (H)

IDR (H)

REAF (H) PFS (F)

ELAS (H)
ELAS (F)

MC-CNN-fst (H)

LS-ELAS (F)

Glstereo (H)

SPS (F)

MC-CNN-SS (H)

MCSC (F)

JMR (H)

BOOM+PF XY (F)

CPU (single core)

GPU

This Work:

Related Methods:
CPU (single core)

CPU (multi core)
CPU (vectorized)

Input Resolution:
Q = quarter
H = half
F = full

SED (F)

Fig. 20. AEE vs. runtime tradeoff on the Middlebury3 stereo dataset
(training). When excluding GPU accelerated disparity estimation methods,
our BOOM+PF method is on the Pareto front.

cally constrained stereoscopic setup, and the fact that both
images are from the same time instant. Our STEA method
can be used to produce temporally consistent disparity maps
by initializing the additional channels with sparse point-
correspondences, which are then first propagated and aligned
with the input image, and then temporally smoothed in the T
step. In Figure 21a and b we show two example sequences
with video footage from the MPI Sintel stereo dataset. The
sparse disparity initialization has been obtained with the same
CPM+BOOM matching routine that has been used to calculate
sparse optical flow vectors. The only modification is the
restriction of the search space to horizontal displacements.

Figure 20 shows a quantitative Pareto analysis of our met-
hod in terms of AEE and execution time on the Middlebury3
stereo training set [60], including published results of the
fastest methods (execution times below 10 s/MPixel). With an
AEE of 5.77 px and an execution time of 1.3 s/MPixel, our
BOOM+PF method offers a competitive quality/speed tradeoff
also for disparity estimation.

Base/Detail Layer Decomposition Base/Detail layer decom-
positions obtained with edge-aware filters are powerful tools
enabling HDR tone mapping methods [1], [3], [22] and detail
manipulation methods [2], [22], [27]. In Figure 21c, we show
one instance of such a method, where details of a video
sequence are enhanced. Using our STEA filter, we compute
the base layer by Bt = IXYT

t , where It are the input
video frames. A detail layer is then computed by subtracting
this base layer from only temporally filtered input frames
as Dt = ITt − Bt. As described in [22], the detail layer
is now boosted by multiplying each pixel by a factor (3
in the example shown) and applying a properly shifted and
normalized sigmoid curve in order to avoid hard clipping. The
enhanced image is then obtained by adding the boosted detail
layer back to the base layer.

Visual Saliency A saliency map identifies the visually impor-
tant regions in the image [61], and is an important feature for
many image-based applications such as retargeting and multi-

http://iis.ee.ethz.ch/~michscha/stea/

15

Fr
am

e
Di

sp
ar

ity
 X

YT

Frame 17 Frame 49

(a) Disparity Estimation (b) Disparity Estimation
Flo

w
XY

T

Fr
am

e
Di

sp
ar

ity
 X

YT

Frame 1 Frame 33

Frame 49

Flo
w

XY
T

(d) Visual Saliency

Fr
am

e
Inp

ut
Sa

lie
nc

y
Flo

w
XY

T
Sa

lie
nc

y X
YT

(c) Base/Detail Layer Decomposition

Fr
am

e
Ba

se
 La

ye
r X

YT
Flo

w
XY

T
En

ha
nc

ed
 X

YT

Fig. 21. a and b show disparity estimation results using our pipeline, and c show an example of a base-detail layer decomposition which is used to enhance
image details in temporally consistent manner. See also http://iis.ee.ethz.ch/∼michscha/stea/ for the corresponding videos. ‘Sintel’ images (a,b) copyright ©
Blender Foundation, www.sintel.org. ‘Tears of Steel’ images (c,d) copyright © Blender Foundation, mango.blender.org.

view rendering based in image domain warping (IDW) [62].
Efficient methods like [63] analyze the frequency spectrum of
the image and since they operate on a per-frame basis, they
often produce temporally noisy output. Our STEA pipeline
can be used to stabilize and clean such noisy data, as show in
Figure 21d, where the per-frame saliency Guo et al. [63] has
been filtered with our STEA pipeline.

6. Conclusions
In summary, we have designed a STEA filtering pipeline

which is more efficient than previous methods [1], [6] since
the incremental PF formulation does not require large temporal
neighbourhoods to be available in memory. Also, our pipeline
does not depend on precomputed optical flow as, e.g., [1],
since it is able to bootstrap its own optical flow on-the-fly by
interpolating a quasi-dense NNF obtained with an improved
patch match method. With a runtime of only 0.59 s per frame
and an AEE of 7.683 px on the MPI Sintel dataset our method
provides a competitive speed/quality tradeoff when compared
to several other state-of-the-art optical flow methods.

Similar to existing STEA approaches [6], our method tra-
des accuracy for computational efficiency, and is therefore
not without limitations. The quality of the obtained results

depends on the amount and quality of the input images and
initial conditions. In case of sparse flow vectors, the propo-
sed CPM+BOOM matching method alleviates this problem
to a certain degree, since it provides accurate, quasi-dense
initializations. However, similar to other matching methods it
is dependent on the input image quality and the presence of
noise and blur may lead to false correspondences. Our method
can also fail when important object boundaries are not well
represented by image edges – a limitation which applies to
many other image-based applications and EA filters.

Despite these limitations, the presented pipeline offers an
efficient way to apply EA filtering to video streams, without
the requirement for large temporal windows. Apart from fast
optical flow estimation, the pipeline can be used to create
temporally consistent results for a variety of important image-
based applications such as disparity and saliency estimation,
and methods working on base/detail layer decompositions.

Compared to state-of-the-art methods, our STEA pipeline
has low computational cost and constant memory require-
ments, making it suitable for embedded GPU or hardware
implementations. E.g., it could be used to enhance temporal
consistency of real-time video processing systems such as
video retargeting and multiview synthesis engines [64], [65].

http://iis.ee.ethz.ch/~michscha/stea/
www.sintel.org
mango.blender.org

16

Acknowledgements
We would like to thank Tunç Aydın and Niko Stefanoski

for helpful conversations and advice.

References
[1] T. O. Aydin, N. Stefanoski, S. Croci et al., “Temporally Coherent Local

Tone Mapping of HDR Video,” ACM TOG, 2014.
[2] E. S. L. Gastal and M. M. Oliveira, “Domain transform for edge-aware

image and video processing,” ACM TOG, vol. 30, no. 4, 2011.
[3] F. Durand and J. Dorsey, “Fast Bilateral Filtering for the Display of

High-dynamic-range Images,” ACM TOG, pp. 257–266, Jul. 2002.
[4] A. Criminisi, T. Sharp, C. Rother et al., “Geodesic Image and Video

Editing,” ACM TOG, vol. 29, no. 5, p. 134, 2010.
[5] C. Rhemann, A. Hosni, M. Bleyer et al., “Fast Cost-Volume Filtering

for Visual Correspondence and Beyond,” in IEEE CVPR, 2011.
[6] M. Lang, O. Wang, T. Aydın et al., “Practical Temporal Consistency for

Image-Based Graphics Applications,” ACM TOG, vol. 31, no. 4, 2012.
[7] G. Ye, E. Garces, Y. Liu et al., “Intrinsic Video and Applications,” ACM

TOG, vol. 33, no. 4, pp. 80:1–80:11, Jul. 2014.
[8] N. Bonneel, J. Tompkin, K. Sunkavalli et al., “Blind Video Temporal

Consistency,” ACM TOG, vol. 34, no. 6, 2015.
[9] C. Cigla and A. A. Alatan, “Information Permeability for Stereo

Matching,” Signal Processing: Image Communication, 2013.
[10] D. Lowe, “Distinctive Image Features From Scale-Invariant Keypoints,”

IJCV, vol. 60, no. 2, pp. 91–110, 2004.
[11] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up Robust

Features,” ECCV, pp. 404–417, 2006.
[12] M. Calonder, V. Lepetit, M. Ozuysal et al., “BRIEF: Computing a Local

Binary Descriptor Very Fast,” in IEEE TPAMI, vol. 34, no. 7, 2012.
[13] A. Alahi, R. Ortiz, and P. Vandergheynst, “FREAK: Fast Retina

Keypoint,” in IEEE CVPR, 2012, pp. 510–517.
[14] F. Zilly, C. Riechert, P. Eisert et al., “Semantic Kernels Binarized - A

Feature Descriptor for Fast and Robust Matching,” in CVMP, 2011.
[15] E. Tola, V. Lepetit, and P. Fua, “A Fast Local Descriptor for Dense

Matching,” in IEEE CVPR, 2008, pp. 1–8.
[16] M. Schaffner, P. A. Hager, L. Cavigelli et al., “A Complete Real-

Time Feature Extraction and Matching System Based on Semantic
Kernels Binarized,” in VLSI-SoC: At the Crossroads of Emerging Trends.
Springer Berlin Heidelberg, 2015.

[17] Y. Hu, R. Song, and Y. Li, “Efficient Coarse-to-Fine PatchMatch for
Large Displacement Optical Flow,” in IEEE CVPR, 2016.

[18] C. Barnes, E. Shechtman, A. Finkelstein et al., “PatchMatch: a Rand-
omized Correspondence Algorithm for Structural Image Editing,” ACM
TOG, vol. 28, no. 3, p. 24, 2009.

[19] D. J. Butler, J. Wulff, G. B. Stanley et al., “A naturalistic open source
movie for optical flow evaluation,” in ECCV, 2012.

[20] P. Milanfar, “A tour of modern image filtering: New insights and
methods, both practical and theoretical,” IEEE SPM, Jan 2013.

[21] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in ICCV, Jan 1998, pp. 839–846.

[22] Z. Farbman, R. Fattal, D. Lischinski et al., “Edge-preserving decompo-
sitions for multi-scale tone and detail manipulation,” ACM TOG, vol. 27,
no. 3, pp. 67:1–67:10, Aug. 2008.

[23] R. Fattal, “Edge-avoiding wavelets and their applications,” ACM TOG,
vol. 28, no. 3, pp. 1–10, 2009.

[24] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE TPAMI,
vol. 35, no. 6, pp. 1397–1409, June 2013.

[25] E. S. Gastal and M. M. Oliveira, “High-Order Recursive Filtering of
Non-Uniformly Sampled Signals for Image and Video Processing,” in
Computer Graphics Forum, vol. 34, no. 2, 2015, pp. 81–93.

[26] M. Aubry, S. Paris, S. W. Hasinoff et al., “Fast Local Laplacian Filters:
Theory and Applications,” ACM TOG, vol. 33, no. 5, 2014.

[27] S. Paris, S. W. Hasinoff, and J. Kautz, “Local Laplacian Filters: Edge-
Aware Image Processing With a Laplacian Pyramid,” ACM TOG, vol. 30,
no. 4, p. 68, 2011.

[28] P. Perona and J. Malik, “Scale-space and edge detection using anisotro-
pic diffusion,” IEEE TPAMI, vol. 12, no. 7, Jul 1990.

[29] D. Sun, S. Roth, and M. J. Black, “Secrets of Optical Flow Estimation
and their Principles,” in IEEE CVPR, June 2010, pp. 2432–2439.

[30] H. Zimmer, A. Bruhn, and J. Weickert, “Optic Flow in Harmony,” IJCV,
vol. 93, no. 3, pp. 368–388, 2011.

[31] R. Timofte and L. Van Gool, “Sparse Flow: Sparse Matching for Small
to Large Displacement Optical Flow,” in IEEE WACV, 2015.

[32] J. Revaud, P. Weinzaepfel, Z. Harchaoui et al., “EpicFlow: Edge-

preserving Interpolation of Correspondences for Optical Flow,” in IEEE
CVPR, 2015, pp. 1164–1172.

[33] P. Weinzaepfel, J. Revaud, Z. Harchaoui et al., “Deepflow: Large
Displacement Optical Flow with Deep Matching,” in IEEE ICCV, 2013.

[34] J. Wulff and M. J. Black, “Efficient Sparse-to-Dense Optical Flow
Estimation Using a Learned Basis and Layers,” in IEEE CVPR, 2015.

[35] C. Liu, J. Yuen, and A. Torralba, “SIFT Flow: Dense Correspondence
across Scenes and its Applications,” IEEE TPAMI, 2010.

[36] S. Leutenegger, M. Chli, and R. Siegwart, “BRISK: Binary Robust
Invariant Scalable Keypoints,” in IEEE ICCV, 2011, pp. 2548–2555.

[37] W. Zhou, H. Li, M. Wang et al., “Binary Sift: Towards Efficient Feature
Matching Verification for Image Search,” in ICIMCS, 2012.

[38] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,” in IEEE CVPR, vol. 1, 2005, pp. 886–893.

[39] T. Trzcinski, M. Christoudias, and V. Lepetit, “Learning Image Descrip-
tors with Boosting,” IEEE TPAMI, vol. 37, no. 3, pp. 597–610, 2015.

[40] L. Baroffio, M. Cesana, A. Redondi et al., “Bamboo: A Fast Descriptor
Based on AsymMetric Pairwise BOOsting,” in IEEE ICIP, 2014.

[41] X. Yang and K. T. Cheng, “Learning Optimized Local Difference
Binaries for Scalable Augmented Reality on Mobile Devices,” IEEE
TVCG, vol. 20, no. 6, pp. 852–865, June 2014.

[42] T. Brox and J. Malik, “Large displacement optical flow: Descriptor
matching in variational motion estimation,” PAMI, vol. 33, no. 3, 2011.

[43] M. Brown, G. Hua, and S. Winder, “Discriminative Learning of Local
Image Descriptors,” IEEE TPAMI, vol. 33, no. 1, pp. 43–57, Jan 2011.

[44] C. Strecha, A. Bronstein, M. Bronstein et al., “Ldahash: Improved
matching with smaller descriptors,” IEEE TPAMI, vol. 34, no. 1, 2012.

[45] Y. Yamauchi and H. Fujiyoshi, “Binary code-based Human Detection,”
in CVIM, 2012.

[46] B. Jun, I. Choi, and D. Kim, “Local transform features and hybridization
for accurate face and human detection,” IEEE TPAMI, vol. 35, no. 6,
pp. 1423–1436, 2013.

[47] H. Fu, H. Zhao, X. Kong et al., “BHoG: Binary Descriptor for Sketch-
Based Image Retrieval,” Multimedia Systems, vol. 22, no. 1, 2016.

[48] M. Zwicker, H. Pfister, J. V. Baar et al., “EWA Splatting,” IEEE TVCG,
vol. 8, no. 3, pp. 223–238, 2002.

[49] P. Greisen, M. Schaffner, S. Heinzle et al., “Analysis and VLSI Imple-
mentation of EWA Rendering for Real-Time HD Video Applications,”
IEEE TCSVT, vol. 22, no. 11, pp. 1577–1589, Nov 2012.

[50] H. Kaeslin, “Top-Down Digital VLSI Design, from VLSI Architectures
to Gate-Level Circuits and FPGAs,” Morgan Kaufmann, 2014.

[51] K. Zuiderveld, “Graphics gems iv,” P. S. Heckbert, Ed. San Diego, CA,
USA: Academic Press Professional, Inc., 1994, ch. Contrast Limited
Adaptive Histogram Equalization, pp. 474–485.

[52] M. Calonder, V. Lepetit, C. Strecha et al., “BRIEF: Binary Robust
Independent Elementary Features,” in ECCV, 2010.

[53] D. Nehab, A. Maximo, R. S. Lima et al., “Gpu-efficient recursive
filtering and summed-area tables,” ACM TOG, vol. 30, no. 6, 2011.

[54] P. Yu, X. Yang, and L. Chen, “Parallel-friendly Patch Match Based on
Jump Flooding,” in IFTC, 2012, pp. 15–21.

[55] K. He and J. Sun, “Computing Nearest-Neighbor Fields via Propagation-
Assisted kd-Trees,” in IEEE CVPR. IEEE, 2012, pp. 111–118.

[56] M. Menze, C. Heipke, and A. Geiger, “Discrete Optimization for Optical
Flow,” in GCPR. Springer, 2015, pp. 16–28.

[57] C. Bailer, B. Taetz, and D. Stricker, “Flow Fields: Dense Correspondence
Fields for Highly Accurate Large Displacement Optical Flow Estima-
tion,” in IEEE ICCV, 2015, pp. 4015–4023.

[58] P. Dollar and L. Zitnick, “Structured Forests for Fast Edge Detection,”
in ICCV, December 2013.

[59] A. Skende, “Introducing ‘Parker’ Next-Generation Tegra System-On-
Chip,” August, Hot Chips 2016.

[60] D. Scharstein, H. Hirschmüller, Y. Kitajima et al., “High-Resolution
Stereo Datasets with Subpixel-Accurate Ground Truth,” in GCPR, 2014.

[61] L. Itti, C. Koch, and E. Niebur, “A Model of Saliency-based Visual
Attention for Rapid Scene Analysis,” IEEE TPAMI, vol. 20, 1998.

[62] N. Stefanoski, O. Wang, M. Lang et al., “Automatic View Synthesis by
Image-Domain-Warping,” IEEE TIP, vol. 22, no. 9, 2013.

[63] C. Guo, Q. Ma, and L. Zhang, “Spatio-Temporal Saliency Detection
Using Phase Spectrum of Quaternion Fourier Transform,” in IEEE
CVPR, June 2008, pp. 1–8.

[64] P. Greisen, M. Lang, S. Heinzle et al., “Algorithm and VLSI Architecture
for Real-time 1080P60 Video Retargeting,” in ACM EGGH-HPG, 2012.

[65] M. Schaffner, F. K. Gürkaynak, P. Greisen et al., “Hybrid ASIC/FPGA
System for Fully Automatic Stereo-to-Multiview Conversion Using
IDW,” IEEE TCSVT, vol. 26, no. 11, Nov 2016.

	Introduction
	Related Work
	Edge-Aware Filtering
	Optimization Problems
	Temporal Consistency
	Optical Flow Estimation
	Features

	STEA Filtering Pipeline
	Spatial Filtering of Dense Data
	Spatial Filtering of Sparse Data
	Efficient Formulation of the Spatial Filter
	Temporal Filtering
	Existing Approaches
	Formulation of the Recursive Permeability Filter

	blackTemporal Permeabilities and Flow Gradient Measure
	Forward Warping using EWA Splatting

	CPM with Binary Descriptors
	Binarized Octal Orientation Maps
	Support Region and Orientation Maps
	Normalization and Binarization
	blackDifference to Binarized HOG Descriptors

	Modifications of CPM and Parametrization

	Results
	Implementation and Choice of Parameters
	Performance of the blackBOOM Descriptor and CPM
	blackBOOM Descriptor
	CPM with blackBOOM

	Optical Flow and Comparison with Related Methods
	Optical Flow Evaluation
	Performance and Related STEA Methods

	blackTemporal Consistency
	Smoothness Metric
	Evaluation

	blackApplications
	Disparity Estimation
	Base/Detail Layer Decomposition
	Visual Saliency

	Conclusions
	References

