
A General-Transformation EWA View Rendering
Engine for 1080p Video in 130 nm CMOS
Pierre Greisen∗†, Richard Emler∗, Michael Schaffner∗, Simon Heinzle†, Frank Gürkaynak∗

∗ETH Zurich, 8092 Zurich, Switzerland
†Disney Research Zurich, Switzerland

Abstract—Current digital video pipelines are progressing to-
wards ever higher image resolutions and frame rates, a trend
which increases computational requirements of mobile end-user
devices. Moreover, due to the wide variety of devices with
display sub-systems, video streams often need to be adapted
to the capabilities of the respective platform. In this work, we
present a rendering core that is able to perform spatially-varying
geometrical transforms with implicit anti-aliasing in real-time
on high-definition video. The rendering is realized with a high-
quality elliptical weighted average (EWA) splatting algorithm.
The ASIC implementation is fabricated in a 130 nm CMOS
technology, and is equipped with a standard display interface and
a QDRII RAM interface. The ASIC achieves at least 1080p30 (full
HD) video I/O, and is able to perform per-pixel transformation
on the video stream in real-time and at low latency.

I. INTRODUCTION

With the steadily increasing frame rates and resolutions,
real-time video processing and graphics processing is becom-
ing predominant in terms of computational requirements in
mobile devices. Many application-specific hardware cores for
video processing are currently being integrated onto mobile
system-on-chips (SoCs) (e.g., NVIDIA Tegra). One upcoming
application for mobile devices is video content adaptation:
while a growing amount of content is watched on an increasing
number of different mobile platforms, most content is captured
with one acquisition system at fixed parameters. Examples for
content adaption algorithms are content-aware video resizing
(video retargeting) [1], non-linear stereoscopic 3D (S3D) adap-
tion [2], 2D to S3D conversion and S3D to multi-view gen-
eration [3] [4] [5]. Other content transformation applications
are camera alignment for S3D video and panoramic shots.

As a first step, any display adaptation algorithm determines
an image warping function that is dependent on the display
characteristics. The input frames are then transformed to the
output frames according to the given warping function using
a view rendering algorithm. The generation of the warping
function is application-specific, and can be separated from the
view rendering. For instance in video retargeting, the warp-
ing function retains the aspect ratio of salient (i.e., visually
important) parts of the image, while the image distortion is
hidden in visually less important regions. In S3D to multi-
view conversion, the warping function is derived from the 3D
structure of the scene (obtained from a disparity estimation
step) to generate in-between views.

In this work, we present a general purpose view rendering
engine supporting arbitrary video warping function. Our en-

gine employs a high-quality elliptical weighted average (EWA)
rendering approach, which implicitly incorporates anti-aliasing
without excessive blurring, and is based on our previous work
[6]. In contrast to [6], our rendering core supports full color
video formats of full HD video at more than 30 frames per
second (1080p30).

Related work: In recent years, various view synthesis and
image rendering architectures have been presented. However,
the majority of these architectures has been optimized for one
particular rendering application, such as depth-image based
rendering (DIBR) [7] [8], stereo rectification [9], or non-linear
lens correction [10], [11]. In contrast, our rendering engine
can process any type of geometrical image transformations.
In particular, it can be either used for global per-frame trans-
formations such as (wide-angle) lens undistortion, but also
for spatially varying per-pixel transformation such as in video
retargeting. Most previous rendering architectures reported in
literature employ inferior resampling filters based on bilinear
interpolation, and have very limited anti-aliasing filter support
compared to the Gaussian EWA filters employed in this work.

Summary of contributions: We present a view rendering
system for a wide range of deformations of full color 1080p
video, derived from our previous work [6]. In contrast to
[6], we re-designed the pipeline for the increased throughput
required for 1080p video with at least 30 fps, and included
interfaces for video input and output, as well as an interface
to external memory components. Our corresponding VLSI
architecture is fabricated in a 130 nm CMOS process. The
resulting ASIC is able to operate as a component within
a system, and our VLSI architecture could alternatively be
integrated as a processing core for a mobile SoC.

II. SYSTEM OVERVIEW

In this work, we address the problem of view rendering
given an image warping function. In the simplest case, the
image warping function can be represented as a global per-
image transformation such as a rotation or translation of all
the pixel values. Such transformations usually can be repre-
sented by simple, per-image arithmetic operations of the input
pixel locations. Stereo rectification is a practical application
example: two non-aligned camera images are rectified in order
to eliminate any vertical offsets between the cameras, and a
3-by-3 matrix with 8 degrees of freedom is enough to specify
the full image transformation.

Content-aware resizing Global rotation (20 deg)

Fig. 1. Examples of transformations that are possible with our view rendering
system. In addition to global per-frame transformations such as rotations
or zoom (right), our system also allows arbitrary non-linear transformations
for each pixel. Such transformations are essential for content-aware resizing
applications (left).

Fig. 2. Quality comparison of bi-cubic spline interpolation (left) vs. EWA
resampling (right). The EWA framework reduces aliasing artifacts greatly.

While our setup is able to perform global per-image trans-
formations easily, its strength lies in the ability to realize
locally-adaptive non-linear deformation of the input video,
which is required in modern video applications such as
content-aware video retargeting. Our warping function can
be specified by a per-pixel mapping function: any pixel in
the source image is assigned its own destination pixel po-
sition in the target image. Figure 1 shows two examples of
transformations that are possible with the system presented in
this work. Figure 2 highlights the benefit of using an EWA
approach compared to alternative schemes such as bicubic
spline interpolation; bilinear interpolation shows even more
artifacts.

A. Image Resampling

Transforming an image with a per-pixel mapping function
is equivalent to 2D image resampling. First, the input image
is transformed into continuous domain using an interpolation
function. Then, the per-pixel mapping is realized as a coordi-
nate transformation into the continuous source image. Finally,
the transformed source image is resampled on the regular
output pixel grid. To avoid aliasing, an additional anti-aliasing
filter is applied in target space. We refer to [12] or [13] for
more details on general image resampling or image warping.
The derivation of EWA splatting is given in [14] or [6].

B. Image Resampling via EWA Splatting

In this work, we employ the elliptical weighted average
(EWA) splatting framework [6] to perform image resampling.

In the EWA framework, 2D Gaussian filters are used for both
interpolation and anti-aliasing filters with covariance matrices
V{i,a} = σ2

{i,a}I2, where I2 is a 2-by-2 identity matrix. Two
main advantages of Gaussian filters make the EWA frame-
work very effective: first, a Gaussian filter remains Gaussian
under linear transformations. Second, the convolution of two
Gaussian filters results in another Gaussian.

Consider an input image with pixel values (intensities or
RGB components) wk, where k is the linearized 2D image
coordinate corresponding to the 2D position vector uk. Let
m be an arbitrary spatially-varying (pixel) mapping function,
which is approximated by a first order Taylor expansion around
uk: m(uk)+Jk(u−uk), where Jk is the 2D Jacobian of m().
The complete EWA resampling process is then summarized
as follows. First, the per-pixel covariance matrix is calculated
from the warping grid Jacobian Jk and covariance matrices

Ck = JkViJ
T
k + Va. (1)

Next, for each input pixel k with position uk and value wk, we
accumulate its contributions in the target image vh on target
grid positions xh with linear index h

vh ←
wk|Jk|

2π
√
|Ck|

e−1/2(xh−m(uk)
TC−1

k (xh−m(uk)). (2)

The ’←’ symbol denotes an update operation (accumulation).
Due to non-idealities, a post-normalization step is necessary:
vh/ρh, where ρh are the accumulated weights

ρh ←
|Jk|

2π
√
|Ck|

e−1/2(xh−m(uk)
TC−1

k (xh−m(uk)). (3)

In theory, xh is the complete target image grid; in practice,
because of the fast decay of the Gaussian kernel, the range of
xh can be confined by a rectangular bounding box around the
transformed center of the Gaussian m(uk) [6]

m(uk) +

(
±
√
Ck(1, 1)

±
√
Ck(2, 2)

)
. (4)

C. View Rendering System

The system-level data flow for our rendering architecture is
illustrated in Figure 3. First, input video data and per-pixel
warp information is streamed to our video rendering core.
The rendering core then performs EWA rendering presented
in the previous section. During rendering, external memory is
accessed through a memory controller. The transformed output
video is then streamed to an external DVI interface.

The external RAM serves as output frame buffer as well as
intermediate buffer to collect the contributions of the Gaussian
kernels. The external buffer furthermore allows for arbitrary
mapping functions, since we can transform the incoming row-
by-row pixel stream into an arbitrary order at the output. Note
that approaches based on on-chip line buffers only can support
arbitrary deformations to a limited degree: the maximum
deviation from the vertical input coordinates is fixed by the
number of lines in the on-chip buffer.

full HD video input

per-pixel warp grid

Rendering core

In
pu

t
in

te
rf

ac
e

D
is

pl
ay

in

te
rf

ac
e

EWA Gauss
kernel setup

Per-pixel
transform

+ + + + +
+ + + + +
+ + + + +
+ + + + +

+ + + + +
+ + + + +
+ + + + +
+ + + + +

Anti-aliasing &
resampling

M
em

or
y

in
te

rf
ac

e

full HD
video output

pi
xe

l
gr

id

Rendering system (ASIC)

pi
xe

l

Fig. 3. System overview of the view rendering engine and interfaces.

While our previous work [6] presents a similar architecture,
it focuses merely on algorithmic and architectural concepts,
and the implementation neither supports HD color video nor
employs an I/O interface designed to be used in an actual
system.

III. VLSI ARCHITECTURE

In the following section, we describe the VLSI architecture
of the rendering core in detail.

A. Top-level Data Flow

A top-level diagram is given in Figure 4. The ASIC core
accepts streaming pixel color information, given in an 24-
bit RGB format. In addition to the color information, a
deformation grid describing the pixel mapping m is streamed
in parallel. In the quadrilateral deformation grid format, the
deformation of each pixel is described by transformation of
the pixel’s bounding box. More specifically, the four corner
positions of a quad describe the new pixel center as well as
the pixel deformation. As a benefit of the quad representation,
the horizontal and vertical gradients necessary for constructing
Jk can be easily deduced from the quads.

We assume that the image transformation m is locally
smooth, and that neighboring pixels share their adjacent
quad grid corners. Therefore, in compact form, the quad
grid representation only requires (W + 1) · (H + 1) grid
points, if W and H are the input video width and height,
respectively. Note that we chose this representation in order
to disallow transformations that would result in image holes.
Furthermore, since neighoring grid points and pixels are
typically strongly correlated, we add a lossless differential
compression/decompression scheme at the input interface to
reduce the input bandwidth and I/O power. Note that temporal
compression across frames could further reduce the input
bandwidth since the warp typically varies slowly over time.

From the input quad grid, the pixel position m(uk) (mean of
adjacent corner positions) and the Jacobi matrix Jk (horizontal
and vertical gradients computed from the corner positions) are
calculated and stored in an on-chip FIFO buffer. A dispatcher
unit then distributes positions, Jacobian, and pixel values to
multiple arithmetic units that perform the splatting operation.
The processing time of each splatting operation strongly
depends on the deformation, as one input pixel can possibly

be stretched to multiple output pixels. To handle the variable
throughput requirements, several arithmetic splatting chains
are used in parallel, and the dispatcher unit distributes the input
pixels depending on the workload. The FIFO buffer can absorb
incoming pixels when all splatting units are occupied during
performance peaks. To handle prolonged peaks, the FIFO fires
a back-pressure system that allows to stall the data source to
avoid data loss.

Our system uses separate clock domains for the core and the
display interface, and the clock rate of the splatting blocks can
be adjusted to match the throughput of the available resources
to the requirements of the (expected) image transformations.
Note that our system keeps track of the utilization of all
available splatting units, which can be queried by the data
source through a service interface.

Due to mathematical properties of the summation operation
in (2), we can rearrange the operation: instead of evaluating
the sum for each output position, we forward-transform all
individual Gaussian kernels and perform an accumulation of
the Gaussian contributions in the temporary output image. To
avoid an extremely high memory bandwidth to the output
image in the external frame buffer, we employ a two-level
cache structure. The cache exploits the spatial coherence of
image transformations, which in general map neighboring
input pixels to neighboring output pixels.

When all input pixels have been processed, the temporary
output image can be streamed to a normalization unit, where
the accumulated pixels are then normalized by the sum of
the filter weights. Note that this final normalization step is
necessary due to the fact that Gaussian filters, and in particular
their truncations, are non-ideal interpolation filters.

B. Input Interface

The system requires the pixel information and the deforma-
tion grid as the input. Since the deformation grid has to be
determined by another computation block, a simple custom
interface has been designed that can easily be adapted for
different applications.

Compression: The input interface consists of 24 bit RGB
values and 2x24 bit pixel coordinates, resulting in a bandwidth
of 4.5 GBit/s for 1080p30. To reduce the input bandwidth,
we employ a simple differential compression scheme. The

Splatter

Splatter

Splatter

Splatter

Splatter

Splatter

Splatter

Splatter

L1

Buffer
1.44 kBits

L1

Buffer
1.44 kBits

L1

Buffer
1.44 kBits

L1

Buffer
1.44 kBits

M
u
x

L2

Buffer
728 kBits

L
1
 T

ile
 M

u
x

Memory

Interface

Norm.

Block

Async

FIFO
3 kBits

DVI

Interface

D
is

p
a
tc

h
e
r

FIFO
2.1 kBits

Line

Buffer
98 kBits

Video

Interface

Jacobi

Control

&

Monitor

M
u
x

M
u
x

M
u
x

Vesper
EWA Rendering ASIC

20

45

45

15

45

45

45

45

45

45

45

45

45

45

45

45

180

22

180

22

180

22

180

180

22

180

22

180

22

136

136

136

136

136

136

136

136

13613628

3

3

24

24

45

112 112

QDRII

Frame Buffer
180 MBits

DVI

Controller
TFP410

Video &

Grid

Source

External

Control

DVI Clock

Domain

Computation

Clock

Domain

Fig. 4. Top level block diagram of the VESPER EWA chip.

compression exploits the fact that neighboring pixel colors
and coordinates usually exhibit strong spatial correlation, and
will therefore result in small incremental changes only. The
purpose of the compression is to transmit the small incremental
changes only. The input values are decomposed into several
sub-words, i.e., the MSBs and LSBs are separated. Only sub-
words that change are then transmitted. The principle relies on
the observation, that the MSBs of pixels and pixel positions
change very rarely compared to the LSBs. Evaluation on actual
data has shown a bandwidth reduction of 35% on average.
Note that the compression is completely lossless and comes
at negligible hardware overhead.

Input Interface: We dedicate 28 pins for the data input,
resulting in an available bandwidth of 4.8 GBit/s at 170 MHz,
the maximum achieved clock frequency for our design. At
this clock rate, the system would be able to receive an
uncompressed 1080p30 video stream. While our compression
scheme is not strictly required for 1080p30, doing so gives
some margin for processing higher data rates (1080p48) and
allows for operating the core at lower clock frequencies
reducing the overall power consumption. Due to the quad grid
representation, all four quad-points adjacent to each pixel need
to be determined. Therefore, a small line buffer storing the
previous quad line is required.

Dispatcher: The dispatcher unit is responsible for load-
balancing between multiple subsequent splatting units. A
simple round-robin based priority scheme is used for the
scheduling.

C. Arithmetic Processing Elements

The core splatting units are similar to the ones presented
in [6]. In a nutshell, the splatting units implement the EWA
equation (2) in a fixed-point format. For each input pixel, a
Gaussian kernel is calculated from the pixel color wk and the
linearized approximation Jk of the warp grid. The Gaussian
kernel is then resampled to determine its contribution to all
output pixels. The resampling is evaluated within a small

bounding box of the Gaussian only, i.e., the Gaussian will
be truncated to zero as soon as its energy falls below a very
small threshold. The contributions of the individual Gaussians
are then accumulated, and finally normalized.

The datapath is implemented using custom fixed-point arith-
metic. The accumulated color channels are calculated with 11
bits each, and the accumulation values are calculated with 12
bits, resulting in data words of 45 bits in total for each pixel.
This number has been chosen both for accuracy reasons as
well as to match the word-width of the external memory.

Adaptive EWA: The splatting cores can be configured to
work in ’adaptive’ mode, which means that the Gaussian re-
sampling covariance matrix is adapted per-pixel to reduce the
amount of blurring. The adaptive mode has been introduced
in [6] and its impact on overall area can be neglected.

Throughput: Each splatting unit has a fixed throughput
Θ = f/ncycles, determined by the clock frequency f and the
number of cycles required to evaluate one input pixel ncycles.
The current architecture is optimized for ncycles = 20, which
is matched to the average number of output pixels times the
number of cycles it takes to evaluate one output pixel (9 × 2
plus overhead). A throughput of 9 MPixels/s per splatting unit
at a clock frequency of 170 MHz can be achieved. Therefore,
1080p30 video (63 MPixels/s) can be achieved with some
margin by employing 8 parallel splatting units.

D. Accumulation, Caching, and Memory Interface

Each input pixel produces several output contributions that
need to be weighted by a Gaussian kernel and accumulated
at the output sampling locations. To achieve practical perfor-
mance, the number of contributions per input pixel is limited
by a bounding box, and thus the Gaussian weights are trun-
cated at the bounding box limits. Simulations have shown that
bounding boxes of 4 to 9 pixels are sufficient to capture the
majority of the non-zero contributions of the Gaussian kernel.
Hence, the accumulation bandwidth is between 2×4 and 2×9
times larger than the input bandwidth, as each accumulation is

MAC unitJk

m(uk)

JkJk’

|C|

C

|C|-0.5

�lter
setup

splatting unit

n
1/√Cii

MAC unit MAC unit

co
un

t
le

ad
in

g
0’

s

LU
T

2
-

|Jk|

M
SB -

-
‘1

’

>>
1

0x
5F

37
59

D
F

O
FF

SE
T

O
FF

SE
T

31
...

24
23

...
0

co
un

t
le

ad
in

g
0’

s sh
ift

sh
ift

expexp LUT

0

MAC

MSBsLSBs

valueslope

(x’C-¹x)BB stepperxb
yb

m

 C-1

|Jk|/
 √|C|

pi
xe

l

no
rm

.

wk

 |C|-1

1/x

x-0.5

n n

C

rasterizer

n

n

Fig. 5. Data path of the EWA splatting core.

performed using a read-modify-write operation. To reduce the
external bandwidth, our on-chip caching architecture exploits
the horizontal and vertical overlaps of neighboring Gaussian
kernels. In a first stage (denoted L1), contributions with spatial
proximity are collected and accumulated into larger blocks.
The L1 blocks are then efficiently accumulated to a second
stage (L2 blocks). The L2 cache is able to store several lines
of the image, and once a line is removed from the L2 cache
it is accumulated to the external frame buffer memory. Our
two-stage caching architecture reduces the resulting bandwidth
considerably: the L1 cache is implemented using register
arrays that support the highest bandwidth, and the L2 cache
implemented using block RAMs that reduce the bandwidth to
external memory further.

Throughput: Each accumulated data word has 45 bits,
the required bandwidth for 1080p30 can be calculated as

bwfull = 45 · 1920 · 1080 · 30 · 2 · (1 + npps),

where the factor 2 comes from the read-modify-write oper-
ation. npps denotes the number of pixels per splat, i.e., the
bounding box size. Additionally, the final read out requires one
more read from the memory. If we assume a conservative value
of npps = 9, the overall bandwidth equals bwfull = 56Gbit/s.
Our cache architecture exploits the inherent spatial overlap be-
tween neighboring pixels, and shifts the bandwidth burden to
the on-chip buffers, reducing the effective npps. In simulations,
a cache efficiency resulting in npps = 3 is always achieved,
and the required bandwidth is reduced to 22.4Gbit/s.

Due to the read-modify-write operation, we choose a QDR-
type memory interface to efficiently support the accumulation.
QDR memories are static RAMs that have a separate read and
write port, which can be accessed in parallel. Moreover, the
data is transmitted in double edge mode. A 9-bit QDR RAM
port therefore has 3Gbit/s read and 3Gbit/s write bandwidth,
at a clock frequency of 170 MHz. Our architecture employs 5
instances of such 9-bit RAM interfaces, and the resulting 45-
bit memory interface matches our data word size. The overall
available bandwidth therefore amounts to 30Gbit/s.

E. Scheduling and Control Flow

Due to the varying bounding box sizes of the input Gaussian
kernels, the run-time of the individual rendering cores is non-
deterministic during operation. However, on a per-frame basis

the varying per-pixel run-times are averaged out and thus
approximately constant, which can be used for dimensioning
the number of cores and the required memory bandwidth.
Short-term fluctuations of throughput are then regulated using
a back-pressure system. Moreover, an efficient scheduling
strategy distributes the input pixels to individual rendering
units.

F. Output Interface

The final step of the rendering pipeline consists of reading
out the image from the frame buffer and interfacing it to a
standard display chip. Since display interfaces must adhere
to very strict timings, the read-out from the frame buffer is
always prioritized over the read-modify-write accumulation
operations. In case of collision, the accumulation can be stalled
via the back-pressure mentioned before. The normalization
block contains a divider producing the final 24 bit RGB
values, by normalizing the accumulated RGB values with their
weights. An asynchronous FIFO is used for clock domain
crossing and for ensuring that pixels are always available to
the DVI interface.

The DVI interface on the ASIC can be configured to
different modes, depending on the current application. That is,
common resolutions and frame rates as well as progressive or
interlaced modes can be selected. Note that the DVI standard
only supports a discrete set of configurations. For instance,
1080p30 is not a supported mode, which is why we convert
1080p30 to 1080p60 at the output interface by interleaving it
with zeroes.

IV. IMPLEMENTATION DETAILS

The implemented ASIC is denoted VESPER1 and is fabri-
cated in a 130 nm CMOS process. Table I summarizes the key
features of VESPER.

A. Area, Inputs and Outputs

The chip area is largely dominated by the number of input
and output pins, as well as the required power distribution
for the high speed I/O interfaces. VESPER supports 175 data
I/O pins, 115 pins are used for the external QDR-II interface.
Due to the prototype nature of the chip, a more conventional
”around the core” I/O has been employed, instead of a more
area efficient flip-chip I/O. For a commercial implementation,
the area could be significantly reduced since the overall logic
area (including on-chip SRAM) is 9mm2 which is significantly
smaller than the 5x5 mm2 the chip currently occupies.

B. Clocking

The DVI interface requires a fixed input bandwidth and
clock frequency, which usually is dependent on the display
resolution and frame rate. To decouple the arithmetics and
accumulation from the DVI interface, we separate the design
into two clock domains. While the rendering core should run
as fast as possible, the DVI core is running at the DVI specific
clock. The asynchronous data interface is implemented using

1VESPER: VLSI EWA SPlatting Engine and Rasterizer

TABLE I
KEY FEATURES OF THE VESPER CHIP

Functional Characteristics
Technology UMC 130 nm, 8Metal

Core Voltage 1.2 V

Package CPGA 256

Core Area 5 mm × 5 mm

Circuit Complexity 1.7 MGE (8.8 mm2)

Logic (std. cells) 0.81 MGE (4.1 mm2)

On-chip Memory (835 kbits) 0.84 MGE (4.7 mm2)

Maximum Clock Frequency 170 MHz

Performance
I/O Format 24 bit RGB

Maximal Input Resolution 2048 × 2048

Maximal Output Resolution 2048 × 2048

Performance (1080p), min – max 30 fps – 48 fps

Rendering Input Bandwidth (1080p30) 1.5 Gbit/s

Rendering Output Bandwidth (1080p30) 56 Gbit/s

External Memory Bandwidth (1080p30) 12.1 Gbit/s – 22.4 Gbit/s

Available Memory Bandwidth 30 Gbit/s @ 170 MHz

an asynchronous FIFO, see [15]. In addition to the two internal
clocks for DVI and core related logic, we feed the actual chip
clock for the DVI transmitter and RAM chips through the
ASIC, for timing analysis and delay balancing reasons. We
can therefore add a phase shift on the clocks to the external
components relative to the internal clocks.

C. Obtained Throughput

The I/O bandwidth, throughput of the splatting units and
caching have been dimensioned for very pessimistic and de-
manding scenarios, such that 1080p30 performance is achieved
in a practical system that supports a wide variety of applica-
tions. In turn, the actual performance for typical applications
will be higher, and therefore also higher frame rates are
possible. Under typical conditions, our architecture reaches
1080p48. Furthermore, smaller resolutions are always possible
and would increase the frame rate further (e.g., 720p60).

The chip has been fabricated, and the functional tests have
verified that VESPER is fully functional at 170 MHz.

V. CONCLUSIONS

Arbitrary transformations of high-definition videos can be
efficiently rendered using a VLSI EWA splatting architecture.
The proposed VLSI core can be used in an end-user device
and enables image warping for current and upcoming content-
adaptive applications. Due to the separation of the rendering
core into several sub-units, the computational capabilities are
easily scalable to higher resolutions and frame-rates, such as
the upcoming quad HD standards (2160p) or the high-frame
rate (HFR) standards.

Fig. 6. The VESPER chip on the ASIC tester.

REFERENCES

[1] P. Krähenbühl, M. Lang, A. Hornung, and M. Gross, “A system for
retargeting of streaming video,” ACM Transactions on Graphics (TOG),
vol. 28, no. 5, pp. 1–10, 2009.

[2] M. Lang, A. Hornung, O. Wang, S. Poulakos, A. Smolic, and M. Gross,
“Nonlinear disparity mapping for stereoscopic 3D,” ACM Trans. on
Graphics (Proc. SIGGRAPH), vol. 29, no. 3, 2010.

[3] M. Farre, O. Wang, M. Lang, N. Stefanoski, A. Hornung, and A. Smolic,
“Automatic content creation for multiview autostereoscopic displays
using image domain warping,” in Multimedia and Expo (ICME), 2011
IEEE International Conference on. IEEE, 2011, pp. 1–6.

[4] M. Tanimoto, M. Tehrani, T. Fujii, and T. Yendo, “Free-viewpoint tv,”
Signal Processing Magazine, IEEE, vol. 28, no. 1, pp. 67 –76, 2011.

[5] M. Do, Q. Nguyen, H. Nguyen, D. Kubacki, and S. Patel, “Immersive
visual communicatio n,” Signal Processing Magazine, IEEE, vol. 28,
no. 1, pp. 58 –66, jan 2011.

[6] P. Greisen, M. Schaffner, S. Heinzle, M. Runo, A. Smolic, A. Burg,
H. Kaeslin, and M. Gross, “Analysis and vlsi implementation of ewa
rendering for real-time hd video applications,” Transactions on Circuits
and Systems for Video Technology, vol. accepted, 2012.

[7] Y.-R. Horng, Y.-C. Tseng, and T.-S. Chang, “VLSI architecture for
real-time HD 1080p view synthesis engine,” IEEE transactions on
circuits and systems for video technology, vol. 21, no. 9, pp. 1329–1340,
September 2011.

[8] F.-J. Chang, Y.-C. Tseng, and T.-S. Chang, “A 94fps view synthesis
engine for HD1080p video,” in Visual Communications and Image
Processing (VCIP), 2011 IEEE, November 2011, pp. 1 –4.

[9] P. Greisen, S. Heinzle, M. Gross, and A. Burg, “An FPGA-based
processing pipeline for high-definition stereo video,” EURASIP Journal
on Image and Video Processing, vol. 2011, no. 1, p. 18, 2011.

[10] K. V. Asari, “Design of an efficient vlsi architecture for non-linear
spatial warping of wide-angle camera images,” Journal of Systems
Architecture, vol. 50, no. 12, pp. 743 – 755, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1383762104000682

[11] S. Oh and G. Kim, “Fpga-based fast image warping with data-
parallelization schemes,” Consumer Electronics, IEEE Transactions on,
vol. 54, no. 4, pp. 2053 –2059, november 2008.

[12] G. Wolberg, Digital image warping. IEEE Computer Society press,
1990, vol. 3.

[13] R. Szeliski, S. Winder, and M. Uyttendaele, “High-quality multi-pass
image resampling,” Microsoft Research, Tech. Rep., 2010.

[14] M. Zwicker, H. Pfister, J. V. Baar, and M. Gross, “EWA splatting,” IEEE
Transactions on Visualization and Computer Graphics, vol. 8, no. 3, pp.
223–238, 2002.

[15] C. Cummings, “Simulation and synthesis techniques for asynchronous
fifo design,” in SNUG 2002 (Synopsys Users Group Conference, San
Jose, CA, 2002) User Papers, 2002.

