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Two-Dimensional Tunneling Effects on the
Leakage Current of MOSFETs With Single

Dielectric and High-κ Gate Stacks
Mathieu Luisier and Andreas Schenk

Abstract—The gate leakage currents of single-gate silicon-on-
insulator (SOI) n-type MOSFETs are investigated, assuming di-
rect tunneling as the leakage mechanism and using either a 1-D
Schrödinger–Poisson-based approach coupled to the conventional
drift-diffusion transport model or a full quantum mechanical
treatment. The first approach consists of calculating the transmis-
sion probability through the dielectric material along straight lines
connecting the transistor channel to the gate. The second method
is based on a 2-D Schrödinger–Poisson solver, where carriers are
injected into the device from the source, drain, and gate contacts.
The simulated structures have a physical gate length of 32 nm. The
channel is isolated from the gate contact by a dielectric layer with
an equivalent oxide thickness of 1.2 nm. This layer is composed
of either pure SiO2 or a high-κ SiO2 − HfO2 stack. Irrespective
of the dielectric material, the leakage currents calculated with
the 1-D approach are about one order of magnitude smaller at
low gate voltages and converge toward the same value as the
channel potential barrier decreases. The difference is caused by
the diffraction of the electron waves at both edges of the gate
contact. This peculiar 2-D behavior of the gate leakage currents,
as well as the limit of the 1-D model, is discussed in this paper for
various dielectric configurations.

Index Terms—Electron diffraction, gate leakage current,
high-κ gate stacks, silicon-on-insulator (SOI) MOSFETs, 2-D
Schrödinger–Poisson solver.

I. INTRODUCTION

TO IMPROVE the performances of electronic devices,
the size of their active components is scaled down ac-

cording to the International Technology Roadmap for Semi-
conductors (ITRS) [1]. In this context, the current bulk
complementary metal–oxide–semiconductor FETs are evolv-
ing toward nanoscale ultrathin body silicon-on-insulator (SOI)
structures, which suffer less from short-channel effects and
offer steeper subthreshold slopes [2]. This favorable behavior
is attributed to better electrostatic control obtained by reduc-
ing the thickness of the silicon body on top of the buried
oxide [3]. At the same time, the thickness of the traditional
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gate dielectric material SiO2 has been scaled down below
2 nm [4]. At this size, the gate leakage currents can reach a
value of 10 A/cm2 [5] due to their exponential dependence on
the oxide thickness. They may become the dominant leakage
mechanism, deteriorate the device reliability, and cause most
of the power consumption. To circumvent this problem, SiO2

is replaced by “high-κ” dielectrics as HfO2 or ZrO2 [6] with
an equivalent oxide thickness (EOT). These materials reduce
the tunneling leakage due to the larger physical thickness but
provide the same gate capacitance due to their higher permit-
tivity. However, they also exhibit an increased interfacial trap
concentration as compared to SiO2 and cause a degradation of
the channel mobility [7]. Hence, the high-κ materials are often
used in combination with a thin SiO2 layer, forming a so-called
gate stack.

In this paper, the gate leakage currents are studied from the
device simulation perspective. Based on a n-doped single-gate
SOI transistor designed to fulfill the requirements of the 32-nm
technology node [1], we illustrate the following: 1) the benefit
of SiO2 − HfO2 gate stacks over pure SiO2; 2) the optimal
choice of the spacer layers that isolate the gate from the flared
out source and drain contacts; 3) the behavior of the gate current
in the vicinity of the gate corners; and 4) the attribute of two
different tunneling models.

In contemporary device simulators, the gate leakage currents
are often calculated from the tunneling probability through the
oxide barrier. This can be done in different ways. Very popular
approaches include the Wentzel–Kramers–Brillouin (WKB) ap-
proximation [8] and the use of Airy or trigonometric functions
in connection with Bardeen’s perturbation theory [9], [10].
They all work well for a simple gate layout comprising one
single dielectric layer only but fail or are not advantageous
in the presence of gate stacks. Furthermore, their accuracy
becomes questionable for ultrathin oxides. Therefore, more
sophisticated models are required to simulate the gate leakage
of next-generation devices. In this paper, two approaches are
emphasized. They differ by their basic physics, their complex-
ity, and their computational burden, but they qualitatively result
in very similar characteristics. However, important features
such as electron diffraction at the gate corners are only captured
by the more evolved model.

This paper is organized as follows: In Section II, the two
approaches previously mentioned are described in detail. The
governing equations and their numerical implementation are
reviewed. Then, the dimensions and characteristics of the
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selected 32-nm SOI transistor are outlined in Section III. The
material parameters used in the simulation, e.g., the effec-
tive masses, dielectric constants, and conduction band off-
sets, are also summarized. Simulation results are presented in
Section IV. The two theoretical approaches are compared, and
their advantages and disadvantages are discussed. Finally, this
paper is concluded in Section V.

II. THEORETICAL METHOD

In the first method, 1-D Schrödinger equations are solved
along straight lines connecting the channel to the gate contact
[11], [12]. This calculation is done on each line of a special-
purpose grid, the generation of which is described here. The
results are then self-consistently incorporated into a 2-D/3-D
drift-diffusion or energy-balance simulator [12].

The special-purpose grid needed for the solution of the
1-D Schrödinger–Poisson system consists of straight lines that
are attached to a semiconductor vertex and connect this vertex
to the closest grid point on the gate contact. Vertices up to
a distance of 5 nm may be connected this way to the gate
electrode. In addition, those points not directly situated under
the gate can be connected to the gate corners by defining a
maximum possible angle measured to the normal of the gate
contact line. Two length parameters allow the inclusion of
regions below and above the stack. Hence, the transmission
probability can be computed not only for the oxide barrier but
also for a potential barrier in the semiconductor that might exist
along the line. In practice, due to the exponential dependence
of the tunneling probability on the tunneling length, only small
angles and only small segments outside the stack are relevant.

Using interpolation schemes, all data, as well as the refine-
ment of the initial mesh, are transferred to the special-purpose
grid. The 1-D Schrödinger equation is solved in the effective
mass approximation (EMA) using the scattering matrix ap-
proach [13]. This can be done in either a one-band or a two-
band model for the oxide layer. Coordinates on the lines of
the special-purpose grid are denoted by u or r, and have their
origin at the metal contact (0− is infinitesimally smaller than
the origin). The electron current density due to direct tunneling
gate leakage (by conduction band electrons only) can be written
as [10], [12]

jn =−gnA0T

kB

∞∫
0−

duTn

[
u, 0−, Ec(u)

] ∣∣∣∣dEc

du
(u)
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[
−dEc

du
(u)

]

× ln
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[
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]
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[

EF,n(0−
)−Ec(u)

kBT

]
+ 1


 . (1)

Fig. 1. Schematic view of a 32-nm SOI structure. The variables ts, tc, and
td refer to the thickness of the source, the channel, and the drain, Ls, Lg ,
Ld, and Lspacer refer to the length of the source, the gate, the drain, and the
spacers, respectively. The three black layers labeled “OBC” represent regions
where OBCs are defined. The source, drain, and gate are situated at x = xS ,
x = xD , and y = yG, respectively. The latter starts at x = xG1 and ends at
x = xG2.

Here, A0 = 4πm0k
2
Bq/h3 is the Richardson constant for

free electrons, T denotes the temperature (drift-diffusion
model, no carrier heating), kB is the Boltzmann constant, Ec(u)
is the position-dependent conduction band edge, EF,n(u) is
the quasi-Fermi energy, and Tn is the tunneling probability.
In the WKB approximation, the latter parameter would read
(neglecting preexponential factors) as (2), shown at the bottom
of the page.

Note that, in this paper, Tn was always computed by solving
the Schrödinger equation with a one-band model.

Parameter gn can be used to change the effective density-of-
state mass in the Richardson constant. For tunneling across a
(100)-oriented interface, a reasonable choice is gn = 2mt/m0

for the valley pair perpendicular to the interface and gn =
4
√

mtml/m0 for the two valley pairs parallel to the interface.
Separate simulations of the current have to be performed,
because the effective mass of Si that enters the transmission
probability Tn also changes.

The second approach presented in this paper treats the device
and the gate contact as a single entity on a quantum mechanical
level. A 2-D and real-space Schrödinger–Poisson solver is used
to calculate the carrier and current densities, as well as the
electrostatic potential of the device. It allows electrons (or
holes) to enter and exit the simulation domain at the source,
drain, and gate contacts. This is not possible with the mode-
space approximation that separates the longitudinal (x-axis)
and transverse (y-axis) directions [14]–[17].

A schematic view of a single-gate SOI MOSFET is given
in Fig. 1. The simulation domain is discretized in the finite-
difference method, so that x(y) becomes a vector with Nx(Ny)
entries xi(yj). The z-direction is assumed to be infinite and

Tn

[
u, 0−, Ec(u)

]
= exp


−2

u∫
0−

dr
√

2mc(r) |Ec(r) − Ec(u)|/�Θ [Ec(r) − Ec(u)]


 (2)
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induces a kz dependence (not shown here) that modifies the in-
jection probability of the electrons [17]. The EMA Schrödinger
equation at each (xi, yj) point can be written as

(E − Hiijj)φij − Hii+1jjφi+1j − Hii−1jjφi−1j

− Hiijj+1φij+1 − Hiijj−1φij−1 = 0 (3)

where the Hamiltonian matrix element Hi1i2j1j2 are defined as
in [17], φij is the wave function φ(xi, yj), and E is the injection
energy. At the source, drain, and gate contacts, a single band
scattering boundary ansatz [18], [19] is applied to model the
open boundary conditions (OBCs)

(E − Hnn)φn−Hnn+1φn+1 − Hnn−1φn−1 = 0 (4)

φn±1 =φne±ikn∆n . (5)

Energy matrix E is diagonal, Hnn is tri-diagonal and de-
scribes the on-site energies and connections within one grid
line, Hnn±1 is diagonal and represents the connection of one
grid line to the next (+ sign) or previous (− sign) one, and φn

is a vector containing the wave function along one grid line.
Index n is equal to S, D, or G and is used to characterize
the position of one grid line. For example, if the source con-
tact is considered, n denotes the vertical grid line situated at
x = xS(φn = φ(xS , y), φn±1 = φ(xS ± ∆x, y)). For the gate
contact, n refers to the horizontal line with the y coordinates
equal to yG(φn = φ(x, yG), φn±1 = φ(x, yG ± ∆y)). In the
scattering boundary theory, the contacts are just the extension
of the device grid line they are connected to. Hence, the contact
wave functions taken along one grid line orthogonal to the
injection direction are identical up to a phase factor eikn∆n . The
variable ∆n is the distance between two lines. Furthermore,
Hnn+1 = HT

n+1n holds, and it can be proven that

Hnn+1 = Hnn−1 = Tn (6)

is valid in the contacts since both Hnn+1 and Hnn−1 are
diagonal matrices. Inserting (6) into (5) results in the eigenvalue
problem

T−1
n · (E − Hnn)︸ ︷︷ ︸

M

φn = −2 · cos(kn)︸ ︷︷ ︸
λ

·φn. (7)

All the eigenvalues λ of M are required. The computational
burden associated with (7) increases in a cubic way as a
function of the number of grid points taken along the open
boundaries of the simulation domain. Therefore, a straightfor-
ward technique to symmetrize matrix M and to reduce the
computational time is explained in Appendix A. Boundary
wave functions φS, φD, and φG and vectors kS, kD, and kG

resulting from (7) are used to calculate the source, drain, and
gate boundary self-energies ΣS, ΣD, and ΣG, respectively, as
well as injection matrix Sinj [18], [19]. Finally, (3) is cast into
a sparse linear problem with the following form:

(E − H − ΣS − ΣD − ΣG)︸ ︷︷ ︸
A

·φ = Sinj. (8)

Matrices ΣS and ΣD vanish everywhere, except in the left
and right corners of A, ΣG occupies a large sparse block in
the middle of A and destroys its block tridiagonal structure
inherited from H [20]. The NS , ND, and NG states injected
from the source, the drain, and the gate, respectively, are
included in the (NS · ND · NG) × (Nx · Ny) matrix Sinj.

The linear system in (8) is solved with a direct sparse linear
solver like Umfpack 5.0.1 [21], Pardiso [22], or MUMPS 4.6.3
[23]. On a nonuniform finite-difference grid, matrix A is not
symmetric, but it is possible to perform a basis transformation
to obtain this highly desired property, as derived in Appendix A.
Then, the factorization of matrix A is simplified, and the com-
putational burden decreases. The advantage of working in the
wave function formalism as in (8) over nonequilibrium Green’s
functions (NEGFs) is that all the elements of the boundary
self-energy ΣG are easily taken into account. In the NEGF
approach proposed in [20] or [24], only the first off-diagonal
blocks of A are kept, but the higher order elements are ne-
glected. To the best of our knowledge, the consequences of this
omission have never been investigated. An NEGF alternative
to this truncation scheme would be the contact block reduction
method [25].

Equation (8) is solved for each injection energy E and for
the six degenerate conduction band valleys of Si. Once the
wave functions φ(E) are known, carrier density n(xi, yj) and
ballistic current density J(xi, yj) are calculated according to

n(xi, yj)=
1

∆x∆y

∑
n

∫
dE

2π
|φn(xi, yj ;E)|2 (9)

J(xi, yj)= − 2e

∆x∆y�

∑
n

∫
dE

2π
Re

×
(

φ∗
n(xi+1, yj ;E)·Hi+1ijj ·φn(xi, yj ;E)·∆x

φ∗
n(xi, yj+1;E)·Hiij+1j ·φn(xi, yj ;E)·∆y

)
.

(10)

Index n (S, D, or G) refers to the origin of the wave function.
It indicates from which port the state was injected. The Fermi
levels of the contacts are already taken into account in the wave
function. They determine the probability that a state injected
at an energy E is occupied [19]. The ultimate carrier density
n(xi, yj) is obtained after a self-consistent calculation of the
2-D electrostatic potential in the device. The drain and gate
currents (in amperes per meter) then follow from

Id(xi) =
∫

dyJx(xi, y) (11)

Ig(yG) =

xG2∫
xG1

dxJy(x, yG). (12)

Current continuity implies that the difference in the drain
current between the two gate corners exactly corresponds
to what escapes from the gate, i.e., Id(xG2) − Id(xG1) =
Ig(yG). This property was verified for all the results shown in
Section IV.
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III. DEVICE DESCRIPTION

The structure of the 32-nm SOI transistor simulated in this
paper was originally designed in the framework of the European
project PULLNANO [26]. It is schematized in Fig. 1. The
silicon body has six degenerate conduction band valleys with
a longitudinal and a transverse effective mass of m∗

l = 0.92 m0

and m∗
t = 0.19 m0, respectively; an affinity of χSi = 4.05 eV;

and a relative dielectric constant of εSi = 11.9. The source and
drain have a length Ls = Ld of 30 nm, are elevated 10 nm
above the channel, and have a thickness ts = td of 17 nm. They
are doped with a donor concentration of ND = 5.8e19 cm−3. A
process simulation [27] was carried out to find the exact doping
profile. Incomplete ionization is not considered in the present
simulations. The source is grounded (Vs = 0 V), whereas the
drain is connected to a voltage source Vd.

The source and drain are separated from the gate contact by
two 10-nm-long SiO2 spacers. The total length Lg of the gate
electrode is 32 nm. It controls a 7-nm-thick p-doped channel
(NA = 1.2e15 cm−3). The dielectric that isolates the channel
from the gate contact is either pure SiO2 or a SiO2 − HfO2

stack. It is well understood that the silicon oxide may not be
SiO2 but rather SiOx. However, this goes beyond the scope of
this paper. In the first configuration, a 1.2-nm-thick SiO2 layer
is selected since it is consistent with the ITRS specification
for the 32-nm node. The gate stack is composed of a 0.8-nm
SiO2 layer on top of the Si channel and a 2.2-nm HfO2 layer
embedded between the silicon oxide and the gate contact. The
EOT of the stack dielectric is the same as that of pure SiO2.
The band structure of the dielectric materials is assumed to
be isotropic with an effective mass of m∗

SiO2
= 0.5 m0 for

SiO2 and m∗
HfO2

= 0.08 m0 for HfO2 [28]. The dielectric
constant of SiO2 is εSiO2 = 3.9, and the band offset to the
silicon conduction band is ∆EC

= 3.07 eV (corresponding to
an affinity of χSiO2 = 0.98 eV). There is some scattering in the
literature regarding the material parameters for HfO2. Here, a
dielectric constant of εHfO2 = 23 and a band offset of ∆EC

=
1.95 eV (corresponding to an affinity of χHfO2 = 2.1 eV) are
assumed.

Finally, a metallic gate made out of TiN is attached to the
dielectric layer(s). The metal contact is characterized by its
Fermi level EFm, its work function φm = 4.6 eV, its electron
effective mass (m∗ = m0), and its conduction band edge ECB.
Normally, the conduction band edge of a metal lies many
electronvolts below its Fermi level. This wide energy range
cannot be resolved in the 2-D Schrödinger–Poisson solver
since it would require too much CPU time. Consequently, a
virtual conduction band edge ECB situated 2 eV below EFm

is assumed, so that all the significant gate states can be injected
into the device [29]. Voltage Vg is applied to the gate contact.

IV. RESULT

Fig. 2 shows the gate current characteristics Ig–Vgs at Vds =
0 V for the SOI transistor depicted in Fig. 1. The solid lines
with symbols are calculated with the 2-D Schrödinger–Poisson
(labeled SP) solver, whereas the dashed lines come from the
drift-diffusion simulator (labeled DD) with 1-D gate tunneling.
Results are presented for the two gate configurations described

Fig. 2. Gate current characteristics Ig−Vgs at Vds = 0 V. The solid lines
with symbols are calculated with the 2-D Schrödinger–Poisson solver labeled
SP, and the dashed lines are calculated with the drift-diffusion solver and 1-D
tunneling (DD). The black lines refer to the pure 1.2-nm-thick SiO2 dielectric
layer, and the gray lines refer to the SiO2 − HfO2 stack with EOT.

in Section III: a single 1.2-nm SiO2 layer (black curves) and
a SiO2 − HfO2 stack with an EOT (gray curves). Apart from
the substantial reduction of the gate current obtained with the
high-κ gate stack, the differences between the SP and DD
solvers deserve a special treatment. For the single SiO2 di-
electric, the full quantum mechanical simulator exhibits a gate
current that is 10× larger than that of the 1-D approach at
Vgs = 0.1 V and 23× larger that that of the gate stack. At high
gate voltages, the Ig–Vgs characteristics calculated with both
SP and DD tend to the same value.

To physically explain the observed discrepancy at
low gate bias, the electron flow issued from the 2-D
Schrödinger–Poisson solver is drawn in Fig. 3(a) for the
left extremity of the gate contact (around x = xG1 and
y = yG). The pure SiO2 dielectric configuration is chosen for
that purpose. The direction and length of the gray arrows are
directly proportional to the current vector J(xi, yj) given in
(10). Two important features characterize the current behavior:
1) The electrons do not follow straight lines as imposed by
the 1-D model but takes curved trajectories starting before
(x < 40 nm) and below (y < 7 nm) the gate corner (trajectory
labeled (a) in Fig. 3). 2) Some electrons do not bypass the SiO2

spacer but tunnel through it to gate contact (b) or first reach
the dielectric layer and then gate (c). This occurs in the region
between x < 40 nm and y > 7 nm. As long as an electron
takes a straight path, it can be modeled by the 1-D approach.
This is the case for trajectory (b). Obviously, the behavior of
path (c) cannot be captured by the 1-D model since it would
require a straight line connecting the Si body to the dielectric
layer and a second one between the dielectric and the gate.

To check whether tunneling paths (b) and (c) through the
SiO2 spacers are responsible for the differences between the SP
and DD results, they are artificially suppressed. To do so, the
SiO2 spacers are replaced by a fictitious material with infinite
band gap. Hence, the electrons are no more able to penetrate
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Fig. 3. Electron flow in the SOI FET in Fig. 1 with a 1.2-nm-thick SiO2 oxide
layer. (a) Out-tunneling of electrons at the left boundary of the gate contact,
i.e., around xG1 for Vgs = 0.1 V and Vds = 0 V. (b) In-tunneling of electrons
at the drain side (around xG2) for Vgs = 0 V and Vds = 1 V. Six types of
trajectories labeled (a)–(f) are highlighted.

into the spacers and are forced to avoid these regions. The
resulting Ig–Vgs at Vds = 0 V are plotted in Fig. 4. The gate
currents coming from the two simulators still do not coincide,
but they are smaller than those obtained with the SiO2 spacers.
Therefore, tunneling through the spacers does not differentiate
the two simulation models. However, this leakage mechanism
is important since about half of the gate current could be
suppressed if the spacers were infinite potential barriers for the
electrons, instead of SiO2 (Ig = 8 pA/µm at Vgs = −0.1 V,
instead of Ig = 16 pA/µm, for the SP simulation in the case
of pure SiO2 dielectric). On the other hand, if the band gap
offset of the spacers is reduced to ∆EC = 2.15 eV, as for
nitride, the gate current increases by a factor of 1.7 as compared
to the SiO2 case (Ig = 25 pA/µm). Hence, the choice of the
spacer material is crucial in order to control the level of the gate
current.

The discrepancy between the SP and DD models does not
originate from the trajectories labeled (b) and (c) in Fig. 3 but
is caused by electrons moving on trajectories like path (a). In

Fig. 4. Same as Fig. 2, except that the SiO2 spacers are replaced by a fictitious
material with an infinite band gap preventing the electrons from penetrating the
spacers. Hence, the tunneling paths through the spacers vanish.

fact, the tunneling process starts not only when electrons enter
the SiO2 dielectric but also when carriers residing just before
or after the gate contact penetrate into the Si potential barrier,
where they change their direction of propagation by 90◦ before
tunneling through the dielectric layer. The gate current paths
are represented by curved lines, which describe the diffraction
of the electron wave. Despite the fact that this tunneling path
has lower probability than a straight path to the gate, like
trajectory (d) in Fig. 3, it induces more leakage current since
more carriers are available due to the higher doping level at
the starting point. A 2-D quantum transport simulator fully
accounts for such effects, whereas 1-D wave functions along
straight lines are unsuited to obtain such trajectories. A treat-
ment based on multiple line segments is also conceivable but
would require an immense implementation effort. However, as
the gate voltage increases, the source-to-drain potential barrier
disappears, and (a)-like trajectories do not occur any more.
The tunneling paths start in front of the dielectric and follow a
straight line, so that the results from both simulation approaches
converge toward the same gate current value, as shown in
Figs. 2 and 4 at Vgs = 0.6 V.

The total thickness of the SiO2 − HfO2 gate stack is 3 nm,
so that the probability of finding (b)-like trajectories almost
disappears. In effect, tunneling through the SiO2 spacers over
such a long distance is a very rare event. Consequently, the
gate current calculated with the 1-D approach only counts
contributions from (d)-like paths, if the dielectric is a gate
stack. The enhancement due to (b)-like trajectories is only
12% at the most. With a single SiO2 dielectric, however,
(b)-like trajectories not only give significant contributions but
also become the dominant paths at low Vgs. One finds the maxi-
mum effect at Vgs ≈ −0.15 V, where (b + d)/d ≈ 12.5. At zero
gate voltage, this ratio is still ≈ 8. This clearly demonstrates
that simpler 1-D simulation models, which neglect path (b),
strongly underestimate the gate current through single SiO2

layers at small Vgs. In the 2-D quantum mechanical model,
the spacer effect can be defined by (a + b + c + d)/(a + d),
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Fig. 5. I−V characteristics of the SOI transistor with SiO2 spacers at Vds = 0.1 V. (a) Ig−Vgs from the 2-D Schrödinger–Poisson (curves labeled SP) and
from the drift-diffusion (DD) solver. The black lines are used for the pure SiO2 dielectric configuration, and the gray lines are used for the gate stack. (b) Id−Vgs

from the 2-D Schrödinger–Poisson and the drift-diffusion solver. Results for the gate stack are only shown in the inset.

Fig. 6. Same as Fig. 5 but for Vds = 1 V.

and one finds a ratio of ≈2 around zero gate voltage for both
dielectric configurations. Hence, the strong spacer effect in the
1-D model is caused by the absence of paths (a) and (c)! This
also explains why the SP/DD ratio (a + b + c + d/(b + d) is
larger for the gate stack configuration than for the pure SiO2

dielectric (23× versus 10× at Vgs = 0.1 V). In general, the
importance of 2-D effects increases with the physical thickness
of the gate oxide. From the simulated data, it is furthermore
possible to infer the relative contributions of (a) and (c). One
finds c/a = 1.05 for pure SiO2 and c/a = 0.91 for the gate stack
at Vgs = 0.1 V. Thus, paths that circumvent the spacer have
approximately the same probability as paths that partially take
course through the spacer.

In Figs. 5 and 6, the gate and drain current characteristics
of the same SOI transistor as before are shown for Vds =

0.1 V and Vds = 1 V, respectively. The results from the SP
(solid lines) and DD (dashed lines) simulators are compared for
the two gate dielectric configurations described in Section III
and SiO2 spacers. The 2-D Schrödinger–Poisson solver gives
higher gate currents as previously discussed, but the shape and
behavior of these currents are also reproduced by the simple
1-D model. The drain currents (calculated with the pure SiO2

dielectric) do not only differ in the low-gate-voltage region but
also at high gate bias. Since the 1-D model is incorporated into
a drift-diffusion solver, scattering is automatically taken into
account. This is not the case for the 2-D quantum-mechanical
simulator, which computes the ballistic limit of the current.

At high drain voltages as in Fig. 6, the gate current is not
equally distributed on both sides of the gate contact but is
localized on the drain-side gate corner (i.e., around xG2). It is
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Fig. 7. Transfer characteristics Id−Vgs at Vds = 1 V calculated with the
2-D Schrödinger–Poisson solver. The black line with circles represents the pure
SiO2 dielectric layer, and the gray line represents the gate stack configuration.

caused by in-tunneling of gate electrons in a narrow interval,
as illustrated in Fig. 3(b). The straight path labeled (e) has
higher tunneling probability than path (f), which can only be
modeled by the 2-D Schrödinger–Poisson solver. However,
since the electrostatic potential rapidly decreases on the drain
side to compensate the applied bias of Vds = 1 V, the electrons
following (f)-like trajectories have greater velocity than those
propagating along (e)-like paths and contribute more to the gate
current.

The benefit of high-κ gate stacks over pure SiO2 dielectrics is
illustrated in Fig. 7. The transfer characteristics Id–Vgs(Vds =
1 V) of the SOI FET in Fig. 1 is simulated with the 2-D
Schrödinger–Poisson solver. The black line with symbols rep-
resents the pure SiO2 gate dielectric, and the gray line rep-
resents the SiO2 − HfO2 gate stack. The OFF-current (Id at
Vgs = 0 V, Vds = 1 V) is reduced by about two orders of
magnitude if the gate stack is used (IOFF = 91 pA/µm, instead
of 8100 pA/µm). Since the EOT of both gate configurations
are the same (1.2 nm), the electrostatic and ON-current (Id

at Vgs = Vds = 1 V) properties of the transistors do not vary.
Note that the value of the OFF-current strongly depends on the
choice of effective mass m∗

HfO2
and band offset ∆EC . Here, a

rather small value for m∗
HfO2

is chosen (0.08 m0), so that the
tunnel probability through the high-κ gate stack is facilitated.
Comparisons with measured gate currents could clarify whether
these theoretical results are too large.

V. CONCLUSION

In this paper, the gate currents of SOI transistors with either a
single dielectric or a high-κ gate stack were investigated using a
1-D approach incorporated into a drift-diffusion simulator and
a 2-D and real-space Schrödinger–Poisson solver. The main
conclusion is that a 1-D treatment will always underestimate the
gate current as it fails to include the effect of electron diffraction
at the gate corners. At low gate voltages, this effect yields the
dominant contribution to direct tunneling leakage. In the case

of out-tunneling, the major part of the difference comes from
those trajectories that start outside the gate region at points
with higher carrier density. This electron diffraction around the
spacers is completely absent in the 1-D approach. Due to this
effect, the 2-D model gives ten times more current for a pure
SiO2 dielectric, and this difference increases with the physical
thickness of the oxide to reach a factor of about 23 for the gate
stack. Only at very large gate voltages both methods converge.

The actual OFF-state leakage is determined by in-tunneling
electrons in a narrow interval (< 2 nm) at the drain-side gate
corner. The 1-D approach underestimates the OFF-current for
both kinds of gate dielectric. Again, curved trajectories are
advantageous leakage paths as they end at points of lower
potential energy and higher carrier velocity. These points ex-
ist because of the rapid voltage drop in the pinchoff region.
For the 32-nm FET studied here, this more than doubles
the gate current through the pure SiO2 dielectric. As in the
case of out-tunneling, the 2-D effects become stronger with
increasing physical thickness of the dielectric. Thus, for the
optimum design of high-κ stack configurations, a 2-D and
full quantum-mechanical treatment of gate leakage should be
envisaged.

APPENDIX

SYMMETRIC MATRICES IN THE

FINITE-DIFFERENCE SCHEME

When the Schrödinger equation is discretized on a nonuni-
form finite-difference grid, the resulting Hamiltonian matrix H
is not symmetric. However, working with symmetric matrices is
highly recommended since it allows a reduction in the compu-
tational burden during the factorization process. The elements
Hi1i2i1j2 of H are proportional to [17]

Hii±1jj ∝
1

xi+1 − xi−1
(13)

Hiijj±1 ∝ 1
yj+1 − yj−1

. (14)

Since Hii±1jj �= Hi±1ijj and Hiijj±1 �= Hiij±1j , Hamiltonian
matrix H is not symmetric. One introduces now diagonal
matrix R and its inverse invR with the entries

Rjj
ii =

1√
xi+1 − xi−1

· 1√
yj+1 − yj−1

(15)

invRjj
ii =

√
xi+1 − xi−1 ·

√
yj+1 − yj−1. (16)

Index i refers to the ith vertical grid line, which is described
by a block whose jth diagonal element is Rjj

ii or invRjj
ii .

Matrix H is symmetrized by applying the following basis
transformation to the wave function φ in (8):

φ =R · φ̃SYM (17)

H̃ = invR · H · R. (18)

After this transformation, the nondiagonal elements Hnm of
H are replaced by the geometric mean value

√
Hnm · Hmn, and

H̃ becomes symmetric as well as Ã, leading to a faster solution
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of (8). The same transformation can be performed on Hnn and
φn in (7). The resulting matrix M is still not symmetric, but
since Tn is diagonal, a second basis transformation can be
applied, so that

φn =
√

Tn · φ̃n,SYM. (19)

This identity symmetrizes M and reduces (7) to the solution
of a symmetric eigenvalue problem.
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