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ABSTRACT

The bandgap narrowing (BGN) in quasi-neutral regions of semiconductors is calculated in a finite-temperature full random-phase
approximation formalism based on a simple isotropic dispersion model including band nonparabolicity. The total quasi-particle shift (QPS)
is determined by the exchange-correlation self-energy of the free carriers and the correlation energy of the interaction between carriers and
ionized dopants. At cryogenic temperatures, the latter part results in giant shifts of the minority band edge in n-type semiconductors with a
large ratio of valence to conduction band density of states, as often present in III–V materials. However, at room temperature, the BGN
does not exceed common values. The reason for this behavior is explained analytically. Whereas the exchange-correlation energy of free car-
riers is known to be insensitive to band structure details, the nonparabolicity of the conduction band (CB) has a strong effect on the ionic
QPS of the minority carriers in n-type III–V materials. It strongly reduces the BGN at cryogenic temperatures compared to the case of a
parabolic CB. This is demonstrated numerically and also analytically for n-type InGaAs. The BGN in n-type silicon becomes independent
of temperature at high concentrations, but in p-type silicon, a weak temperature dependence re-emerges above the Mott density, which also
can be attributed to the ionic QPS of the minority electrons. The calculated BGN for quasi-neutral regions in silicon is in good agreement
with earlier photoluminescence and more recent photo-conductance measurements.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0051055

I. INTRODUCTION

Bandgap narrowing (BGN) is an important phenomenon
in semiconductor devices. It is a consequence of either heavy
doping or strong optical excitation and high electrical injection.
High excitation/injection levels lead to plasma-induced BGN, as in
photo-conductive switches, concentrator solar cells, and power
devices operated in the on-state. The plasma can be neutral, e.g., in
the case of laser excitation of intrinsic regions, or not, e.g., in the case
of optical excitation of doped regions. Quasi-neutral regions of elec-
tronic devices (emitters of bipolar transistors, source/drain-regions
of field-effect transistors) host a one-component plasma that

compensates the electrically active dopants. “Quasi” refers to the
possible presence of a very small electric field when the device is
biased or a small concentration of minority carriers. The many-
body Coulomb interaction between free carriers as well as between
carriers and ionized dopants results in self-energy and a corre-
sponding shift of the band edges such that the bandgap shrinks.
In quasi-neutral regions, one has five components: the exchange
energy of the majority carriers, the free-carrier correlation energies
of majority and minority carriers, and the ionic correlation energies
of majority and minority carriers due to their interaction with the
electrically active dopants. These contributions can be treated
equally in the theoretical framework of the finite-temperature full
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Random-Phase Approximation (RPA).1–5 All measurements of
BGN involve electron–hole pairs. In quasi-neutral regions, the
minority carrier band shifts because the generated/annihilated
minority carrier lowers its energy due to Coulomb attraction by the
mobile majority carriers and Coulomb repulsion by the sub-system
of immobile ionized dopants that are the source of the majority
carriers.6 As will be shown in this paper, the ionic correlation
energy of holes in n-type In0:53Ga0:47As is even the largest contrib-
utor to the total BGN in this material.

Most experimental data on BGN exist for silicon but with a
rather large spread, which can be attributed to the involved evalua-
tion procedure. Absorption experiments7–12 require the admixture
of phonon-assisted transitions and the knowledge of phonon ener-
gies and Fermi level. Problems in photoluminescence (PL)
experiments13–16 are the nature of the initial states and the weak
intensity of the spectrum. The electrical method17–22 uses bipolar
transistors where the collector current as a function of the emitter-
base voltage, the sheet resistance underneath the emitter, and the
minority carrier mobility in the base must be measured. The BGN
is then found from an analytical model that connects these quanti-
ties and that itself was derived with a number of approximations.
For materials other than silicon, BGN data are rare, and for most
materials, they are not available at all. Therefore, reliable calcula-
tions and fit models derived from them play an important role to
fill this gap.

Earlier theoretical methods to derive the self-energy of the
carrier–dopant interaction in the T ¼ 0-limit comprise Hartree–
Fock variational calculations for a donor system distributed on a
regular sub-lattice23 using the single plasmon pole approximation24

and application of second-order perturbation theory for a random
system of dopants25 using RPA screening. The role of multi-valley
scattering in both dopant arrangements had been the topic of
discussions.26–28 RPA is the method of choice to compute BGN for
the whole temperature range, and it gains accuracy with an increase
in the concentration above the Mott density. The theoretical basics
can be found in Ref. 1, which also presents the temperature-
dependent QPS in a neutral electron–hole plasma. The case of an
extrinsic semiconductor with plasma excitation was treated in
Ref. 3 where numerical results based on a random distribution of
dopants were given for T ¼ 0 K.

In Ref. 29, an RPA-based fit model for silicon device simula-
tion as a function of carrier densities, doping concentration, and
temperature was developed. To cover all cases (neutral plasma,
quasi-neutral region, depletion region), compromises had to be
made in the fitting procedure. As will be shown below, this fit
model underestimates the BGN in quasi-neutral regions at very
high doping concentrations. Besides the revaluation of BGN for
quasi-neutral regions in Si including nonparabolicity of the con-
duction band (CB), BGN in quasi-neutral In0:53Ga0:47As will be
analyzed in detail. The main finding is that at a temperature of
300 K and as a consequence of strong CB nonparabolicity, the
BGN in the n-type material is limited to �10% of the bandgap at
the highest measured concentration of electrically active doping.
In the p-type material, this amount is �6%.

The paper is organized as follows: Section II gives a brief
summary of the RPA theory and shows how nonparabolicity is
included. Section III provides results for silicon: numerical curves

for the different ionic QPSs, the temperature-dependent total BGN
in comparison with absorption and PL data, and the small influ-
ence of CB nonparabolicity. To better understand the ionic QPS of
the minority and majority bands, they are calculated analytically as
a function of doping concentration in the parabolic, T ¼ 0 K-limit.
Section IV presents the results for In0:53Ga0:47As: numerical free-
carrier and ionic correlation energies over the whole temperature
range, the comparison of parabolic and nonparabolic curves, and
the total BGN in n-type and p-type materials as a function of tem-
perature and doping. To better understand the impact of CB non-
parabolicity, the ionic correlation energy of minority holes is
derived analytically in the T ¼ 0 K-limit. Conclusions are given in
Sec. V. Appendix A contains the derivation of the full-RPA dielec-
tric function for nonparabolic bands, its static limit, as well as the
high-T/low-density and low-T/high-density limits of the static
form, respectively. Appendix B demonstrates the derivation of the
full-RPA correlation energy of ion–carrier interaction for nonpara-
bolic bands in the high-T/low-density and low-T/high-density
limits, respectively.

II. THEORETICAL BACKGROUND

BGN in RPA quality is calculated by the quasi-particle shift
(QPS)1 Δa(k) (a ¼ e for electrons, a ¼ h for holes), which is the
difference between free and interacting dispersion (the vector char-
acter of momenta and coordinates is only written explicitly where
needed, and the normalization volume is set to unity),

Ea(k) ¼ E0
a (k)þ Δa(k): (1)

It represents the real part of the self-energy Δa(k) ¼ ReΣa

k, Ea(k)þ i0þ½ � and consists of three terms

Δa(k) ¼ Δx
a(k)þ Δc

a(k)þ Δi
a(k), (2)

where Δx
a(k) is the unscreened exchange term, Δc

a(k) is the correla-
tion term of free carriers, and Δi

a(k) is the correlation term of the
interaction between carriers and ionized dopants. The latter are
assumed to be randomly arranged on regular lattice sites. The dis-
persion of the QPS is rather flat in the relevant energy interval
between band edge and Fermi energy for all densities and tempera-
tures.1,29 Therefore, the dispersive QPS Δa(k) can be replaced by a
rigid shift Δa. There is no need to solve the self-consistency
problem then because the only occurrence of Δa is in the distribu-
tion functions, where it is fixed by the given density in the quasi-
neutral region. An elegant way to compute the rigid shift follows
from the requirement that the QPS density should not change in
the first order with respect to Δa(k)� Δa, which leads to1

Δa ¼
P

k @fa(k)=@ζa Δa(k)P
k @fa(k)=@ζa

, (3)

with rigidly shifted bands Ea(k) ¼ E0
a (k)þ Δa and Fermi functions

fa(k) depending on shifted chemical potentials μa,

fa(k) ¼ f E0
a (k)� ζa

� �
, ζa ¼ μa � Δa: (4)
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The weight function in (3) (the derivative of the Fermi function)
filters out energies near the Fermi energy in the low-T/high-density
limit and energies close to the band edge in the high-T/low-density
limit. The explicit expressions for the three components of the dis-
persive QPS in (2) can be found in Refs. 1, 3, and 29 and are not
repeated here. After insertion into Eq. (3), the rigid shifts take the
compact form1,3

Δx
a ¼ � e2

4πϵ0ϵsΛa
F�1=2(βζa), (5)

Δc
a ¼

1
2β

ð
d3q

(2π)3
X
ν

ϵ�1(q, Ων)� 1
� � @ϵ(q, Ων)

@na
, (6)

Δi
a ¼ � ni

2
@na
@ζa

� ��1ð d3q

(2π)3
v(q)

ϵ2(q, 0)
@ϵ(q, 0)
@ζa

: (7)

In the case of parabolic bands, the QP density na in the rigid shift
approximation is given by

na ¼
X
k

gafa(k) ¼ gaΛ
�3
a F1=2(β ζa), (8)

with the Fermi integral F1=2, the thermal wavelength
Λa ¼ (2π�h2β=ma)

1=2
, the inverse thermal energy β ¼ 1=kBT, and

the Fermi energy ζa ¼ μa � Δa. The multi-valley conduction band,
heavy- and light-hole bands, and spin summation are condensed in
degeneracy factors ga. The effective masses ma are understood as

density of states (DOS) effective masses me ¼ (m2
tml)

1=3 for aniso-

tropic CB valleys, mh ¼ [(m3=2
lh þm3=2

hh )=2]
2=3

for holes. This yields
a tractable isotropic dispersion model needed for analytical
BGN modeling that also allows one to include nonparabolicity.
More comments on the band structure model will be given in
Secs. III and IV. The remaining ingredients in Eqs. (5)–(7) are the
bare Coulomb potential v(q) ¼ e2=(ϵ0ϵs q2) with the static permit-
tivity ϵs, the Matsubara frequency Ων ¼ 2πi ν

�hβ (ν integer), and the
concentration of electrically active dopants ni. The correlation ener-
gies are determined by the RPA dielectric function

ϵ(q, Ων) ¼ 1� v(q)
X
a,k

ga
fa(kþ q)� fa(k)

Ea(kþ q)� Ea(k)� �hΩν
: (9)

As the rigid QPS drops out in the energy differences, the dispersion
can be replaced by the free dispersion E0

a . It should be noted that
the single-integral form of the exchange term (5) is bound to para-
bolic bands E0

a (k) ¼ �h2k2=2ma,
1,30 whereas (6) and (7) are obtained

by (3), regardless of the specific form of the dispersion. It is well
known that band structure details have only a minor impact on the
exchange-correlation energy of the electron and hole plasmas due
to a compensation effect.1,31 Therefore, Eqs. (5) and (6) are evalu-
ated with parabolic bands in this paper. However, as will be shown
below, in the low-T/high-density limit, the term Δi

h can take large
values in n-type III–V materials. In this case, the Fermi level is
located high in the CB, where the dispersion strongly deviates from
the parabolic shape. To study how much nonparabolicity changes
the BGN, electron density ne and dielectric function ϵ(q, Ων) in (7)
are calculated with the nonparabolic free dispersion

E0,np
e (k) ¼ 1

2γe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 γe�h

2k2=me þ 1
q

� 1

� �
, (10)

where γe denotes the nonparabolicity parameter. Both dielectric
function and ionic QPS can be expressed by single integrals. This is
demonstrated in Appendixes A and B, respectively. The
T ¼ 0 K-limits are also given explicitly there as they serve to vali-
date the tricky numerical solutions at very low but finite tempera-
tures and to explain the high values of Δi

h in n-type materials with
a large ratio of valence to conduction band density of states. It is
convenient to use normalized quantities. All energies are normal-
ized by the excitonic Rydberg energy Ryex ¼ �h2=(2μ*a2ex), and all
lengths by the excitonic Bohr radius aex ¼ �h2ϵs=(e2μ*), where μ*

denotes the reduced effective mass μ* ¼ (1=me þ 1=mh)
�1. Useful

parameters are αa ¼ μ*=ma. All values for Si and In0:53Ga0:47As are
given in Table I.

III. RESULTS FOR SILICON

Application of the empirical nonparabolicity model (10) to
silicon necessitates an isotropic DOS. The use of DOS effective
masses me ¼ (m2

tml)
1=3 to take account of the anisotropy of CB

valleys is already an approximation in the correlation energies
(6) and (7) with the RPA dielectric function (9). Starting with ellip-
soids and transforming k and q to elliptical coordinates would not
give the same expressions because of the occurrence of the Fourier
transformed Coulomb potential v(q). The light and heavy hole
masses mlh, mhh are angle-averaged parameters, the light-hole band
is nonparabolic, and the split-off band with its maximum at
44 meV below the VB edge is neglected. The latter simplification
sets a limit to the hole density, i.e., calculated BGN values become
rather uncertain above 5� 1019 cm�3. Heavy doping also induces
band tails, an effect completely ignored in this paper.

Figure 1 shows the ionic part of the average QPS Δi
e for

neutral n- and p-type silicon, and Fig. 2 shows the ionic part of the
average QPS Δi

h for neutral n- and p-type silicon as a function of
activated doping concentration and temperature. Note that the

TABLE I. Parameters for silicon and In0.53Ga0.47As used in the calculation.
29,32–36

me/m0 mh/m0 ge gh μ*/m0 αe αh γe (/eV) Ryex (meV) aex (cm) ϵs

Silicon 0.321 0.346 12 4 0.1665 0.5187 0.4813 0.5 16.55 37.19 × 10−8 11.7
InGaAs 0.043 0.236 2 4 0.0364 0.846 0.154 1.2 2.56 20.25 × 10−7 13.9
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T ¼ 0 K-curves start at the Mott density37 nb,M ¼ (pM=aexαb)
3,

using pM ¼ 0:296 for the Mott criterion.
While in a neutral electron–hole plasma the contribution of

Δi
a to the total BGN becomes small under conditions of high excita-

tion/injection, this is not the case in heavily doped quasi-neutral
regions. The reason is that only majority carriers, and only with a
fixed density ni are available for screening there. If their DOS is

small, the screening effect is weak, and Δi
a of the minority carrier

band can become significant. Despite the relatively large DOS of Si,
this is clearly seen for p-type silicon in Fig. 1(b) and, on a smaller
scale, for n-type Si in Fig. 2(a).

To understand the different behavior of majority and minority
carriers it is instructive to derive the ionic correlation energy in
a fully analytical form. This is only possible for T ¼ 0 K.

FIG. 1. (a) Electron-ion part Δi
e,n�type and (b) Δ

i
e,p�type of the average QPS for neutral (a) n-type and (b) neutral p-type silicon as a function of activated doping concentra-

tion and temperature.

FIG. 2. (a) Hole-ion part Δi
h,n�type and (b) Δ

i
h,p�type of the average QPS for (a) neutral n-type and (b) neutral p-type silicon as a function of activated doping concentration

and temperature.
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The nonparabolicity effect is minor in Si because of the relatively
small value of the nonparabolicity parameter (γe ¼ 0:5=eV) and
the large DOS of the CB that prevents that the Fermi level can
move deep into the band with growing density. Therefore, in this
section, the analytical treatment is restricted to the parabolic case.
The nonparabolic case will be presented for InGaAs in Sec. IV.

The starting point is the parabolic and zero-temperature limit
Eq. (B10) in Appendix B with the dielectric function Eq. (A13) in
Appendix A. Inserting Eq. (A13) into Eq. (B10) yields by substitut-
ing q ¼ z qF,b,

Δi
a ¼� 4gb

3π2

ð1
0
dz

z
αb
tanh�1

	
z

1þz2=4



δabþ 4

αa
(1� δab)(

z2 þ sb

�
1þ

	
1
z� z

4



tanh�1

	
z

1þz2=4


�)2 , (11)

with

sb ¼ gb
παbqF,b

: (12)

Here, the Fermi momentum of the majority carriers qF,b is
defined by

qF,b ¼ 6π2ni
gb

� �1=3

(13)

and “b” is the index of the majority carrier band. For majority car-
riers [first term in (11)], an analytical approximation of the integral
is difficult to find. The function tanh�1( � � � ) has an integrable sin-
gularity at z ¼ 2 (double the amount of the Fermi momentum).
The function in angular braces is bell-shaped with a maximum of 2
at z ¼ 0. The shape of the total integrand strongly depends on the
size of the parameter sb. In terms of the normalized doping con-
centration (normalized by a�3

ex ), the parameter sb becomes

sb ¼ g4=3b

(6π5)1=3αb

1

n1=3i

: (14)

Therefore, one can assume sb � 1 for very large ni, which results
in a pronounced maximum of the integrand in (11) at some z , 1.
The function tanh�1( � � � ) can then be linearized and one obtains

Δi
a ¼ � gb

3π
1ffiffiffiffiffiffi
2sb

p δab
αb

þ 4

(2sb)
3=2

(1� δab)
αa

� �

¼ � δabffiffiffiffiffi
αb

p g1=3b

3
(
3
4π

)
1
6 n1=6i þ (1� δab)

αa

α3=2
b

gb

2π3=2ffiffiffi
3

p n1=2i

" #
: (15)

The last expression is a reasonable analytical approximation of the
zero-temperature limit of the ionic QPS in terms of band structure
parameters (ga, αa), reproducing both the slope of the doping
dependence at high concentrations and the different amounts of
minority and majority carrier band shifts. Of particular interest is
the ratio of the minority band shift in the material with the lower
DOS Δi

e,p�type to the other shifts Δi
h,p�type, Δ

i
e,n�type, and Δi

h,n�type.

Since the DOS is given by Na ¼ gaΛ
�3
a ¼ ga=(4παaβ)

3=2, it is

proportional to ga=α3=2
a . Therefore, with the parameters of Table I,

the DOS of p-type silicon is about three times smaller than that of
n-type silicon. Using Eq. (15), one arrives at the following ratios:

Δi
e,p�type

Δi
h,p�type

¼ 2π2α2
h

αeg
4=3
h

6
π

� �1
3

n
1
3
i ���!

ni¼10
3:70 (3:88),

Δi
e,p�type

Δi
e,n�type

¼ 2π2α3=2
hffiffiffiffiffi

αe
p

g1=3e gh

6
π

� �1
3

n
1
3
i ���!

ni¼10
2:67 (3:15),

Δi
e,p�type

Δi
h,n�type

¼ ge
gh

αh

αe

� �5=2

���!
ni¼10

2:49 (2:02):

(16)

The numbers at ni ¼ 10 correspond to a doping concentration of
1:94� 1020 cm�3 and the numbers in braces are the numerical
values extracted from the black solid curves in Figs. 1 and 2 for this
density.

The total BGN in (a) n-type and (b) p-type silicon includ-
ing the weak nonparabolicity effect is shown in Fig. 3. The tem-
perature dependence starts to vanish above the Mott density, but
a slight temperature effect re-emerges in p-type silicon at high
densities (ni . 1). It originates from the contribution of Δi

e,p�type
[see Fig. 1(b)].

Figure 4 shows a comparison of the theory with optical BGN
measurements in n-type silicon (a) and p-type silicon (b).
Data points are from Aw et al.11 (transmission), Balkanski et al.7

(transmission), Dumke13 (PL), del Alamo et al.10 (IR photo-
response of solar cells), Lanyon et al.8 (IR photo-response of the
transistor), Schmid9 (transmission), Yan et al.12,38 (photo-
conductance), and Wagner15 (PL). Excellent agreement with the
photo-conductance data by Yan et al. and the PL data by Wagner
is found.

The black dashed curves are the result of the fit model for
device simulation proposed in Ref. 29. In this model, screening had
been fitted for the case of a neutral electron–hole plasma
(ne ¼ nh) to also cover the cases of high optical excitation and
strong electrical injection in pn-junctions. Application to quasi-
neutral regions yielded an acceptable agreement with the rather
scattered experimental data, and no re-fitting was done for this
case. As can be seen, the fit model underestimates the BGN in
quasi-neutral regions of silicon by �30 meV around a concentra-
tion of 1020 cm�3. The reason is again the ionic QPS of minority
carriers, which in a neutral plasma is significantly suppressed by
the screening effect of the species that are minority carriers in
quasi-neutral regions.

IV. RESULTS FOR IN0.53GA0.47AS

To provide a more complete picture for InGaAs, first the free-
carrier correlation energy Δc

a is depicted in Fig. 5. The majority
carrier contribution is strongly temperature-dependent, but its
magnitude remains small, in particular, in n-type InGaAs.
The free-carrier QPS of minority carriers is in the order of 10 meV
at �1019 cm�3, the largest possible concentration of electrical
active doping. This maximum concentration corresponds to
ni ¼ 100 (a�3

ex ¼ 1:2� 1017 cm�3).
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Due to the relatively small CB DOS of InGaAs, the Fermi level
can move deep into the band at high n-doping. The nonparabolic
dispersion then has a strong effect on the ionic QPS. This is dem-
onstrated in Figs. 6 and 7. For electrons in the n-type material
[Fig. 6(a)], Δi

e,n�type doubles for nonparabolic CB at the highest
density. As expected, in the p-type material, the nonparabolicity
effect is much weaker [Fig. 6(b)]. In general, Δi

e is limited to 5 meV,
and the temperature dependence is only relevant at intermediate
concentrations.

The situation is completely different for holes. If they are
minority carriers [Fig. 7(a)], Δi

h,n�type becomes giant in the
low-T/high-density range, if a parabolic CB is used. It reaches
500 meV at ni ¼ 100, hundred times more than Δi

h,p�type
[Fig. 7(b)]. Using Eq. (15), one finds

Δi
h,n�type

Δi
e,p�type

¼ gh
ge

αe

αh

� �5=2

���!
ni¼100

141:5 (121:5): (17)

FIG. 4. Comparison with optical measurements of the BGN in (a) n-type and (b) p-type silicon.

FIG. 3. Total BGN in (a) neutral n-type and (b) neutral p-type silicon as a function of activated doping concentration and temperature. Comparison of parabolic (solid lines)
and nonparabolic conduction band (dashed lines).
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The numerical result in braces was extracted from the black solid
curve in Figs. 6(b) and 7(a), respectively. The ratio is equal to
Nhmh=(Neme), where the DOS ratio Nh=Ne is 25.7 and the mass
ratio mh=me 5.5. The crosses in Fig. (7)(a) are the result of the fit
model proposed in Refs. 39 and 40 [also cited in the website

(Ref. 32)], which is not far from the present T ¼ 0 K-curve for a
parabolic CB.

With decreasing doping concentration and rising temperature
the value of Δi

h,n�type quickly shrinks to “common” values. At room
temperature, one finds 8 meV at ni ¼ 10 and 48meV at ni ¼ 100.

FIG. 5. Contribution of the free-carrier correlation energy to the average QPS in (a) neutral n-type and (b) neutral p-type In0:53Ga0:47As as a function of activated doping
concentration and temperature.

FIG. 6. (a) Electron-ion part Δi
e,n�type and (b) Δi

e,p�type of the average QPS for (a) neutral n-type and (b) neutral p-type In0:53Ga0:47As as a function of activated doping
concentration and temperature.
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According to Eq. (B4) limβ!0 Δ
i
a ¼ � ffiffiffiffiffiffiffiffiffiffiffiffi

2πβni
p

, i.e., the value goes to
zero and becomes independent of carrier type and doping species.

As can be seen in Fig. 7(a), nonparabolicity of the CB strongly
decreases the value of Δi

h,n�type at low temperatures. An analytical
explanation of the nonparabolicity effect is now given for T ¼ 0 K.
In the important case of minority holes in the n-type material, one
obtains instead of Eq. (11), second term,

Δi,np
h,n�type ¼ � 16ge

3π2αh

ð1
0

dz

[z2 þ se
Ð 1
0 dtt

1
z He(t, z)]

2
, (18)

with

se ¼ ge

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
αe
~ζe,np

q ,

He(t, z) ¼ 2[he(t, z)� he(t, � z)]

þ he(t, 0) ln
[he(t, 0)� he(t, z)]

2

[he(t, 0)� he(t, �z)]2

� �
,

he(t, z) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4γe~ζe,np(t þ z)2

q
,

~ζe,np ¼ ζe,np(1þ γeζe,np):

(19)

which follows from Eq. (B9) inserting (A12). Note that the Fermi
energy ζe,np is lower than ζe,par of the parabolic case

ζe,np ¼
1
2γe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4γeζe,par

q
� 1

	 

� ζe,par 1� γeζe,par

	 

: (20)

The second term in the denominator of Eq. (18) is treated in the
same way as before, i.e., approximating He(t, z) for small z.
This results in

He(t, z) � 2z
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4γe~ζe,npt2

q
, (21)

where γe~ζe,np � 1 had to be assumed. The ionic correlation energy
of minority holes (18) then becomes

Δi,np
h,n�type ¼ �

ffiffiffiffiffi
2π

p
α3=4
e

3αh
ffiffiffiffi
ge

p
ζe,np

1þ γeζe,np

 !3=4

: (22)

The ratio between nonparabolic and parabolic shift is com-
puted using relation (20),

Δi,np
h,n�type

Δi,par
h,n�type

¼ ζe,np
ζe,par

 !3=4
1

(1þ γeζe,np)
3=4

� 1� γeζe,par
1þ γeζe,par

 !3=4

: (23)

Expressing the Fermi energy by the doping concentration
ζe,par ¼ (6π2α3=2

e ni=ge)
2=3

gives

Δi,np
h,n�type

Δi,par
h,n�type

¼ 1� γe(6π
2α3=2

e ni=ge)
2=3

1þ γe(6π2α
3=2
e ni=ge)

2=3

2
4

3
5
3=4

���!
ni¼100

0:41 (0:42):

(24)

FIG. 7. (a) Hole-ion part Δi
h,n�type and (b) Δi

h,p�type of the average QPS for (a) neutral n-type and (b) neutral p-type In0:53Ga0:47As as a function of activated doping con-
centration and temperature. Crosses are the outcome from the fit model of Ref. 39.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 130, 015703 (2021); doi: 10.1063/5.0051055 130, 015703-8

© Author(s) 2021

https://aip.scitation.org/journal/jap


The number in braces is the numerical value extracted from the
solid and dashed black curve in Fig. 7(a). Note that this
60%-reduction at ni ¼ 100 is caused by the factor multiplying γe,
which is proportional to (ni=Ne)

2=3, i.e., by the small DOS of the
electrons in InGaAs.

The question arises how reliable this result is in view of
the simplistic isotropic two-band dispersion model. Compared to
silicon, the situation is more favorable here. The direct CB can be
considered as isotropic, and the split-off hole band is more than
0.3 eV away from the VB edge. For Δi

h,n�type, screening is solely due
to electrons. As holes are minorities, the Fermi level is close to or
in the CB; hence, the valence bands (VBs) are just probed over an
energy interval kBT which becomes narrow at low temperatures.
This makes nonparabolicity of the hole bands negligible. The
remaining error is then caused by disregarding their warping.
But this only affects the pre-factor as can be explicitly seen from
the last line in Eq. (B9) showing that Δi

h,n�type(β ! 1) is propor-
tional to mh. Therefore, an error estimate can be obtained from the
variation of mhh over the warped iso-energy surface. Citing a three-
parameter warping model for GaAs (Ref. 44 and references
therein), one finds (0:67 . . . 1:73)mhh, where mhh is the average
over azimuthal and polar angles. The error bounds for Δi

h,n�type are
hence similar. However, provided one could perform the fourfold
angle integration numerically (together with the two remaining
integrations), the angle dependence would be efficiently averaged
out. Based on this, effects of the real band structure cannot be
expected to nullify the main findings of this chapter: the very large
value of Δi

h,n�type at low temperatures and its significant reduction
due to nonparabolicity of the CB and increasing temperature.

The total BGN in quasi-neutral In0:53Ga0:47As is shown in
Fig. 8. In the n-type material, it is completely dominated by the

behavior of Δi
h,n�type. However, the nonparabolicity of the CB

decreases the zero-temperature value to 237 meV at ni ¼ 100
(1:2� 1019 cm�3). The corresponding value in the p-type material
is 41 meV. At room temperature, the values are 69 and 45 meV,
respectively. The dotted line indicates the published limit of electri-
cal activation in the n-type material41 (1:4� 1019 cm�3). A similar
value seems to hold for p-type In0:53Ga0:47As.

42 Hence, the above
BGN values can be roughly considered as upper limits too.

V. CONCLUSION

The analysis of BGN in quasi-neutral regions of Si and
In0:53Ga0:47As based on the finite-temperature RPA formalism
including band nonparabolicity led to the following conclusions.

In n-type silicon, the gap shrinks by 119 meV at an active
donor concentration of 1� 1020 cm�3. In p-type silicon, at the
same density of active acceptors, the gap shrinks by 144 meV at
20 K and by 131 meV at 300 K, respectively. Both the difference in
magnitude between doping types and the temperature dependence
in the p-type material have the same origin—the ionic QPS of the
minority carrier band (electrons) in the material with the smaller
DOS (p-Si). A smaller DOS results in weaker screening.

In In0:53Ga0:47As, this effect becomes extraordinary at low
temperatures. The 26 times smaller DOS in the parabolic model
and the five to six times smaller mass of electrons make screening
in the n-type material so weak that the ionic QPS of the minority
carrier band (holes) takes giant values (450 meV at T ¼ 0 K at a
donor density of 1:4� 1019 cm�3, i.e., more than half of the
bandgap). However, this result is due to the assumption of a para-
bolic CB. The strong degeneracy enforces to include nonparabolic-
ity which lowers the above value to 204 meV. A nonparabolic band

FIG. 8. Total BGN in (a) neutral n-type and (b) neutral p-type In0:53Ga0:47As as a function of activated doping concentration and temperature. Comparison of parabolic
(solid lines) and nonparabolic conduction band (dashed lines). The dotted line indicates the published limit of activated n-doping.41
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effectively implies a larger DOS and a larger average mass to be
used in a parabolic model, thus more screening. However, with
increasing temperature, the ionic QPS of minority holes quickly
shrinks to small values (29 meV at T ¼ 300 K) due to the
�T�1=2-dependence in the high-T limit. For the BGN, this means
a limit of 72 meV at room temperature. In p-type In0:53Ga0:47As,
the DOS is large and screening is strong. The contribution from
the ionic QPS of minority electrons is just �4 meV, and the total
BGN amounts to 46 meV. This is accompanied by a very weak tem-
perature dependence (43 meV at 20 K).

The nonparabolicity of the CB must be taken into account in
all cases where the DOS/mass of holes is much larger than that of
electrons, as often encountered in III–V materials. The paper has
demonstrated that this is possible—numerically for all tempera-
tures, and even analytically for the ionic QPS at T ¼ 0 K, if a
simple isotropic two-band model is used, where the multi-valley
CB and the heavy and light-hole bands are incorporated by DOS
effective masses. There is hope that a fully analytical T ¼ 0 K-limit
can also be found for the free-carrier correlation energies. Padé
interpolation1,29 then would enable a BGN model as a function of
doping and temperature essentially free of material-specific fit
parameters.

A serious problem is the impact of all the band structure
effects, which are not considered in this work, like anisotropy,
warping, contribution of split-off band, DOS tails, and polaronic
mass enhancement. Even though a full numerical treatment based
on an elaborate band structure model seems to be out of reach even
in the rigid-shift approximation of BGN, some aspects could be
tested on a smaller scale, e.g., in the screening function.
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APPENDIX A: RPA DIELECTRIC FUNCTION FOR
NONPARABOLIC BANDS

This appendix provides the derivation of the full-RPA dielec-
tric function for nonparabolic bands, its static limit, as well as the
high-T/low-density and low-T/high-density limits of the static
form, respectively.

1. Frequency-dependent form at arbitrary density and
temperature

With the Fourier transform of the bare Coulomb potential
v(q) ¼ 8πaexRyex=q2 and the nonparabolic free dispersion (10), the
RPA dielectric function (9) takes the form

ϵ(q, Ων) ¼ 1þ 1

(πq)2
X
a

ga

ð
d3k fa(k)

� 1

E0,np
a (kþ q)� E0,np

a (k)� �hΩν

"

� 1

E0,np
a (k)� E0,np

a (k� q)� �hΩν

#
, (A1)

with

E0,np
a (k+ q) ¼ 1

2γa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γaαa k2 þ q2 + 2kq cosΘð Þ

p
� 1

h i
:

Energies are normalized by Ryex, wave numbers by a�1
ex . The kz-axis is

aligned with q, hence cosΘ ¼ k � q=(jkkqj). Setting τ(t) ¼ 8γaαakqt
with t ¼ cosΘ, one obtains

ϵ(q, Ων) ¼ 1þ 2
πq2

X
a

ga

ð1
0
dkk2 fa(k)

2γa
τ(1)

ðτ(1)
�τ(1)

dτ

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ(1)
2

k
q þ q

k

	 

þ τ þ 1

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ(1)k
2q þ 1

q
� 2γa�hΩν

0
BB@

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ(1)
2

k
q þ q

k

	 

� τ þ 1

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ(1)k
2q þ 1

q
þ 2γa�hΩν

1
CCA:

(A2)

The τ-integral

Iτ ¼
ðτ(1)
�τ(1)

dτ
1ffiffiffiffiffiffiffiffiffiffiffi

aþ τ
p � bþ

þ 1ffiffiffiffiffiffiffiffiffiffiffi
a� τ

p � b�

� �
, (A3)

where

a ¼ τ(1)
2

k
q
þ q
k

� �
þ 1,

b+ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ(1)k
2q

þ 1

s
+ 2γa�hΩν

can be solved using

ð
dτ

1ffiffiffiffiffiffiffiffiffiffiffi
aþ τ

p � b
¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
aþ τ

p þ 2b ln (b� ffiffiffiffiffiffiffiffiffiffiffi
aþ τ

p
),

which gives

Iτ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ τ(1)

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� τ(1)

p	 

þ 2bþ ln

bþ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ τ(1)

p

bþ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� τ(1)

p þ 2b� ln
b� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ τ(1)
p

b� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� τ(1)

p : (A4)

Inserting into Eq. (A2) yields

ϵ(q, Ων) ¼ 1þ 1
πq3

X
a

ga
αa

ð1
�1

dkk fa(k) 2ha(k, q)f

þ [ha(k, 0)þ gν,a] ln [ha(k, 0)� ha(k, q)þ gν,a]

þ [ha(k, 0)� gν,a] ln [ha(k, 0)� ha(k, q)� gν,a]g, (A5)

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 130, 015703 (2021); doi: 10.1063/5.0051055 130, 015703-10

© Author(s) 2021

https://aip.scitation.org/journal/jap


with the auxiliary functions

ha(k, q) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4γaαa kþ qð Þ2

q
,

gν,a ¼ 2γa�hΩν ¼ 4πγaν
β

i:

Note that ha(�k, q) ¼ ha(k, �q) and ha(k, 0) ¼ ha(�k, 0). In the
case of parabolic bands, the k-integral in Eq. (A5) is integrated by
parts to remove the logarithmic singularities.1 This is impossible for
nonparabolic bands at T. 0. Therefore, the final frequency-
dependent form for numerical integration is

ϵ(q, Ων) ¼ 1þ 2
πq3

X
a

ga
αa

ð1
�1

dkk fa(k)

(
ha(k, q):

þ 1
2
[ha(k, 0)þ gν,a] ln [ ha(k, 0)� ha(k, q)ð Þ2þ gν,aj j2]

� gν,aj jarctg gν,aj j
ha(k, 0)� ha(k, q)

� �)
:(A6)

2. Static form at arbitrary density and temperature

For the ionic part of the correlation energy, only the static
limit gν,a ! 0 of Eq. (A6) is needed. It can be written as

ϵ(q, 0) ¼ 1þ 1
πq3

X
a

ga
α2
a

ð1
0
dκκ fa(κ)

�
(
2[ha(κ, q)� ha(κ, � q)]:

þ ha(κ, 0) ln
ha(κ, 0)� ha(κ, q)½ �2

ha(κ, 0)� ha(κ, � q)½ �2
)
, (A7)

where

ha(κ, q) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4γa κ þ ffiffiffiffiffi

αa
p

qð Þ2
q

, (A8)

fa(κ) ¼ 1þ eβ[ha(κ,0)�1]=2γa�βζa
n o�1

(A9)

have to be used.

3. Debye limit and T = 0 K-limit of the static form

The Debye limit43 of the static RPA dielectric function follows
from Eq. (A7) by q ! 0 and using Boltzmann statistics (high-
temperature, long-wavelength limit),

ϵD(q, 0) ¼ 1þ 2
πq2

X
a

gaeβζa

α3=2
a

ð1
0
dκe�β[ha(κ,0)�1]=2γa

� 4γaκ
2

ha(κ, 0)
þ ha(κ, 0)

� �

¼ 1þ 1
πq2

X
a

gaeβζa

α3=2
a

ð1
0
dte�βt

� 4γa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t(1þ γat)

p
þ (2γat þ 1)2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t(1þ γat)
p

" #
:

This is exactly the same as

ϵD(q, 0) ¼ 1þ 8π
q2
X
a

@na
@ζa

, (A10)

which is the expression in the case of parabolic bands. Therefore,
the form of the Debye limit is independent of the band dispersion
as expected.

To obtain the T ¼ 0 K-limit, the κ-integral in Eq. (A7) is inte-
grated by parts where the derivative of the distribution function
with respect to κ becomes a delta function

@fa
@κ

¼ �δ κ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζa(1þ γaζa)

ph i
: (A11)

Then,

ϵT¼0(q, 0) ¼ 1þ 1
πq3

X
a

ga
α2
a

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζa(1þγaζa)

p

0
dκκ

�
(
2[ha(κ, q)� ha(κ, � q)]:

þ ha(κ, 0) ln
ha(κ, 0)� ha(κ, q)½ �2

ha(κ, 0)� ha(κ, � q)½ �2
)
Θ(ζa): (A12)

Only the majority carriers of the quasi-neutral regions contribute
(ζa . 0), whereas the minority carriers are frozen out.

From (A12) the parabolic limit (γa ! 0) is easily retrieved,

lim
γa!0

ϵT¼0(q, 0) ¼ 1þ 1
πq3

X
a

ga
α2
a

�
ffiffiffiffiffiffiffiffiffi
αaζa

p
qþ (ζa � αaq

2=4)tanh�1

ffiffiffiffiffiffiffiffiffi
αaζa

p
q

ζa þ αaq2=4

 !( )
Θ(ζa):

(A13)

APPENDIX B: CORRELATION ENERGY OF
ION–CARRIER INTERACTION

This appendix provides the derivation of the full-RPA correla-
tion energy of ion–carrier interaction for nonparabolic bands in the
high-T/low-density and low-T/high-density limits, respectively.
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1. Arbitrary density and temperature

The correlation energy of ion–carrier interaction is calculated
by Eq. (7). After normalization and integration over angles, it reads

Δi
a ¼ �ni

2
π

@na
@ζa

� ��1ð1
0
dq

1
ϵ2(q, 0)

@ϵ(q, 0)
@ζa

: (B1)

For the derivative of the dielectric function (A7) with respect to the
Fermi energy, one has to apply

@fa
@ζa

¼ � @fa
@κ

ha(κ, 0)
2κ

¼ βfa(κ)[1� fa(κ)] (B2)

under the κ-integral.

2. Debye limit and T = 0 K-limit

In the high-T/low-density regime, the effect of nonparabolicity
is negligible, and one obtains from Eq. (7) with the dielectric func-
tion (A10), the well-known result1,29

Δi
a ¼ �ni

ffiffiffiffiffiffiffiffi
2πβ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne þ nh

p : (B3)

In quasi-neutral regions ne þ nh ¼ ni, which simplifies Eq. (B3) to

Δi
a ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
2πβni

p
: (B4)

At T ¼ 0 K, one must distinguish between majority and minority
bands. The derivative of the densities with respect to the Fermi
energy becomes

lim
β!1

@na
@ζa

¼ ga

4π2α3=2
a

�

ffiffiffiffiffi
~ζa

q
(1þ 2γaζa)Θ(ζa) majority band,ffiffi

π
p
2

exp(βζa)ffiffi
β

p




β!1

Θ(� ζa) minority band,

8><
>: (B5)

where the abbreviation ~ζa ¼ ζa(1þ γaζa) was introduced. For the
derivative of the static dielectric function with respect to the Fermi
energy @ϵ(q, 0)=@ζa in the limit β ! 1, one needs

lim
β!1

@fa
@ζa

¼ � lim
β!1

h(κ, 0)
2κ

@fa
@κ

¼
h(κ, 0)
2κ δ κ �

ffiffiffiffiffi
~ζa

q� �
Θ(ζa) majority band,

βe�β κ2�ζað Þ


β!1Θ(� ζa) minority band,

8><
>: (B6)

which follows from Eq. (B2) and neglecting nonparabolicity for the

minority carriers. Using this in Eq. (A7) leads to

lim
β!1

@ϵ(q, 0)
@ζa

¼ 1
πq3

ga
α2
a
h2a(

ffiffiffiffiffi
~ζa

q
, 0)

�
ha(

ffiffiffiffiffi
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q
, q)� ha(
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~ζa

q
, �q)
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ffiffiffiffiffi
~ζa

q
, 0)

8><
>:

þ 1
2
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ffiffiffiffiffi
~ζa

q
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ffiffiffiffiffi
~ζa

q
, q)

� �2

ha(
ffiffiffiffiffi
~ζa

q
, 0)� ha(

ffiffiffiffiffi
~ζa

q
, � q)

� �2
0
BBB@

1
CCCA
9>>>=
>>>;
Θ(ζa)
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β!1

1
πq3
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a

βeβζa
ð1
0
dκκe�βκ2

� ln
[κ2 � (κ þ ffiffiffiffiffi

αa
p

q)2]
2

[κ2 � (κ � ffiffiffiffiffi
αa

p
q)2]

2

 !
Θ(� ζa),

(B7)

where in the term � Θ(�ζa), nonparabolicity was again neglected.
The κ-integral can be calculated analytically,

lim
β!1

βeβζa
ð1
0
dκκe�βκ2

ln
[κ2 � (κ þ ffiffiffiffiffi

αa
p

q)2]
2

[κ2 � (κ � ffiffiffiffiffi
αa

p
q)2]

2

 !

¼ lim
β!1

2βeβζa
ð1
0
dt t e�t2 tanh�1 4tffiffiffiffiffiffiffiffi

αaβ
p

q

� �

¼ lim
β!1

2
ffiffiffi
π

p
eβζaffiffiffiffiffiffiffiffi

αaβ
p

q
: (B8)

For the second line, the relation ln (jx þ 1j=jx � 1j) ¼ 2tanh�1(1=x)
was used. Inserting Eq. (B7) with (B8) and Eq. (B5) into Eq. (B1),
the correlation energy of ion–carrier interaction in the T ¼ 0 K-limit
finally becomes

lim
β!1

Δi
a ¼ �ni

8ffiffiffiffiffiffiffiffiffi
αa

~ζa

q ð1
0
dq

Θ(ζa)
q3ϵ2T¼0(q, 0)

� [ha(
ffiffiffiffiffi
~ζa

q
, q)� ha(

ffiffiffiffiffi
~ζa

q
, � q)]

�

þ 1
2
(1þ 2γaζa) ln

[1þ 2γaζa � ha(
ffiffiffiffiffi
~ζa

q
, q)]2

[1þ 2γaζa � ha(
ffiffiffiffiffi
~ζa

q
, � q)]2

0
B@

1
CA
9>=
>;

� ni
32
αa

ð1
0
dq

Θ(�ζa)
q4ϵ2T¼0(q, 0)

, (B9)

where the static dielectric function ϵT¼0(q, 0) is defined in Eq. (A12)
and the function ha in Eq. (A8).
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From (B9), the parabolic limit (γa ! 0) is easily retrieved

lim
γa!0

Δi
a ¼�8ni

ð1
0

dq
q3

ϵ�2
T¼0(q, 0)

� 1ffiffiffiffiffiffiffiffiffi
αaζa

p tanh�1

ffiffiffiffiffiffiffiffiffi
αaζa

p
q

ζa þ αaq2=4

 !
Θ(ζa)þ

4
αaq

Θ(�ζa)

( )
:

(B10)
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