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ABSTRACT

A model for tunneling between conduction and valence band tail states in semiconductors is developed. Localized, lifetime-broadened wave
functions originally proposed by Vinogradov [Fiz. Tverd. Tela 13, 3266 (1971)] facilitate the derivation of the microscopic transition rate in
a homogeneous electric field of arbitrary orientation. A compact analytical form of the average macroscopic tunnel generation rate is
approximately calculated assuming that the Gaussian or exponential band tail represents a ladder of closely spaced single-level densities of
states. A fully analytical form yields insight into key quantities like the effective tunnel barrier, the tunneling mass, and the pre-exponential
factor in comparison to band-to-band tunneling. Tail-to-tail, tail-to-band, and band-to-band tunneling rates are compared against each
other over a broad range of field strengths and characteristic tail energies. The numerical implementation of the model into a commercial
device simulator accounts for the inhomogeneous field in pn-junctions and excludes invalid tunnel paths. In the application to a fully char-
acterized InGaAs pin-Esaki diode, all physical processes and parameters that might affect the IV-characteristics are carefully investigated.
The value of the bandgap of In0:53Ga0:47As as a function of density, doping, and temperature is revised. It is shown that tail-induced tunnel-
ing cannot explain the strong measured valley current of the diode. Besides band-to-band tunneling, zero- and multi-phonon defect-assisted
tunneling are the physical mechanisms that allow to reproduce the entire forward characteristics. Whereas tail-to-band tunneling becomes
only visible for very large values of the characteristic tail energy in the heavily doped regions, tail-to-tail tunneling remains a completely
negligible process.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0008709

I. INTRODUCTION

Tunnel Field Effect Transistors (TFETs) are still among
the candidates for low-power switches with sub-thermionic sub-
threshold swing (SS).2,3 When operated in diode configuration,
IV-characteristics with negative differential resistance (NDR) are
the signature of tunneling in the forward-biased junction. In con-
trast to Esaki diodes,4 TFETs utilize an intrinsic or lowly doped
region to minimize the OFF-current of the transistor. The NDR
behavior of the pin-diode (peak-to-valley ratio, shape, temperature
dependence) provides useful information about the involved tunnel-
ing mechanisms, the density of states (DOS), and the doping profile.
The latter is hard to determine precisely because of the small dimen-
sions of nanowire (NW) TFETs and the unknown magnitude of
incomplete ionization.5 TFET performance is restricted by a number
of non-ideality effects6 including the presence of band tails.

Their detrimental impact on the TFET transfer characteristics has
been the topic of recent experimental and theoretical studies.7–13

The relative importance of band tails compared to other degrada-
tion mechanisms is still a matter of debate. Among the latter,
Shockley–Read–Hall (SRH) generation and defect-assisted tunneling
(DAT) at interfaces6 and in bulk regions14 are the most prominent.
Another field-enhanced generation process is tunnel-assisted impact
ionization,15 an intrinsic limitation to the SS of TFETs.16

DOS tails extend the available states for band-to-band tunneling
(BTBT) into the gap, leading to an earlier but also smoother
onset of tunneling in TFETs due to the gradual increase of
the joint DOS. Tails also extend the voltage range of BTBT
recombination beyond the value where the alignment of the sharp
band edges vanishes. This is illustrated in Fig. 1. The strength of
the associated current depends not only on the characteristic

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 014502 (2020); doi: 10.1063/5.0008709 128, 014502-1

© Author(s) 2020

https://doi.org/10.1063/5.0008709
https://doi.org/10.1063/5.0008709
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0008709
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0008709&domain=pdf&date_stamp=2020-07-02
http://orcid.org/0000-0002-0260-7282
http://orcid.org/0000-0001-7861-1985
mailto:schenk@iis.ee.ethz.ch
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0008709
https://aip.scitation.org/journal/jap


(band tail spreading) energy η and the spectral shape of the tails
but also on the degree of localization of the wave functions. Origins
of band tails are random doping and defects,17–20 as well as
thermal fluctuations of the lattice.21 Pioneering work to derive the
tail DOS comprises the Thomas–Fermi approximation by Kane,22

the minimum counting method by Halperin and Lax,23 and the
optimal fluctuation method by Shkiovskii and Efros.24

In experimental studies, the tail DOS is usually approxi-
mated by an exponential [Aexp(� (ΔE)=η)] or by a Gaussian
[Aexp(� (ΔE)2=η2)] function.25 Redfield26 assumed Gaussian
shape and η in the range between 30 meV and 60meV to interpret
experimental conductivity data of compensated GaAs (doping
� 3� 1018 cm�3). Pankove27 fitted optical absorption data of
uncompensated n- and p-type GaAs (doping range 4� 1016

cm�3�1� 1020 cm�3) to an exponential tail DOS. He obtained
limits of ηc � 24 meV at NA ¼ 1020 cm�3 for the conduction band
(CB) tail and of ηv � 20 meV at ND ¼ 1019 cm�3 for the valence
band (VB) tail. His and the cited prior data by other authors
revealed overall small values of η in the range between 5 meV and
10meV up to a doping level of 7� 1018 cm�3. As for bulk InAs,
Dixon and Ellis28 measured a shift of the absorption edge by
13 meV for NA ¼ 2:4� 1017 cm�3 which, however, includes the
rigid shift caused by doping-induced bandgap narrowing (BGN).
From the slope of their α(hν)-curve, one can infer ηc � 9 meV.
Their extracted Urbach temperature29,76 of 80 K compares well
with the value of 70 K found later by Malyutenko and
Chernyakhovsky30 from thermal emission experiments with samples
of ND � NA ¼ 1:6� 1016 cm�3. A value of ηc � 7 meV can be
extracted from absorption measurements at InSb samples31 with
NA ¼ 9:5� 1016 cm�3. Memisevic et al.11 measured InAs/
InGaAsSb/GaSb NW TFETs in forward-biased diode configuration
and extracted η by fitting the negative slope of the semi-log NDR
current peak in a small interval around VSD ¼ þ0:2 V. With the
model assumption that the slope of the current in this range only

depends on the exponential tail DOS and that the voltage depen-
dence of the tunnel probability can be neglected, the authors derived
values of 60meV. However, they assigned the tails to a hetero-
interface Dit. This raises the interesting question of how a spatial
localization of the tails in tunnel direction changes the picture
obtained with constant η. The interpretation of their data is also
hampered by the fact that only a few defects are present in the tiny
active volume of the NW.14 The continuum theory developed below
is more appropriate to bulk-like homo-Esaki diodes. Such InGaAs
devices were fabricated at IMEC and simulated by Bizindavyi et al.13

In prior simulation work, except Ref. 12, the tail states were treated
as extended (Bloch or plane-wave) states. In Ref. 12, we developed a
theoretical model of tail-to-band tunneling (TTBT) where the tail
states are localized. We argued that tunnel transitions between oppo-
site tail states, i.e., tail-to-tail tunneling (TTTT), are negligible com-
pared to TTBT because of the localization of the wave functions. It is
the aim of the present paper to demonstrate this in great detail.

The paper is organized as follows. In Sec. II, a quantum-
mechanical model for tunneling between tail states is developed.
First, the microscopic transition rate between two opposing,
localized tail states in a homogeneous electric field of arbitrary
orientation is derived. Then, a compact analytical form of the mac-
roscopic (average) tunnel generation rate at single-level tail states is
approximately calculated. Assuming that the Gaussian and expo-
nential tail DOS represent a ladder of closely spaced single-level
DOSs, the corresponding weight functions are found to synthesize
them. This leads to the TTTT generation rate in the form of a
double energy integral. Further physical insight is gained by fully
analytical solutions that are achievable for Gaussian tail shape in
the cases of high field (HF) and very low field (VLF), respectively.
At the end of Sec. II, the homogeneous field case is used to
compare all tunneling rates with each other over a broad range of
field strengths and characteristic tail energies η. Section III presents
the device application of the developed model. It is shown how the
TTTT rate is implemented in the commercial device simulator
Sentaurus-Device (S-Device) of Synopsys44 using the Dynamic
Nonlocal Path (DNLP) algorithm. An in-depth simulation study of
InGaAs pin-Esaki diodes fabricated at IMEC10,13 is then performed
based on the information from physical and electrical characteriza-
tion. All physical processes and parameters that possibly influence
the IV-curves are painstakingly investigated. In particular,
injection-dependent bandgap narrowing (BGN) is determined with
a random-phase-approximation (RPA)-based model, and the tem-
perature dependence of the gap is revised. The electrically active
doping is found by fitting the measured peak and reverse current.
For this, the value of the light-hole mass is extracted from full-band
calculations of the imaginary dispersion. The contributions of TTBT
and TTTT are highlighted for spatially constant and doping-
dependent characteristic energies of exponential DOS tails. As
tail-induced tunneling cannot explain the strong measured valley
current, zero- and multi-phonon DAT are included. Section IV sum-
marizes the main findings, discusses limitations of the approach and
gives an outlook on future applications. Appendix A contains the
derivation of the RPA-based BGN model for In0:53Ga0:47As.
Appendix B provides the ratio of the BTBT rates of Kane’s two-band
model and one-band effective mass approximation (EMA) model,
which is needed for compatibility with the BTBT model of S-Device.

FIG. 1. Schematic band edge diagram of a semiconductor with DOS tails.
Tunneling from CB tail states to VB tail states enables recombination after the
alignment of the sharp band edges has disappeared under forward bias.
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II. QUANTUM-MECHANICAL MODEL FOR TUNNELING
BETWEEN TAIL STATES

A. Transition rate between two localized tail states in
a homogeneous electric field of arbitrary orientation

We consider localized tail states with zero-field binding
energies Etc,tv measured from the corresponding band edges Ec,v sit-
uated at arbitrary positions xc,v ¼ {x?c,?v; zc,v}. The homogeneous
electric field F is assumed to be aligned with the z-direction.
To model the wave functions, the pseudo-δ-potential model1,32 is
used as it facilitates analytical solutions for the total potential
�eFz þ 4πEtc,tvr3c,vδ(x) 1þ x � ∇x½ �. When the single-band enve-
lope33 method is applied to this problem, the influence of the
crystal potential can be taken into account via “effective” masses
mtc,tv of the localized electrons, which are related to their localiza-
tion radius rc,v by

Etc,tv ¼ �h2

2mtc,tvr2c,v
: (1)

This relation can be viewed as fitting of the parameters mtc,tv to the
localization radii rc,v . Since tail states split from their corresponding
bands, the effective masses will be comparable to the band masses,
but not necessarily equal to them. Reasons for deviations are the
presence of heavy and light holes, the band anisotropy, and the
effect of the respective opposite band. Table I lists the localization
radius rc,v for various values of mtc,tv at three values of Etc,tv .

12

The normalized ground state Φv
~E 0 0

of the envelope in the

potential �eFz þ 4πEtvr3vδ(x) 1þ x � ∇x½ � is given by1,12

Φv
~E 0 0(x; xv) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ejFj�h2

8π3(�hθtv )
3mtv

q
ffiffiffiffiffiffiffiffiffiffiffiffiF (ξv)

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2(ξv)þ Ĝ2(ξv)

q :

�
ð1
0
dκ1

ð1
0
dκ2 exp iκ � (x? � x?v)½ �

� Ĝ(ξv)Ai ξv þ
E?
tv

�hθtv

� �
Ai ξv þ

E?
tv þ eF(z � zv)

�hθtv

� ��

�F (ξv) Θ(zv � z)Ai ξv þ
E?
tv

�hθtv

� ��

�Bi ξv þ
E?
tv þ eF(z � zv)

�hθtv

� �
þ Θ(z � zv)

�Ai ξv þ
E?
tv þ eF(z � zv)

�hθtv

� �
Bi ξv þ

E?
tv

�hθtv

� ���
,

(2)

where ~E ¼ E þ Eg and

Ĝ(ξv) ¼ G(ξv)þ
1
π

ffiffiffiffiffiffiffiffi
Etv
�hθtv

r
, (3)

G(t) ¼ Ai0(t)Bi0(t)� tAi(t)Bi(t), (4)

F (t) ¼ Ai0(t)2 � tAi(t)2, (5)

ξv ¼
~E þ eFzv
�hθtv

,

�hθtv ¼ e2�h2F2

2mtv

� �1=3

:

(6)

Here, Ai and Bi are Airy functions of the first and second kind,
respectively, and E?

tv ¼ �h2κ2=(2mtv) denotes the transverse energy.
The normalized ground state Φc

E0 0 0 of the envelope in the
potential �eFz þ 4πEtcr3cδ(x) 1þ x � ∇x½ � is analogous to Eq. (2),

Φc
E0 0 0(x; xc) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ejFj�h2

8π3(�hθtc)
3mtc

q
ffiffiffiffiffiffiffiffiffiffiffiffiF (ξc)

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2(ξc)þ Ĝ2(ξc)

q :

�
ð1
0
dk1

ð1
0
dk2 exp ik � (x? � x?c)½ �

� Ĝ(ξc)Ai ξc þ
E?
tc

�hθtc

� �
Ai ξc þ

E?
tc þ eF(z � zc)

�hθtc

� ��

�F (ξc) Θ(zc � z)Ai ξc þ
E?
tc

�hθtc

� ��

�Bi ξc þ
E?
tc þ eF(z � zc)

�hθtc

� �
þ Θ(z � zc)

�Ai ξc þ
E?
tc þ eF(z � zc)

�hθtc

� �
Bi ξc þ

E?
tc

�hθtc

� ���
,

(7)

with

Ĝ(ξc) ¼ G(ξc)þ
1
π

ffiffiffiffiffiffiffiffi
Etc
�hθtc

r
, (8)

ξc ¼ �E0 þ eFzc
�hθtc

,

�hθtc ¼ e2�h2F2

2mtc

� �1=3

:

(9)

TABLE I. Localization radii rc, v (in nm) for various values of the effective masses
mtc, tv.

Etc, tv = 0.01 eV Etc, tv = 0.025 eV Etc, tv = 0.05 eV

mtc, tv(m0) rc, v mtc, tv(m0) rc, v mtc, tv(m0) rc, v

0.001 87.34 0.001 55.24 0.001 39.06
0.01 27.62 0.01 17.47 0.01 12.35
0.025 17.47 0.025 11.05 0.025 7.81
0.05 12.35 0.05 7.81 0.05 5.52
0.1 8.73 0.1 5.52 0.1 3.91
1 2.77 1 1.75 1 1.23
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Here, E?
tc ¼ �h2k2=(2mtc) denotes the transverse energy. All

energy variables are illustrated in Fig. 2. Note that above wave
functions are proportional to the square root of the density of
localized single-level states, which, in the limit of vanishing
field, turns into a δ-function of energy with a zero at the
binding energy,

ϱtc,tv(ϵ, Etc,tv) ¼
1

2πr3c,v
δ(ϵ� Etc,tv), (10)

where ϵ ¼ ~E for states of the VB DOS and ϵ ¼ �E0 for states
of the CB DOS, respectively. As tunneling between tail states in
Esaki diodes and TFETs might be an important process in the
low-field range, the relevant energies ~E are close to Etv,
whereas the relevant energies E0 are close to �Etc. Due to this,
Ĝ � F , and the first term in the curly braces of Eqs. (2) and
(7) (proportional to Ĝ) can be skipped. Using

Θ(x � y)Ai(x)Bi(y)þ Θ(y � x)Bi(x)Ai(y)

¼ � 1
π

ð1
�1

dλ
P
λ
Ai(λþ x)Ai(λþ y), (11)

where P is the Cauchy principal value, and introducing a func-
tion D(ξ) by the definition

D(ξ) ¼ F (ξ)

F 2(ξ)þ Ĝ2(ξ)
, (12)

the wave function Φv
~E 0 0

takes the form

Φv
ÄE00

(x; xv)¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ejFj�h2D(ξv)

8π5(�hθtv)
3mtv

s ð1
0
dκ1

ð1
0
dκ2 e

iκ�(x?�x?v)

�
ð1
�1

dλ
P

λ� ξv
Ai λþE?tv þ eF(z� zv)

�hθtv

� �
Ai λþ E?tv

�hθtv

� �
:

(13)

In the same way, the wave function Φc
E0 0 0 becomes

Φc
E0 00(x; xc)¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ejFj�h2D(ξc)

8π5(�hθtc)
3mtc

s ð1
0
dk1

ð1
0
dk2 e

ik�(x?�x?c)

�
ð1
�1

dλ
P

λ� ξc
Ai λþE?tc � eF(z� zc)

�hθtc

� �
Ai λþ E?tc

�hθtc

� �
:

(14)

In Eqs. (13) and (14), the functions
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiD(ξv,c)

p
are proportional

to the respective single-level DOSs ρtv,tc that have the zero-
field limit (10) and that will be later used to define the tail
DOSs in Eq. (46). In calculating the transition matrix
element,

Mtv,tc(xv, xc; ~E, E
0) ¼ Φv

ÄE 0 0
(xv)jΦc

E0 0 0(xc)
	 


¼
ð
d2x?

ð1
�1

dzΦv*
ÄE 0 0

(x; xv)Φ
c
E0 0 0(x; xc), (15)

the space integration can be done exactly by means of

ð
d2x? eix?�(k�κ) ¼ (2π)2δ(k1 � κ1)δ(k2 � κ2),

and the auxiliary relation34

ð1
�1

dτ Ai(x þ τ)Ai(y � βτ) ¼ 1

1þ β3
� �1=3 Ai y þ βx

1þ β3
� �1=3

 !
,

(16)

where β ¼ (mtv=mtc)
1=3 . 0. The transition matrix element

takes the form

Mtv,tc(xv, xc; ~E, E
0)¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD(ξc)D(ξv)
p
βπ2�hθred

ð1
0
dtJ0 α

ffiffi
t

p� �

�
ð1
�1

dϵ
ð1
�1

dϵ0
P

ϵ0 �E0
P

ϵ0 þϵ� ~E
Ai t�ϵ0 þ eFzc

�hθtc

� �

�Ai
t

β2
þϵþϵ0 þ eFzv

�hθtv

� �
Ai

t

β2c
þ ϵ

�hθred

 !
,

(17)

FIG. 2. Representation of energy variables in the calculation of the macroscopic
generation rate of tail-to-tail tunneling. Note that Etc is positive, i.e., �Etc is a
negative energy on the E’-axis.
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where J0 denotes the Bessel function of the first kind, of zero
order,35 and

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mtc�hθtc

�h2

r
rcv, rcv ¼ jx?c � x?vj,

�hθred ¼ e2�h2F2

2mred

� �1=3

, βc ¼
mred

mtc

� �1=3

,

(18)

1
mred

¼ 1
mtc

þ 1
mtv

: (19)

Note that the overlap in field direction (z-integral) leads to
the occurrence of the reduced effective mass mred in the
factor that later determines the tunnel probability. The radial

distance of the “traps,” rcv, enters the Bessel function, which
rapidly decays with growing distance perpendicular to the
field direction.

For the further calculation of the transition matrix element, it
is necessary to manipulate the product of the Cauchy principal
values of integrals over ϵ0 in Eq. (17). The same step must be done
in the proof of the normalization of the wave functions Eqs. (2)
and (7). One can show by direct computation36 that

P
ϵ0 � E0

P
ϵ0 þ ϵ� ~E

¼ P
E0 � (~E � ϵ)

P
ϵ0 � (~E � ϵ)

� P
ϵ0 � E0

� �
þ π2δ(~E � ϵ� E0)δ(~E � ϵ� ϵ0): (20)

The transition matrix element becomes

Mtv,tc(xv, xc; ~E, E
0) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD(ξc)D(ξv)
p

βπ2�hθred

ð1
0
dtJ0 α

ffiffi
t

p� �
π2Ai t � E0 þ eFzc

�hθtc

� �
Ai

t

β2
þ

~E þ eFzv
�hθtv

� ��
Ai

t

β2c
þ

~E � E0

�hθred

� �

þ
ð1
�1

dϵ
ð1
�1

dϵ0
P

E0 � (~E � ϵ)

P
ϵ0 � (~E � ϵ)

� P
ϵ0 � E0

� �
Ai t � ϵ0 þ eFzc

�hθtc

� �
Ai

t

β2
þ ϵþ ϵ0 þ eFzv

�hθtv

� �
Ai

t

β2c
þ ϵ

�hθred

� ��
:

(21)

Due to energy conservation, it is only needed for E ¼ E0 (Golden
Rule). For fixed positions and given zero-field energy levels of the
tail states, the possible tunnel energies E are restricted to a narrow
range, because the lifetime broadening of the binding energy is
rather weak in the low-field regime of interest. The functions
D(ξv,c) [Eq. (12)] are proportional to the respective DOS ρtv,tc,

12

D(ξv) ¼ 4π3r3v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Etv�hθtv

p
ρtv(ξv)

! 2π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Etv�hθtv

p
δ(E þ Eg þ eFzv � Etv)

for �hθtv � Eg,

D(ξc) ¼ 4π3r3c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Etc�hθtc

p
ρtc(ξc)

! 2π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Etc�hθtc

p
δ(E0 þ eFzc þ Etc)

(22)

for �hθtc � Eg: (23)

They are sharp Lorentzians with peak positions close to the energy
zeros of the δ-functions in Eqs. (22) and (23) (only displaced by a
small Stark effect). As the transition probability is � D(ξv)D(ξc),
the product of the two δ-functions results in the condition

zc � zv ¼ (Eg � Etv � Etc)=eF: (24)

A tunnel process between two tail states is only possible if their dis-
tance in field direction equals the tunnel length jzc � zvj given by
Eq. (24). The corresponding tunnel barrier is the bandgap reduced
by the two binding energies.

Using the low-field limit, the first term in curly braces in
Eq. (21) becomes

π2Ai t þ Etc
�hθtc

� �
Ai

t

β2
þ Etv
�hθtv

� �
Ai

t

β2c
þ Eg
�hθred

� �
: (25)

As straightened out later, this term is small compared to the
second one and hence discarded in the following. It remains

Mtv,tc(xv, xc; ~E, E
0)¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD(ξc)D(ξv)
p
βπ2�hθred

ð1
0
dtJ0 α

ffiffi
t

p� �

�
ð1
�1

dϵ
P
ϵ

Ai
t

β2
þ ξv þ

ϵ

�hθtv

� �ð1
�1

dλ
P
λ

�

�Ai
t

β2c
þ Eg
�hθred

þ βcλ

 !
Ai tþ ξc�

ϵ

�hθtc
þ λ

� �

þAi tþ ξcþ
ϵ

�hθtc

� �ð1
�1

dλ
P
λ

�Ai
t

β2c
þ Eg
�hθred

þ βvλ

 !
Ai

t

β2
þ ξv �

ϵ

�hθtv
þ λ

� �#
,

(26)

with

βv ¼
mred

mtv

� �1=3

:
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The principal value integrals over λ can only be calculated approxi-
mately12,37 assuming β3v,c � 1,

ð1
�1

dλ
P
λ
Ai(x þ βv,cλ)Ai(y þ λ) � � P

y
Ai(x � βv,cy): (27)

With this, one obtains

Mtv,tc(xv, xc; ~E, E
0)¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD(ξc)D(ξv)
p
βπ2�hθred

ð1
0
dtJ0 α

ffiffi
t

p� �

�
ð1
�1

dϵ
P
ϵ

β
P

ϵ� τc

�
Ai

t

β2
þ ξv þ ϵ

� �

�Ai
βct

β3
þ Eg
�hθred

� βcξcþ βvϵ

� �
þ 1
β

P
ϵ� τv

�Ai tþ ξcþ ϵð ÞAi βctþ
Eg

�hθred
� βcξv

β
þ βcϵ

� ��
,

(28)

with the abbreviations

τc ¼ β(t þ ξc) τv ¼ 1
β

t

β2
þ ξv

� �
: (29)

The product of the Cauchy principal values of integrals over ϵ in
Eq. (28) is again decomposed with the help of Eq. (20), and the
new principal value integrals are again computed using the approx-
imation (27). This results in

Mtv,tc(xv, xc; ~E, E
0)¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD(ξc)D(ξv)
p
βπ2�hθred

ð1
0
dtJ0 α

ffiffi
t

p� �

� π2δ(τc)Ai ξv �
ξc
β2

� �
Ai

Eg
�hθred

� ξc
β2c

� ��

þ π2δ(τv)Ai ξc� β2ξv
� �

Ai
Eg

�hθred
� ξv
β2v

� �

þP
τc

P
τv þ τc=β

� P
τv

� �
Ai

Eg
�hθred

� βcξc � βvξv

� �

þ P
τv

P
τc þ βτv

�P
τc

� �
Ai

Eg
�hθred

� βvξv � βcξc

� ��
:

(30)

Due to the sharp maxima of D(ξv,c) at ξv,c � Etv,tc=�hθtv,cv [see
Eqs. (22) and (23)], τv,c . 0 8t, and the delta-functions δ(τv,c) are
always zero. Furthermore, the Cauchy principal values become
obsolete. The transition matrix element takes the final form

Mtv,tc(xv, xc; ~E, E
0)¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD(ξv)D(ξc)
p
βπ2�hθred

Ai
Eg

�hθred
�βvξv�βcξc

� �

�
ð1
0
dt

J0 α
ffiffi
t

p� �
(tþ ξc)(

t
β2
þξv)

: (31)

According to the envelope method,33 the tunnel rate between the
two tail states (dimension 1/s) is given by

Gtv,tc(xv, xc) ¼ (eF)2z2cv
�h

ðEg
0
d~E
ð0
�Eg

dE0 M2
tv,tc(xv, xc; ~E, E

0) δ(E � E0),

(32)

where zcv is the interband transition matrix element38

z2cv ¼ �h2=(4mrEg) with the reduced effective mass mr ¼ mcmv=
(mc þmv) ¼ mcmv=mΣ. For the completion of the band-to-band
process (measurable as terminal current), it is assumed that the
thermionic emission step between the tail state and its corresponding
band is very fast and, therefore, not rate limiting.

Taking advantage of the low-field limits Eqs. (22) and (23),
the emission rate can be easily evaluated,

Gtv,tc(xv, xc) ¼ 2(�hθred)
2mred

ffiffiffiffiffiffiffiffiffi
βvβc

p
�hmrβ

2

ffiffiffiffiffiffiffiffiffiffiffi
EtvEtc

p
Eg

� Ai2
Eg � Etv � Etc

�hθred

� � ð1
0
dt

J0 α
ffiffi
t

p� �
(t þ Etc

�hθtc
)( t

β2
þ Etv

�hθtv
)

" #2

� δ Eg � Etv � Etc � eF(zc � zv)
� �

,

(33)

where the parameter α ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2mtc�hθtc

�h2

q
rcv contains the radial distance

rcv. The integral over t could now be calculated approximately;
however, for the derivation of the macroscopic tunnel generation
rate in Sec. II B, it is beneficial to use Eq. (33) as is.

B. Macroscopic tunnel generation rate at single-level
tail states

To obtain the macroscopic tunnel generation rate at single-
level tail states, one has to multiply Gtv,tc(xv, xc) by the density of
states at sites xc and to sum over all sites xv. Choosing xc as origin
of coordinates this results in

G(Etv , Etc) ¼ 1
2πr3c

1
2πr3v

ð1
�1

dzv2π
ð1
0
drcvrcvGtv,tc(xv, 0): (34)

Inserting Eq. (33) in Eq. (34), the zv integration is trivial and the
rcv-integral yields

2π
ð1
0
drcvrcvJ0 γ

ffiffi
t

p
rcv

� �
J0 γ

ffiffiffi
t0

p
rcv

	 

¼ 1

γ2
ffiffi
t

p δ(
ffiffi
t

p �
ffiffiffi
t0

p
)

¼ 2
γ2

δ(t � t0), (35)

with γ2 ¼ 2mtc�hθtc=�h
2. The generation rate becomes

G(Etv , Etc) ¼ 4θredmredmtvmtc

eFπ2�h4mrβ

EtvEtcð Þ2
Eg

Ai2
Eg � Etv � Etc

�hθred

� �

�
ð1
0
dt

1

(t þ Etc
�hθtc

)
2
( t
β2
þ Etv

�hθtv
)
2 : (36)
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The exact solution of the t-integral is

I(Etv, Etc) ¼
ð1
0
dt

1

(t þ Etc
�hθtc

)
2
( t
β2
þ Etv

�hθtv
)
2

¼ β4
Etcmtcð Þ2� Etvmtvð Þ2þ2EtcEtvmtcmtv ln

Etvmtv
Etcmtc

	 

EtcEtvmtcmtv

Etc
�hθtc

� mtv
mtc

Etv
�hθtc

	 
3 :

(37)

As this is cumbersome and not feasible for further analytical treat-
ment, an elegant way of simplification is to use Etvmtv ¼ Etcmtc in
I(Etv, Etc), which means that the localization radii are assumed to
be equal: rc ¼ rv [see Eq. (1)]. For this special case,

I(Etv , Etc) ¼ β

3
�hθtv�hθtc
EtvEtc

� �3=2

, (38)

and the macroscopic tunnel generation rate at single-level tail states
takes the final form

G(Etv, Etc) ¼ 2eFθredmred
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mtvmtc

p
3π2�h2mr

ffiffiffiffiffiffiffiffiffiffiffi
EtvEtc

p
Eg

Ai2
Eg � Etv � Etc

�hθred

� �
:

(39)

This can be also written as

G(Etv , Etc) ¼ 1
3π2

θred
rcrvlt

Ai2
Eg � Etv � Etc

�hθred

� �
, (40)

with the localization radii rc,v and the interband tunnel length
lt ¼ Eg=eF. Dimensions are determined by the electro-optical
frequency θred (1/s) and the effective volume rcrvlt (cm3). The
order of magnitude of the tunnel probability is governed by
the factor Ai2 which can be replaced by its asymptotic form
(semi-classical limit)

Ai2(y) ¼ 1
4π

ffiffiffi
y

p e�
4
3y

3=2
, (41)

as long as the tunnel barrier Eg � Etv � Etc is much larger
than �hθred.

C. DOS tail models

According to Kane’s theory,22 the DOS in the presence of
random dopant fluctuations and crystal defects takes the form

ϱtailv,c (E) ¼
(2mtv,tc)

3=2

2π2�h3
ffiffiffiffiffiffiffi
ηv,c

p
YG=exp(E=ηv,c), (42)

where ηv,c is the characteristic energy of the valence band (VB) and
conduction band (CB) tail, respectively. In Eq. (42), the energy E
counts from the respective band edge into the gap. The two stan-
dard models of DOS tails, Gaussian (G) and exponential (exp), will
be used in the following. In the case of Gaussian tails the function

YG(E=η) is given by

YG(x) ¼ 1ffiffiffi
π

p
ðx
�1

dζ
ffiffiffiffiffiffiffiffiffiffiffi
x � ζ

p
e�ζ2 , (43)

which can be approximated by12

YG(x) ! e�x2

25=2(x3=2 þ s)
, (44)

with12 s ¼ 0:566.
In the case of exponential tails, Y(E=η) becomes

Yexp(x) ¼ 1
2

ðx
�1

dζ
ffiffiffiffiffiffiffiffiffiffiffi
x � ζ

p
e�jζj ¼ 1

4
ffiffiffi
π

p e�jxj for x , 0: (45)

D. Tail-to-tail tunnel generation rate

The tail DOS Eq. (42) is assumed to be a ladder of closely
spaced single-level DOSs defined in Eqs. (22) and (23) and will be
composed with weight functions w(Etv,tc) as

ϱtailv,c (E) ¼
ðEg=2
Eedge,{v,c}

dEtv,tcw(Etv,tc)ϱtv,tc(E, Etv,tc): (46)

The energy variables used in this equation are defined in
Fig. 2. The integration over tail states is restricted to
Eedge,{v,c} , E , Eg=2. The lower limit Eedge,{v,c} separates localized
states from continuum states, and it is assumed that
0 , Eedge,{v,c} , ηv,c. Thus, Eedge,{v,c} plays the same role as the
“mobility edge”39 in transport.

The weight functions w(Etv,tc) immediately follow from equat-
ing Eqs. (42) and (46) and using the strongly localized character of
the single-level DOSs,

wG,exp(Etv,tc) ¼
ffiffiffiffiffiffiffi
ηv,c

p

πE3=2
tv,tc

YG,exp Etv,tc=ηv,c
� �

: (47)

The tail-to-tail tunnel generation rate (in a homogeneous field,
assuming occupied initial and empty final electronic states) is
given by

GG,exp ¼ 2eFθredmred
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mtvmtc

p
3π4�h2mrEg

ðEg=2
Eedge,c

dEtc

ðEg=2
Eedge,v

dEtv

ffiffiffiffiffiffiffiffiffi
ηvηc

p
EtvEtc

� YG,exp
Etv
ηv

� �
YG,exp

Etc
ηc

� �
Ai2

Eg � Etv � Etc
�hθred

� �
: (48)

An analytical estimate can be obtained in the case of Gaussian
DOS with the method of steepest descent.12 The two-dimensional
integrand has a sharp global maximum due to the exponential
decrease of the tail DOS and the exponential growth of the tunnel
probability with increasing Etv,tc. Using the WKB form of Ai2, the
two-dimensional exponent is developed up to second order
around the global maximum (Δc, Δv), whereas the pre-exponential
factors are taken at Etc ¼ Δc and Etv ¼ Δv. The resulting expression
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is integrated over the upper-right quadrant of the Etc-Etv-plane
without any further approximation. With the general and reasonable
assumption ηv,c � Eg, simple analytical formulas can then be found
in the cases of high field (HF) and very low field (VLF), respectively.
In the first case, one obtains

GHF
G ¼ (eF)2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mtvmtcmred

p
768

ffiffiffi
2

p
π5�h2Egmr

ηvηcð Þ3=2
ΔvΔc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eg � Δc � Δv

p

�
exp � Δ2

v
η2v
� Δ2

c
η2c
� 4

3
Eg�Δv�Δc

�hθred

	 
3
2

� �

(Δv=ηv)
3=2 þ s

h i
(Δc=ηc)

3=2 þ s
h i , (49)

with

Δv,c �
ffiffiffiffiffi
Eg

p
η2v,c

�hθredð Þ3=2
(50)

and s ¼ 0:566. These expressions can only be used if
F . 5� 104 V/cm (see Fig. 3).

In the limit F ! 0, the generation rate takes the analytical
form

GVLF
G ¼ (eF)5�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mtvmtc

p
3π529E4

gmredmr

η2c þ η2v
� �4
ηcηvð Þ9=2

exp � E2
g

η2c þ η2v

 !
, (51)

which is only applicable if F , 5� 103 V/cm (see Fig. 3).
When the one-band effective mass approximation and the

WKB limit are applied to compute the generation rate of direct

BTBT (with ideal DOSs), one obtains40–42

GBTB ¼ (eF)3

64π�hE2
g
exp � 4

3

Eg
�hθr

� �3
2

" #
: (52)

Figure 3 compares the analytical solutions Eqs. (49) and (51) with
the double-integral form Eq. (48) for a Gaussian tail DOS and
moderate localization of the tail states. The agreement is reason-
able in the two relevant field ranges. For the chosen parameters,
the TTTT rate is lower than the corresponding BTBT rate
equation (52) for F . 2� 104 V/cm. Generation rates below
1010 cm�3 s�1 are irrelevant for device application. Thus, the HF
case, Eq. (49) should be compared with the BTBT rate Eq. (52).
Three differences become obvious: (i) the tunnel barrier (Eg) is
effectively reduced by Δv þ Δc due to the energetic separation of
the tail states from the ideal bands, (ii) the imaginary dispersion is
determined by the reduced effective mass mred [Eq. (19)] instead of
the reduced band mass mr, and (iii) the pre-exponential factor in

(52) is approximately scaled by
ffiffiffiffiffiffiffiffiffiffi
mtvmtc

p
(�hθred)

6

24π4mr(Egηvηc)
2 exp � Δ2

v
η2v
� Δ2

c
η2c

	 

.

In Ref. 12, we argued that TTTT is always negligible with
respect to TTBT(and hence to BTBT) due to the localized nature of
the tail states. In order to confirm this statement, it is necessary
to contrast the TTTT rate (48) with the TTBT rate12 for the same
parameter set. The TTBT counterpart to Eq. (48) reads in the
case of tunneling from the VB tail to the CB edge [compare
Ref. 12, Eq. (29)]

Gtv!c
G,exp ¼

(eF)2
ffiffiffiffiffiffiffiffi
�hθμ

p
mc

ffiffiffi
μ

pffiffiffi
2

p
π2�h2mrEg

ðEg=2
Eedge,v

dEtv

ffiffiffiffiffi
ηv

p

E3=2
tv

YG,exp
Etv
ηv

� �
F Eg�Etv

�hθμ

� �
,

(53)

with F defined in Eq. (5) and 1=μ¼ 1=mcþ1=mtv. The compari-
son is shown in Fig. 4 for Gaussian (red curves) and exponential
(blue curves) tail DOS, assuming symmetrical tails with three dif-
ferent values of the characteristic energy η(¼ ηc ¼ ηv). In order to
facilitate the highest probability for tail tunneling, the effective
masses mtc,tv were set to the band masses mc,v. In the case of
small tails [η¼ 5 meV, Fig. 4(a)], TTTT is much weaker than
TTBT in the whole field strength range relevant in device applica-
tion. The situation becomes different for moderate tails
[η¼ 25 meV, Fig. 4(b)]. Here, TTTT between Gaussian tails dom-
inates over TTBT up to F� 4�104 V/cm, whereas TTTT between
exponential tails dominates over TTBT up to F� 7�104 V/cm.
In the case of strong tails [η¼ 50 meV, Fig. 4(c)], TTTT between
Gaussian tails dominates over TTBT up to F� 7�104 V/cm,
whereas TTTT between exponential tails dominates over TTBT
up to F� 1:5�105 V/cm.

Figure 5 gives further information about the importance of
TTTT. The ratio of TTTT and TTBT rate is plotted as a function
of the characteristic tail energy η for three different values of the
electric field. In general, an exponential tail DOS has a much larger
effect than a Gaussian tail DOS as the former penetrates deeper
into the gap. At F ¼ 4� 104 V/cm, the ratio exceeds 1 for
η . 10 meV, whereas at F ¼ 8� 104 V/cm, an η . 27 meV is

FIG. 3. Generation rates due to tunneling between tail states with Gaussian
DOS in a homogeneous electric field. The analytical approximations for high
field equation (49) and very low field equation (51) are compared with the
double-integral form Eq. (48). The BTBT rate with band masses of InAs,
mc ¼ 0:023m0, and mv ¼ 0:026m0 is shown for comparison. Parameters:
Eg ¼ 0:36 eV, mtc ¼ mtv ¼ 0:1m0, and ηc ¼ ηv ¼ 0:025 eV.
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necessary. In the case of Gaussian tail DOS, the corresponding
η-values increase to 24 meV and 50meV, respectively.

For Esaki diodes and TFETs, it is interesting to see at which
characteristic tail energy η TTTT starts to outnumber BTBT.
Figure 6 shows the ratio of TTTT and BTBT rate as a function of η
for three different values of the electric field in the case of Gaussian
(red curves) and exponential (blue curves) tail DOS, respectively.
At F ¼ 8� 104 V/cm, the ratio exceeds 1 for η . 20 meV
(η . 58 meV), whereas at F ¼ 1:6� 105 V/cm, an η . 39 meV
(η . 70 meV) is required for exponential (Gaussian) DOS tails.
These results for homogeneous field already demonstrate that a
degradation of the device performance due to TTTT can only be

expected in the presence of very strong DOS tails. Note that the
smallest possible effective masses (i.e., the values of the band
masses) were used for mtc,tv . Stronger localization will further
increase the η-values needed to make TTTT the dominant process.

Figures 3–6 refer to InAs, the TFET material in Ref. 12, where
the impact of TTBT on the SS was studied. It is tempting to apply
the TTTT model to other materials of interest and to figure out the
characteristic tail energies, which make TTTT as strong as TTBT or
BTBT. Figure 7(a) shows the value η*, where the TTTT rate
becomes equal to the TTBT rate as a function of the electric field
for six materials: InAs, InGaAs, GaSb, Ge(111), GaAs, and Si(111).
The solid curves are the implicit solutions of GG,exp(η*) ¼
Gtv!c
G,exp(η

*) based on Eqs. (48) and (53) for exponential DOS tails.
Figure 7(b) provides the value η*, where the TTTT rate becomes
equal to the BTBT rate as a function of the electric field for the
same materials. Here, the solid curves are the implicit solutions of
GG,exp(η*) ¼ GBTB based on Eq. (48) for exponential DOS tails and
Eq. (52) for BTBT. For a given field strength, η* increases from Si
toward InAs. This increase is approximately proportional to
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Egmred

p
. Therefore, in a material with larger gap and reduced

effective mass, smaller DOS tails are able to make tail-induced tun-
neling as strong as BTBT for the same field. However, in the device
application, the electric field is related to the gap. As can be seen
from Fig. 7, for a given material, the characteristic tail energy η*

increases nonlinearly with rising field. This means that in steeper
junctions, the DOS tails are less detrimental to the TFET operation.

The described behavior can be understood analytically by the
following approach. The dominating WKB exponent of the TTTT
rate is developed up to first order in Δ (Gaussian tails) or η (expo-
nential tails). Then, η* is approximately defined by setting the ratio

FIG. 4. Comparison of the different tunneling rates as a function of the electric
field for three values of the characteristic tail energy η ¼ ηc,v: (a) η ¼ 5 meV,
(b) η ¼ 25 meV, and (c) η ¼ 50 meV. InAs band masses are used in all cases,
i.e., mtc ¼ mc ¼ 0:023m0and mtv ¼ mv ¼ 0:026m0. The TTBT rate is that for
tunneling from the VB tail to the CB edge. The bandgap is Eg ¼ 0:36 eV. Red
curves belong to Gaussian tail DOS and blue curves to exponential tail DOS.
Equations (48), (53), and (52) were evaluated for TTTT, TTBT, and TBTB rate,
respectively.

FIG. 5. Ratio between TTTT and TTBT rate as a function of the characteristic
tail energy η ¼ ηc,v for different values of the electric field as indicated in the
legend. InAs band masses are used in all cases, i.e.,
mtc ¼ mc ¼ 0:023m0and mtv ¼ mv ¼ 0:026m0. The TTBT rate is that for tun-
neling from the VB tail to the CB edge. The bandgap is Eg ¼ 0:36 eV. Red
curves belong to Gaussian tail DOS and blue curves to exponential tail DOS.
Equations (48) and (53) were evaluated for TTTT and TTBT rate, respectively.
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of the rates to unity, but treating the pre-exponential terms as con-
stants, i.e., neglecting any field- and η-dependence in them. This
immediately leads to

η*(F) ¼ ξ
(�hθred)

3=2ffiffiffiffiffi
Eg

p ¼ const
Fffiffiffiffiffiffiffiffiffiffiffiffiffi

Egmred
p : (54)

The outcome of this equation is shown by the curves with
circle symbols in Fig. 7. The pre-factor ξ was fitted to 2/3 for
TTTT/TTBT and 4/7 for TTTT/BTBT, respectively. The agreement
with the solid curves is reasonable—even the linear field depen-
dence fits for smaller η*. The observed scaling behavior with
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Egmred

p
now becomes obvious from the last denominator in

(54). It also explains the material dependence. The curves for
InGaAs and GaSb are indistinguishable because both, gap and
reduced effective mass, have almost the same value in these materi-
als. In Ge(111), the value of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Egmred

p
is very close to the one in

InGaAs and GaSb. Si(111) has the largest and InAs the smallest
Egmred-product. Hence, Eq. (54) allows a quick estimate of η* just
from the knowledge of gap, reduced effective mass, and internal
field. It has a universal character as it holds for any semiconductor,
for any of the ratios TTTT/TTBT, TTTT/BTBT, and TTBT/BTBT
(with different ξ), as well as for exponential and Gaussian
DOS tails.

The models for TTTT and TTBT were developed for direct
semiconductors. BTBT in Si and Ge is, however, phonon-assisted.
Tunnel recombination between strongly localized CB tail states and
the VB could be direct, if the spread in k-space is sufficient to
enable momentum conservation without participation of a phonon.

This also holds for tunnel recombination between the CB edge and
strongly localized VB tail states. In these cases, the inclusion of Si
and Ge in Fig. 7(a) is justified. For η*(F) in Fig. 7(b), which
involves the BTBT rate, the inclusion of Si and Ge can also be justi-
fied, because the WKB form of the BTBT rate for indirect transi-
tions is similar to Eq. (52) with two modifications: (i) the gap is
changed to Eg + �hωph, where �hωph is the energy of the participat-
ing phonon and (ii) the pre-exponential factor is different, in par-
ticular, the field dependence.43 These differences do not prevent
the application of the above-sketched analytical treatment.

III. DEVICE APPLICATION

A. Implementation of tail-to-tail tunneling model
using the dynamic nonlocal path (DNLP) algorithm

The analytical forms of the generation rates for TTTT have
been derived for the case of a homogeneous electric field. For the
real case of a finite depletion zone bounded by quasi-neutral
regions, the numerical computation must exclude invalid tunnel
paths and account for the continuously changing field. This is
accomplished in the commercial device simulator S-Device44 by the

FIG. 6. Ratio between TTTT and BTBT rate as a function of the characteristic
tail energy η ¼ ηc,v for different values of the electric field as indicated in the
legend. InAs band masses are used in all cases, i.e.,
mtc ¼ mc ¼ 0:023m0and mtv ¼ mv ¼ 0:026m0. The bandgap is
Eg ¼ 0:36 eV. Red curves belong to Gaussian tail DOS and blue curves to
exponential tail DOS. Equations (48) and (52) were evaluated for TTTT and
BTBT rate, respectively.

FIG. 7. Characteristic tail energy η�(F) that fulfills the condition (a)
GG,exp(η�) ¼ Gtv!c

G,exp(η
�) and (b) GG,exp(η�) ¼ GBTB in different materials as indi-

cated in the legend. For the solid lines, Eqs. (48), (53), and (52) were evaluated
for TTTT, TTBT, and BTBT rate, respectively. Symbols represent the outcome of
the simple expression (54) with (a) ξ ¼ 2=3 and (b) ξ ¼ 4=7. Band masses
are used in all cases, i.e., mtc ¼ mcand mtv ¼ mv.
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so-called Dynamic Nonlocal Path (DNLP) Algorithm, where the
tunnel rate is obtained by integrating the action on dynamically
extracted tunnel paths. The algorithm tests if a tunnel path actually
connects CB and VB states. For the adaptation of Eq. (48) to
the DNLP algorithm, the energetic tunnel rates are transformed
into position-dependent rates defined along a tunnel path
with length L and direction x (see Fig. 8). At every pair of
points at locations xt1, xt2 [ {x1, x1 þ L} satisfying xt1 , xt2,
Etc ! Ec(xt1)� Etun, with dEtc ! eF(xt1)Δxt1 and Etv ! Etun�
Ev(xt2), with d~Etv ! eF(xt2)Δxt2. In this way, Eq. (48) becomes
locally defined at x1,

Gtt(x1) ¼
Xx1þL

xt1¼x1

Xx1þL

xt2¼x1

gtt(xt1, xt2), (55)

with

gtt(xt1, xt2) ¼ 2eFavθredmred
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mtvmtc

p
3π4�h2mrEg

� eF(xt1)Δxt1 eF(xt2)Δxt2

ffiffiffiffiffiffiffiffiffi
ηvηc

p
EtvEtc

� Y � Ec(xt1)� Etun
ηc

� �
Y � Etun � Ev(xt2)

ηv

� �

� Ai2
Eg � Ec(xt1)þ Ev(xt2)

�hθred

� �
fn(xt1)� fp(xt2)

 �

:

(56)

Here, xt1, xt2 [ {x1, x1 þ L} are, respectively, the locations of the
CB tail state and VB tail state along the tunnel path, Δxt1, Δxt2
the discretization intervals, Fav(xt1, xt2) ¼ F(xt1)þF(xt2)

2 the electric
field averaged over the segment of the tunnel path between
x ¼ xt1 and x ¼ xt2 (also used in �hθred), and Etun the CB energy
at the beginning of the tunnel path. Ec(xtc), Ev(xtv), and F(x{tc,tv})
are, respectively, the CB edge, the VB edge, and the electric field
at the location of the tail state. gtt is the generation rate at
{xt1, xt2} and Gtt the total generation rate along the tunnel path.

The function fn=p(x) ¼ [ exp (Etun � EF,n=p(x))=kBT þ 1]�1 repre-
sents the Fermi distribution at x. The value of Y is calculated at each
x{tc,tv} using Eq. (43) or Eq. (45) for Gaussian or exponential tails,
respectively. Note that the generation rate between the tail states
gtt(xt1, xt2) is introduced in the generation–recombination term of
the continuity equation at the vertices nearest to xt1 and xt2. In this
way, the total generation is indirectly included in the simulations,
and no explicit computation of Gtt is required, i.e., the double inte-
gral in Eq. (48) becomes obsolete.

The analytical forms of the functions Y are used. Equation (56)
has been implemented in S-Device using the Physical Model
Interface (PMI) Nonlocal Generation–Recombination. The original
DNLP BTBT model requires the effective tunnel barrier and the
electron/hole effective masses as input parameters. In addition to
these parameters, for the new DNLP TTTT model, one has to
provide the effective masses mtc and mtv as well as the characteristic
CB and VB tail energies ηc and ηv. For the sake of better conver-
gence, the implementation employs an effective average electric
field for the computation of the rate, which substitutes for the
numerical integration of the action integral over the imaginary dis-
persion in the original DNLP BTBT model of S-Device. The loss in
accuracy may be compensated through calibration of the parame-
ters ηc,v and m{tc,tv}.

As in the original DNLP model for BTBT, the TTTT model
involves the search for active tunnel paths. Once all of them are
found at a given bias voltage, the TTTT rates are calculated at each
discretization point using Eq. (56). Thermionic transitions between
tail states and the associated band continuum are assumed to be
very rapid and thus not rate-limiting. The densities of generated
holes and electrons enter the Poisson equation and self-consistently
impact the solution of the drift-diffusion equation system.

B. Simulation results for InGaAs Esaki diode

1. Basic physical models and parameters

In order to assess the importance of TTTT in realistic devices,
InGaAs Esaki diodes fabricated and characterized at IMEC10,13 were
simulated with S-Device of Synopsys44 using the above-described
model implementation of Eq. (48). The diodes labeled “A” and “B”
have cross sections of 19.3 μm2 and 204 μm2, respectively. The
BTBT-dominated parts of the IV-characteristics at 300 K and 77 K
serve to determine material-dependent parameters of In0:53Ga0:47As
and the electrically active doping in the pin-junction. The analysis
starts with the evaluation of effective tunneling masses, bandgap, and
imaginary dispersion. The effective electron mass is set to 0.043m0

(Ref. 45, and references therein). Experimental data for the light-hole
mass45 range from 0.048m0 to 0.054m0.

46,47 We determine the
value of the light-hole mass based on full-band calculations of
the imaginary dispersion in the gap of bulk In0:53Ga0:47As with
OMEN48 in comparison to the corresponding dispersion from
Kane’s two-band model.38,49 The latter is implemented in
S-Device and used here for the simulation of BTBT. As shown in
Fig. 9, the best value of mlh ¼ 0:047m0 results in a very good fit,
both for Kane’s38 and Flietner’s model.50 In addition, this value is
equal to the one suggested in Ref. 51.

The review article by Vurgaftman et al.45 recommends to use
a value of 0.816 eV for the gap at T = 0 K as composite average

FIG. 8. Schematic representation of the tunnel path with various variables used
in Eqs. (55) and (56).
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over the experimental range between 0.810 eV and 0.821 eV.
The measured temperature dependence52 is almost linear between
130 K and 300 K, but exhibits a sharp saturation behavior for
T , 100K. It is impossible to fit these data with the Varshni
model.53 Therefore, the linear relation Eg(T) ¼ Eg(0)� α T with
Eg(0) ¼ 0:841 eV and α ¼ 3:363� 10�4 is applied in the simula-
tion, which reproduces the needed values Eg(77 K) ¼ 0:815 eV and
Eg(300K) ¼ 0:74 eV. The obvious overestimation of Eg(0) has no
bearing on the present analysis.

Because of the exponential dependence of the tunnel probability
on the value of the gap, bandgap narrowing (BGN) must be taken
into consideration. The widely used empirical model for III–V mate-
rials54 would result in a vanishing gap in the n-type region of the
device. Therefore, the rigid shifts of both band edges are computed
with the random-phase-approximation (RPA)-based model of
Ref. 55, which is available in S-Device for silicon only (called
“Schenk Bandgap Narrowing Model” there). As it does not
become obvious for the user of this simulator how to adapt the
parameters to other materials, Appendix A provides the expres-
sion of the simplified version (valid for T ¼ 0 K) as well as the
parameters for In0:53Ga0:47As. Because the BGN effect is rather
small in the Esaki diode under study (see below), the temperature
dependence is neglected for simplicity. The rigid shifts represent
exchange-correlation energies and depend on the free-carrier den-
sities and the doping concentration. The free carriers have the
largest contribution and make the BGN injection-dependent. This
is demonstrated in Fig. 10 where the profile of the electrically
active doping from Fig. 11 is used. The total BGN in the quasi-
neutral n-region (Nþ

D ¼ 1:4� 1019 cm�3) amounts to 52 meV, the
BGN in the quasi-neutral p-region (N�

A ¼ 1:3� 1019 cm�3) to
43 meV. This is the expected order of magnitude for any material,

since BGN is relatively independent on band-structure details.56

At a forward bias of +0.5 V, where diffusion starts to dominate
the current, the injected carriers increase the BGN at the bound-
aries of the depletion region. However, the value inside drop
to 10 meV.

There are three physical processes that might influence the
valley current at higher forward bias: Auger recombination, radia-
tive recombination, and electron–hole scattering. Measured Auger
coefficients57–59 C are scattered around2� 10�28 cm�6 s�1. We use
Cn,p ¼ 2:5� 10�28 cm�6 s�1 following Ref. 59. To model radiative
recombination, the coefficient B in τrad ¼ (BN)�1 is set to
0:96� 10�10 cm�3 s�1,60 which is close to 1:43� 10�10 cm�3 s�1

found in Ref. 57. Electron–hole scattering is simulated with
Brooks–Herring screening. The default parameters of the S-Device
model immediately result in the best fit to the measured IV-curves
as can be seen from the solid curves in Fig. 13, which bend for
V . þ0.6 V (300 K) and for V . þ0:8 V (77 K), respectively.
Without electron–hole scattering, they would be straight and would
intersect the experimental curves. The size of the diffusion current
at 300 K is well reproduced with SRH minority carrier lifetimes
τn,p ¼ 1 ns and constant mobilities μn ¼ 3000 cm2/V s and
μp ¼ 500 cm2/V s.

As the diode is bulk-like, a quasi-1D simulation suffices. The
SIMS profiles of the silicon and beryllium implants10 are presented
in Fig. 11. If they are taken as electrically active doping in the simu-
lation, the BTBT current is overestimated by a factor of 5 both in
reverse and forward direction. This is a huge effect—the same
would, e.g., require to change the light-hole mass by a factor of 2.
Lind et al.61 found 1:4� 1019 cm�3 as the upper limit of active
silicon doping in In0:53Ga0:47As. We adapt this value (red solid
plateau in Fig. 11) and reproduce the junction profiles by

FIG. 9. Calculated imaginary dispersion κ(E) in the gap of In0:53Ga0:47As at
T ¼ 0 K. The full-band curve from OMEN48 (black dashed) is compared with
the two-band models of Kane38 and Flietner50 (solid red and green, respec-
tively) and with the one-band effective mass approximation (EMA) model40

(solid brown). Parameters: Eg ¼ 0:85 eV, mc ¼ 0:043m0, and mlh ¼ 0:047m0.

FIG. 10. Bandgap narrowing profiles across the pin-junction due to exchange-
correlation effects. Solid curves are for equilibrium and dashed curves for a
forward bias of +0.5 V. The arrows indicate the position of the maxima of the
electron (left) and hole (right) BTBT recombination rates at +0.3 V.
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Gaussians with a decay rate of 6 nm/dec.13 The possible limit for
the beryllium activation remains unclear. Tell et al.62 achieved peak
values close to 1� 1019 cm�3 with RTA. We use the active beryl-
lium concentration as the only free parameter to match the simu-
lated BTBT current to the IV-data in the voltage interval [�0.1 V,
+0.1 V]. The obtained value is N�

A ¼ 1:3� 1019 cm�3 (blue solid
plateau in Fig. 11). The corresponding capacitance is shown by the
solid line in Fig. 12. It deviates by less than 4% from the measured
capacitance.13 Shifting the beryllium profile by 1 nm toward the
junction yields the best fit (dashed curve). This increases the BTBT
current by a factor of 1.4, which could be compensated with a
larger light-hole mass. However, we refrain from such modifica-
tions and use the calibrated active doping shown in Fig. 11 as a

reliable electrostatic reference system for the further analysis. The
BTBT currents (without tails) are presented in Fig. 13. For the
green dashed curve, BGN was turned off. By comparing with the
solid black curve (including BGN as described above), one observes
that BGN is completely negligible at reverse bias. It slightly
increases at low forward bias due to the injection effect. If the
tunnel length of the dominant tunnel paths is defined by the dis-
tance between the sharp maxima of the electron and hole genera-
tion/recombination rates (indicated by the arrows in Fig. 10), one
observes that it increases from 7 nm at �0.5 V to 12 nm at +0.3 V,
whereas the extension of the space–charge region (SCR) (defined by
the positions where the carrier concentrations equal 5� 1018 cm�3)
decreases from 17 nm to 12 nm. Therefore, the effect of BGN
remains negligible over the tunnel length at reverse bias. The
maximum effect at forward bias is relatively small because the tunnel
barrier is notably reduced only in the vicinity of the boundaries of
the SCR. The difference in the diffusion branch is caused by the
changed minority carrier density.

At high reverse voltage, the simulated currents become too
large. The measured IV-curves (symbols) had been corrected for
series resistance.13 One possibility is that this correction was too con-
servative (however, one would roughly need twice as much series
resistance for a match with the simulation). Another possible reason
is the breakdown of the WKB approximation. At �0.5 V the ratio
between electro-optical energy (measure for the Franz–Keldysh tails)
and the gap energy is �hθred=Eg � 1 and not �1. Thus, the WKB
approximation, linked to the Kane model, has indeed broken down.
The measured reverse current at 77 K is smaller than at 300 K, but
the difference is more pronounced than in the simulation, where it is
solely caused by the carefully calibrated temperature dependence of
the gap. The same difference naturally shows up in the simulated
peak current, whereas no temperature effect can be seen in the

FIG. 11. Measured SIMS profiles (symbols) of the In0:53Ga0:47As Esaki diode
10

and electrically active doping used in the simulation (solid curves).

FIG. 12. Measured13 (symbols) and simulated (lines) capacitance of the
In0:53Ga0:47As Esaki diode at 77 K.

FIG. 13. Measured (symbols) and simulated (lines) currents at 300 K and 77 K.
Simulations include BTBT, electron–hole scattering, Auger recombination, and
radiative recombination. For the dashed curve, BGN was turned off.
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measured peak currents. It should be noted that a symmetrical
temperature effect at small bias was measured by Convertino
et al.63 in InAs/GaSb Esaki diodes on SOI.

In the following, it is the goal to understand the origin of the
strong valley current in the voltage interval [+0.1 V, +0.65 V].
Before turning to the role of tails, we briefly discuss the impact of
the aforementioned physical processes. It turns out that both Auger
and radiative recombination are at least two orders of magnitude
too weak to become visible. Also, trap-assisted Auger recombination
can be safely ruled out, although it is a tempting deep-level-related
mechanism that becomes stronger with increasing injection density.
Electron–hole scattering only starts to “bend down” the IV-curve at
about +0.55 V at 300 K, i.e., it has no influence on its shape for lower
bias. Therefore, none of these processes has an effect on the valley
current. We now study the effect of DOS tails.

2. Contribution of tail-to-band and tail-to-tail tunneling

In the presented model, DOS tails are simplistically parame-
terized by characteristic energies ηc,v which have no functional
dependence on position and temperature. In principal, these
parameters depend on position via the doping concentration, and,
if taken as representative for all effects, also on temperature because
of the thermal lattice vibrations. In Ref. 12, it has been argued that
TTTT is negligible compared to TTBT even if band masses are
used for the effective masses mtc,tv that parameterize the tail states.
The analytical ratio between TTTT rate and TTBT rate for expo-
nential tail DOS as a function of the characteristic tail energy
η ¼ ηc,v is depicted in Fig. 14. Relevant values of the maximum
electric field in the forward bias range of the In0:53Ga0:47As Esaki
diode were used for the homogeneous-field approximation. The
middle green curve corresponds to +0.4 V and shows that for a

10%-effect the characteristic tail energy η would have to be as large
as 100 meV. For η ¼ 50 meV, the TTTT fraction reduces to 2%.
This will be confirmed in the more realistic device simulation
below.

To be compatible with Kane’s two-band model of BTBT
implemented in S-Device, the TTBT and TTTT rates are scaled up
using the homogeneous-field approximation. This is demonstrated
in Appendix B. The black curve in Fig. 15 is the field-voltage rela-
tion extracted from the simulation. The red curve in Fig. 15 shows
the corresponding ratio of the BTBT rates of Kane’s two-band
model and one-band EMA model. The strong rise of this ratio with
increasing bias (decreasing field) is caused by the larger action inte-
gral in the one-band EMA model. As can be seen in Fig. 9, the
integral over κ(E) becomes significantly larger in the one-band
EMA model, and because of dx ¼ dE=(eF), the WKB-exponent is
scaled by F�1.

Figures 16(a) and 16(b) show the sum of TTBT current and
diffusion current at 300 K (solid curves) in comparison to experi-
mental data (symbols) and BTBT without tails (thick black-dashed
curve). In Fig. 16(a), η is spatially constant, whereas in Fig. 16(b), η
has two different values depending on the local doping concentration.
In the inner of the depletion region, η(i) ¼ η (Ndop , 1019 cm�3) was
fixed to the small value of 10meV, whereas in the outer of the deple-
tion region η(a) ¼ η (Ndop . 1019 cm�3) was varied up to an extreme
value of 150meV. In the first case, the maximum of the TTBT current
exceeds the measured peak current for all η 	 50 meV. Hence, in this
region, which contains the shortest tunnel paths and determines the
peak current, η cannot be larger than 50meV. The valley current is
only slightly affected at this limit. All η , 30 meV have practically no
impact. In the second case, the increase of η(a) does not change the
peak current at all. It could only influence the slope around
V ¼ þ0:2 V (see below). Under no circumstances, TTBT can explain
the strong measured valley current.

FIG. 14. Ratio between TTTT rate and TTBT rate for exponential tail DOS as a
function of the characteristic tail energy η ¼ ηc,v for relevant values of the
maximum electric field in the forward bias range (indicated in the legend). Band
masses are used, i.e., mtc ¼ mc ¼ 0:043m0and mtv ¼ mv ¼ 0:047m0. The
bandgap is Eg ¼ 0:74 eV. Equations (48) and (52) were evaluated for TTTT and
BTBT rate, respectively.

FIG. 15. Maximum electric field (black curve) and ratio of the BTBT rates of
Kane’s two-band model and one-band EMA model (red curve).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 014502 (2020); doi: 10.1063/5.0008709 128, 014502-14

© Author(s) 2020

https://aip.scitation.org/journal/jap


The joint contribution of TTBT + TTTT (thin dashed curves)
to the total diode current is depicted in Fig. 17. For comparison, the
exclusive fraction of TTBT is shown by thin solid lines. To extend
the voltage range where the influence of TTTT could be possibly
seen, the diffusion current was artificially suppressed by reducing
the mobility until convergence ceased (indicated by the arrow).
However, there is no visible difference. This confirms the conjec-
ture in Ref. 12 that TTTT is a negligible second-order effect.

In order to prove that TTTT was turned on in the simulation,
Fig. 18 presents the integrated rates of TTTT and TTBT in the
pin-junction as a function of applied bias. The extraction was done
for a spatially constant characteristic energy η ¼ 60 meV. TTTT

starts to outweigh TTBT not before V � þ 0:55V. At this voltage,
the tail-induced tunnel current is a few orders of magnitude
smaller than the diffusion current. This happens for all reasonable
values of spatially constant as well as doping-dependent η.

FIG. 16. Measured (symbols) and simulated (lines) forward characteristics at
300 K. For comparison, the exclusive BTBT current is shown as thick black-
dashed line. Parameters: mtc ¼ mc ¼ 0:043m0, mtv ¼ mv ¼ 0:047m0, and
Eg ¼ 0:74 eV. Solid lines represent the contribution from tail-to-band tunneling
for different values of the characteristic energy of the exponential tail DOS. (a)
spatially constant η ¼ ηc,v and (b) η(i) ¼ η (Ndop , 1019 cm�3) ¼ 10 meV and
η(a) ¼ η (Ndop . 1019 cm�3) varied.

FIG. 17. Measured (symbols) and simulated (lines) forward characteristics at
300 K for three values of the spatially constant characteristic energies η of expo-
nential DOS tails. For comparison, the exclusive BTBT current is shown as thick
black-dashed line. Thin solid lines represent the contribution of tail-to-band tun-
neling and the thin dashed lines depict the joint contribution of tail-to-band tun-
neling and tail-to-tail tunneling. The diffusion current was artificially suppressed
(arrow) to enlarge the visible range of tail tunneling. Parameters:
mtc ¼ mc ¼ 0:043m0, mtv ¼ mv ¼ 0:047m0, and Eg ¼ 0:74 eV.

FIG. 18. Integrated tunnel generation rates in the In0:53Ga0:47As Esaki diode
as a function of bias with spatially constant η ¼ ηc,v ¼ 60meV. TTTT
exceeds TTBT beyond V � þ 0:55 V. Parameters: mtc ¼ mc ¼ 0:043m0,
mtv ¼ mv ¼ 0:047m0, and Eg ¼ 0:74 eV.
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Figures 19(a) and 19(b) compare the sum of all tunnel cur-
rents with the measured data for spatially constant and doping-
dependent η, respectively. One can draw the following conclusions:
(i) The effect of DOS tails on the forward characteristics cannot be
ruled out, but their characteristic energy would be limited to
�30 meV in the interior of the depletion region, since for larger
values, the simulated peak current exceeds the measured peak
current. (ii) Extremely strong tails at the boundaries of the
pin-junction lead to a minor increase of the valley current but do
not affect the peak current. (iii) TTTT is a negligible process for all
feasible characteristic energies. (iv) Tail-induced tunneling cannot
be the reason behind the strong valley current.

3. Resolving the theory–experiment discrepancy:
Defect-assisted tunneling (DAT)

Deep centers are well known as the origin of leakage currents in
many types of devices, e.g., tunnel FETs.64 In the pin-junction of the
In0:53Ga0:47As Esaki diode, such levels can facilitate field-enhanced
multi-phonon recombination, zero-phonon defect-assisted tunneling,
and resonant tunneling.65 Models of the first two mechanisms are
available in S-Device. They are now combined with BTBT to study
the effect on the valley current. For simplicity, the spatial defect dis-
tribution is assumed to be homogeneous in the following. This
neglects a possible doping dependence across the pin-junction.
Figure 20 presents the results for field-enhanced multi-phonon
recombination.66 The model (called “Schenk Trap-assisted Tunneling
(TAT)” in S-Device) assumes homogeneously distributed midgap
levels with strong phonon coupling44,67 and is implemented as
field-enhancement of SRH lifetimes. The effective phonon energy
was fixed to 30meV, and the same tunneling masses as above were
chosen. The Huang–Rhys factor68 S was varied to obtain different
lattice relaxation energies. The best fit turns out with S ¼ 6:8 which
results in a lattice relaxation energy of ϵr ¼ S�hωeff ¼ 204 meV. The
good matching starts at V ¼ þ0:4 V, where the DOS alignment
enabling BTBT or TTBT has already ceased.

SRH lifetimes of 1 ns are an indication for the presence of
defect levels at or close to midgap with a relatively high concentra-
tion. But it is also likely that other defects with levels closer to
the bands exist in the measured diodes. Whereas the model of
field-enhanced multi-phonon recombination is a simulation model
for strong electron–phonon coupling (hence not applicable for the
case of few or even zero phonons), the available zero-phonon DAT
model in S-Device adapted from Ref. 69 is a simulation model for

FIG. 19. Measured (symbols) and simulated (lines) forward characteristics at
300 K. Solid lines show the sum of all tunneling currents (BTBT, TTBT, and
TTTT) for different values of the characteristic energy of the exponential DOS
tails. (a) Spatially constant η ¼ ηc,v and (b) η(i) ¼ η (Ndop , 1019 cm�3) ¼
10 meV and η(a) ¼ η (Ndop . 1019 cm�3) varied. Parameters: mtc ¼ mc ¼
0:043m0, mtv ¼ mv ¼ 0:047m0, and Eg ¼ 0:74 eV.

FIG. 20. Measured (symbols) and simulated (lines) forward characteristics at
300 K assuming field-enhanced multi-phonon recombination as origin for the
valley current. Parameters: �hωeff ¼ 30 meV, mtc ¼ mc ¼ 0:043m0,
mtv ¼ mv ¼ 0:047m0, Eg ¼ 0:74 eV, and τn,p ¼ 1 ns. Huang–Rhys factor S
indicated in the legend.
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the opposite situation, i.e., no electron–phonon coupling. The first
model is effective at larger forward bias (.0:4 V), where the
growing distance between the band edges favors a multi-phonon
process. Close to band alignment (V , þ0:4 V), zero-phonon
DAT becomes more probable, and defect levels inside the tunnel
window located between midgap and band edge can contribute to
the valley current. In Fig. 21, homogeneously distributed single-
level defects were assumed and the zero-phonon DAT current was
simulated for different energy levels Etr measured from midgap.
This current is proportional to the product of defect concentration
Ntr and “effective trap volume” Vtr. The fraction of total defect
volume NtrVtr ¼ 10�5 was kept unchanged in all cases. As can be
seen, energy levels in the interval between �0.2 eV and +0.1 eV
from midgap yield current maxima covering the whole bias range
from +0.25 V to +0.5 V.

Figure 22 presents a fit for 300 K obtained with the combination
of BTBT, zero-phonon DAT, field-enhanced multi-phonon recombi-
nation, and diffusion (black solid curve). Parameters are given in the
caption. In order to see an effect of DOS tails (TTBT) around +0.2 V,
the largest possible value of η(i) ¼ η (Ndop , 1019 cm�3) ¼ 30 meV
and the huge value of η(a) ¼ η (Ndop . 1019 cm�3) ¼ 150meV have
to be used. The DOS tails make no difference at all, if η(a) 
 100meV.

Interestingly, zero-phonon DAT can also explain the weak
temperature dependence of the valley current. Figure 23 shows a
comparison for 300 K and 77 K using the same parameters. Two
Gaussian defect distributions centered at +0:16 eV from midgap
with otherwise equal parameters were assumed. Multi-phonon
recombination had to be skipped because both S-Device models
did not converge at 77 K. The poorer agreement for 77 K is partly
due to the temperature dependence of the bandgap in the

FIG. 21. Measured (symbols) and simulated (solid lines) forward characteristics
at 300 K using exclusively zero-phonon DAT via homogeneously allocated
single-level defects. Parameters: mc ¼ 0:043m0, mv ¼ 0:047m0,
Eg ¼ 0:74 eV, Ntr ¼ 1� 1017 cm�3, and Vtr ¼ 0:1 nm3. Energy level Etr mea-
sured from midgap indicated in the legend. The pure BTBT current is shown for
comparison.

FIG. 22. Measured (symbols) and simulated (lines) forward characteristics at
300 K including all processes. Mutual parameters: mc ¼ 0:043m0,
mv ¼ 0:047m0, and Eg ¼ 0:74 eV. Parameters for zero-phonon DAT:
Dtr ¼ 4� 1017 cm�3eV�1, Vtr ¼ 0:3 nm3, Gaussian trap DOS with
E0 ¼ �0:2 eV, and Eσ ¼ 0:08 eV. Parameters for field-enhanced multi-phonon
recombination: S ¼ 7, �hωeff ¼ 30 meV, and τn,p ¼ 1 ns. Solid black curve: no
DOS tails. Red dashed curve: including exponential DOS tails with
mtc ¼ mc, mtv ¼ mv, and η(i) ¼ η (Ndop , 1019 cm�3) ¼ 30 meV and
η(a) ¼ η (Ndop . 1019 cm�3) ¼ 150meV.

FIG. 23. Measured (symbols) and simulated (lines) forward characteristics at
300 K (black) and 77 K (blue) using exclusively zero-phonon DAT via homoge-
neously allocated traps assuming two Gaussian distributions centered at
E(1)
0 ¼ �0:16 eV and E(2)

0 ¼ þ0:16 eV from midgap. Mutual parameters:
mc ¼ 0:043m0, mv ¼ 0:047m0, Eg ¼ 0:74 eV, Vtr ¼ 0:3 nm3, S ¼ 0,
�hωeff ¼ 30 meV, Eσ ¼ 0:08 eV, and Dtr ¼ 4� 1017 cm�3eV�1.
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simulation, which is not seen in the measured peak currents. It
should be noted that the used defect distributions and parameters
are hypothetical and they only demonstrate that zero-phonon DAT
is a possible explanation for the valley current.

IV. CONCLUSION

A compact theoretical model of tail-to-tail tunneling in semi-
conductors has been developed taking the localized nature of tail
states into account. The three-dimensional pseudo-delta potential1

yields s-like states with a localization radius that is parameterized
by the effective mass of the localized electron. Hence, the masses
m{tc,tv} are adjustable parameters that enter the tunnel probability.
The potential model allows to include the field-induced lifetime
broadening of the states. The microscopic transition rate between
two opposing, localized tail states in a homogeneous electric field
of arbitrary orientation was derived and found to be governed by
the reduced effective mass built from m{tc,tv}. These effective masses
could be identified with the band masses, since tail states split from
their corresponding bands, and the typical localization radii cover
many unit cells. In the device application part of this paper, we
chose mtc ! mc and mtv ! mlh in order to maximize the effect of
tail-to-tail tunneling. As in our treatment of tail-to-band tunnel-
ing,12 a ladder of closely spaced single-level DOSs of the lifetime-
broadened localized states was assumed to form the tail DOS. The
weight of each single-level DOS is obtained from the Gaussian or
exponential shape. Therefore, two further model parameters are
needed: the characteristic (band tail spreading) energies η{c,v}. In
the application section, they were treated as piecewise constants,
but they could also be empirically modeled as a function of doping
and temperature. The final expression for the macroscopic genera-
tion rate due to tail-to-tail tunneling takes the form of a double
integral over the tail energies. Only for Gaussian tail shape, a fully
analytical solution could be derived in the cases of high and very
low electric field, respectively. This yielded insight into the effective
tunnel barrier, the tunneling mass, and the reduction of the pre-
exponential factor compared to band-to-band tunneling.

Both the homogeneous field case and the in-depth analysis of
InGaAs pin-Esaki diodes revealed that tail-to-tail tunneling is a
completely negligible process compared to tail-to-band tunneling
due to the localized nature of the wave functions. Furthermore,
tail-induced tunneling can be excluded as the reason behind the
strong measured valley current. In contrast, zero-phonon defect-
assisted tunneling alone can reproduce the magnitude and the
temperature dependence of the latter using reasonable parameters
for concentration and defect volume. In order to slightly change
the negative slope in the NDR region, one has to assume that
η{c,v} . 100meV in the heavily doped regions of the diode.
Whether such a value is feasible remains an open question, at least
it contradicts all optical measurements of band tails in III–V mate-
rials. On the other hand, various approximations were necessary
for the final form of the model and its numerical implementation
in a commercial device simulator. Most notably are the limit of
“strong” localization of the states (at length discussed in Ref. 12),
the approximate treatment of the radial distance, and the numerical
integration of the action. Furthermore, the developed model is a
continuum model, which requires that the active volume is large

enough for a proper average over random disorder caused by
doping. Nanowire TFETs and Esaki diodes might only contain a
countable number of doping atoms. Then, band tails in the above-
described sense lose their meaning and an atomistic simulation
method like tight-binding non-equilibrium Green’s function
(NEGF)8 becomes indispensable.

The model of tail-to-tail tunneling was developed for direct
materials. It might also be suitable for Ge nanowires, where elastic
and inelastic tunneling are comparable.72 In Si and Ge bulk-like
homo-junctions, phonon-assisted band-to-band tunneling domi-
nates. Here, tail-to-tail tunneling could be direct, if the strong local-
ization of the tail states in real space results in a sufficient spread in
k-space and thereby relaxes the need of a phonon for momentum
conservation. In Si/InAs hetero-junctions, the imaginary dispersion
in the gap was found to be continuous and smooth,73 which allows
to fit both effective band masses, to extract an effective “tunnel
gap” for the bandgap, and to use these parameters in the model.

A renewed interest in tail-to-tail tunneling has emerged recently
in the context of quantum computing and MOSFET operation at
cryogenic temperatures.74 The experimentally observed saturation of
the sub-threshold swing toward very low temperatures could involve
elastic tunneling between conduction band tail states or deeper lying
trap states.75 It is appealing that the saturated swing could just reflect
the characteristic energy of an exponential tail DOS. Many aspects of
our theory could be used to develop a mobility model that leads to
the saturation of the swing at a certain temperature.

ACKNOWLEDGMENTS

We thank Dr. Hamilton Carrillo-Nuñez for the computation
of the imaginary full-band dispersion in InGaAs with OMEN.48

We are indebted to Dr. Anne Verhulst (IMEC) for providing exper-
imental data and for many stimulating discussions.

APPENDIX A: BAND GAP NARROWING IN InGaAs

The random-phase-approximation (RPA)-based BGN model
of Ref. 55 implemented in S-Device44 for silicon as default can be
applied to any material, if effective masses m{c,lh,hh}, band multiplic-
ities, and permittivity ϵs are known. For the computation of the
model parameters, lengths have to be scaled by the excitonic Bohr
radius aex and energies by the excitonic Rydberg energy Ryex,

aex ¼ �h2ϵs
e2μ*

, Ryex ¼ �h2

2μ*a2ex
: (A1)

The effective mass μ* is given by

μ* ¼ mcmv

mc þmv
with m3=2

v ¼ 1
2

m3=2
lh þm3=2

hh

	 

: (A2)

The mass mv is the average hole DOS mass. Band and valley multi-
plicities, as well as spin degree of freedom, are contained in the
model parameters g{e,h}. The values of the material-dependent
parameters for the case of In0:53Ga0:47As are provided in Table II.
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For simplicity, only the zero-temperature limits of the rigid
band shift are considered,

Δc ¼ � 48n
πge

	 
1=3
þce ln 1þ den

pe
p

� �þ Ndop
0:799αe

N3=4
p

� �
,

Δv ¼ � 48p
πgh

	 
1=3þch ln 1þ dhn
ph
p

� �þ Ndop
0:799αh

N3=4
p

� �
:

Here, np ¼ αenþ αhp and Np ¼ αeN�
D þ αhN�

A with αe ¼ μ*=mc

and αh ¼ μ*=mv. Ndop denotes the electrically active doping.
The first term is the exchange energy and the second the low-
temperature limit of the free-carrier correlation energy.70 The
parameters c{e,h}, d{e,h}, and p{e,h} had been fitted for silicon,55 but
can be assumed to depend only weakly on the material. They are
given in Table III. The last term is the low-temperature limit of the
ionic part of the correlation energy.71 The BGN is given by

ΔEg ¼ Δcj j þ Δvj j: (A3)

Note that in the S-Device manual44 (the correctly implemented) Np

is confused with np.

APPENDIX B: RELATION BETWEEN KANE’S
TWO-BAND MODEL AND ONE-BAND EMA MODEL

The BTBT rate for homogeneous electric field calculated with
Kane’s two-band model38 reads

GKane
BTB ¼ (eF)2

18π�h2

ffiffiffiffiffiffi
mr

Eg

r
exp � π

2
E

3
2
g
ffiffiffiffiffiffi
mr

p
�hF

 !
: (B1)

The WKB limit of the one-band EMA model as given by Eq. (52)
in Sec. II D is

G1B�EMA
BTB ¼ (eF)3

64π�hE2
g
exp � 4

3
E

3
2
g
ffiffiffiffiffiffiffiffi
2mr

p
�hF

 !
: (B2)

Thus, the ratio takes the form

rscal ¼ GKane
BTB

G1B�EMA
BTB

¼ 32
ffiffiffiffiffiffi
mr

p
E

3
2
g

9�heF
exp

4
3
E

3
2
g
ffiffiffiffiffiffiffiffi
2mr

p
�hF

1� 3π

8
ffiffiffi
2

p
� �" #

, (B3)

which is used as a scaling function in the simulation of tail-induced
tunneling currents. For this, the field dependence was substituted
by the F(V)-curve shown in Fig. 15. The outcome of Eq. (B3) is
presented in the same figure.
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