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The electroabsorption spectrum for transitions from a deep impurity level to the
conduction band is calculated in the framework of the Lucovsky model. Effects of multi-
phonon processes due to the strong lattice coupling are taken into account. The line shape
turns out to be highly susceptible to the ratio of electrooptical and phonon energy.

PACS numbers: 78.50.Ge

1. Introduction

Although the description of the electronic structure of deep defects and impurities
without any external perturbation has been improved by self-consistent Green’s-function
methods during the last years, one needs in addition the non-perturbation results for the
wave functions to get the field and temperature dependent transition probabilities, if radia-
tive or non-radiative recombination processes in an electric field are considered. Among
the experimental methods developed for determination of the defect nature, wave functions,
binding energies, cross sections and other properties, the optical techniques play an im-
portant role. Thus it is useful to study both the essential influence of a strong electric field
and of multiphonon excitation and deexcitation processes on the optical transitions from
impurity to band states. The complexity of this problem can be reduced by adopting
a 3-dimensional é-potential model which allows the exact analytical solubility even in the
presence of an electric field [1]. In [1] the zero phonon absorption spectrum has been cal-
culated for transitions from the impurity level to the band from which the level splits up.
The same model has been applied to the case of transitions from valence band to impurity
states accompanied by multiphonon processes in [2]. As long as the field strengths are
below a certain threshold value (10° V/cm in typical cases) the field effects on localized
states are much smaller than those on band states and can be neglected. We will follow
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this approach regarding the well known Franz-Keldysh-effect on band states [3] to be re-
sponsible for the characteristic lie shape of the field-induced change in the absorption
coefficient.

2. Theory

Optical transitions from deep level states A into the band states A’ which are assumed
to be dipole allowed are calculated by applying the “Golden Rule”. The result for the
absorption coefficient is (cf. [4])

i C T
a(w, F) = o Z z pxl(danpule - Vi?’z¢m)[25(EA'N'—E;.N‘"hm)- 1
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In (1) @ and ¢ are the elcctronic and vibronic eigenstates of the coupled electron-phonon
system, £ denotes the polarisation vector of the radiation and py means the statistical weight
of the lattice initial states. The 1, 1’-summation extends upon occupied electron initial
states and empty electron final states. In the following we will neglect both the electron-
-phonon coupling for final states and the field influence on locahzed initial states (F —-
electric field strength). Consequently the field dependence of a(w, F) is only due to the band
states @,.. The explicit calculation of electron states is carried out for a two band model
with a parabolic and 1sotroptc valence band E, (k) (effective mass m,) and a parabolic ellip-
soidal conduction band E(K) (effective masses m,, m,). We consider only direct transitions
and postulate the possibility to build the deep level states only from valence states while
the continuum states are assumed to be built only from Bloch functions ot the conduction
band near k = 0. This approach should be reasonable for deep neutral centres attached
to the valence band. The set of Schridinger equations for the two envelope wave funotions
reads (neglecting the interband transitions and the intraband polarisation of the Bloch
functions)

[EL(Q)~E+ieF - V¢]43() = 0, @)
[E.(k)—~ EJ45(R)+ T, RIVG)K)AL(R') = 0, 22)
-
where
V() = Vod(3) [1+% - V5 (3)

i8 the defect potential taken after Vinogradov [1]. As has been shown in [5] a d-potential
gives good results for the energy dependence of zero field optical cross sections, which
justifies its use in our calculation. Equation (2.2) results in one bound state in the gap at
an energy E = —E,+E3, if V, = 4nEgrs (r, — localisation radius rj = h%/2m,Eg). We
obtain from (2)

= c 2
D(E) = |430)1" = o,

4n ﬁ3
D(E) = |Ax(O)\* = (2nrg)~'6(E+E,— Eg), 4.2)



797

the quantities needed for the calculation of the total electronic transidon rate D(E’, E)
for a transition E — E’. The expression (4.1) describes the well known Franz-Keldysh
tails below and the oscillations around the zero field threshold. (F(y) = Ai2(y)—yAi*(y);

(eh F)z 1/3

he, = ( — ) — electrooptical energy; 1/my,, = sin® &{m,,+cos? #/m,,; & — angle
1]

between the electric field and the rotational axis of the energy ellipsoid). The total transi-

tion rate D(E’, E) can be expressed in form of a simple product:

2
D(E', E) = o p@bpE). ©

my
E+E,+ E’
m,
Using Eqs (1), (4) and (5) and (ck'|Vivk) ~ (i/M)P.,(0)35 the field dependent absorption
coefficient can be written as

oy

Clé - po? Eoae
C,P) = J dE J dE'D(E', E)l p5(0), ©

where Ip.p(w) is the Fourier transform of the lineshape function known from the multiphon-
on theory [6]. Restricting to onc effective phonon energy he, and using the asymptotic
behaviour of #(y)

1 —
lim #(y) = —0(—y) v~y
Fa0 n

the field induced change in a(w) can finally be transformed into a sum of thermally weighted
electro-optical functions of the first kind F(y) = n#F(3)—6(—y) v —y
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In our final expression (7) /; denotes the modified Bessel function of order / and E; means

the effective trap depth measured from the bottom of the conduction band: Ey = E,— Ey

+Shmg. (N — Bose occupation number, § — Huang-Rhys factor).

3. Numerical results

In figures 1a-d we have plotted the line shapes at T = 10 K for various field strengths
and Huang-Rhys factors using equation (7). The zero phonon line indicated in each figure
exhibits a pure shape of the electrooptical function F, slightly modified by the energy denom-
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minator in (7). For high fields the line shape is determined by F, which gets increasingly
broadened with rising coupling strengths and the first zero value of which turns out to be
shifted by the Franck—Condon energy Show, (figure 1a).

The discrete natute of the spectrum due to the Einstein model, which is only weak
for large field strengths, becomes dominant in the case of lower fields. Below a certain
electrooptical energy, when the first oscillation of F has an energetic distance less than the
effective phonon energy, additional substructures arise (figure 1d). The height of the peaks
can grow with decreasing fields now, depending on whether a maximum of F coincides
with hw, or not.
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