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Abstract— We describe an implementation of the density-
gradient device equations which is simple and works in any
dimension without imposing additional requirements on the
mesh compared to classical simulations. It is therefore appli-
cable to real world device simulation with complex geome-
tries. We use our implementation to determine the quan-
tum mechanical effects for a MOS-diode, a MOSFET and
a double-gated SOI MOSFET. The results are compared to
those obtained by a 1D-Schrédinger-Poisson solver. We also
investigate a simplified variant of the density-gradient term
and show that, while it can reproduce terminal characteris-
tics, it does not give the correct density distribution inside
the device.
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I. INTRODUCTION

The length scales in today’s semiconductor devices are so
small that quantum effects become important. Apart from
tunneling through the gate insulator, the most important
effect is the modification of the gate capacity as a function
of the gate voltage (CV-characteristics), where confinement
leads to a threshold voltage shift and an apparent increase
of the oxide thickness.

Various methods have been suggested to model these
quantum effects. Among the approaches that are com-
patible with classical device simulators based on the drift-
diffusion (or hydrodynamic) approach, the physically most
accurate method is to include the Schrodinger equation into
the self-consistent computation of the device characteristics
[1]. As for current devices the quantization is only relevant
for the direction perpendicular to the oxide-silicon inter-
face, one restricts to a 1D treatment of the Schrédinger
equation. 2D devices are treated by making a couple of
1D slices along the channel. Finite temperature is taken
into account by computing multiple subbands and popu-
lating them according to their energy assuming Maxwell-
Boltzmann or Fermi distribution functions. Solving the
Schrédinger equation is not only time-consuming in itself,
it also leads to direct coupling of all grid points within a
slice. This destroys the sparsity structure in the Jacobian
needed for the Newton-iteration used to solve the semi-
conductor equations. Therefore, these nonlocal couplings
are typically neglected. Another serious drawback of this
method is that it is one-dimensional in nature and thus re-
alistic devices with nonplanar oxide-silicon interfaces can
not be handled satisfactory. Using a 2D Schrédinger equa-
tion could help here, but at the price of much increased
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numerical cost to determine the eigensolutions and of yet
higher nonlocality. An additional physical problem is the
choice of appropriate boundary conditions.

Various simpler methods have been suggested. The prob-
ably most familiar is that by van Dort et al. [2], which ex-
presses the quantum effect by an apparent band edge shift
that is a simple function of the electric field. The model is
based on the expression for the lowest eigenenergy of a par-
ticle in a triangular potential and reproduces the charac-
teristics obtained with the Schrédinger equation quite well,
and thus is widely used in practice. This model does not,
however, give the correct charge distribution in the device.
While in principle it can be used for 2- and 3-dimensional
devices of nonrectangular geometry, it is unclear how well
the model is still justified in such cases.

A third alternative are density gradient (or, general-
ized to the level of hydrodynamics, quantum hydrodynamic
models) [3], [4], [5], [6], [7]- In these models, an additional
term is introduced in the continuity equations. This term
contains higher-order derivatives of the potential or of the
charge density. It thereby introduces a limited degree of
additional nonlocality into the equations which accounts
for the effect of quantum mechanics. The model is simple
and its ability to describe CV-characteristics [8] and even
tunneling currents [9] is well established. To implement it,
the Jacobian of the system has to be modified, but it re-
mains sparse. Furthermore, the model is multidimensional
by construction.

In this paper, we describe how the density gradient
model can be implemented in a multidimensional device
simulator using the box method on unstructured grids.
While these grids are essential to keep the number of grid
points in realistic devices small, the discretization of higher
order derivatives is not straightforward. The strategy we
have chosen is to introduce a new variable that encapsulates
the higher order derivatives, thereby making two second or-
der differential equations out of one fourth order equation.
We will also motivate and investigate a simplified density-
gradient method, which turns out to give correct terminal
characteristics, but fails to predict the correct charge dis-
tribution in the interior of the device.

II. THE DRIFT-DIFFUSION EQUATIONS WITH DENSITY
GRADIENT CORRECTION

In [10], it is shown that in lowest order Born approxima-
tion, the current equation reads
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where we already have left out time derivatives and the
convective term (terms quadratic in the particle current
densities ;) n is the particle density, T' the temperature
(in contrast to [10], we do not consider second order mo-
mentum terms and assume T to be constant), kg is the
Boltzmann constant, e the elementary charge, m the effec-
tive mass and p the mobility. ® is the potential, including
both the band edges ®pang and electrostatic potential ¢,
® = ®p,naq + q¢, with the carrier charge denoted by q. ®4
is given by [10]
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where d is the dimensionality of the mesh and § = 1/kpT.
For a 1D problem, we find
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For illustration, we consider a simple example. Assume
that the system is infinite, one dimensional and in equilib-
rium (j = 0), and the potential has the form
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Under these assumptions, Eq. (1) simplifies to
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® + () is a continuous function in z, that is, looking only
at the second term in Eq. (3), we see that the quantum
correction ®; smoothes out the jump in ® on a length
scale lqm, see Fig. 1.
Eq. (3) is an ordinary first order differential equation
which for z # 0 can be integrated to give
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where C'; and C_ are the integration constants for z > 0
and z < 0, respectively. If ®; > 2kgT (which violates
the assumptions used to derive Eq. (1), but is common in
practice), the denominator of this equation becomes 0 for
a z > 0 and the density in the barrier diverges. Therefore,
for general structures, this model can not be used unaltered
(This problem does not arise for the thin barriers in [10],
[11], because @ < —kpT throughout the barrier).

An obvious remedy would be to neglect the last term in
Eq. (3). This leads in our example to n = Cy exp (—(Q),
which is well behaved. Using this form of n, the last term
in Eq. (3) is by a factor |f®p| smaller than the second
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Fig. 1. Potential ®, correction @ according to Eq. (4), their smooth
sum, and Qs according to Eq. (10)

term. As the derivation of Eq. (1) assumes that |5®o] is
small, neglecting the last term thus is also justified in the
limit where Eq. (3) is strictly valid. Another approach to
improve Eq. (3) has been described in Refs. [12], [13].

However, computing Eq. (2) is still numerically too ex-
pensive to be done in actual device simulation. Using a Fast
Fourier Transform [11] reduces numerical complexity, but
is impractical for general, unstructured grids. We therefore
follow [10] and assume ® to vary slowly on a length scale
of lqm, and simplify Eq. (2) to &, = ®/3. Furthermore, in
equilibrium, logn = =&+ 0O (h2) + const. Hence, the last
term in Eq. (1) becomes
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The explicit VO [A*] on the right hand side gives only a
O (h*) contribution to the continuity equation and can be
omitted in lowest order quantum correction. Thus, Eq. (1)
simplifies to

ej = —pksTVn — unV (® + A) (6)
where A is given by
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The quantum effect thus shows up as an additional force
term derived from of a potential-like quantity A that is
comprised of higher order derivatives of the classical poten-
tial. As ® might have abrupt jumps, the quantity above
might be undefined in certain points. We therefore replace

Eq. (7) by a slightly modified partial differential equation



for A,
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As A is O (B?), this modification, like the approximation
done on Eq. (5), does not contribute in lowest order quan-
tum correction.

For a semiconductor with multiple conduction band min-
ima and anisotropic effective mass it is not clear which
value to take for m in Eq. (8). We take m as the density
of states mass and handle the problem by introducing the
fit factor v above.

In order to take account of position dependent effective
masses, we add a mass term contribution to the potential ®
in the same manner it appears in the classical drift-diffusion
equations,
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The gradient square term in Eq. (8) corresponds to the
last term in Eq. (3) which we found to lead to problems
under certain circumstances. It is therefore tempting to
replace A by the simplified form
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For our 1D-potential step example discussed earlier (using
= 1) this leads to
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which for small |z| is close to what we have obtained be-
fore in Eq. (4), as can be seen from Fig. 1. As we will
show later, while using A gives reasonable results for the
CV-characteristics, it does not give the correct charge dis-
tributions in the channel.

In equilibrium, n o« exp[—8 (® 4+ A)], therefore Eq. (8)
can also be written as
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which are the forms often used in the literature. We will
continue to use the form (8), however. This is advantageous
for cases where we are not interested in transport through
barriers but only in properties like CV-characteristics. For
these cases, (8) allows to treat the barrier as insulating and
to exclude it from the solution of the continuity equation
while still being able to correctly compute A.

III. NUMERICS

While implementations of the quantum hydrodynamic
model using finite element methods have been reported
[14], [15], the method most popular for implementation of

the device equations are the Box Method and Finite Differ-
ence Methods (for an introduction, see [16]). In our case,
the choice of the Box Method was predetermined by the
target simulation environment [17].

The usual approach to discretize Eq. (6) is to substitute
A according to Eq. (11) into this equation. The order of
this differential equation is thereby increased by two. This
means that to discretize it in a given grid point, not only
nearest neighbor grid points need be examined, but also
grid points further away. On grid data structures designed
for use with the Box Method, the information needed to
compute these derivatives might not be available at all.
Therefore, this approach is only useful on simple grid struc-
tures like tensor grids.

Our approach is to introduce A as a new variable, that
is, the number of unknowns of the nonlinear system is in-
creased. On the other hand, as Eq. (8) is only of second
order, it can conveniently be discretized combining func-
tion values only on nearest neighbor grid points.

While substituting A into Eq. (6) leads to additional off-
diagonal elements in the Jacobian and changes the matrix
structure, our approach adds an additional block to the Ja-
cobian, but the sparsity structure of each block still reflects
the nearest-neighbor relationship of the underlying mesh.

For Eq. (6), the Scharfetter-Gummel discretization [18]
is used. Eq. (8) is discretized as
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The indices 7 and j are used to designate grid points. The
j-sum runs over the nearest neighbors of grid point i. ;
is the volume of the box for grid point i, [;; is the distance
of grid points ¢ and j, and o;; is the area of the box face
between these two points.
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As boundary conditions for Eq. (8), we assume that
V (® + A) = 0 at the outer boundary of the device. This
would corresponds to Vn = 0 if the density-based formula
(11) for A was used. While this boundary condition is
particularly easy to implement, it is probably not ideal at
contacts where the electric field can be large, for example
at metallic gates.

To solve the nonlinear system of equations, we perform a
Newton iteration on the entire coupled system of equations
(current equations Eq. (6), Eq. (8), and Poisson equation).
For all examples discussed below, the linear systems that
arise in each Newton step were solved by a direct method.

To our surprise, the convergence the Newton iterations
of the quantum hydrodynamic models for the examples
we consider in the following section was worse than for
the Schrédinger equation, even though a full Jacobian was
available. Also, due to the increased number of unknowns
in the nonlinear system, the time needed to obtain the
eigensolutions of the 1D-Schrodinger equation was coun-
terbalanced.



IV. EXAMPLES
A. MOS diode

Our first example is a one-dimensional MOS diode. We
compare 5 different approaches: 1D-Schrédinger-Poisson
solver [19], van Dort model [2], the density gradient method
based on Eq. (8), the simplified density gradient method
using Eq. (9), and the classical model. In all the simula-
tions, the oxide has been treated as a true insulator and no
current flow has been allowed.

The upper graph in Fig. 2 shows the CV-characteristics
for a MOS-diode with 4nm gate oxide thickness, a channel
doping of 5-10'"cm > and a metal gate, computed at 300K.
The fit parameters used were v = 3.6 and s = 0.3. The
graph shows that the two density gradient models and the
van Dort model describe the curve well, that is, the devia-
tion from the Schrodinger result is negligible compared to
the difference from the classical result.

For the same device, we have plotted the channel density
profile at a gate-back contact voltage of 4V in the bottom of
Fig. 2. While the CV-curves are quite accurate, the density
profile for the van Dort model and the simplified Density
Gradient model (9) are far off the Schrodinger result. In
particular, the density for the latter decreases much too fast
when approaching the oxide interface. On the other hand
the density gradient model (8) reproduces the Schrodinger
density well.

We varied the oxide thickness, the channel doping, and
the temperature to check if the CV-curves can be repro-
duced with the same choice of v and ;. Fig. 3 shows the
results. It can be seen, that all the models work well for
different device parameters without need to readjust the fit
constants.

B. MOSFET

In Fig. 4 we show a comparison of the five models for
the current-voltage characteristics of a hypothetical MOS-
FET with 4nm gate oxide thickness, 300nm gate length,
substrate doping 10'7cm ™2, an effective channel length of
200nm and a channel width of 1ym. As channel mobility
models make use of the field distribution [20] and would
need model-specific recalibration of their fit parameters,
we restricted to a nonrealistic, constant mobility to make
interpretation of the results more straightforward. We used
the parameters from section IV-A, v = 3.6 and ~, = 0.3.
The graphs show all quantization models agree well for this
example, t00.

C. Double-gated SOI MOSFET

To investigate the limits of the models, we modeled a
hypothetical double-gated SOI MOSFET with a very thin
silicon layer of 5nm and a nearly undoped channel of 50nm
length. While this is not a realistic device yet, it is useful
to investigate how well the density gradient method and
the van Dort model agree to the results obtained by the
Schrédinger approach for a structure much different from
an ordinary MOSFET.
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Fig. 2. Top: CV-characteristics for a MOS-diode with 4nm gate
oxide and 5-10'7cm 2 channel doping. Bottom: Electron density
in the same MOS-diode at gate-back voltage Vg = 4V. =z is
the direction perpendicular to the silicon-oxide interface which is
located at z = 0. The temperature was 300K for both graphs.

In Fig. 5 we show the drain current as a function of gate
voltage (both gates are ramped together) of the device in
the sub-threshold regime. The van Dort model is found to
agree with the classical curve here. This can be expected,
because it was not intended to be applied in this case where
potential is not triangular, but basically box shaped (note
that at higher gate voltages the agreement is good again
because the potential near the upper and lower interface
becomes triangular). The density gradient and the simpli-
fied density gradient model give the same result and both
underestimate the effect of quantization. We checked that
the discrepancy remains if the channel length is increased
to 500nm. Thus this is not a 2D effect. The behavior of
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Fig. 3. CV-curves for MOS-diodes with 3nm gate oxide and 2.5 -

10'8cm—3 doping (left) and 5nm oxide thickness and 10'7cm=3
doping (right). The upper graphs are for 300K, the lower graphs
for 200K.

the drain current is reflected by the density profile given in
Fig. 6, which shows a cut perpendicular to the interfaces
in the middle of the channel at a gate voltage Vgs = 1V.

V. SUMMARY AND CONCLUSION

We have described a multidimensional implementation of
the density-gradient method which does not depend on a
tensor grid to work. The main aspect of this approach is to
introduce the additional variable A to the nonlinear system
of unknowns. The equation for A can easily be discretized
even on unstructured grids using the Box Method.

We compared the results obtained to those of a full
Schréodinger equation based quantization model, the van
Dort model and a simplified density-gradient method.
While the simplified model and the van Dort model are able
to reproduce CV-characteristics well, only the full density
gradient method also gives the correct charge distribution
in the channel.

In our numerical examples we found no advantage of
our implementation of the density gradient method over
the 1D-Schrédinger equation approach in terms of stabil-
ity and computation time for the examples where the latter
is applicable. The higher flexibility regarding device ge-
ometry and mesh are therefore the primary advantages of
the density gradient method over the Schrédinger method.
The density-gradient method could be also advantageous
for applications where the knowledge of the full Jacobian
of the nonlinear system is mandatory, like, for example,
small-signal analysis.
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